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LIMIT DISTRIBUTIONS FOR LARGE PÓLYA URNS1
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We consider a two-color Pólya urn in the case when a fixed number S

of balls is added at each step. Assume it is a large urn that is, the second
eigenvalue m of the replacement matrix satisfies 1/2 < m/S ≤ 1. After n

drawings, the composition vector has asymptotically a first deterministic term
of order n and a second random term of order nm/S . The object of interest is
the limit distribution of this random term.

The method consists in embedding the discrete-time urn in continuous
time, getting a two-type branching process. The dislocation equations associ-
ated with this process lead to a system of two differential equations satisfied
by the Fourier transforms of the limit distributions. The resolution is car-
ried out and it turns out that the Fourier transforms are explicitly related to
Abelian integrals over the Fermat curve of degree m. The limit laws appear to
constitute a new family of probability densities supported by the whole real
line.

1. Introduction. Consider a two-color Pólya–Eggenberger urn random pro-
cess, with replacement matrix R =

(
a
c

b
d

)
: the urn starts with a finite number

of red and black balls as initial composition (possibly monochromatic). At each
discrete time n, one draws a ball uniformly at random, notices its color, puts it
back into the urn and adds balls according to the following rule: if the ball drawn
is red, one adds a red balls and b black balls; if the ball drawn is black, one adds c

red balls and d black balls. The integers a, b, c, d are assumed to be nonnegative2

and the urn is assumed to be balanced, which means that the total number of balls
added at each step is a constant S = a + b = c + d . The composition vector of the
urn at time n is denoted by

UDT(n) =
(

# red balls at time n

# black balls at time n

)
.

It is a random vector and the article deals with its asymptotics when n tends to
infinity. Throughout the paper, the qualifier DT is used to refer to discrete-time
objects while CT will refer to continuous-time ones.
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Since Pólya’s original paper [13], this question has been extensively studied so
that citing all contributions is hopeless. The following references give however a
good idea of the variety of methods: combinatorics with many papers by Mah-
moud (see his recent book [12]), probabilistic methods by means of embedding
the process in continuous time (see Janson [9]), analytic combinatorics by Flajolet
et al. [7] and a more algebraic approach in [14]. The union of these papers is suf-
ficiently well documented, guiding the reader to a quasi exhaustive bibliography.

The asymptotic behavior of UDT(n) is closely related to the spectral decompo-
sition of the replacement matrix. In case of two colors, R is equivalent to

(
S
0

0
m

)
,

where the largest eigenvalue is the balance S and the smallest eigenvalue is the
integer m = a − c = d − b. We denote by σ the ratio between the two eigenvalues:

σ = m

S
≤ 1.

It is well known that the asymptotics of the process has two different behaviors
depending on the position of σ with respect to the value 1/2. Briefly:

(i) when σ < 1
2 , the urn is called small and, except when R is triangular, the

composition vector is asymptotically Gaussian3:

UDT(n) − nv1√
n

D−−→
n→∞ N (0,�2),

where v1 is a suitable eigenvector of tR relative to S and �2 has a simple closed
form;

(ii) when 1
2 < σ < 1, the urn is called large and the composition vector has a

quite different strong asymptotic form:

UDT(n) = nv1 + nσWDTv2 + o(nσ ),(1)

where v1, v2 are suitable eigenvectors of tR relative to the eigenvalues S and m,
WDT is a real-valued random variable arising as the limit of a martingale, the little
o being almost sure and in any Lp,p ≥ 1. The moments of WDT can be recursively
calculated but they have no known global closed form [14].

The particular case σ = 1 is the original Pólya urn; it corresponds to taking
R = S Id as replacement matrix. It has been well known, since Gouet [8], that the
composition vector admits an almost sure asymptotics of order one: UDT(n) =
nD + o(n) where the random vector D has a Dirichlet density (explicitly given
in [8]).

In the present article, the object of interest is the distribution of WDT for large
urns.

The first step consists in classically embedding the discrete-time process
(UDT(n))n≥0 into a continuous-time Markov process (UCT(t))t≥0, by equipping

3The case σ = 1/2 is similar to this one, the normalization being
√

n logn instead of
√

n.



LIMIT LAWS FOR LARGE PÓLYA URNS 3

each ball with an exponential clock. At any nth jump time τn, the continuous-
time process UCT(τn) has the same distribution as UDT(n). This connection be-
tween both processes is the key point, allowing us to work on the continuous-time
process, where independence properties have been gained.

In Theorem 3.2, we show that, in the case of large urns, the continuous-time
process satisfies, when t tends to infinity, the following asymptotics,

UCT(t) = eSt ξv1
(
1 + o(1)

) + emtWCTv2
(
1 + o(1)

)
,(2)

where v1 and v2 are the same vectors as above, ξ and WCT are real-valued ran-
dom variables that arise as limits of martingales, with o(·) meaning “almost sure
and in any Lp,p ≥ 1.” Moreover, we prove that ξ is Gamma-distributed. These
results are based on the spectral decomposition of the infinitesimal generator of
the continuous-time process on spaces of two-variable polynomials.

Thanks to the embedding connection, the two random variables WDT and WCT

are connected (Theorem 3.10):

WCT = ξσWDT a.s.,

ξ and WDT being independent. Since ξσ is invertible,4 the attention is focused on
the determination of the distribution of WCT .

Because of the nonnegativity of R entries, (UCT(t))t≥0 is a two-type branching
process, visualized as a random tree: the branching property gives rise to disloca-
tion equations on UCT(t). If one denotes by F (resp., G ) the characteristic function
of WCT starting from one red ball and no black ball (resp., no red ball, one black
ball), the independence of the subtrees in the branching process implies that the
characteristic function of any WCT starting from α red balls and β black balls is
the product F α Gβ . Furthermore, the dislocation equations on UCT(t) lead to the
following differential system{

F (x) + mxF ′(x) = F (x)a+1G(x)b,

G(x) + mxG′(x) = F (x)cG(x)d+1,
(3)

together with suitable boundary conditions. Notice that the corresponding expo-
nential moment generating series (Laplace series) are also solutions of (3), but
their radius of convergence is equal to 0. This is detailed in Section 8.2.

The solution of system (3) is obtained in Section 6, where it is shown that F
and G can be made explicit in terms of inverse functions of Abelian integrals over
the Fermat curve of degree m. Indeed, for any complex z in a suitable open subset
of C, let

Im,S,b(z) =
∫
[z,z∞)

(1 + um)b/m du

uS+1 ,

4A probability distribution A is called invertible when, for any probability distributions A and B ,
the equation AX = B admits a unique solution X independent of A, see, for instance, Chaumont
and Yor [4]. The invertibility of any power of a Gamma distribution can be shown by elementary
considerations on Fourier transforms.
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where [z, z∞) denotes the ray {tz, t ≥ 1}. The function Im,S,b defines a conformal
mapping on the open sector Vm = {z �= 0,0 < arg(z) < π/m}. If Jm,S,b denotes
the holomorphic function, defined on the lower half-plane as left inverse function
of Im,S,b and extended to the slit plane by conjugacy, the closed form of F and G
are given in the following result.

THEOREM. For any x > 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F (x) = Kx−1/mJm,S,b

(
C0 + KS

S
x−S/m

)
,

G(x) = Kx−1/mJm,S,c

(
C0 + KS

S
x−S/m

)
,

where K ∈ C and C0 < 0 are explicit constants.

For precise statements and proofs, see Section 6.3 and Theorem 6.7.
The solution of system (3) is effected by a ramified change of variable and

functions, leading to the following monomial system:{
f ′ = f a+1gb,

g′ = f cgd+1.
(4)

This remarkable fact is evocative of the case of small urns and discrete time, as
considered in a beautiful study of Flajolet et al. [6]. The method of [6] leads di-
rectly to the same system (4) on generating functions. The assumption σ < 1/2,
when expressed in term of the four parameters a, b, c and d , does not fundamen-
tally affect the system but requires completely different analytic considerations.

The limit laws of the WCT appear to constitute a new family of probability dis-
tributions, indexed by three parameters S,m,b subject to assumptions (11) and by
initial conditions α,β . We prove in Section 7 that they admit densities that can be
expressed by means of the inverse Fourier transforms of their characteristic func-
tion derivatives. Furthermore, the laws are infinitely divisible and their support is
the whole real line, the radius of convergence of their exponential moment gener-
ating series being equal to 0.

Many questions remain open. For instance, are these distributions characterized
by their moments? What is the precise asymptotics of their densities at infinity
(tails)? It is shown in [15] that, for triangular and nondiagonal replacement matri-
ces, the discrete-time limit law WDT is never infinitely divisible; does this situation
persist in the present nontriangular case?

2. The model.

2.1. Definition of the process. Let a, b, c and d be nonnegative integers such
that a + b = c + d =: S and R be the matrix

R :=
(

a b

c d

)
=

(
a S − a

S − d d

)
.(5)
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The discrete-time Pólya–Eggenberger urn process associated with the replacement
matrix R, which has been informally described in the Introduction, is the Markov
chain (UDT(n), n ∈ N), having N

2 \ {(0,0)} as state space and

x

x + y
δ(x+a,y+b) + y

x + y
δ(x+c,y+d)(6)

as transition probability at any nonzero point (x, y) ∈ N
2. In this formula, δv de-

notes Dirac point mass at v ∈ N
2. This means that (UDT(n), n ∈ N) is a random

walk in N
2 \{(0,0)} (or in the two-dimensional one-column nonzero matrices with

nonnegative integer entries, we will use both notations) recursively defined by the
conditional probabilities⎧⎪⎪⎨

⎪⎪⎩
P
(
UDT(n + 1) = UDT(n) +

(
a

b

)
|UDT(n) =

(
x

y

))
= x

x + y
,

P
(
UDT(n + 1) = UDT(n) +

(
c

d

)
|UDT(n) =

(
x

y

))
= y

x + y
.

In the sequel, (
UDT

(α,β)(n), n ≥ 0
)

will denote the process starting from the nonzero vector (α,β) and

u := α + β

will denote the total number of balls at time 0. Notice that the balance property
S = a +b = c+d implies that the total number of balls at time n, when UDT(n) =
(x, y), is the (nonrandom) number x + y = u + nS.

Denote by w1 = (a
b

)
and w2 = (c

d

)
the increment vectors of the walk. The tran-

sition operator 
 is defined, for any function f on N
2 and for any v = (x

y

)
, by


(f )(v) = x[f (v + w1) − f (v)] + y[f (v + w2) − f (v)].
Conditioning on (Fn, n ≥ 0), which is the filtration associated with the process
(UDT(n), n ≥ 0), one gets

E
Fn

(
f

(
UDT(n + 1)

)) =
(
I + 


u + nS

)
(f )(UDT(n)).

In particular,

E
Fn

(
UDT(n + 1)

) =
(
I + A

u + nS

)
UDT(n),(7)

where I denotes the two-dimensional identity matrix and

A := tR =
(

a c

b d

)
.
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2.2. Asymptotics of the discrete-time process UDT(n). As mentioned in Sec-
tion 1 and briefly recalled hereunder, a discrete-time Pólya–Eggenberger urn
process has two different kinds of asymptotics depending on the ratio of the eigen-
values of its replacement matrix R. With our notation, these eigenvalues are S and

m := a − c = d − b.

Let us denote by u1 and u2 the two following linear eigenforms5 of A, respectively
associated with the eigenvalues S and m, which means that u1 ◦ A = Su1 and
u2 ◦ A = mu2:

u1(x, y) = 1

S
(x + y), u2(x, y) = 1

S
(bx − cy),(8)

and denote by (v1, v2) the dual basis of (u1, u2):

v1 = S

(b + c)

(
c

b

)
, v2 = S

(b + c)

(
1

−1

)
.(9)

The vectors vk are eigenvectors of A and the projections on the eigenlines are u1v1
and u2v2.

For any positive real x and any nonnegative integer n, if one denotes by γx,n the
polynomial

γx,n(t) :=
n−1∏
k=0

(
1 + t

x + k

)
,

the matrix γm
S

,n(
A
S
) in nonsingular and it is immediate from (7) that

γm
S

,n

(
A

S

)−1

UDT(n)

is a (vector-valued) martingale.
As indicated in the Introduction, the ratio of R eigenvalues is denoted by

σ := m

S
≤ 1.

The case of small urn processes (i.e., when σ ≤ 1/2) has been well studied; in
this case, when R is not triangular, the random vector admits a Gaussian central
limit theorem (see Janson [9]). Triangular replacement matrices impose a partic-
ular treatment and lead most often to a nonnormal second-order limit (see Janson
[10] or [15]).

Our subject of interest is the case of large urns, that is, when σ > 1/2. In this
case, 1

S
UDT(n) is a large Pólya process with replacement matrix 1

S
R in the sense

of [14]. As a matter of consequence, the projections of the above vector-valued
martingale on the eigenlines of A, which are of course also martingales, converge

5An eigenform of an endomorphism f is an eigenvector of tf ; some authors call these linear forms
left eigenvectors of f , referring to matrix operations.
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in any Lp , p ≥ 1 (and a.s.). In particular (second projection),

MDT(n) := 1

γu
S
,n(σ )

u2(U
DT(n))

is a convergent martingale; since γu,n(σ ) = nσ �(u)
�(u+σ)

(1 + o(1)), denoting by

WDT := lim
n→+∞

1

nσ
u2(U

DT(n)),(10)

a slight adaptation of [14] leads to the following theorem. Note that this theo-
rem was essentially proven by Athreya and Karlin [1] and Janson [9] for random
replacement matrices. The convergence in Lp-spaces when R is nonrandom is
shown by the indicated adaptation of [14].

THEOREM 2.1. Suppose that σ ∈]1/2,1[. Then, as n tends to infinity,

UDT(n) = nv1 + nσWDTv2 + o(nσ ),

where v1 and v2, defined in (9), are eigenvectors associated with the eigenvalues
S and m; WDT is defined by (10); o(·) means a.s. and in any Lp,p ≥ 1.

2.3. Parametrization and hypotheses. The subject of the paper is WDT dis-
tribution in Theorem 2.1 so that the Pólya urn process will be supposed large.
Furthermore, the replacement matrix R is supposed to be not triangular because
this case has to be treated separately with regard to its limit law, as attested by
Janson [10], Flajolet et al. [7], [15] and the present paper.

Under these conditions, the assumptions on the replacement matrix R =
(

a
c

b
d

)
are: a + b = c + d = S (balance condition), S/2 < m = a − c = d − b < S (large
urn) and b, c ≥ 1 (not triangular). Because of the balance condition, the parame-
trization of Pólya urns is governed by three free parameters. The computation of
Fourier transforms will show in Section 6.3 that a natural choice of free parameters
is (m,S, b). The assumption “large and nontriangular” is equivalent, in terms of
these data, to the following:

R =
(

a b

c d

)
=

(
S − b b

S − m − b m + b

)

with {
m + 2 ≤ S ≤ 2m − 1,

1 ≤ b ≤ S − m − 1.
(11)

Note that these inequalities imply S ≥ 5 and m ≥ 3 and that, for a given m, the
point (m,b) belongs to a triangle as represented in Figure 1.

For small values of S, large urn processes have the following possible replace-
ment matrices: for S ∈ {1,2}, only R = S Id2 defines a large urn; for S ∈ {3,4}, all
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FIG. 1. Parameters (b, S) for a given m.

large urns have triangular matrices. For S ∈ {5,6}, only R =
(

S−1
1

1
S−1

)
defines

a nontriangular large urn. For S = 7, apart from triangular or symmetric matrices,
there are only two replacement matrices that define large urns:

(
6
2

1
5

)
and the other

one derived from it by permutation of coordinates.

3. Embedding in continuous time and martingale connection.

3.1. Embedding. The idea of embedding discrete urn models in continuous-
time branching processes goes back at least to Athreya and Karlin [1]. A descrip-
tion is given in Athreya and Ney [2], Section 9. The method has been recently
revisited and developed by Janson [9].

We define the continuous-time Markov branching process (UCT(t), t ≥ 0) as
being the embedded process of (UDT(n), n ≥ 0). Following, for instance, Bertoin
[3], Section 1.1, this means that it is defined as the continuous-time Markov chain
having as jump rate, at any nonzero point (x, y) ∈ N

2, the finite measure given
by the transition probability of the discrete-time process [formula (6)]. One gets
this way a branching process having the following dynamical description in terms
of red and black balls. In the urn, at any moment, each ball is equipped with
an E xp(1)-distributed6 random clock, all the clocks being independent. When the
clock of a red ball rings, a red balls and b black balls are added in the urn; when
the ringing clock belongs to a black ball, one adds c red balls and d black balls, so
that the replacement rules are the same as in the discrete-time urn process.

The successive jumping times of (UCT(t), t ≥ 0), will be denoted by

0 = τ0 < τ1 < · · · < τn < · · · .
The nth jumping time is the time of the nth dislocation of the branching process.
The process is thus constant on any interval [τn, τn+1[.

6For any positive real a, E xp(a) denotes the exponential distribution with parameter a.
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In the sequel, (
UCT

(α,β)(t), t ≥ 0
)

will denote the process starting from the nonzero vector (α,β). Thus, for any initial
condition (α,β), for any t ≥ 0,

UCT
(α,β)(t) = UDT

(α,β)(a(t)),

where

a(t) := inf{n ≥ 0, τn ≥ t}.
LEMMA 3.1. (i) for n ≥ 0, the distribution of τn+1 − τn is E xp(u+Sn) where

u denotes the total number of balls at time 0;
(ii) the processes (τn)n≥0 and (UCT(τn))n≥0 are independent;

(iii) the processes (UCT(τn))n≥0 and (UDT(n))n≥0 have the same distribution.

PROOF. The total number of balls at time t ∈ [τn, τn+1[ is u + Sn. Therefore,
(i) is a consequence of the fact that the minimum of k independent random vari-
ables E xp(1)-distributed is E xp(k)-distributed. (ii) is the classical independence
between the jump chain and the jump times in such Markov processes. The initial
states and evolution rules of both Markov chains in discrete time and in continuous
time are the same ones, so that (iii) holds. �

Convention: From now on, thanks to (iii) of Lemma 3.1, we will classically
consider that the discrete-time process and the continuous-time process are built
on the same probability space on which

(UCT(τn))n≥0 = (UDT(n))n≥0 a.s.(12)

3.2. Asymptotics of the continuous-time process UCT(t). Let v1 and v2 the
linearly independent eigenvectors of A defined by (9). In the case of large urns, the
asymptotics of the continuous-time process (UCT(t))t≥0 is given in the following
theorem.

THEOREM 3.2 (Asymptotics of continuous-time process). When t tends to
infinity,

UCT(t) = eSt ξv1
(
1 + o(1)

) + emtWCTv2
(
1 + o(1)

)
,(13)

where ξ and WCT are real-valued random variables, the little o being almost sure
and in any Lp-space, p ≥ 1. Furthermore, ξ is Gamma(u/S)-distributed, where
u = α + β is the total number of balls at time 0.

REMARK 3.3. Another formulation of this Theorem is: in the basis (v1, v2),
the coordinate of UCT(t) along v1 has eSt ξ as its dominant term while the coordi-
nate of UCT(t) along v2 has emtWCT as its dominant term.
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PROOF OF THEOREM 3.2. The embedding in continuous time has been stud-
ied in Athreya and Karlin [1] and in Janson [9]. It has become classical that the
process

(e−tAUCT(t))t≥0

is a vector-valued martingale and that, in the case of large urns (σ > 1/2), this
martingale is bounded in L2, thus converges. Its projections on the eigenlines Rv1
and Rv2, that is, respectively,

e−Stu1(U
CT(t)) and e−mtu2(U

CT(t))

are also L2-convergent real valued martingales, thus converge almost surely. Their
respective limits are named ξ and WCT . What still has to be proved is that these
martingales converge in fact in any Lp , p ≥ 1. The identification of ξ distribution
will be a consequence of this proof.

The infinitesimal generator of the Markov process (UCT(t))t is the finite-
difference operator


(f )(x, y) = x{f (x + a, y + b) − f (x, y)} + y{f (x + c, y + d) − f (x, y)},
defined for any (measurable) function f and any (x, y) ∈ R

2. For a very synthetic
reference on semi-groups of Markov continuous-time processes, one can refer to
Bertoin [3], Chapter 1. This operator 
 acts on two-variable polynomials. This
action has been studied in detail in [14] in a more general framework. More pre-
cisely, for any integer d ≥ 1, the operator 
 acts on the finite-dimensional space
of polynomials of degree less than d , so that, for any two-variable polynomial P

and for any t ≥ 0,

E(P (UCT(t))) = exp(t
)(P )((UCT(0))),(14)

where, in this formula, 
 denotes the restriction of 
 itself on any finite-
dimensional polynomials space containing P . The properties of 
 listed in the
following lemma are proven in [14] and will be used here.

LEMMA 3.4. There exists a unique family of polynomials Qp,q ∈ R[x, y],
p,q nonnegative integers, called reduced polynomials, such that:

(1) Q0,0 = 1, Q1,0 = u1 and Q0,1 = u2 [see (8) for a definition of eigenforms
u1 and u2];

(2) 
(Qp,q) = (pS + qm)Qp,q for all nonnegative integers p,q;
(3) u

p
1 u

q
2 − Qp,q ∈ Span{Qp′,q ′,p′S + q ′m < pS + qm} for all nonnegative

integers p,q .

Note that the reduced polynomial Qp,q is in fact the projection of u
p
1 u

q
2 on a

suitable characteristic subspace of 
 restriction to some finite-dimensional poly-
nomial space, and that this spectral decomposition of 
 on polynomials has a
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particularly simple form (it is diagonalizable) because the urn is large and two-
dimensional. See [14] for more details.

Formula (14) and property (ii) of Lemma 3.4 lead to

∀(p, q) ∈ Z
2≥0 E(Qp,q(UCT(t))) = et(pS+qm)Qp,q(UCT(0)).

This implies straightforwardly, with (iii) of Lemma 3.4, that, for any (p, q),

E(u
p
1 u

q
2(UCT(t))) = et(pS+qm)Qp,q(UCT(0)) + o

(
et(pS+qm)).(15)

In particular, the martingales e−Stu1(U
CT(t)) and e−mtu2(U

CT(t)) are Lp-
bounded for any p ≥ 1 and their respective limits, namely ξ and WCT satisfy,
for any nonnegative integer p,

Eξp = Qp,0(U
CT(0)) and E(WCT)p = Q0,p(UCT(0)).(16)

The convergence part of the theorem follows now from the spectral decomposition
of A: for any t ≥ 0,

UCT(t) = u1(U
CT(t)) · v1 + u2(U

CT(t)) · v2.

Besides, it is proven in [14], or one can check it after an easy computation, that the
reduced polynomials corresponding to the powers of u1 have the following closed
form expression

Qp,0 = u1(u1 + 1)(u1 + 2) · · · (u1 + p − 1).

Thanks to formula (16), this shows that the pth moment of ξ is, for any integer
p ≥ 0,

Eξp = u

S

(
u

S
+ 1

)(
u

S
+ 2

)
· · ·

(
u

S
+ p − 1

)
= �(u

S
+ p)

�(u
S
)

,

where u is the total number of balls at time 0 [remember that u1(U
CT(0)) = u/S,

see (8)]. One identifies this way the required Gamma(u/S) distribution, character-
ized by its moments. �

REMARK 3.5. Notice that the distribution of ξ has been given by Janson [9]
calculating first the distribution of u1(U

CT(t))for every t :

u1(U
CT(t)) = u

S
+ Z(t),

where Z(t) is a negative binomial distribution.

REMARK 3.6. Reduced polynomials Q0,p do not have a known closed form,
so that reproducing the above method in order to compute the moments of WCT

fails.
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REMARK 3.7. It follows from the proof that the real-valued random variables
ξ and WCT are respective limits of the martingales

ξ = lim
t→+∞ e−Stu1(U

CT(t)),

WCT = lim
t→+∞ e−mtu2(U

CT(t)).

They are not independent and their joint moments are computed from formula (15):
for any nonnegative integers p,q ,

E[(ξ)p(WCT)q] = Qp,q(U
CT(0)).

For example, their respective means are Eξ = u1(U
CT(0)) = 1

S
(α + β) and

EWCT = u2(U
CT(0)) = 1

S
(bα − cβ), whereas

E(ξWCT) = (α + β + m)(bα − cβ)

S2

as can be shown by computation of the reduced polynomial Q1,1 = (u1 + σ)u2
(one can directly check that this polynomial is an eigenvector of 
, associated
with the eigenvalue S + m).

REMARK 3.8. When the urn is small (σ < 1/2), the same method shows that
the result on the first projection is still valid: the martingale (e−Stu1(U

CT(t)))t
converges in any Lp (p ≥ 1) to a Gamma(u/S) distributed random variable. On
the contrary, the martingale (e−mtu2(U

CT(t)))t diverges and it is shown in Janson
[9] that the second projection satisfies a central limit theorem: when σ = m

S
< 1/2,

e− S
2 tu2(U

CT(t))
D−−−→

t→+∞ N ,

where N is a normal distribution. In the case σ = 1/2, the normalization must be
modified and one gets the convergence in law of

√
te−St/2u2(U

CT(t)) to a normal
distribution.

REMARK 3.9. The distributions of the WCT are infinitely divisible, because
they are limits of infinitely divisible ones, obtained by scaling and projection of
infinitely divisible ones. Indeed, in finite time, the distributions of the UCT

(α,β)(t) are
infinitely divisible. It has been said by Janson [9], proof of Theorem 3.9. With our
notations, especially the one of (19), it relies on the fact that

UCT
(α,β)(t)

L= [n]UCT
(α/n,β/n)(t),

where a continuous-time branching process (with the same branching dynamics as
before), starting from real (nonnecessary integer) conditions, is suitably defined.
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3.3. DT and CT connections. Apply the first projection to the embedding prin-
ciple (12):

u1(U
CT(τn)) = u1(U

DT(n)) a.s.

By definition (8) of u1, this number is 1
S

times the number of balls in the urn at
time n, which equals 1

S
(u + Sn) = n(1 + o(1)). Since stopping times τn tend to

+∞, renormalizing by e−Sτn and applying the convergence result of Section 3.2
leads to

ξ = lim
n→+∞ne−Sτn.(17)

Apply now the second projection to the embedding principle (12):

u2(U
CT(τn)) = u2(U

DT(n)) a.s.

Renormalizing by e−mτn implies that

e−mτnu2(U
CT(τn)) = WCT(τn) = e−mτnγ u

S
,n(σ )MDT(n) a.s.

which is a “martingale connection” in finite time.
Thanks to (17) and Theorem 3.2, passing to the limit n → ∞ leads to the fol-

lowing theorem, already mentioned in Janson [9] in a more general framework.
Note that the independence between ξ and WDT comes from Lemma 3.1(ii).

THEOREM 3.10 (Martingale connection).

WCT = ξσWDT a.s.(18)

ξ and WDT being independent.

The distribution of ξσ is invertible (see footnote in the Introduction), so that any
information on WCT can be pulled back to WDT thanks to connection (18).

4. Dislocation equations for continuous urns.

4.1. Vectorial finite time dislocation equations. By embedding in continuous
time, the previous section provided a branching process (UCT

(α,β)(t), t ≥ 0). The
independence properties of this process imply that it is equal to the sum of α copies
of UCT

(1,0)(t) (the process starting from one red ball) and β copies of UCT
(0,1)(t) (the

process starting from one black ball). We are led to study these two R
2-valued

processes.
Let us now apply the strong Markov branching property to these processes: let

us denote by τ the first splitting time for any of these processes (they have the
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same E xp(1) distribution). We get the following vectorial finite time dislocation
equations:

∀t > τ

⎧⎨
⎩UCT

(1,0)(t)
L= [a + 1]UCT

(1,0)(t − τ) + [b]UCT
(0,1)(t − τ),

UCT
(0,1)(t)

L= [c]UCT
(1,0)(t − τ) + [d + 1]UCT

(0,1)(t − τ),
(19)

where the notation [n]X +[m]Y stands for the sum of n copies of the random vari-
able X and m copies of the random variable Y (n and m are nonnegative integers).

REMARK 4.1. The above equations could be written with a.s. equalities. Tak-
ing a probability space of trees is more convenient. The price to pay is just to write
the different processes for each subtree with different indexes and to distinguish
the two splitting times for the two starting situations.

4.2. Limit dislocation equations. Remember that (e−mtu2(U
CT
(1,0)(t)))t and

(e−mtu2(U
CT
(0,1)(t)))t are martingales having, respectively, u2(U

CT
(1,0)(0)) = b/S

and u2(U
CT
(0,1)(0)) = −c/S as expectations. They converge in Lp for every non-

negative integer p ≥ 1. We are interested in the probability distributions of

X := lim
t→+∞ e−mtu2

(
UCT

(1,0)(t)
)

and Y := lim
t→+∞ e−mtu2

(
UCT

(0,1)(t)
)
.(20)

Projecting along the second eigenline, scaling and passing to the limit in system
(19) lead straightforwardly to the following proposition.

PROPOSITION 4.2. The limit random variables X and Y are solution of the
following (scalar) limit dislocation equations:{

X
L= e−mτ ([a + 1]X + [b]Y),

Y
L= e−mτ ([c]X + [d + 1]Y),

(21)

with

E(X) = b

S
, E(Y ) = − c

S
,(22)

where all the mentioned variables are independent.

REMARK 4.3. Janson [9] in his Theorem 3.9 gets the same limit dislocation
equations. He obtains the unicity of the solution in L2 by a fixed point method.
Hereunder in Section 6.3, calculating explicitly the solution of the fixed point sys-
tem (21) together with conditions (22), we give in passing another proof of the
unicity in L2.
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5. Characteristic functions: fundamental differential system. Let F and G
be respectively, the characteristic functions of X and Y :

∀x ∈ R F (x) = E(eixX) =
∫ +∞
−∞

eixt dμX(t)

with a similar formula for G . Since X and Y admit moments of all orders, F and
G are infinitely differentiable on R.

PROPOSITION 5.1. The characteristic functions F and G are solutions of the
differential system {

F (x) + mxF ′(x) = F (x)a+1G(x)b,

G(x) + mxG′(x) = F (x)cG(x)d+1,
(23)

and satisfy the boundary conditions at the origin⎧⎪⎨
⎪⎩

F (x) = 1 + i
b

S
x + O(x2),

G(x) = 1 − i
c

S
x + O(x2).

(24)

PROOF. Conditioning on τ the distribution of which is exponential with
mean 1, the first dislocation equation (21) implies successively that, for any x ∈ R,

F (x) = E
(
E

(
exp

(
ixe−mτ ([a + 1]X + [b]Y)|τ )))

=
∫ +∞

0
F a+1(

xe−mt )Gb(
xe−mt )e−t dt.

After a change of variable under the integral, this functional equation can be writ-
ten

∀x �= 0 F (x) = x

m|x|1+1/m

∫ x

0
F a+1(t)Gb(t)

dt

|t |1−1/m
.

Differentiation of this equality and the similar one obtained from the second dislo-
cation equation in (21) lead to the result. The boundary conditions come elemen-
tarily from the computation of the means of X and Y and from the existence of
their second moment (Taylor expansion of F and G at 0). �

REMARK 5.2. The differential system (23) is singular at 0 so that the unic-
ity of its solution that satisfies the boundary condition (24) is not an elementary
consequence of general theorems for ordinary differential equations.

6. Resolution of the fundamental differential system.

6.1. Change of functions: Heuristics. Formally, without carefully checking
which mth roots should be considered, if the variables x ∈ R and w ∈ C are re-
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lated by xSwm = 1, the change of functions{
f (w) = x1/mF (x),

g(w) = x1/mG(x)

reduces the problems (23) and (24) to the regular differential system⎧⎪⎪⎨
⎪⎪⎩

f ′ = −1

S
f a+1gb,

g′ = −1

S
f cgd+1,

(25)

with boundary conditions at infinity⎧⎪⎨
⎪⎩

f (w) = w−1/S + i
b

S
w−(1+m)/S + O

(|w|−(1+2m)/S
)
,

g(w) = w−1/S − i
c

S
w−(1+m)/S + O

(|w|−(1+2m)/S
)
.

(26)

The basic fact for the resolution of (25) is that it admits 1/gm − 1/f m as first
integral: if K is any complex number such that the constant function 1/gm −1/f m

equals 1/Km, then gm can be straightforwardly expressed as a function of f and
(25) implies that f is solution of the ordinary differential equation

f ′ × (1 + (f/K)m)b/m

(f/K)S+1 = −KS+1

S
(27)

with boundary conditions coming from (26).
This leads to consider a primitive of the function z �→ (1 + zm)b/m/zS+1 in the

complex field.

6.2. Abelian integral I and its inverse J . For all integers m, S and b that
satisfy S ≥ 5, S/2 < m < S, 1 ≤ b < S/2, we denote by I = Im,S,b the function

I (z) =
∫
[z,z∞)

(1 + um)b/m du

uS+1 = 1

zS

∫ +∞
1

[1 + (tz)m]b/m dt

tS+1 ,

where [z, z∞) denotes the ray {tz, t ≥ 1} and where the power 1/m is used for
the principal determination of the mth root. The function I is an Abelian integral
on the curve xm − ym = 1 (which is isomorphic to the famous Fermat curve xm +
ym = 1 by a straightforward linear change of variables), defined on the open set

Om = C
∖ ⋃

p∈{0,...,m−1}
R≥0e

(iπ/m)(1+2p).

Note that the integral is convergent because S − b + 1 ≥ 3. Let Sm be the open
sector of the complex plane defined by

Sm =
{
z ∈ C \ {0}, −π

m
< arg(z) <

π

m

}
.

The open set Om is the union of the images of Sm under all rotations of angles
2kπ/m around the origin, k ∈ Z.
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In the following, the notation
(b/m

n

)
denotes the ordinary binomial coefficient,

generalized for rational (or even complex) values of b/m by Euler’s Gamma func-
tion. As everywhere else in the paper, the positive integer a is a = S − b.

PROPOSITION 6.1 (Properties of I ).

(i) I is holomorphic on Om and for any z ∈ Om,

I ′(z) = −(1 + zm)b/m

zS+1 .(28)

(ii) For any mth root of unity ω and for any z ∈ Om,

I (ωz) = ω−SI (z).(29)

(iii) The function I admits a power series expansion in the neighborhood of
infinity in any connected component of Om. On Sm, this expansion is given by the
formula

I (z) = ∑
n≥0

1

a + mn

(
b/m

n

)
z−a−mn = 1

aza
+ b

m(a + m)

1

za+m
+ · · · ,(30)

valid for any z ∈ Sm, |z| ≥ 1.
(iv) The function I admits a Laurent series expansion in the neighborhood of

the origin in any connected component of Om. On Sm, this expansion is given by
the formula

I (z) = 1

SzS
+ b

m(S − m)

1

zS−m
+ C0 − ∑

n≥2

(
b/m

n

)
zmn−S

mn − S
,(31)

where C0 is the constant

C0 = ∑
n≥0

(
b/m

n

)(
1

a + mn
+ 1

mn − S

)
.(32)

Formula (31) is valid for any z ∈ Sm, |z| ≤ 1.
(v) C0 < 0.

PROOF. (i) and (ii) are direct consequences of the definition of I . Expan-
sion (30) and its validity for z ∈ Sm, |z| > 1 comes directly from the power series
expansion of ζ �→ (1 + ζ )b/m in the definition of I . Its validity for |z| = 1 is given
by the convergence of the series at such a z and application of Abel’s theorem,7

proving (iii). To prove expansion (31), notice first that I is holomorphic on the
simply connected domain Sm and I ′(z) tends to 0 as z tends to infinity, so that

7We refer to the following theorem of Abel: if a series
∑

n an is convergent, then the power series∑
n anzn converges uniformly on the segment [0,1].
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integration on the ray [z, z∞) is equivalent to integration on [z,1] followed by
integration on [1,+∞). Thus,

I (z) = I (1) +
∫
[z,1]

(1 + um)b/m du

uS+1 .

Power series expansion of u �→ (1 + u)b/m under this last integral leads then
to (31). The proof of (iv) is again made complete by application of Abel’s the-
orem. Note that, since S is not a multiple of m because of our assumptions on the
parameters, the denominators in Formula (31) do not vanish. Finally, if αn denotes
the general term of the series (32), a straightforward computation shows that

α0 + α1 = (S − a)(m2 + aS)(S − a − m)

amS(a + m)(S − m)
< 0,

the last inequality coming from S − a − m < S − S/2 − S/2 = 0 and from the
other hypotheses on the parameters. Furthermore, α2n + α2n+1 < 0 for any n ≥ 1,
which concludes the proof. [Hint: compute α2n +α2n+1, factorize

(b/m
2n

)
by

( b/m
2n+1

)
,

use the fact (2n + 1)/(2n − b/m) > 1, notice that
( b/m
2n+1

)
> 0 because 0 < b/m =

(S − a)/m < S/2m < 1.] �

Let H denote Poincaré half-plane:

H = {z ∈ C,
(z) > 0} and H = {z, z ∈ H}.
PROPOSITION 6.2. The analytic function I : Sm

⋂
H → C is a conformal

mapping onto the open subset

U =
{
z,−aπ

m
< arg(z) < 0

}
∪

(
I1 +

{
z, −Sπ

m
< arg(z) < −aπ

m

})
(see Figure 2), where

I1 := 1

m
B

(
a

m
,

d

m

)
e−(iaπ)/m,(33)

and where B denotes Euler’s Beta function B(x, y) = �(x)�(y)/�(x + y).

PROOF. Let ζm = exp(iπ/m). We show hereunder that the restriction of I to
the sector Sm ∩Cl(H) (where Cl(H) denotes the topological closure of H) admits
a continuous continuation to the ray {tζm, t > 0} and that this continuation maps
homeomorphically the boundary of the sector Sm ∩H onto the boundary of U . The
result is then a consequence of elementary geometrical conformal theory (see, for
example, Saks and Zygmund [17]).

Let h ∈ H, r > 0, t > 1 and z = r(1−h)ζm. When h tends to 0, then 1+(tz)m =
1− rmtm +mrmtmh+O(h2) so that the value of mth root principal determination
of 1 + (tz)m according to the sign of 1 − (rt)m leads to the respective limits in
terms of Beta incomplete functions:
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FIG. 2. Domain Sm
⋂

H and its image by I .

• if r ≥ 1, then

lim
z→rζm,z∈Sm

I (z) = 1

m
ζ−a
m

∫ 1/rm

0
(1 − u)b/muc/m du;(34)

• if r ≤ 1, then

lim
z→rζm,z∈Sm

I (z) = I1 + 1

m
ζ−S
m

∫ 1/rm

1
(u − 1)b/muc/m du.(35)

The complex number I1 is simply

I1 = lim
z→ζm,z∈Sm

I (z);
formula (33) is a consequence of the integral representation of Euler Beta func-
tion B(α,β) = ∫ 1

0 (1 − u)α−1uβ−1 du. The monotonicity of real integrals (34)
and (35) with respect to r show that the continuous continuation of I defined
by these formulae maps decreasingly the ray ]0,+∞[ onto itself and respec-
tively, the ray ]0, ζm] onto the ray {I1 + tζ−S

m , t ≥ 0} and the ray [ζm, ζm∞) onto
[I1,0[. �

REMARK 6.3. By computation in the realm of hypergeometric functions, one
shows that the numbers C0 defined by (32) and I1 defined by (33) are related by

C0 = − sinπ(1 + b/m)

sinπ(1 + S/m)
|I1| = − 1

m

sinπ(1 + b/m)

sinπ(1 + S/m)
B

(
S − b

m
,
m + b

m

)
.

DEFINITION 6.4. Let J = Jm,S,b : C\] − ∞,0] → Sm the only continuous
function defined by:

• ∀z ∈ H, J (z) = I−1(z) in the sense of Proposition 6.2 (H is an open subset of
U so that this functional inverse exists);
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FIG. 3. Action of J on the slit plane C \ R≤0.

• ∀z ∈ H, J (z) = J (z) (complex conjugacy).

The properties of I shown in Propositions 6.1 and 6.2 imply that J is a con-
formal mapping between C\] − ∞,0] and an open subset of Sm (use Schwarz
reflection principle), that maps H into Sm ∩H and H into Sm ∩H. If C denotes the
inverse of the negative real axis by the restriction of I to Sm ∩ H, then the bound-
ary of the image of J is C ∪ C ∪ {0} (see Figure 3). Furthermore, the restriction
of J to the positive real half-line is the inverse of I ’s and J is the unique analytic
expansion of (I|]0,+∞[)−1 to the slit plane. Naturally, the formula J (z) = J (z) is
valid when z is any nonnegative complex number.

PROPOSITION 6.5. For any negative real number x, both limits

lim
z→x,z∈H

J (z) and lim
z→x,z∈H

J (z)

exist, are nonreal and conjugate (thus, different).

PROOF. Direct consequence of the preceding properties of J and Proposi-
tion 6.2 (see Figure 3). �

We adopt the following notation:

∀x < 0

⎧⎪⎨
⎪⎩

J (x−) = lim
z→x,z∈H

J (z) ∈ Sm ∩ H,

J (x+) = lim
z→x,z∈H

J (z) ∈ Sm ∩ H.
(36)

PROPOSITION 6.6. The function J admits, as z tends to infinity in the slit
plane C \ R−, an asymptotic Puiseux series expansion at any order in the scale(

1

z

)1/S+pσ+q

, (p, q) ∈ N
2,
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where all fractional powers denote principal determination. The beginning of this
asymptotic expansion is

J (z) =
(

1

Sz

)1/S

+ b

m(S − m)

(
1

Sz

)(m+1)/S

(37)

+ C0

(
1

Sz

)(S+1)/S

+ o

(
1

z

)(S+1)/S

.

PROOF. Expansion (31) leads to (37) using the reversion formula J ◦ I =
Id. �

6.3. Computation of characteristic functions. This section gives an explicit
closed form of characteristic functions F and G for the elementary continuous-
time urn processes X and Y [defined in (20)] associated with the replacement
matrix R =

(
a
c

b
d

)
, in terms of the just defined functions J . Remember: the urn

is supposed to be large and nontriangular so that b > 0 and c > 0. Let κ be the
positive number defined by

κ = m

√
S

m(S − m)
.(38)

THEOREM 6.7. The characteristic functions F and G are the unique solutions
of the differential system (23) that satisfy boundary conditions (24). They are given
by the formulae

∀x > 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F (x) = κe−iπ/(2m)x−1/mJm,S,b

(
C0 + κSe−iπS/(2m)

S
x−S/m

)
,

G(x) = κeiπ/(2m)x−1/mJm,S,c

(
C0 + κSeiπS/(2m)

S
x−S/m

)(39)

and

∀x ∈ R F (−x) = F (x), G(−x) = G(x).(40)

PROOF. (1) We first solve (23) on R>0. Let F and G be solutions of (23) that
satisfy (24). Lets do the change of variable x ∈ R>0 → w = x−S/m ∈ R>0 and the
change of functions

f (w) = w−1/SF (w−m/S) and g(w) = w−1/SG(w−m/S)

that is straightforwardly reversed by the formula F(x) = x−1/mf (x−S/m) and a
similar one for G and g. Then f and g are solutions of (25) on R>0 and satisfy
boundary conditions (26) at +∞. In particular, since (25) is a nonsingular differ-
ential system, Cauchy–Lipschitz theorem guarantees that if (f, g) is any solution,
then f (resp., g) is identically zero or does not vanish. This implies that f and g
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do not vanish on R>0. Because of the balance conditions a + b = c + d , differen-
tiation of 1/gm − 1/f m leads to the fact that this function is constant on R>0 (first
integral). Furthermore, boundary conditions at +∞ (26) imply that this constant
value is i m

S
(b + c). If K denotes the complex number

K = κ exp
(
− iπ

2m

)

[κ > 0 has been defined by formula (38)], this shows that

∀w > 0
1

gm(w)
− 1

f m(w)
= 1

Km
.(41)

Since f/g is continuous on R>0, does not vanish and tends to 1 at +∞ (26),
relation (f/g)m = 1 + (f/K)m implies that, on R>0,

g = f

(1 + (f/K)m)1/m
(42)

(principal determination of the mth root). Reporting in the first equation of (25)
shows that f is necessarily a solution of equation (27) on R>0. Boundary condi-
tions (26) imply that, when w tends to +∞, 1

K
f (w) ∼ 1

κ
eiπ/2mw−1/S ∈ Sm, so

that equation (27) can be written

d

dw
Im,S,b

(
f (w)

K

)
= KS

S

in a neighborhood of +∞. Integration of this equation shows that

Im,S,b ◦
(

f

K

)
(w) = KS

S
w + C1

in a neighborhood of w = +∞, for a suitable complex constant C1. The determi-
nation of C1 is made by means of local expansions: since f tends to 0 at +∞,
using (31) and previous equality leads to

C1 + KS

S
w = KS

Sf (w)S
+ b

m(S − m)

KS−m

f (w)S−m
+ C0 + o(1),

when w tends to +∞, so that boundary conditions (26) lead to the equality C1 =
C0. Note that this computation makes use of the big-O in (26), of the assumption
1 − 2m/S < 0 (large urn) and of the relation S − m = b + c. Thus, necessarily,

f (w) = KJm,S,b

(
C0 + KS

S
w

)
(43)

for any w in a neighborhood of +∞. The function w → KJm,S,b(C0 + KSw/S)

is well defined on R>0 because C0 < 0 [Proposition 6.1(5)] and −π < arg(KS) <



LIMIT LAWS FOR LARGE PÓLYA URNS 23

−π/2, so that it is the only maximal solution on R>0 of equation (27) that satisfies
the first equation of (26). This shows finally that

∀x > 0 F(x) = Kx−1/mJm,S,b

(
C0 + KS

S
x−S/m

)
.

Since −Km = K
m

, the same arguments show that, for any w > 0,

g(w) = KJm,S,c

(
C0 + K

S

S
w

)
,

which shows completely formula (39).
(2) The resolution on R<0 is made the same way. To this effect, lets do the new

change of variable x ∈ R<0 → w = |x|−S/meiπS/m ∈ R>0e
iπS/m. Lets do as well

the change of functions

f (w) = e−iπ/m|w|−1/SF (−|w|−m/S)

and

g(w) = e−iπ/m|w|−1/SG(−|w|−m/S).

These changes of variable and functions are reversed by the formulae x =
−|w|−m/S and F(x) = eiπ/m|x|−1/mf (eiπS/m|x|−S/m) with a similar formula for
G and g. Functions f and g are still solutions of (25) but boundary conditions
become, as |w| tends to infinity,⎧⎪⎪⎨

⎪⎪⎩
f (w) = e−i(π/m)|w|−1/S

(
1 − i

b

S
|w|−m/S + O(|w|−2m/S)

)
,

g(w) = e−i(π/m)|w|−1/S

(
1 + i

c

S
|w|−m/S + O(|w|−2m/S)

)
.

(44)

This implies that First integral (41) is still valid (same K) and, since f and g are
still equivalent at infinity, relation (42) is satisfied. Boundary conditions (44) imply
that, when w tends to +∞, 1

K
f (w) ∼ 1

κ
|w|−1/Se−iπ/2m ∈ Sm. Consequently, the

same arguments as before show that formula (43) remains valid (note that C0 +
wKS/S ∈ H so that this formula is well defined for any w). This shows that

∀x < 0 F(x) = Keiπ/m|x|−1/mJm,S,b

(
C0 + KS

S
eiπ(S/m)|x|−S/m

)
.

Since Keiπ/m = K , one gets finally F(−x) = F(x) for any real number x. The
proof of the whole theorem is made complete by the same arguments for G. �

REMARK 6.8. Formula (40) on characteristic functions comes directly from
the fact that X and Y are real-valued random variables.
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We want to know more about the analyticity properties of F and G around 0.
Let ϕ = ϕm,S,b be the function defined by the formula

ϕ(z) = κz−1/mJm,S,b

(
C0 + κS

S
(z−1/m)S

)
,(45)

where the power 1/m denotes the principal determination of the mth root. Note
that κ and C0, respectively, defined by formulas (38) and (32) are functions of m,
S and b too. If ρ denotes the positive number

ρ =
(

S|C0|
κS

)−m/S

= S1−S/m|C0|−m/S

m(S − m)
,

it follows from the properties of J that ϕ is defined and holomorphic on the open
set

V = C \ {(−∞,0] ∪ [ρ,+∞)}.
Furthermore, the characteristic functions F and G are restrictions of ϕ functions
on the imaginary axis: for any x ∈ R,

F (x) = ϕm,S,b(ix) and G(x) = ϕm,S,c(−ix).

Note that κ is a function of (m,S) so that the same κ appears in both functions
ϕm,S,b and ϕm,S,c (respective constants C0 and ρ are however different).

PROPOSITION 6.9. The function ϕ, holomorphic on V , cannot be analytically
extended on a larger subset of C. However, setting ϕ(0) = 1 defines a continuously
differentiable extension of ϕ on V ∪ {0}.

PROOF. The half-line [ρ,+∞) is the locus of complex z such that C0 +
κS

S
(z−1/m)S is a real nonpositive number (remember that m < S < 2m). Since

the principal determination of the mth root is well defined and nonzero in a neigh-
bourhood of this half-line, Proposition 6.5 implies that ϕ cannot be continuously
extended at any point of [ρ,+∞).

If x is a negative number, definition of the principal determination of the mth
root leads to the existence of both limits⎧⎪⎪⎨
⎪⎪⎩

lim
z→x,z∈H

ϕ(z) = κe−i(π/m)|x|−1/mJ

(
C0 + κS

S
e−i(πS/m)|x|−S/m

)
:= ϕ(x+),

lim
z→x,z∈H

ϕ(z) := ϕ(x−) = ϕ(x+).

Since the image of J is included in Sm, the limit ϕ(x+) belongs to the open sector
e−i(π/m)Sm which contains no real number, so that ϕ(x+) �= ϕ(x−). This shows
that ϕ cannot be continuously extended at any point of R<0.
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When z tends to 0 in the slit plane C \ R<0, Proposition 6.6 shows that ϕ(z)

tends to 1. One step more, computing the derivative of ϕ in terms of J using the
algebraic expression of I ′ (28) implies, with expansion (37), that

lim
z→0,z∈C\R≤0

ϕ′(z) = b

S
. �

COROLLARY 6.10. The exponential moment generating series

∑ E(Xp)

p! T p and
∑ E(Yp)

p! T p

have a radius of convergence equal to 0.

PROOF. These series are the Taylor series of ϕm,S,b and ϕm,S,c at 0. If these
radii were positive, these functions could be analytically extended to a neighbor-
hood of the origin. �

REMARK 6.11. The singularity of ϕ at the origin is thus not due to ramifi-
cation but to a divergent Taylor series phenomenon. Indeed, the apparent ramifi-
cation coming from the mth root at the origin in formula (45) is compensated by
both Puiseux expansion (37) and the Sth power of the mth root appearing in the
argument of J in formula (45).

7. Density of WCT . Notice, with the notation (36) that

F (x) ∼
x→+∞κJ (C0−)x−1/m,(46)

where the nonreal complex number J (C0−) is different from 0 (see Figure 3).
A first consequence is that F (x) tends to 0 when x tends to +∞. Hence, the

probability distribution function of WCT is continuous so that the law of WCT has
no point mass.

A second consequence is that F is not in L1 so that WCT distribution cannot
be obtained by classical Fourier inversion. Nevertheless, we obtain in Section 7.3
an expression of this density using the derivative of the characteristic function F .
Before, we need firstly to ensure that the support of WCT is the whole real line R

which is proven in Section 7.1 and secondly to ensure that WCT admits a density
which is proven in Section 7.2 using the martingale connection (18). As usually,
this kind of connection induces a smoothing phenomenon between WDT and WCT ,
allowing us to prove that WCT has a density, whatever WDT distribution is.

7.1. Support of WCT .

PROPOSITION 7.1. The support of WCT is R.
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PROOF. As in (20), let X denote the random variable WCT starting from one
red ball. Because of the branching property (see beginning of Section 4.1), it suf-
fices to prove that the support of X is the whole real line R. General results on
infinite divisibility (see, for instance, Steutel and van Harn [16], page 186) en-
sure that the support of an infinitely divisible random variable having a continuous
probability distribution function is either a half-line or R. Suppose that the support
of X is [α,+∞[ for a given real number α. Then denoting X distribution by μX ,

E(e−sX) =
∫ +∞
α

e−st dμX(t) = e−sα
∫ +∞
α

e−s(t−α) dμX(t)

exists for every real number s ≥ 0. Hence, the function L : s → E(e−sX) is analytic
on the half-plane {�z > 0}, continuous on the boundary of this half-plane and
limt→±∞ E(eitX) = 0. By unicity of the analytic continuation, necessarily:

L(s) = ϕ(−s) ∀s,�(s) ≥ 0,

where ϕ has been introduced in (45). But it has been proven in Proposition 6.9 that
ϕ cannot be analytically extended on the half-plane {�z < 0}. There is a contra-
diction: the support of X cannot be a half-line [α,+∞[.

In the same way, if we suppose that the support of WCT is ]−∞, β] for a given
real number β , we are led to a contradiction, because ϕ cannot be analytically
extended on the whole half-plane {�z > 0} (Proposition 6.9). �

7.2. Connection between the distribution of WDT and the density of WCT .

PROPOSITION 7.2. Let μ be the distribution of WDT (it is a probability mea-
sure on R).

(1) WCT admits a density p on R given by⎧⎪⎪⎨
⎪⎪⎩

∀w > 0 p(w) = 1

σ

1

�(1/S)
w−1+ 1

m

∫
]0,+∞[

v−1/me−(w/v)1/σ

dμ(v),

∀w < 0 p(w) = 1

σ

1

�(1/S)
|w|−1+ 1

m

∫
]−∞,0[

|v|−1/me−(w/v)1/σ

dμ(v).

(2) The density p is infinitely differentiable and increasing on R<0, infinitely dif-
ferentiable and decreasing on R>0; it is not continuous at 0: limw→0,w �=0 p(w) =
+∞. In particular, the distribution is unimodal, the mode is 0.

PROOF. (1) To exhibit a density, let us take any real-valued bounded con-
tinuous function h defined on R and, thanks to the martingale connection (18),
compute

E(h(WCT)) =
∫

R

∫ +∞
0

h(uv)g(u)dudμ(v),
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where g is the density of ξσ . After the change of variable w = uv, we get

E(h(WCT)) =
∫
]−∞,0[

dμ(v)

|v|
∫ 0

−∞
h(w)g

(
w

v

)
dw

+ μ({0})h(0) +
∫
]0,+∞[

dμ(v)

v

∫ +∞
0

h(w)g

(
w

v

)
dw.

Recall that WCT has no point mass (see Section 7, introductory paragraph), so we
get that WCT admits a density given by

p(w) = 1R<0(w)

∫
]−∞,0[

g

(
w

v

)
dμ(v)

|v| + 1R>0(w)

∫
]0,+∞[

g

(
w

v

)
dμ(v)

v
.(47)

The only point to verify is that the integrals in formula (47) are well defined. The
density g is explicit. To simplify the notation, we consider the case when we start
from one ball (u = 1). In this case,

g(x) = 1

σ

1

�(1/S)
x−1+ 1

m e−x1/σ

1x>0,(48)

so that, for any nonzero w,

1

|v|g
(

w

v

)
= C|w|−1+ 1

m |v|−1/me−|w|1/σ |v|−1/σ

is bounded as a function of v.
(2) Let us prove that limw→0+ p(w) = +∞, looking at

lim
w→0+ w−1+ 1

m

∫
]0,+∞[

v−1/me−(w/v)1/σ

dμ(v).

The last integral, for any w < 1, is greater than∫
]0,+∞[

v−1/me−(1/v)1/σ

dμ(v),

so that it is sufficient to prove that this integral is a positive constant. If not, this in-
tegral would be equal to zero, and this happens only if the support of μ is included
in ]−∞,0]. By the martingale connection (18), this would imply that the support
of WCT is included in ]−∞,0], which is not the case because of Proposition 7.1.

The result on the limit of p at 0− is proved the same way. Differentiability is
immediate by dominated convergence and monotonicity comes from derivation of
formula (47). �

REMARK 7.3. The distribution of WCT is not symmetric around 0 (the expec-
tation equals b

S
�= 0 when one starts with only one red ball).
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7.3. Fourier inversion. The characteristic function F is not integrable. Never-
theless, formulas (23) and (46), imply straightforwardly that, for any real x �= 0,

F ′(x) = 1

mx
F (x)[F a(x)Gb(x) − 1]

and that F ′ is in L1. Theorem 7.4 gives an explicit expression of the density of
WCT by means of inverse Fourier transform of F ′, completing Proposition 7.2.

THEOREM 7.4. The density p on R of the random variable WCT is given, for
any x �= 0, by

p(x) = 1

2iπx

∫
R

e−itx F ′(t) dt.(49)

PROOF. Let F be the probability distribution function of WCT . We are going
to show that ∀x �= 0,

lim
h→0

F(x + h) − F(x)

h
= 1

2iπx

∫
R

e−itx F ′(t) dt,(50)

which is sufficient to prove that WCT admits a continuous density given by (49).
For any h �= 0, let dh be the function defined on R \ {0} by

dh(t) := 1 − e−ith

ith

and continuated by continuity at 0. It follows from the general Fourier inversion
theorem (see, for instance, Lukacs [11], Theorem 3.2.1, page 38) that ∀x ∈ R,
∀h �= 0, since x and x + h are continuity points of F (remember that F is contin-
uous because its characteristic function tends to 0 at infinity),

F(x + h) − F(x)

h
= lim

T →+∞ IT ,h(x),

where

IT ,h(x) := 1

2π

∫ T

−T
e−itxdh(t)F (t) dt.

Integrating by parts implies that, for any x �= 0,

IT ,h(x) = I
(1)
T ,h(x) + I

(2)
T ,h(x) + I

(3)
T ,h(x)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I
(1)
T ,h(x) = 1

2π

[
−e−iT x

ix
dh(T )F (T ) + eiT x

ix
dh(−T )F (−T )

]
,

I
(2)
T ,h(x) = 1

2iπx

∫ T
−T e−itxdh(t)F ′(t) dt,

I
(3)
T ,h(x) = 1

2iπx

∫ T
−T e−itxd ′

h(t)F (t) dt.
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It is elementary to see that dh(t) has the following properties: ∀h �= 0,∀t �= 0,

|dh(t)| =
∣∣∣∣sin th/2

th/2

∣∣∣∣ ≤ min
{

1,
2

|th|
}
,(51)

|d ′
h(t)| ≤ min

{ |h|
2

,
2

|t |
}
.(52)

Since F is bounded (it is a characteristic function) and since dh tends to 0 at
infinity,

lim
T →+∞ I

(1)
T ,h(x) = 0.

Since F ′ ∈ L1, (51) and Lebesgue dominated convergence theorem lead to

lim
T →+∞ I

(2)
T ,h(x) = 1

2iπx

∫
R

e−itxdh(t)F ′(t) dt.

At least, (52) implies that d ′
hF ∈ L1 so that, by dominated convergence,

lim
T →+∞ I

(3)
T ,h(x) = 1

2iπx

∫
R

e−itxd ′
h(t)F (t) dt.

So, for any x �= 0 and h �= 0,

F(x + h) − F(x)

h
= 1

2iπx

∫
R

e−itxdh(t)F ′(t) dt + 1

2iπx

∫
R

e−itxd ′
h(t)F (t) dt.

To get (50), it is now sufficient to take the limit when h → 0, using dominated
convergence and (52). �

REMARK. We have not found the following result in the literature but the
arguments of this proof lead to the following proposition.

PROPOSITION 7.5. Let F be the characteristic function of a probability dis-
tribution function F . Suppose that F is derivable, F ′ ∈ L1 (F is not necessarily
in L1) and F (t)

t
∈ L1. Then F admits a density p given for all x �= 0 by

p(x) = 1

2iπx

∫
R

e−itx F ′(t) dt.

8. Concluding remarks.

8.1. More colors. The same questions arise naturally for limit laws of large
urn processes with any finite number of colors. Embedding in continuous time,
martingale connection, dislocation equations on elementary limit distributions and
differential system (23) on Fourier transforms or on formal Laplace power series
can be generalized. However, the resolution of (23) relies on the question of its
integrability, even if an explicit closed form of its solutions may not be necessary
to derive properties of the corresponding distributions.
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The space requirements of an m-ary search tree is a special case of Pólya–
Eggenberger urn process with m − 1 colors (see [5], for example). Because of
the negativeness of the diagonal entries −1,−2, . . . ,−(m − 1) of its replacement
matrix, the corresponding continuous-time Markov process is not a branching
process. However, the discrete-time node process of an m-ary search tree can be
embedded into a branching process. When m ≥ 27, the corresponding limit laws
can be studied with the same method as in the present paper. This is the subject of
a forthcoming companion paper.

8.2. Laplace series. Remember from Section 4.2 that X (resp., Y ) is the mar-
tingale limit WCT of the continuous-time urn process starting from (1,0) [resp.,
from (0,1)]. For n ≥ 0, let

an = E(Xn) and bn = E(Y n),

and let F and G be the Laplace series of X and Y , that is, the formal exponential
series of the moments:

F(T ) = ∑
n≥0

an

n! T
n and G(T ) = ∑

n≥0

bn

n! T
n ∈ R[[T ]].

From equations (21), we write recursion formulae relating (ak)0≤k≤n and
(bk)0≤k≤n. Thanks to the multinomial formula, they arrange themselves into the
differential system with boundary conditions:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F(T ) + mT F ′(T ) = F(T )a+1G(T )b,

G(T ) + mT G′(T ) = F(T )cG(T )d+1,

F (0) = G(0) = 1,

F ′(0) = b

S
and G′(0) = − c

S
.

(53)

The fact that the urn is large implies that equations (53) characterize the moments
of X and Y . Indeed, proceed by recursion: for any n ≥ 2, vn = (an, bn) is the
solution of a linear system of the form (R − nmI)(vn) = [polynomial function of
v1, . . . , vn−1], R being the replacement matrix of the process (5). Since the urn is
large, nm > nS/2 ≥ S so that nm is not an eigenvalue of R.

A remarkable fact, which explains why we have worked with characteristic
functions and not with Laplace transforms, is that, for nontriangular urns, that
is, when bc �= 0, series F and G have a radius of convergence equal to 0 (Corol-
lary 6.10).

8.3. Question. The main theorem provides a family of distributions, those of
the WCT , indexed by the three parameters S,m,b of the urn and by the initial
condition (α,β). A challenging question is: can the physical relations between
these distributions be translated into relations between the Abelian integrals? In
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otherwords, can the addition formulas between Abelian integrals be interpreted by
a combinatorial/probabilistic approach using these distributions?
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ing discussions, Brigitte Chauvin being welcome in Project Algorithms at INRIA
Rocquencourt.
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