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SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN
MATRICES OF RANDOM GRAPHS
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In this paper, we investigate the spectral properties of the adjacency and
the Laplacian matrices of random graphs. We prove that:

(i) the law of large numbers for the spectral norms and the largest eigen-
values of the adjacency and the Laplacian matrices;

(ii) under some further independent conditions, the normalized largest
eigenvalues of the Laplacian matrices are dense in a compact interval almost
surely;

(iii) the empirical distributions of the eigenvalues of the Laplacian matri-
ces converge weakly to the free convolution of the standard Gaussian distrib-
ution and the Wigner’s semi-circular law;

(iv) the empirical distributions of the eigenvalues of the adjacency matri-
ces converge weakly to the Wigner’s semi-circular law.

1. Introduction. The theory of random graphs was founded in the late 1950s
by Erdos and Rényi [19-22]. The work of Watts and Strogatz [46] and Barabdsi
and Albert [3] at the end of the last century initiated new interest in this field. The
subject is at the intersection between graph theory and probability theory. One can
see, for example, [10, 14-16, 18, 23, 30, 34, 40] for book-length treatments.

The spectral graph theory is the study of the properties of a graph in relation-
ship to the characteristic polynomial, eigenvalues and eigenvectors of its adjacency
matrix or Laplacian matrix. For reference, one can see books [14, 42] for the de-
terministic case and [15] for the random case, and literatures therein. The spectral
graph theory has applications in chemistry [9] where eigenvalues were relevant to
the stability of molecules. Also, graph spectra appear naturally in numerous ques-
tions in theoretical physics and quantum mechanics (see, e.g., [24-26, 38, 39, 43,
441). For connections between the eigenvalues of the adjacency matrices and the
Laplacian matrices of graphs and Cheeger constants, diameter bounds, paths and
routing in graphs, one can see [15].

Although there are many matrices for a given graph with n vertices, the most
studied are their adjacency matrices and the Laplacian matrices. Typically, ran-
dom graphs are considered with the number of vertices n tending to infinity. Many
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geometrical and topological properties can be deduced for a large class of ran-
dom graph ensembles, but the spectral properties of the random graphs are still
uncovered to a large extent.

In this paper, we will investigate the spectral properties of the adjacency and the
Laplacian matrices of some random graphs. The framework of the two matrices
will be given next.

Letn>2and I';, = (V,, E,) be a graph, where V,, denotes a set of n vertices
vy, V2, ..., Uy, and E, is the set of edges. In this paper, we assume that the edges
in E, are always nonoriented. For basic definitions of graphs, one can see, for
example, [11]. The adjacency matrix and the Laplacian matrix of the graph are of
the form

(1.1) A, = S(n) g_.(n) O é(n)
and
Zé(n) S(n) E(n) _51(2)
J#l
é(n) Zg(ﬂ) E(n) —52(2)
J#2
(1.2) A, = g(”) g(”) 3 g(”) _53(;’)
J#3
g(n) _SYE;) S(") ng)
J#n
with relationship
(1.3) An=Dn_An»

where D,, = (Z;’;ﬂ- Si(l"))lgign is a diagonal matrix.

As mentioned earlier, we will focus on nonoriented random graphs in this paper.
Thus, the adjacency matrix A, is always symmetric. If the graph is also simple, the
entry Si(f) for i # j only takes value 1 or 0 with 1 for an edge between v; and v;,
and O for no edge between them.

The Laplacian matrix A, for graph I, is also called the admittance matrix or
the Kirchhoff matrix in literature. If I',, is a simple random graph, the (i, i )-entry
of A, represents the degree of vertex v;, that is, the number of vertices connected
to v;. A, is always nonnegative (this is also true for A, as long as the entries
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{él-(j"); 1 <i # j < n} are nonnegative); the smallest eigenvalue of A,, is zero; the
second smallest eigenvalue stands for the algebraic connectivity; the Kirchhoff
theorem establishes the relationship between the number of spanning trees of ',
and the eigenvalues of A,,.

An Erdos—Rényi random graph G (n, p) has n vertices. For each pair of vertices
v; and v; with i # j, an edge between them is formed randomly with chance p,
and independently of other edges (see [19-22]). This random graph corresponds

to Bernoulli entries {Si(;); 1 <i < j <n}, which are independent random variables
with P(gl.(;” —D=1- P(g}}’) =0)=p, forall 1 <i <j <n.

For weighted random graphs, {Si(;l);
variables and éi(.") is a product of a Bernoulli random variable Ber(p,) and a nice
random variable, for instance, a Gaussian random variable or a random variable
with all finite moments (see, e.g., [32, 33]). For the sign model studied in [7, 33,
43, 44], éi(jn) are independent random variables taking three values: 0, 1, —1. In
this paper, we will study the spectral properties of A, and A, under more general
conditions on {f;‘i(;’); 1 <i<j<n}[see(1.9)].

Now we need to introduce some notation about the eigenvalues of matrices.
Given an n x n symmetric matrix M. Let A; > Ay > --- > A, be the eigenvalues
of M, we sometimes also write this as A (M) > A,(M) > --- > A, (M) for clarity.
The notation Amax = Amax (M), Amin = Amin(M) and A (M) stand for the largest
eigenvalue, the smallest eigenvalue and the kth largest eigenvalue of M, respec-
tively. Set

1 <i < j < n} are independent random

1 n
AM)=—> 6, and
22
(1.4)
1 n
FM(x) = ~2 10i=x),  xeR

i=1

Then, (M) and FM(x) are the empirical spectral distribution of M and the em-
pirical spectral cumulative distribution function of M, respectively.

In this paper, we study A, and A, not only for random graphs but also study
them in the context of random matrices. Therefore, we allow the entries Ei(;) ’s to
take real values and possibly with mean zero. It will be clear in our theorems if the
framework is in the context of random graphs or that of of random matrices.

Under general conditions on {éi(;)}, we prove in this paper that a suitably nor-
malized [i(A,) converges to the semi-circle law; a suitably normalized ji(Aj)
converges weakly to the free convolution of the standard normal distribution and
the semi-circle law. Besides, the law of large numbers for largest eigenvalues and
the spectral norms of A, and A, are obtained. Before stating these results, we need
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to give the assumptions on the entries of A,, in (1.1) and A, in (1.2).

Let {Sl i
same probability space and {S

i 1<i<j<nn> 2} be random variables defined on the

;1 <i < j < n} be independent for

ij
(1.5) each n > 2 (not necessarily identically distributed) with 51.(]'.1) = S}?) ,

E@E!) = . Var(”) =02 > 0forall 1 <i < j <nand n > 2 and
SUP| <i<j<n.n>2 El(él.(]'-l) — Wp)/on|P < oo for some p > 0.

The values of p above will be specified in each result later. In what follows, for
an n x n matrix M, let ||M|| = supy.pgn. Ix=1 [Mx|| be the spectral norm of M,

where ||x|| = ,/xlz +---+x? for x = (x1,..., x,) € R". Now we state the main

results of this paper.

THEOREM 1. Suppose (1.5) holds for some p > 6. Assume (i, =0and o, =1
foralln > 2. Then:

(a) k\‘;;‘%g’;l) 2 in probability as n — 00.
Furthermore, if {A2, A3, ...} are independent, then:

)\max(An)
nlogn

quence {Amax(Ay)//nlogn; n > 2} is dense in | \/i 2] a.s.;
(¢c) the conclusions in (a) and (b) still hold if Amax (A,) is replaced by || A, ]|

Amax (An)

(b) liminf,_ = /2 a.s. and lim SUP,,_ 00 “ntogn = 2 a.s., and the se-

For typically-studied random matrices such as the Hermite ensembles and the
Laguerre ensembles, if we assume the sequence of n x n matrices for all n > 1 are
independent as in Theorem 1, the conclusions (b) and (¢) in Theorem 1 do not hold.
In fact, for Gaussian Unitary Ensemble (GUE), which is a special case of the Her-
mite ensemble, there is a large deviation inequality P(n Y% hmax — «/§| >e) <
e~ "C¢ for any & > 0 as n is sufficiently large, where C, > 0 is some constant (see
(1.24) and (1.25) from [36] or [8]). With or without the independence assumption,
this inequality implies from the Borel-Cantelli lemma that n ="/ A, — +/2 a.s.
as n — oo. Similar large deviation inequalities also hold for Wishart and sample
covariance matrices (see, e.g., [27, 45]).

For two sequence of real numbers {a,; n > 1} and {b,,;; n > 1}, we write a, < b,
if a,/b, — 0 asn — oo, and a, > b, if a, /b, — 400 asn — co. Weuse n > 1
to denote that n is sufficiently large.

COROLLARY 1.1.  Suppose (1.5) holds for some p > 6. Then, as n — oco:
(al) 2onB0) /3 in probability if |iun| < on (22512,

oy/nlogn
(a2) Am;f/an") — 1 in probability if u, > 0 forn > 1 and pu, > Gn(k’%)l/z;
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(a3) )‘m#(fn) — 0 in probability if u, <0 for n>> 1 and |ju,| > Gn(k)%)l/z.
Furthermore, assume {A7, A3, ...} are independent, then:

1 3 )\max An 1 )‘-max Al’l
(bl) liminf, o W = /2 a.s. and limsup,__ W =2 a.s., and the

sequence {%; n > 2} is dense in [\/5, 2] a.s. if |pun| <K 0,,(]0%)1/2;

(b2) lim,_s oo X‘"#(f”) =1las. if up, >0forn>1and pu, > crn(lo%)l/z;
(b3) limy_ o 22 Bn) — 0 g5 i, < 0 for n > 1 and || > 0, (122212,

nfin n
Finally, (al) and (b1) still hold if M max (A,,) is replaced by || A, ||; ifél.(f) > 0 for all
i, j,n, then (a2) and (b2) still hold if Amax (A,) is replaced by || A, ]|.

REMARK 1. For the Erdos—Rényi random graph, the condition “(1.5) holds
for some p > po” with pp > 2 is true only when p, is bounded away from zero
and one. So, under this condition of p,, Corollary 1.1 holds. Moreover, under the
same restriction of p,, Theorems 2 and 4, that will be given next, also hold.

Let {v, v1, v, ...} be a sequence of probability measures on R. We say that v,
converges weakly to v if [p f(x)v,(dx) — [ f(x)v(dx) for any bounded and
continuous function f(x) defined on R. The Portmanteau lemma says that the
weak convergence can also be characterized in terms of open sets or closed sets
(see, e.g., [17]).

Now we consider the empirical distribution of the eigenvalues of the Laplacian
matrix A,. Bauer and Golinelli [7] simulate the eigenvalues for the Erdos—Rényi
random graph with p fixed. They observe that the limit v of the empirical distrib-
ution of A; (A;), 1 <i <n, has a shape between the Gaussian and the semicircular
curves. Further, they conclude from their simulations that my4/ m% is between 2
and 3, where m; is the ith moment of probability measure v. In fact, we have the
following result.

THEOREM 2. Suppose (1.5) holds for some p > 4. Set F,(x) = rl—l X

?:1 I{% < x} for x € R. Then, as n — oo, with probability one, F,
converges weakly to the free convolution yyy of the semicircular law and the stan-
dard normal distribution. The measure yyr is a nonrandom symmetric probability

measure with smooth bounded density, does not depend on the distribution of
{Si(f); 1 <i < j<n,n=>2}and has an unbounded support.

More information on yy; can be found in [12]. For the Erdos—Rényi random
graphs, the weighted random graphs in [32, 33] and the sign models in [7, 33, 43,
441, if p, is bounded away from O and 1 as n is large, then (1.5) holds for all
p > 4; thus Theorem 2 holds for all of these graphs.

It is interesting to notice that the limiting curve appeared in Theorem 2 is indeed
a hybrid between the standard Gaussian distribution and the semi-circular law, as
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observed in [7]. Moreover, for the limiting distribution, it is shown in [12] that
ma/ m% =8/3 € (2, 3), which is also consistent with the numerical result in [7].

Before introducing the next theorem, we now make a remark. It is proved in
[12] that the conclusion in the above theorem holds when ’;‘( ") =§&;j forall 1 <
i <j<nandn>2, where {§;;1<i < j < oo} are mdependent and identically
distributed random variables with E£j» =0 and E (512)2 = 1. The difference is
that the current theorem holds for any independent, but not necessarily identically
distributed, random variables with arbitrary mean u, and variance anz.

Now we consider the adjacency matrices. Recall A, in (1.1). Wigner [47] es-
tablishes the celebrated semi-circle law for matrix A,, with entries {Si(;’) =§j:1=<
i < j < oo} being i.i.d. N(0, 1)-distributed random variables (for its extensions,
one can see, e.g., [5] and literatures therein). Arnold [1, 2] proves that Wigner’s
result holds also for the entries being i.i.d. random variables with a finite sixth
moment. In particular, this implies that, for the adjacency matrix A, of the Erdos—
Rényi random graph with p fixed, the empirical distribution of the eigenvalues of
A, converges to the semi-circle law (see also Bollobas [10]). In the next result
we show that, under a condition slightly stronger than a finite second moment, the
semicircular law still holds for A,,.

THEOREM 3. Let a)(") : (gi(]@ — WUn) /oy for all i, j,n. Assume (1.5) with
p=2and

max_E{(w;})’1(|of}| = ev/m)} —

I<i<j<n

as n — oo for any &€ > 0, which is particularly true when (1.5) holds for some
p > 2. Set

L [ i(AR) +
Fo(x) = ;1{ o §x}, x eR.

Then, almost surely, F, converges weakly to the semicircular law with density

/4 =32 (x| <2).

Applying Theorem 3 to the Erd6s—Rényi random graph, we have the following
result.

COROLLARY 1.2, Assume (1.5) with P(" =1) = p, =1 — P’ = 0)
forall 1 <i<j<nandn=>2.If a, ::(npn(l—pn))l/2—>ooasn—>oo,
then, almost surely, FA/% converges weakly to the semicircular law with density
%\/4 — x21(|x| <2). In particular, if 1/n <« pp — 0 as n — o0, then, almost
surely, FA/NPn converges weakly to the same semicircular law.
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The condition “a;, := (np, (1 — pn))l/2 — 00 as n — oo” cannot be relaxed
to that “np, — o0.” This is because, as p, is very close to 1, say, p, = 1, then

Si(;’) =1 for all i # j. Thus A, has eigenvalue n — 1 with one fold and —1 with

n — 1 fold. This implies that FA» — §_; weakly as n — oo.

Corollary 1.2 shows that the semicircular law holds not only for p being a con-
stant as in Arnold [1, 2], it also holds for the dilute Erdos—Rényi graph, that is,
1/n < p, — 0 as n — oo. A result in Rogers and Bray [43] (see also a dis-
cussion for it in Khorunzhy et al. [33]) says that, if P(éi(f) ==+1) = p,/2 and

P(él.(;l) =0) =1 — p,, the semicircular law holds for the corresponding A, with
1/n < p, — 0. It is easy to check that their result is a corollary of Theorem 3.

Now we study the spectral norms and the largest eigenvalues of A,. For the
Erdos—Rényi random graph, the largest eigenvalue of A, is studied in [28, 35]. In
particular, following Juhdz [31], Fiiredi and Koml6 [28] showed that the largest
eigenvalue has asymptotically a normal distribution when p, = p is a constant;
Krivelevich and Sudakov [35] proved a weak law of large numbers for the largest
eigenvalue for the full range of p, € (0, 1). In the following, we give a result for
A,, whose entries do not necessarily take values of 0 or 1 only. Recall A;(A,) and
IA, || are the kth largest eigenvalue and the spectral norm of A,;, respectively.

THEOREM 4. Assume (1.5) holds for some p > 6. Let {k,;n > 1} be a se-
quence of positive integers such that k, = o(n) as n — oco. The following hold:

() If limy—s oo n/(n ™1 20,) = 0, then ||Ayll//now — 2 as. and Ay, (Ay)/
(V/noy) — 2 a.s.as n — oo.
@) Iflim,— o0 un/(n_l/zan) = 400, then Amax(Ap)/(nu,) — 1 a.s. as n —
Q.
(iii) If limy— o0 |tnl/ (11 %0,) = +o00, then ||A,|l/(nlianl) — 1 as. as n —

oQ.

REMARK 2. The conclusion in (ii) cannot be improved in general to that
Ak, (Ayp)/(nu,) — 1 as. as n — oo. This is because when o, is extremely small,
A, roughly looks like u,(J, — I,,), where all the entries of J, are equal to one,
and I, is the n x n identity matrix. It is easy to see that the largest eigenvalue
of upn(J, — Iy) is (n — D, > 0, and all of the remaining n — 1 eigenvalues are
identical to —1.

From the above results, we see two probability distributions related to the spec-
tral properties of the random graphs: the Wigner’s semi-circle law and the free con-
volution of the standard normal distribution and the semi-circle law. The Kesten—
McKay law is another one. It is the limit of the empirical distributions of the
eigenvalues of the random d-regular graphs (see [37]).

The proofs of Theorems 1 and 2 rely on the moment method and some tricks
developed in [12]. Theorems 3 and 4 are derived through a general result from [6]
and certain truncation techniques in probability theory.
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The rest of the paper is organized as follows: we will prove the theorems stated
above in the next section; several auxiliary results for the proofs are collected in
the Appendix.

2. Proofs.

LEMMA 2.1. Let U, = (u( )) be an n x n symmetric random matrix, and
u (m).

l_] ’
for each n > 1, {”U ;
Eu 1(7) =0, Var(u(n)) =1forall1<i,j<n,and sup _; i<, p>1 Elu(")|6+‘S < 00
for some § > 0. Then

hmax (Up
Jn

1 <i <j<n,n> 1} are defined on the same probability space. Suppose,

1 <i < j <n} are independent random variables with

[Un

2maxWUn) — 9 g . and lim,,_, f|l—2as

@) limy, 0

(ii) the statements in (i) still hold if U, is replaced by U,, — diag(ug?) <i<n-

The proof of this lemma is a combination of Lemmas A.2 and A.3 in the Ap-
pendix and some truncation techniques. It is postponed and will be given later in
this section.

PROOF OF THEOREM 1. First, assume (a) and (b) hold. Since u, = 0 for all
n > 2, (a) and (b) also hold if Apax(Ay) is replaced by Amax(—A,). From the
symmetry of A,, we know that

| Ayl = max{—Amin(An), Amax(Ap)} = max{Amax(—Ap), Amax (Ay)}.

Now the function A (x, y) := max{x, y} is continuous in (x, y) € R?, applying the
two assertions

lim sup max{ay, b,} = max [ limsupa,, limsup b, }
n—oo n—o0 n— 00

and
liminfmax{a,, by} > max{hm infa,, lim infb,,}
n—oo n—oo n—oo

for any {a, e R;n > 1} and {b, € R; n > 1}, we obtain ||A,||/+/nlogn converges
to +/2 in probability, and

liminf ——— [An] >2 a.s. and limsup —— [Ax] =2 a.s.

n—oo  /nlogn n—oo ~/nlogn
and
| Anll
J/nlogn’

Thus (c) is proved. Now we turn to prove (a) and (b).

the sequence { n> 2} is dense in [v/2,2]  as.
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Recall (1.3), A, =Dy, — Ay, First, Amax (D) — Ay | < Amax (An) < Amax(Dn) +
|A, || for all n > 2. Second, by (ii) of Lemma 2.1, ||A,||/+/n — 2 a.s. as n — 00.
Thus, to prove (a) and (b) in the theorem, it is enough to show that

2.1) BRI V2 in probability;
' Jnlogn P v
2.2) liminfi =2 a.s. and limsup L =2 a.s.;
' n—00 W o n—>00 nlogn o
T,
(2.3) the sequence {W n> 2} is dense in [\f 2] a.s.,

where T, = Amax(Dy) = maxi<j<p ZJ-# Sl.(;l) forn > 2.

PROOF OF (2.1). By Lemma A.1, for each 1 <i <n and n > 2, there exist
ii.d. N(0, 1)-distributed random variables {n{;; 1 < j <n. j # i} for each n > 2
such that

2.4)

PO
~ n2(logn)3’

where here and later in all proofs, C stands for a constant not depending on i, j
or n, and may be different from line to line. It is well known that

2.5) . —— Y R T e F 12

1
V2 (14 x2) V2 x
for any x > 0. Since }_; gf;’) <Y nu + 1 gl(J") > n(")l then

P(T, > (¢ +2¢) /nlogn)

<n- max P(Zg(") > (o 4 2¢) nlogn)

<i<
1<i<n i

(2.6)
<n- max P(Z n(") > (o +¢) nlogn)

1<i<n
> 8,/nlogn>




SPECTRAL OF LAPLACIAN MATRICES 2095

forany a > 0 and ¢ > 0. Noticing }_;; ,’i(}?) ~ JATT-NO.1) forany 1 <i <n,
by (2.5) and then (2.4),

P(T, > (a +2¢)\/nlogn) <nP(N(0,1) > (¢ +¢) log")JrW
2.7) c

<C 1—(a+¢)2/2
=t n(logn)3

for n sufficiently large. In particular, taking o = +/2, we obtain that

2.8) P<L>\/§+2>—O<i>
’ Jnlogn ~ £)= %\ e

as n — oo for any ¢ € (0, 1], since the last term in (2.7) is of order n! (log n)~—3
asn — o0o.

Define k, = [n/logn] and V, = max) <<k, | ¥ 1< <, & | with £ =0 for all
1 <i < n. By the same argument as in obtaining (2.7), we have that, for any fixed

o >0,

\% 2 C
2.9 Pl—2 > 2e ) <C(k,)~@te /2y~
9 («/7k,, ogk, ~ T 8) = Clkn) t o (ogky)’

as n is sufficiently large. Noticing n/k, — oo, and taking o + ¢ = 10 above, we
have

I 1

as n is sufficiently large. Observe that

n
(n)
(2.11) T, > max > &1 = Va.
=M =kt

Similarly to (2.4), by Lemma A.1, for each 1 <i <n and n > 2, there exist i.i.d.
N (0, 1)-distributed random variables {g“l-(j"); 1 <i <n,j#i}such that

n n
> Si(f)_ > Ci(jn) 38\/”105%”)

max P
1<i<k,

j=kn 1 j=kn+1

C n ()16
2.12 < S Elg"
( ) T 1+ (e/nlogn)® Pt ‘éu |

C
P
~ n%(logn)?
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as n is sufficiently large for any ¢ > 0. Fix 8 > 0. By (2.11), (2.10) and then
independence

P(T, < (B —2¢),/nlogn)

(2.13) < P( max Z Si(;l) <(B—¢) nlogn) + P(V, > ¢&,/nlogn)

k
n n 1
(n)
=2 P( 2 S = ’“"g”) * ogny?

as n is sufficiently large. Observe that

P( > gV =B-9 nlogn)

J=kn+1

(2.14) < P(j: (" < (ﬁ _ g) /n logn)
wr - 5 ntoen)

Use the fact that 3" | ¢ ~ /n — K, - N(0, 1) and (2.5) to have

(£, (o))

j=kn+1

r{on(o-5) 25 o)
C

> -
— n(B—e/3)?/2 logn

n n
> Si(jn)_ > §i(jn)

]:kn+1 j:kn+1

uniformly for all 1 <i <k, as n is sufficiently large and as 0 < ¢/3 < 8, where in

the last inequality we use the fact that (8 — (¢/2))v/n/(n —k,) < (B — (¢/3)) as
n is sufficiently large. This, (2.12) and (2.14) imply

Cq n )
n(ﬂ_5/3)2/2 logn I’lz(lOgI’l)3

max P( Z *;‘8-”5(,3—8) nlogn)fl—

1<i<k, k41

C3
<l-——
nB—¢/3)7/2 ]ogn
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as n is sufficiently large for any 0 < ¢/3 < § < 2. Use inequality 1 —x < e~ for
any x > 0 to obtain

n ko
(2.15)  max P< > gl.(]fl) <(B—2¢) nlogn) < exp{_cnl—(ﬁ—e/4)2/2}
<<
=t =Rkn j:kn+1

as n is sufficiently large for any 0 < ¢/4 < 8 < 2. From (2.13), we conclude that

1

B _Cpl—Be/d2y L
(2.16)  P(T, < (B —2¢),/nlogn) <exp{—Cn ’ }+n(logn)3/2

as n is sufficiently large for any 0 < £/4 < 8 < 2. Now, take 8 = +/2, and we get

(2.17) P<L<\/§—2>—O<;>
' Jnlogn — °)= n(logn)3/2

as n — oo for sufficiently small & > 0. This and (2.8) imply (2.1).

PROOF OF (2.2) AND (2.3). To prove these, it suffices to show

T, T,
(2.18)  limsup ——— <2 as. and liminf ——— >+/2 a.s.

n—oo /nlogn — n—oo . /nlogn —
and
(2.19) P(L € [a, b) for infinitely many n > 2) =1
Vnlogn

for any (a, b) C (V2,2).

First, choosing o = 2 in (2.7), we have that P(T, > (2 + 2¢) /nlogn) =
O(n_l(logn)_3) as n — oo for any ¢ € (0, 1). Thus, ) -, P(T, = (2 + 2¢) x
J/nlogn) < co. By the Borel-Cantelli lemma, -

T,
limsup —— <2+ 2¢ a.s.
n—>oop A/n logn -
for any € € (0, 1). This gives the first inequality in (2.18). By the same reasoning,
the second inequality follows from (2.17). To prove (2.19), since {7;,n > 2} are
independent from assumption, by the second Borel-Cantelli lemma, it is enough
to show

(2.20) ZP(L [ b))—
. 2 We a, =00

for any (a, b) C (v/2,2). By (2.7), we have that

T, C
2.21 Pl ——=b)| < —————
( ) ( /nlogn - ) - n(b—8)2/2—1
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as n is sufficiently large and ¢ > 0 is sufficiently small. By (2.11),

n
() ~
2% 2 & =TtV
j=kn+1
for n > 2. Thus, by independence and (2.10),

P(T, > a/nlogn)
n

P
e

5= @ +e) nlogn)

— P(V, >¢,/nlogn)

(2.22)

n kn
_ _ . (n)
>1 <1 lg}lsr}cnP< Z él] > (a+e¢) nlogn))

1

" n(logn)3/2
as n is sufficiently large. By (2.12)

n
P( > g =@+e) nlogn)

n
> P( {l.(j") > (a + 2¢) nlogn)

_P(

> P(N(0,1) > (a + 3¢),/logn)

n

n
kzlé‘"if/m— > gy
j=hort

j=kn+1

ze,mlogn)

n2
uniformly for all 1 <i <k, as n is sufficiently large. From (2.5), for any ¢ > 0,
C
P(N(0,1) > (a + 3¢),/logn) ~

n(@+39°/2 /logn
as n is sufficiently large. Noting that a € (v/2, 2), we have

n
C
P( Y g z@+e) nlogn)>

j=kn+1  n@t39%2 Jlogn
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uniformly for all 1 <i <k, as n is sufficiently large and ¢ is sufficiently small.
Thus, since k,, = [n/logn], relate the above to (2.22) to give us that

C K 1
P(T, = aynlogn) > 1—(1~— B
(Th = a\/’@) = < n(a%eﬂ/%/@) n(logn)3/2

Chi (14 o0(1)) !
@322 flogn 0 n(logn)>2
C

>
~ nlat3e?/2=1(Jog )2

as n is sufficiently large and & > 0 is small enough, where in the “~” step above
we use the fact that 1 — (1 — x,,)k” ~ ky,x, if x, = 0, k;, — +00 and k,x,, — 0 as
n — o0o. Combining this and (2.21), we eventually arrive at

Tn _p( I N p(
P(«/nlogn © [a,b)) N P(«/nlogn 2a) P(«/nlogn Zb)

- C3 Cy
- n(a+38)2/2—1(10gn)2 nb—e)?/2—1
C3

~

n(@+36?2/2=1(1og )2

as n is sufficiently large and & > 0 is sufficiently small, where [a, b) C (v/2,2).
Finally, choosing & > 0 so small that (a 4 3)?/2 — 1 € (0, 1), we get (2.20). O

PROOF OF COROLLARY 1.1. Recalling (1.2), let & = (¢ — 11,) /0, for
g”; 1 <i<j<n,n>2} satisfies (1.5) with
un=0,0, =1and p > 6. Let A, be generated by {Ei(j")} as in (1.2). By Theo-
rem 1, the conclusions there hold if Apax (Ay) is replaced by Amax(An). Notice
(2.23) Ay =0, Ay + - (0L, — Jp),

where I, is the n x n identity matrix, and J, is the n x n matrix with all of its
entries equal to 1. It is easy to check that the eigenvalues of nl,, — J,, are 0 with
one fold and n with n — 1 folds, respectively. First, apply the triangle inequality
to (2.23) to have that [Amax (Ay) — OnAmax (Ap)| < litn - (0L — T || < nlunl. 1t
follows that

a111§i<j§nandn22.Then{§

Amax (Ap) _ )Lmax(&n) < | inl

Jnlogno, /nlogn |~ (logn)!/2n=1/2¢,
provided |, | < 0,+/logn/n. Then (al) and (bl) follow from Theorem 1. By the
same argument

|)\'max(An) - )\'max(,un - (nl, — Jn))| = Un||&n|| = O(OH,/nlogn) a.s.

—0
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as n — 0o. Note that Apax(uy - (1L, — J,)) =0 if u, <0, and is equal to nu, if
tn > 0 for any n > 2. Thus, if u, > o,/logn/n, we have Amax(An)/(npn) —
1 as.as n— oo. If u, <O for all n > 2, and |u,| > o,/logn/n, we obtain
Amax(An)/(nuy,) — 0 a.s. as n — oo. Then (a2), (a3), (b2) and (b3) are yielded.

Finally, since E(—éi(f)) = —/t, and Var(—éi(j’?)) = Var(éi(;l)) =o? foralli, j,n,
by using the proved (al) and (bl), we know that (al) and (bl) are also true if
Amax (Ay) is replaced by Apax (—A,,). Now, use the same arguments as in the proof
of part (c) in Theorem 1 to get (al) and (b1) when Apax(A,) is replaced with || A, ]|
On the other hand, it is well known that A, is nonnegative definite if gl.(]f” > 0 for
all i, j,n (see, e.g., page 5 in [14]). Thus ||A; || = Amax(Ay). Consequently (a2)
and (b2) follow when Apax(A,) is replaced with ||A,]|. U

To prove Theorem 2, we need some preliminary results.

LEMMA 2.2. Let {Si(f); 1 <i< j<n,n>2} be defined on the same proba-
bility space. For each n > 2, let {"g‘l-(;);
Eéi(;) = 0. Define é‘;?) = Si(;l) for all i, j,n and S, 1 = lei;éjsn(sgl))z and

Sn2 =201 (X i fi(jn))z- Ifsupi<i<j<pn>2 E|§,-(f)|4+5 < 00 for some § > 0, then

1 <i < j <n} be independent rv.s with

S, i« — ES,
(2.24) lim 2mk— Zonk

n—oo n2

0 a.s. fork=1,2.

PROOF. To make notation simple, we write &;; = éi(j") forall 1 <i<j<n
when there is no confusion.

Case 1: k = 1. Recall the Marcinkiewicz—Zygmund inequality (see, e.g., Corol-
lary 2 and its proof on page 368 in [13]), for any p > 2, there exists a constant C,
depending on p only such that

n
>Xi
i=1

for any sequence of independent random variables {X;; 1 <i <n} with EX; =0
and E(|X;|?) < ocoforall 1 <i <n.Taking p =2+ (§/2) in (2.25), we have from
the Holder inequality that

p n
< Cpn?* 1Y E|X 1P
i=1

(2.25) E

E(|& — E&%|P) <27 E|&;1% 4+ 271 (E|&;1H)?

(2.26) <2r.  sup  Elg VM

N 1<i,j<n,n>1 /

< 0
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uniformly forall 1 <i < j <n,n>2. Write S,; — ES;;,;1 = 221§i<j§n(§i2j -
E.»;.Zj). By (2.25),

nn—1)

5/4
) X B - £

I<i<j<n

Emu—E&APSC(

(2.27)
< C.-n?t0/2),
where C here and later, as earlier, is a constant not depending on n, and may
be different from line to line. Then P(|S,.; — ES,.1| > n’e) < (n’s) P E|S,.1 —
ESp11P =0 (n=2=@/2) for any ¢ > 0 by the Markov inequality. Then (2.24) holds
for k = 1 by the Borel-Cantelli lemma.
Case2:k=2.Forn>2,setu; =v, =0 and

i—1 n
wi=y &  for2<i<n+1 and vi= ) &  for0<i<n-—1.
j=1 j=i+1
Then, 3°;; &ij =u;i +v; forall 1 <i <n. Clearly, S, 2=3"/_, ul-z +37, viz +
237" yu;v; for all n > 1. Since E(u;v;) = (Eu;)Ev; = 0 by independence, to
prove the lemma for k = 2, it suffices to show

1 < 1 <
= 2:(141-2 — Eul-z) -0 a.s., — Xj(l)i2 — Eviz) —0 a.s.
ne - ne -
i=1 i=1
and
1 n
(2.28) — > ujv; >0  as.
n

i=1
as n — oo. We will only prove the first and the last assertions in two steps. The
proof of the middle one is almost the same as that of the first and, therefore, is
omitted.
Step 1. Similarly to the discussion in (2.26) and (2.27), we have E|u;|*t% <
Ci*>*t@/? for all 1 <i <n and n > 2. Now set ¥,; = (”1'2 — Eul.z)/i for i =

1,2,...,n. Then, {Y, ;; 1 <i < n} are independent random variables with
(2.29) EY,;=0, sup  E|Ynil*t < oo
1<i,j<n,n>1
and
) 1 &
(2.30) ~ > (i — Eu)= 52 ¥
i=1 i=1

forall 1 <i <nandn > 2, where § =§/2. By (2.25) and (2.29),

n 2+8/ n
ZiYn ; <C. n2+8)/2-1 Zi2+3/ _ 0(n3+(33//2))
i=1

i=1

E
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. . . / / /. .
as n — oo, where the inequality Y7_; %+t < " n?*% < n3*9 is used in the
above inequality. For any ¢ > 0,

1 E| Y Y2 1
Bl B o)

(n2t)2+8’ nlt@/2)
as n — oo. This together with (2.30) concludes the first limit in (2.28) by the
Borel-Cantelli lemma.
Step 2. We will prove the last assertion in (2.28) in this step. Define o -algebra

n

> iY,

i=1

Fao={2.Q} and F=c@E1<i<ki+l<j<n)

for 1 <k <n —1. Obviously, F, 0 C Fn,1 C--- C Fn.n—1. It is easy to verify that

k+1 k
E(Z Ui |~'Fn,k> = uv;
i=1 i=1

fork=1,2,...,n—1.Therefore, {Zle u;ivi, Fnr, 1 <k <n—1}is amartingale.
By the given moment condition, T :=SUp;<; j<y =1 E|§l-(j")|4 < oo. From (2.25),
E@w$) <Ci*> <Cn*and E(v}) < C(n —i)?> < Cn®for 1 <i <nand n >2. By
applying the Burkholder inequality (see, e.g., Theorem 2.10 from [29] or Theo-
rem 1 on page 396 and the proof of Corollary 2 on page 268 from [13]), we have

n—1

n—1 4 n—1
E(Z um) <CnYP71 S E(@iv)) =Cn )] Ewp*- E)* = 0(n%)
i=1

i=1 i=1
as n — oo. By the Markov inequality,
1| EIXZ wivil* I
P(n—z 2 v 25) < ==a=o(3)

as n — oo. The Borel-Cantelli says that }"7_, u;vi/n®>—0as.asn — oo. O

For any two probability measures © and v on R, define

@30 dwge)=sw| [ fdu= [ faviifin+ sl =1},

where || flloo = supyer [/ (O] 1Sl = supys, [/ (x) = fFOD)I/|x — yl. Tt is well
known (see, e.g., Section 11.3 from [17]), that dpL.(-, -) is called the bounded Lip-

schitz metric, which characterizes the weak convergence of probability measures.
Reviewing (1.4), for the spectral measures of n x n real and symmetric matrices
M; and M3, we have (see, e.g., (2.16) from [12])

1
(2.32) d3; (A(My), Ai(Mp)) < (M — My)?).
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To prove Theorem 2, we first reduce it to the case that all random variables in the
matrices are uniformly bounded. This step will be carried out through a truncation
argument by using (2.32).

LEMMA 2.3.  If Theorem 2 holds for all uniformly bounded r.v.s {é(") 1<i<
Jj <n,n > 2} satisfying (1.5) with u, =0 and o, =1 for all n > 2, then it also

holds for all r.v.s {éi(j'.l); 1 <i < j<n,n>2} satisfying (1.5) with p =4+ § for
some § >0, and (1, =0 and o, = 1 for all n > 2.

PROOF. As in the proof of Lemma 2.2, we write &;; for él.(;’) if there is no
danger of confusion. Fix u > 0. Let '

£ =& 1{&)| <u}— E(&;I{1&;| <u})
Gij(M)I\/Wéij)
for all i and j. Note that

o () — | Var(&ij)| < | Var(&;j — &ij) < || E€21{|8j| > u)

by the triangle inequality. Thus, with condition that sup;_; _ j<nn=2 E |§“ (n) |4+0 <
00, we see that

(2.33) sup  |oij(u) — 1| — 0 and sup  E(Ej—&)*—0

I<i<j<n,n>2 I<i<j<n,n>2

and

as u — +o00. Take u > 0 large enough such that o;; (u) > 1/2forall 1 <i # j <n
and n > 2. Write

Eij o) —1 - -
= + &+ (& — &)
gl] Uij (M) Uij (u) Slj Sl] Sz]

\—\r—d \—/—4 (n)

i(;l) Yi(;l) “i]

oL O
Yij o Vi Zij >

{ 1] ; 1 <i < j <n} are independent for each n > 2, and

for all 1 <i# j<n,n>2. Obviously, for a( we know

(2.34) Ea,.(j’?):o and sup |(")|4+5 < o00.

I<i<j<n,n>2

Again, for convenience, write x;;, y;; and z;; for x(]), Yij ) and ZE;). Clearly,

{xij; 1 <i < j <n,n > 2} are uniformly bounded. Besides, 1t is easy to see from
(2.33) that

(2.35) sup  (EGE) + E(@@}) — 0

I<i<j<n,n>2
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as u — —+00.

Let X;;, Y, and Z, be the Laplacian matrices generated by {x;;}, {y;;} and {z;;}
as in (1.2), respectively Then A, =X, +Y, + Z,. With (2.32), use the inequality
that tr((M; + M>)? ) < 2tr(M2) + 2tr(M ) for any symmetric matrices M and
M, to obtain that

(22 < L e
53 Z (i))* + (zij)?)

2
n I<i#j<n

r () +(Zw) )

By independence and symmetry,

E(<Z yif)2 " (ZZU)2> =23 {EQGip* + E(2))?).

J#i J#i J#i
Recalling (2.34), by applying Lemma 2.2, we have

hm sup dBL<:A/_ fj_)

<C- sup (E(yizj) + E(zizj)) —0 a.s.

I<i<j<n,n>2

(2.36)

as u — —+oo thanks to (2.35). Noticing Ex;; = 0, Exl-zj =1 for all i, j, and
{xij; 1 <i < j <n,n>2}areuniformly bounded. By assumption, dBL(,&(n_l/2 X
X)), ym) — 0 as n — oo, where yyy is the probability measure mentioned in The-
orem 2. With this, (2.36) and the triangle inequality of metric dpr, we see that
der.((n="2A,), ym) — 0asn — co. [

Givenn >2,letI',, = {(i, j); 1 < j <i <n}beagraph. We say a = (i1, j;) and
b = (iz, j») form an edge and denote it by a ~ b, if one of i| and j; is identical to
one of i> and j». For convenience of notation, from now on, we write a = (a™, a™)

for any a € I';,. Of course, at >a~.Givena, b €T, define an n x n matrix
-1, ifi=a*,j=btori=a,j=b";
Qupli, j1=11, ifi=a*,j=b"ori=a,j=b";
0, otherwise.

With this notation, we rewrite M,, as follows

(2.37) —An=)" &"Qua

ael’y,
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where £ = éin)a_ fora € Ty,. Let t, 5 = tr(Qq. ). We summarize some facts from

[12] in the following lemma.

LEMMA 2.4. Leta,b € 'y. The following assertions hold:

(i) ta,b = tb,a-
-2, ifa="b;
N -1, ifa#banda™ =b~ ora®t =bT;
(i1) la,p = ; - g4 g
1, ifa#banda” =bT ora” =b";
0, otherwise.
(iii) Qa,b X Qc,a’ = tb,cQa,d- Therefore, tr(Qal,al X Qaz,ag X - X Qar,a,-) =
]—[;-:1 laja;y> Whereay, ... ar € Uy, and arq1 = ay.
We call m = (ay, ..., a;) acircuit of length r if a; ~ --- ~ a, ~ a;. For such a
circuit, let
r r
(2.38) 6 = [T tayapr T8
j:l j:]

From (2.37), we know

239  w(A)=(-D"Y " and Ew(A)=(-1)") E&™,
T b/
where the sum is taken over all circuits of length r in I;,.

DEFINITION 2.1. We say that a circuit ¥ = (a; ~ --- ~ a, ~ ay) of length r
in 'y, is vertex-matched if for eachi =1, ..., r there exists some j £ i such that
a; = aj, and that it has a match of order 3 if some value is repeated at least three
times among {a;, j=1,...,r}.

Clearly, by independence, the only possible nonzero terms in the second sum
in (2.39) come from vertex-matched circuits. For x > 0, denote by | x| the integer
part of x. The following two lemmas will be used later.

LEMMA 2.5 (Propositions 4.10 and 4.14 from [12]). Fixr € N.

(i) Let N denote the number of vertex-matched circuits in ', with vertices
having at least one match of order 3. Then N = O (n!U+tD/2}y a5 n — oo.

(i1) Let N denote the number of vertex-matched quadruples of circuits in T'y,
with r vertices each, such that none of them is self-matched. Then N = O (n* *2)
asn — oo.
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Let U, be a symmetric matrix of form

dYorij =Y =Yz - =Yy,
J#l

—Y1 Y. Ya; =Y o =Yy,

72
(2.40) Un=| —Yai —Yn Y Y3 -+ =Y [,
J#3
—Inl Y —In3 Zynj
j#n

where {Y;;;1 <i < j < oo} are i.i.d. standard normal random variables not de-
pending on n.

LEMMA 2.6. Suppose the conditions in Theorem 2 hold with u,, = 0 and o, =

1 for all n > 2. Furthermore, assume {Si(;’);
bounded. Then:

(1) limy— o0 W;I/ZEU‘(A%](_I) =0;
(ii) limy— o0 2 (Etr(AZ) — Etr(U2)) =0

1 <i < j<n,n>2} are uniformly

for any integer k > 1, where Uy, is as in (2.40).

PROOF. (i) As remarked earlier, all nonvanishing terms in the representa-
tion of Etr(A%"_l) in (2.39) are of form ES,(,") with the vertices of the path
ajp~ay~ ---~daxy—1 ~ ay in w repeating at least two times. Since 2k — 1 is
an odd number, there exists a vertex such that it repeats at least three times. Also,
in view of (2.38) and that |#, | <2 for any a, b € I';,, thus all such terms E";'y(,") are
uniformly bounded. Therefore, by (i) of Lemma 2.5,

Etr(A1

C
pran Y =m0

as n — oo, where C is a constant not depending on 7.
(ii) Recall (2.40). Define Y\ similarly to £ in (2.38). We then have that

IEt(A) —Etwr(U)] = > (Ee™ —EY™)

s

< | ¥ @ -Er)|+| T (@ - EXY)
TeA] TeA)

=5+ I,

where A denotes the set of the vertex-matched circuits with match of order 3, and
A, denotes the set of the vertex-matched circuits in [, such that there are exactly
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k distinct matches. Observe that each vertex of any circuit in A, matches exactly
two times. From the independence assumption and that E |Si(j")|2 =1foralll<
i <j<nandn>2, we know Eg,&”) = EY;") =1 for w € A;. This gives I =0.
By Lemma 2.5, the cardinality of A; < n*. Since éi(;’) are uniformly bounded and

Y;; are standard normal random variables, we have I} < Cn* for some constant
C > 0 not depending on n. In summary

! 2k 2k !
e IEtr(A;,") —Etr(U,")| = 0(;)
as n — oo. The proof is complete. [J

LEMMA 2.7.  Suppose (1.5) holds for some p > 4. Assume u, =0, 0,, =1 for
all n > 2. Then, as n — oo, FAn/v/n converges weakly to the free convolution yy
of the semicircular law and standard normal distribution. The measure yy; is a
nonrandom symmetric probability measure with smooth bounded density, does not
depend on the distribution of {51'(]"1) ;1 <i < j<n,n>2}and has an unbounded
SUppOrt.

PROOF. By Lemma 2.3, without loss of generality, we now assume that

{fi(f); 1 <i < j <n,n > 2} are uniformly bounded random variables with mean
zero and variance one, and {fi(;’); 1 <i < j < n} are independent for each n > 2.
Proposition A.3 from [12] says that ;s is a symmetric distribution and uniquely

determined by its moments. Thus, to prove the theorem, it is enough to show that

1 1 _
“tw(n~V2A,) = mtr(AZ):/xrdF” 2An
(2.41)
— /xrdyM asn — 00 a.s.

for any integer » > 1. First, we claim that
(2.42) E[(tr(A7) — Etr(A7))*] = 0¥ )

as n — oo. In fact, by (2.39), we have

4
(243)  E[(t((A7) —Etr(A1))*] = > E[H(SHJ—E(gnj))},

w3, Lj=1

where the sum runs over all circuits 7;, j = 1,2,3,4 in I';;, each having r ver-

tices. From the assumption, we know {él.(;l), 1 <i < j < n} are independent ran-
dom variables of mean zero, and it is enough to consider the terms in (2.43) with
all vertex-matched quadruples of circuits on I, such that none of them is self-

matched. By assumption, {& .

ijolsi<j=ninz= 2} are uniformly bounded, so
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all terms E[]_[‘}:l(é‘nj — E(S,,j))] in the sum are uniformly bounded. By (ii) of
Lemma 2.5, we obtain (2.42).
By the Markov inequality,

P(lnr((n—”zAn)’) —~Etr((n”?A)")| > s)
(2.44) "

n2

- E|tr(A") — Etr(A)|* _ 0( 1 )

(n1+0/2)g)4 n2
as n — o0. It follows from the Borel-Cantelli lemma that
(2.45) %(tr((n_l/zAn)r) —Eu((n"?A)")) =0 as.
as n — 00. Recalling U, in (2.40), Proposition 4.13 in [12] says that
B P00~ [y

as n — oo for any k > 1. This, (ii) of Lemma 2.6 and (2.45) imply (2.41) for any
even number r > 1. For odd number r, (i) of Lemma 2.6 and (2.45) yield (2.41)
since yyy is symmetric, hence its odd moments are equal to zero. [

PROOF OF THEOREM 2. Recalling (1.2), let & = (¢ — ) /0, for all
I<i<j<nandn>2 Then {§:1<i<j<n n=>2} satisfies (1.5) with

un=0,0,=1and p > 4. Let A, | be generated by {?Ei(;l)} as in (1.2). By Lem-
ma 2.7, almost surely,

(2.46) FAn1/Vn converges weakly to yys

as n — oo. Itis easy to verify that

(2.47) Ay =0y An,l + (nu)ly — wndn,
An,Z

where I, is the n x n identity matrix, and J,, is the n x n matrix with all of its entries
equal to 1. Obviously, the eigenvalues of A, > are 6, - A; (A1) +nup, 1 <i <n.
By (2.46),

! Ai(Ay2) —
(2.48) lzl 1 (% < x) converges weakly to yys

almost surely as n — oo. By (2.47) and the rank inequality (see Lemma 2.2 from
(6D,
” F(An _nﬂnln)/\/ﬁo'n _ F(An,Z_nH-nIn)/\/ﬁUn “

(2.49)
! k(A A,ﬂ) 1 k( MnJ><1 0
—-ran =—.rank| —J, )| <——0,
Jno,  J/noy n J/noy, n




SPECTRAL OF LAPLACIAN MATRICES 2109

where || f|| = sup,cg | f(x)| for any bounded, measurable function f(x) defined
on R. Finally, (2.48) and (2.49) lead to the desired conclusion. [J

PROOF OF THEOREM 3. Let V,, = (1) be defined by

‘i:'('n) — MUn
(2.50) v’ =0 and v} =1——
On
forany 1 <i # j <n and n > 2, where A, = (Si(jn))nxn as in (1.1) with Sl-(l.") =0
forall 1 <i <n and n > 2. It is easy to check that A, = u,(J, — I;) + 0, Va,
where all the entries of J,, are equal to one, and I, is the n x n identity matrix.
Thus
Ay + paly, _ & _ Mndn
J/noy Jn o /noy

By the rank inequality (see Lemma 2.2 from [6]),

where all entries of J,, are equal to 1.

HF(AH'HLnI)/\/ﬁO'n _ Fn_l/zvn H S l . rank(w _ Vn ) S l N O’
n J/noy Jn n

where || f|| = sup,cg | f(x)| for any bounded, measurable function f(x) defined
on R as in (2.49). So, to prove the theorem, it is enough to show that F 2V,
converges weakly to the semicircular law with the density given in statement of
the theorem. In view of normalization (2.50), without loss of the generality, we
only need to prove the theorem under the conditions that
(n) ()2

Ea)i;l =0, E(a)lj" ) =1

and
max E{(w (")) (|w(n)|>sf)} as n — 00

I<i<j<n

forall 1 <i, j <nandn > 2. Given § > 0, note that

X Bl 1 =)
<2 max B 5A)

as n — co. By Lemma A2 in the Appendix, F, := F" "*Vo, and hence
F "71/2(A"+“"I), converges weakly to the semicircular law. [
PROOF OF COROLLARY 1.2. To apply Theorem 3, we first need to verify

(2.51) max E{(o (n)) (|w(")|>£f)}—>0

I<i<j<n
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() . .

as n — oo for any ¢ > 0, where w;; (Sl(j") Un)/oy. Note that u,, = p, and

o*n = pn(1—=py,). Now, use the fact that Si(f) take values one and zero only, and then

the condition np, (1 — p,) — o0 to see that |a)g-1)| <1/0o, = 0(y/n) as n — oo.
Then (2.51) follows. By Theorem 3,

1 & Ai(Ay) + pn }
2.52 _—
(252 pa {\/npn(l =

converges weakly to the distribution with den31ty V4 —x 2] (]x| < 2) almost
surely. Notice

{ Ai(Ap) + pn <x} { Ai(Ay) Pn }
npy(I—pp) — vnpn(1 = py) npy (1 — py)

and p,/«/np,(1 — p,) — 0 as n — oo. By using a standard analysis, we obtain
that, with probability one, FA»/®n converges weakly to the semicircular law with
density %«/4 —x2I(]x| < 2), where a,, = /np,, (1 — p,). Further, assume now
1/n < p, = 0asn— o0o. Write

{ Ai(Ap) + pn SX}: )Mi(An)Sx /1_pn_ | Pn .
vnpn (1 — pp) ~/MPn n
Clearly, x+/1 — p, — &/pn/n — x as n — oo. Thus, by (2.52), we have % X

Yl %AT':«) < x} converges weakly to the semicircular law with density % X

Va—x2I(x] <2). O

We need the following lemma to prove Theorem 4.

LEMMA 2.8. Forn>2,let Ay1 > Xy > -+ > kyp be real numbers. Set
Mn = (1/n) 327_; 8y, ;. Suppose w, converges weakly to a probability measure 1.
Then, for any sequence of integers {k,; n > 2} satisfying k, = o(n) as n — 00, we
have liminfy, _, 0o Ay k, > o, where o = inf{x € R: u([x, +00]) = 0} with inf & =
+00.

PROOF. Since u is a probability measure, we know that o > —oo. Without
loss of the generality, assume that o > 0. For brevity of notation, write k, = k. Set
fin=(n—k+1)7'Y"_, 8, forn > k. Observe that

k 1

tin(B) — iy (B) = — ZI(AnleB) Zl(xm €B)

n(n k+1)

for any set B C R, where Zi;l I(Ay,; € B)isunderstood to be zero if k = 1. Thus,
|un(B) — i1, (B)| <2k/n. Therefore,

(2.53) Iy converges weakly to u
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since k = k;, = o(n) as n — oo. Easily,
m 1 . m o m ~
Ml G2 002 5y 3 1 i > 0)= |

for any integer m > 1. Write the last term above as [ g(x)i,(dx), where g(x) :=
x™I(x > 0),x € R, is a continuous and nonnegative function. By (2.53) and the
Fatou lemma,

)

[ee]
(254)  LiminfA2 I Gup g > 0) > liminf /R ¢ (X)jin(dx) > /0 X" u(dx)
for any m > 1. If o < oo, then
o0 o
(2.55) f X" p(dx) = f X" p(dx) = (@ — &) (e — e, ar]) > 0
0 a—e

for any ¢ € (0, «). Take the (1/m)th power for each term in (2.54) and (2.55), and
let m — oo to get

Iiminf{A, 4 I (Ap x> 0)} > —¢
n—oo

for any ¢ € (0, @). By sending ¢ | 0 and using the fact « > 0, the conclusion is
yielded.
If « = +o00, notice

/ X" (dx) = / X" u(dx) = " u(lp, 00)) > 0
0 J2

for any p > 0. Using the same argument as above and then letting p — +00, we
get the desired assertion. [J

PROOF OF LEMMA 2.1. (i) By Theorem 3, Fr0 converges weakly to the
semicircular law with density function #\/4 —x2I(]x| <2). Use Lemma 2.8 to
have that

Amax (U
(2.56) timint 22U o5
n— 00 ﬁ
Now we prove the upper bound, that is,
Amax (U
(2.57) lim sup Amax (Un) <2  as.
n—00 \/ﬁ
Define
1 -
~ (1) (n) (n) ~(n)
Sn = logi+ 1)’ ;g =ug; I(|u’| <8uv/n) and U= (i) i<y
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for 1 <i < j <nandn > 1. By the Markov inequality,
PU, #0U,) < P(}u(n)| > §,+/n for some 1 <i, j <n)

<n? max P(\u )| > 8,4/n)

1<i,j<n
_ Kdog(n + 1))6+¢
n1+@/2) ’
where K = supj_; i<y =1 E |u(")|6+5 < 00. Therefore, by the Borel-Cantelli
lemma,
(2.58) P(U, =U, for sufficiently large n) = 1.
From E u(”) 0, we have that

K
) 7 (1, ) 7 (1,
2.59) B 1(jw)7] < 8uv/n)| = |Ew; 7 I(|u | > 8p/n)| < GoTny

forany 1 <i < j <n,n > 1. Note that Apax(A + B) < Anax(A) + Amax(B), and
Amax(A) < [A]l <n-maxi<; j<n |a;;| for any n x n symmetric matrices A = (a;;)
and B. We have from (2.59) that

Amax(Un) = Amax (Un — E(U,))
< Amax(EU,) <n max |Eu(”)l( l(f)fén\/ﬁﬂ

1<i,j<n
K
< -
BN OM
for any n > 1. This and (2.58) imply that

i Ama W) AU A (O — EU)
imsup ——=— = limsup ———— < limsup

n—00 ﬁ n— 00 \/ﬁ T n—o0 ﬁ

almost surely. Note that |u(")| < |u(”)| and Var(u(")) < E(u("))2 =1, to save nota-
tion, without loss of generahty, we w111 prove (2. 57) by assuming that

() () (n) 2/n
Ewf)=0,  E@P) <t WPl rn
and
6448

max E]u(")| < 00
1<i,j<nn>1

forall1 <i,j <mandn > 1. Now,

maxE|u | < max(E|u(")]6+8)3/(6+3) — K3/(6+0)
LN i,j.n
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by the Holder inequality. Hence,

2 -3
(2.60) max Elul| < K36 ( Jn >
I=i,j=n log(n + 1)

for all » > 1 and / > 3, where K is a constant. The inequality in (2.57) follows
from Lemma A.3 in the Appendix. Thus the first limit in the lemma is proved.
Applying this result to —U,,, we obtain

U ~U,
(2.61) Jim Panin(Un) _ lim M:—z a.s.

—00 ﬁ n— 00 ﬁ
Since ||U,;|| = max{Aimax(U;), —Amin(U,)}, the above and the first limit in the
lemma yield the second limit.
(i1) Let Un =U, — dlag(u )1<,<n It is not difficult to check that both
Amax(Un) = Amax (Un)| and [0, | — U, are bounded by [|diag(u{!”)1<i<nll =
maxj<j<pn |u§?) |. By (i), it is enough to show

(2.62) max [u”|/n'? -0 as.

1<i<n

as n — oo. In fact, by the Markov inequality

(n) 1/3, (n) 1/3

P > P > t
Z (max ] 2 n'121) < Z" max P(ui?’| zn'")

0 t—6—8
< SR

= n1+6/3)

n=

sup | (n) |6+8

1<i,j<n,n>1

for any ¢ > 0. Thus, (2.62) is concluded by the Borel-Cantelli lemma. [J

PROOF OF THEOREM 4. Let J,, be the n x n matrix whose n? entries are all
equal to 1. Let V,, be defined as in (2.50). Then B,, := A, + u, 1, =0, V,, + unJs.
First, by Lemma 2.1,

Amax (V . A\
(2.63) nlim M=2 as. and lim IVall

—00 ﬁ n—00 ﬁ

Since V, is symmetric, ||V, || = supyegn. xj=1IVaX|l = supjy = IxTV,x|. By de-
finition

=2

Amax(Bn) = sup {0, (xTV,x) + p (x 7 Jx)}
x||=1
(2.64) I
= sup {0, (xT V,x) + 11, (1'x)?},
lx[|=1
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because J =1-17, where 1 = (1, ..., 1)T € R*. Second, by Theorem 3, FBu/v/non
converges weakly to the semicircular law %\/4 — x2I(]x| <2). From Lemma 2.8,
we know that

by (By) _

(2.65) liminf

2 a.s.
n— 00 ﬁo‘n

Now we are ready to prove the conclusions.

(i) It is easy to check that sup”xnzl{(l/x)z} =n. By (2.64), Anax(B,) <
onllVall + n|pn|. Thus limsup,_, o Amax(Bn)/+/non <2 a.s. by (2.63) under the
assumption Mn/(n_l/zan) — 0 as n — 00. Since Amax(Bn) = wn + Amax(Ay).
From (2.65) we see that limy,_, oo Ak, (Ay)/+/n0y, =2 a.s. when /Ln/(n_l/zon) —-0
as n — 00. In particular, 1im,— oo Amax(A;)/+/n0, = 2 a.s. Under the same con-
dition, we also have lim,,_, oo Amax(—A,)/+/n0, = 2 a.s. Finally, using ||A,| =
max{Amax (Ay), Amax(—Ay)}, we obtain that lim,_ o || A, || /+/n0, =2 a.s.

(i) Without loss of generality, assume w, > O for all n > 2. From (2.64) we
see that

fn sup {(1'x)%} — o, sup {|xTV, x|}

xl=1 llxl=1

< dmax(B) < sup {(1'x)°} + oy sup {|x” V,x]}.
llxll=1 lxll=1
Hence, nuy, — 0, ||Vill < Amax(By) < npy + 0,||Vall. Consequently, if w, >
n~126,, by (2.63), we have
. )\max(An) . )\max(Bn)
lim ——— = lim —— =
since Amax(B,) = tn + Amax (Ap).
(iii) Since B,, =0, V, + unJd, and ||J,, || = n, by the triangle inequality of || - ||,
nlpnl = onIVall < I1Bull < nlpnl + onllVall.
By (2.63) and the definition that A, = B, — u,I,,, we obtain

1 a.s.

| Axll _ 1By |l 1
n=>00 1|y | n=>00 1|y |
as |un| > n"20,. O
APPENDIX

LEMMA A.1 (Sakhanenko). Let {§;;i =1,2,...} be a sequence of indepen-
dent random variables with mean zero and variance o*iz. If E|&;|P < oo for some
p > 2, then there exists a constant C > 0 and {n;;i = 1,2, ...}, a sequence of
independent normally distributed random variables with n; ~ N (0, criz) such that

n

Y El&I”

i=1

— <
P(jm ISk = Tl = x) < 77
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for any n and x > 0, where Sy, = Zf:] & and Ty, = Zle ;.

LetW, = (w?j)lsi,jsrz be an n X n symmetric matrix, where {a);’j; I<i<j<
n} are random variables defined on the same probability space. We need the fol-
lowing two results from Bai [6].

LEMMA A.2 (Theorem 2.4 in [6]). For eachn > 2, let {w?j; 1<i<j<n}be
independent random variables (not necessarily identically distributed) with o, =
Oforalll <i<n, E(wl’.’j) =0 and E(a)?j)2 =g?> Oforalll1 <i < j<n,and

. n\2 n .
Jim —— Y. E@)’I(|of]| = 8/n)=0
1<i,j<n
forany § > 0. Then F nPW, converges weakly to the semicircular law of scale-
parameter o with density function

402 —x2,  if|x| <20;

1
(A1) Po(X) =1 2702
0, otherwise.

Some recent results in [4, 41] are in the realm of the above lemma.

LEMMA A.3 (Remark 2.7in [6]). ~ Suppose. for eachn > 1, {w{}; 1 <i < j <
n} are independent random variables (not necessarily identically distributed) with
mean p = 0 and variance no larger than o*. Assume there exist constants b > 0
and 8, |, 0 such that sup,; ;, Elo?|' < b(8,/n)'=> for all n > 1 and I > 3.
Then

A \%
lim sup w <20 a.s.
n—o00 n
REFERENCES

[1] ARNOLD, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices.
J. Math. Anal. Appl. 20 262-268. MR0217833

[2] ARNOLD, L. (1971). On Wigner’s semicircle law for the eigenvalues of random matrices.
Z. Wahrsch. Verw. Gebiete 19 191-198. MR0348820

[3] BARABASI, A.-L. and ALBERT, R. (1999). Emergence of scaling in random networks. Science
286 509-512. MR2091634

[4] BAIL, Z. and ZHOU, W. (2008). Large sample covariance matrices without independence struc-
tures in columns. Statist. Sinica 18 425-442. MR2411613

[S] BAIL, Z. D. and SILVERSTEIN, J. (2009). Spectral Analysis of Large Dimensional Random
Matrices, 2nd ed. Springer.

[6] BAIL, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices,
a review. Statist. Sinica 9 611-677. MR1711663

[7]1 BAUER, M. and GOLINELLI, O. (2001). Random incidence matrices: Moments of the spectral
density. J. Stat. Phys. 103 301-337. MR1828732


http://www.ams.org/mathscinet-getitem?mr=0217833
http://www.ams.org/mathscinet-getitem?mr=0348820
http://www.ams.org/mathscinet-getitem?mr=2091634
http://www.ams.org/mathscinet-getitem?mr=2411613
http://www.ams.org/mathscinet-getitem?mr=1711663
http://www.ams.org/mathscinet-getitem?mr=1828732

2116

(8]
(9]

(10]
[11]

[12]
[13]
[14]
[15]
[16]
(17]
(18]
[19]
(20]
[21]
[22]
(23]
[24]
(25]
[26]

[27]

(28]
(29]
(30]

(31]

(32]

X. DING AND T. JIANG

BEN AROUS, G., DEMBO, A. and GUIONNET, A. (2001). Aging of spherical spin glasses.
Probab. Theory Related Fields 120 1-67. MR1856194

BIGGSs, N. L., LLoYD, E. K. and WILSON, R. J. (1976). Graph Theory: 1736—-1936. Claren-
don, Oxford. MR0444418

BOLLOBAS, B. (1985). Random Graphs. Academic Press, London. MR809996

BOLLOBAS, B. (1979). Graph Theory: An Introductory Course. Graduate Texts in Mathemat-
ics 63. Springer, New York. MR536131

Bryc, W., DEMBO, A. and JIANG, T. (2006). Spectral measure of large random Hankel,
Markov and Toeplitz matrices. Ann. Probab. 34 1-38. MR2206341

CHOW, Y. S. and TEICHER, H. (1988). Probability Theory, Independence, Interchangeability,
Martingales, 2nd ed. Springer, New York. MR953964

CHUNG, F. R. K. (1997). Spectral Graph Theory. CBMS Regional Conference Series in Math-
ematics 92. Conf. Board Math. Sci., Washington, DC. MR1421568

CHUNG, F. and LU, L. (2006). Complex Graphs and Networks. CBMS Regional Conference
Series in Mathematics 107. Conf. Board Math. Sci., Washington, DC. MR2248695

COLIN DE VERDIERE, Y. (1998). Spectres de Graphes. Cours Spécialisés [Specialized
Courses] 4. Société Mathématique de France, Paris. MR1652692

DUDLEY, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Math-
ematics 74. Cambridge Univ. Press, Cambridge. MR1932358

DURRETT, R. (2007). Random Graph Dynamics. Cambridge Univ. Press, Cambridge.
MR2271734

ERDOS, P. and RENYI, A. (1959). On random graphs. I. Publ. Math. Debrecen 6 290-297.
MRO0120167

ERDOS, P. and RENYI, A. (1960). On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kutaté Int. Kozl. 5 17-61. MR0125031

ERDOS, P. and RENYI, A. (1961). On the evolution of random graphs. Bull. Inst. Internat.
Statist. 38 343-347. MR0148055

ERDOS, P. and RENYI, A. (1961). On the strength of connectedness of a random graph. Acta
Math. Acad. Sci. Hungar. 12 261-267. MR0130187

ERDOS, P. and SPENCER, J. (1974). Probabilistic Methods in Combinatorics. Academic Press,
New York. MR0382007

EVANGELOU, S. N. (1992). A numerical study of sparse random matrices. J. Stat. Phys. 69
361-383. MR1184780

EVANGELOU, S. N. and ECcoONOMOU, E. N. (1992). Spectral density singularities, level sta-
tistics, and localization in sparse random matrices. Phys. Rev. Lett. 68 361-364.

EVANGELOU, S. N. (1983). Quantum percolation and the Anderson transition in dilute sys-
tems. Phys. Rev. B 27 1397-1400.

FEY, A., HOFSTAD, R. and KLOK, M. (2008). Large deviations for eigenvalues of sample
covariance matrices, with applications to mobile communication systems. Adv. in Appl.
Probab. 40 1048-1071.

FUREDI, Z. and KOMLOS, J. (1981). The eigenvalues of random symmetric matrices. Combi-
natorica 1 233-241. MR637828

HALL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and Its Application. Academic
Press [Harcourt Brace Jovanovich Publishers], New York. MR624435

JANSON, S., LuczAk, T. and RUCINSKI, A. (2000). Random Graphs. Wiley, New York.
MR1782847

JUHASZ, F. (1981). On the spectrum of a random graph. In Algebraic Methods in Graph The-
ory, Vol. I, Il (Szeged, 1978). Colloquia Mathematica Societatis Jdnos Bolyai 25 313-316.
North-Holland, Amsterdam. MR642050

KHORUNZHY, O., SHCHERBINA, M. and VENGEROVSKY, V. (2004). Eigenvalue distribution
of large weighted random graphs. J. Math. Phys. 45 1648—1672. MR2043849


http://www.ams.org/mathscinet-getitem?mr=1856194
http://www.ams.org/mathscinet-getitem?mr=0444418
http://www.ams.org/mathscinet-getitem?mr=809996
http://www.ams.org/mathscinet-getitem?mr=536131
http://www.ams.org/mathscinet-getitem?mr=2206341
http://www.ams.org/mathscinet-getitem?mr=953964
http://www.ams.org/mathscinet-getitem?mr=1421568
http://www.ams.org/mathscinet-getitem?mr=2248695
http://www.ams.org/mathscinet-getitem?mr=1652692
http://www.ams.org/mathscinet-getitem?mr=1932358
http://www.ams.org/mathscinet-getitem?mr=2271734
http://www.ams.org/mathscinet-getitem?mr=0120167
http://www.ams.org/mathscinet-getitem?mr=0125031
http://www.ams.org/mathscinet-getitem?mr=0148055
http://www.ams.org/mathscinet-getitem?mr=0130187
http://www.ams.org/mathscinet-getitem?mr=0382007
http://www.ams.org/mathscinet-getitem?mr=1184780
http://www.ams.org/mathscinet-getitem?mr=637828
http://www.ams.org/mathscinet-getitem?mr=624435
http://www.ams.org/mathscinet-getitem?mr=1782847
http://www.ams.org/mathscinet-getitem?mr=642050
http://www.ams.org/mathscinet-getitem?mr=2043849

(33]

(34]
(35]

(36]

[37]
(38]
(39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]

SPECTRAL OF LAPLACIAN MATRICES 2117

KHORUNZHY, A., KHORUZHENKO, B., PASTUR, L. and SHCHERBINA, M. (1992). The Large
n-Limit in Statistical Mechanics and the Spectral Theory of Disordered Systems. Phase
Transition and Critical Phenomenon 15 73. Academic Press, New York.

KOLCHIN, V. F. (1999). Random Graphs. Encyclopedia of Mathematics and Its Applications
53. Cambridge Univ. Press, Cambridge. MR1728076

KRIVELEVICH, M. and SUDAKOV, B. (2003). The largest eigenvalue of sparse random graphs.
Combin. Probab. Comput. 12 61-72. MR1967486

LEDOUX, M. (2007). Deviation inequalities on largest eigenvalues. In Geometric As-
pects of Functional Analysis. Lecture Notes in Math. 1910 167-219. Springer, Berlin.
MR2349607

McKAY, B. D. (1981). The expected eigenvalue distribution of a large regular graph. Linear
Algebra Appl. 40 203-216. MR629617

MIRLIN, A. D. and FYODOROV, Y. V. (1991). Universality of level correlation function of
sparse random matrices. J. Phys. A 24 2273-2286. MR1118532

Novikov, S. P. (1998). Schrodinger operators on graphs and symplectic geometry. In The
Arnoldfest 2. Field Institute, Toronto. MR1733586

PALMER, E. M. (1985). Graphical Evolution: An Introduction to the Theory of Random
Graphs. Wiley, Chichester. MR795795

PAN, G.-M., GUO, M.-H. and ZHOU, W. (2007). Asymptotic distributions of the signal-to-
interference ratios of LMMSE detection in multiuser communications. Ann. Appl. Probab.
17 181-206. MR2292584

PUPPE, T. (2008). Spectral Graph Drawing: A Survey. VDM, Verlag.

RODGERS, G. J. and BRAY, A. J. (1988). Density of states of a sparse random matrix. Phys.
Rev. B (3) 37 3557-3562. MR932406

RODGERS, G. J. and DE DOMINICIS, C. (1990). Density of states of sparse random matrices.
J. Phys. A 23 1567-1573. MR1048785

Vivo, P., MAJUMDAR, S. N. and BOHIGAS, O. (2007). Large deviations of the maximum
eigenvalue in Wishart random matrices. J. Phys. A 40 4317-4337. MR2316708

WATTS, D. J. and STROGATZ, S. H. (1998). Collective dynamics of “small-world” networks.
Nature 393 440-442.

WIGNER, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of
Math. (2) 67 325-327. MR0095527

SCHOOL OF MATHEMATICS
JILIN UNIVERSITY

2699 QIANJIN STREET
CHANGCHUN

CHINA

AND

SCHOOL OF STATISTICS
UNIVERSITY OF MINNESOTA
224 CHURCH STREET
MINNEAPOLIS, MINNESOTA 55455
USA

E-MAIL: dingxue @stat.umn.edu

SCHOOL OF STATISTICS
UNIVERSITY OF MINNESOTA

224 CHURCH STREET
MINNEAPOLIS, MINNESOTA 55455
USA

E-MAIL: tjiang @stat.umn.edu


http://www.ams.org/mathscinet-getitem?mr=1728076
http://www.ams.org/mathscinet-getitem?mr=1967486
http://www.ams.org/mathscinet-getitem?mr=2349607
http://www.ams.org/mathscinet-getitem?mr=629617
http://www.ams.org/mathscinet-getitem?mr=1118532
http://www.ams.org/mathscinet-getitem?mr=1733586
http://www.ams.org/mathscinet-getitem?mr=795795
http://www.ams.org/mathscinet-getitem?mr=2292584
http://www.ams.org/mathscinet-getitem?mr=932406
http://www.ams.org/mathscinet-getitem?mr=1048785
http://www.ams.org/mathscinet-getitem?mr=2316708
http://www.ams.org/mathscinet-getitem?mr=0095527
mailto:dingxue@stat.umn.edu
mailto:tjiang@stat.umn.edu

	Introduction
	Proofs
	Appendix
	References
	Author's Addresses

