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SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN
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In this paper, we investigate the spectral properties of the adjacency and
the Laplacian matrices of random graphs. We prove that:

(i) the law of large numbers for the spectral norms and the largest eigen-
values of the adjacency and the Laplacian matrices;

(ii) under some further independent conditions, the normalized largest
eigenvalues of the Laplacian matrices are dense in a compact interval almost
surely;

(iii) the empirical distributions of the eigenvalues of the Laplacian matri-
ces converge weakly to the free convolution of the standard Gaussian distrib-
ution and the Wigner’s semi-circular law;

(iv) the empirical distributions of the eigenvalues of the adjacency matri-
ces converge weakly to the Wigner’s semi-circular law.

1. Introduction. The theory of random graphs was founded in the late 1950s
by Erdös and Rényi [19–22]. The work of Watts and Strogatz [46] and Barabási
and Albert [3] at the end of the last century initiated new interest in this field. The
subject is at the intersection between graph theory and probability theory. One can
see, for example, [10, 14–16, 18, 23, 30, 34, 40] for book-length treatments.

The spectral graph theory is the study of the properties of a graph in relation-
ship to the characteristic polynomial, eigenvalues and eigenvectors of its adjacency
matrix or Laplacian matrix. For reference, one can see books [14, 42] for the de-
terministic case and [15] for the random case, and literatures therein. The spectral
graph theory has applications in chemistry [9] where eigenvalues were relevant to
the stability of molecules. Also, graph spectra appear naturally in numerous ques-
tions in theoretical physics and quantum mechanics (see, e.g., [24–26, 38, 39, 43,
44]). For connections between the eigenvalues of the adjacency matrices and the
Laplacian matrices of graphs and Cheeger constants, diameter bounds, paths and
routing in graphs, one can see [15].

Although there are many matrices for a given graph with n vertices, the most
studied are their adjacency matrices and the Laplacian matrices. Typically, ran-
dom graphs are considered with the number of vertices n tending to infinity. Many
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geometrical and topological properties can be deduced for a large class of ran-
dom graph ensembles, but the spectral properties of the random graphs are still
uncovered to a large extent.

In this paper, we will investigate the spectral properties of the adjacency and the
Laplacian matrices of some random graphs. The framework of the two matrices
will be given next.

Let n ≥ 2 and �n = (Vn,En) be a graph, where Vn denotes a set of n vertices
v1, v2, . . . , vn, and En is the set of edges. In this paper, we assume that the edges
in En are always nonoriented. For basic definitions of graphs, one can see, for
example, [11]. The adjacency matrix and the Laplacian matrix of the graph are of
the form

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ξ
(n)
12 ξ

(n)
13 · · · ξ

(n)
1n

ξ
(n)
21 0 ξ

(n)
23 · · · ξ

(n)
2n

ξ
(n)
31 ξ

(n)
32 0 · · · ξ

(n)
3n

...
...

...
...

...

ξ
(n)
n1 ξ

(n)
n2 ξ

(n)
n3 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.1)

and

�n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j �=1

ξ
(n)
1j −ξ

(n)
12 −ξ

(n)
13 · · · −ξ

(n)
1n

−ξ
(n)
21

∑
j �=2

ξ
(n)
2j −ξ

(n)
23 · · · −ξ

(n)
2n

−ξ
(n)
31 −ξ

(n)
32

∑
j �=3

ξ
(n)
3j · · · −ξ

(n)
3n

...
...

...
...

...

−ξ
(n)
n1 −ξ

(n)
n2 −ξ

(n)
n3 · · · ∑

j �=n

ξ
(n)
nj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.2)

with relationship

�n = Dn − An,(1.3)

where Dn = (
∑n

l �=i ξ
(n)
il )1≤i≤n is a diagonal matrix.

As mentioned earlier, we will focus on nonoriented random graphs in this paper.
Thus, the adjacency matrix An is always symmetric. If the graph is also simple, the
entry ξ

(n)
ij for i �= j only takes value 1 or 0 with 1 for an edge between vi and vj ,

and 0 for no edge between them.
The Laplacian matrix �n for graph �n is also called the admittance matrix or

the Kirchhoff matrix in literature. If �n is a simple random graph, the (i, i)-entry
of �n represents the degree of vertex vi , that is, the number of vertices connected
to vi . �n is always nonnegative (this is also true for �n as long as the entries
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{ξ (n)
ij ;1 ≤ i �= j ≤ n} are nonnegative); the smallest eigenvalue of �n is zero; the

second smallest eigenvalue stands for the algebraic connectivity; the Kirchhoff
theorem establishes the relationship between the number of spanning trees of �n

and the eigenvalues of �n.
An Erdös–Rényi random graph G(n,p) has n vertices. For each pair of vertices

vi and vj with i �= j , an edge between them is formed randomly with chance pn

and independently of other edges (see [19–22]). This random graph corresponds
to Bernoulli entries {ξ (n)

ij ;1 ≤ i < j ≤ n}, which are independent random variables

with P(ξ
(n)
ij = 1) = 1 − P(ξ

(n)
ij = 0) = pn for all 1 ≤ i < j ≤ n.

For weighted random graphs, {ξ (n)
ij ;1 ≤ i < j ≤ n} are independent random

variables and ξ
(n)
ij is a product of a Bernoulli random variable Ber(pn) and a nice

random variable, for instance, a Gaussian random variable or a random variable
with all finite moments (see, e.g., [32, 33]). For the sign model studied in [7, 33,
43, 44], ξ

(n)
ij are independent random variables taking three values: 0,1,−1. In

this paper, we will study the spectral properties of An and �n under more general
conditions on {ξ (n)

ij ;1 ≤ i < j ≤ n} [see (1.5)].
Now we need to introduce some notation about the eigenvalues of matrices.

Given an n × n symmetric matrix M. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues
of M, we sometimes also write this as λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) for clarity.
The notation λmax = λmax(M), λmin = λmin(M) and λk(M) stand for the largest
eigenvalue, the smallest eigenvalue and the kth largest eigenvalue of M, respec-
tively. Set

μ̂(M) = 1

n

n∑
i=1

δλi
and

(1.4)

F M(x) = 1

n

n∑
i=1

I (λi ≤ x), x ∈ R.

Then, μ̂(M) and F M(x) are the empirical spectral distribution of M and the em-
pirical spectral cumulative distribution function of M, respectively.

In this paper, we study An and �n not only for random graphs but also study
them in the context of random matrices. Therefore, we allow the entries ξ

(n)
ij ’s to

take real values and possibly with mean zero. It will be clear in our theorems if the
framework is in the context of random graphs or that of of random matrices.

Under general conditions on {ξ (n)
ij }, we prove in this paper that a suitably nor-

malized μ̂(An) converges to the semi-circle law; a suitably normalized μ̂(�n)

converges weakly to the free convolution of the standard normal distribution and
the semi-circle law. Besides, the law of large numbers for largest eigenvalues and
the spectral norms of An and �n are obtained. Before stating these results, we need
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to give the assumptions on the entries of An in (1.1) and �n in (1.2).

Let {ξ (n)
ij ;1 ≤ i < j ≤ n,n ≥ 2} be random variables defined on the

same probability space and {ξ (n)
ij ;1 ≤ i < j ≤ n} be independent for

each n ≥ 2 (not necessarily identically distributed) with ξ
(n)
ij = ξ

(n)
ji ,

E(ξ
(n)
ij ) = μn, Var(ξ (n)

ij ) = σ 2
n > 0 for all 1 ≤ i < j ≤ n and n ≥ 2 and

sup1≤i<j≤n,n≥2 E|(ξ (n)
ij − μn)/σn|p < ∞ for some p > 0.

(1.5)

The values of p above will be specified in each result later. In what follows, for
an n × n matrix M, let ‖M‖ = supx∈Rn : ‖x‖=1 ‖Mx‖ be the spectral norm of M,

where ‖x‖ =
√

x2
1 + · · · + x2

n for x = (x1, . . . , xn)
′ ∈ R

n. Now we state the main
results of this paper.

THEOREM 1. Suppose (1.5) holds for some p > 6. Assume μn = 0 and σn = 1
for all n ≥ 2. Then:

(a) λmax(�n)√
n logn

→ √
2 in probability as n → ∞.

Furthermore, if {�2,�3, . . .} are independent, then:

(b) lim infn→∞ λmax(�n)√
n logn

= √
2 a.s. and lim supn→∞ λmax(�n)√

n logn
= 2 a.s., and the se-

quence {λmax(�n)/
√

n logn;n ≥ 2} is dense in [√2,2] a.s.;
(c) the conclusions in (a) and (b) still hold if λmax(�n) is replaced by ‖�n‖.

For typically-studied random matrices such as the Hermite ensembles and the
Laguerre ensembles, if we assume the sequence of n× n matrices for all n ≥ 1 are
independent as in Theorem 1, the conclusions (b) and (c) in Theorem 1 do not hold.
In fact, for Gaussian Unitary Ensemble (GUE), which is a special case of the Her-
mite ensemble, there is a large deviation inequality P(|n−1/2λmax − √

2| ≥ ε) ≤
e−nCε for any ε > 0 as n is sufficiently large, where Cε > 0 is some constant (see
(1.24) and (1.25) from [36] or [8]). With or without the independence assumption,
this inequality implies from the Borel–Cantelli lemma that n−1/2λmax → √

2 a.s.
as n → ∞. Similar large deviation inequalities also hold for Wishart and sample
covariance matrices (see, e.g., [27, 45]).

For two sequence of real numbers {an;n ≥ 1} and {bn;n ≥ 1}, we write an � bn

if an/bn → 0 as n → ∞, and an � bn if an/bn → +∞ as n → ∞. We use n � 1
to denote that n is sufficiently large.

COROLLARY 1.1. Suppose (1.5) holds for some p > 6. Then, as n → ∞:

(a1) λmax(�n)

σn

√
n logn

→ √
2 in probability if |μn| � σn(

logn
n

)1/2;

(a2) λmax(�n)
nμn

→ 1 in probability if μn > 0 for n � 1 and μn � σn(
logn

n
)1/2;
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(a3) λmax(�n)
nμn

→ 0 in probability if μn < 0 for n � 1 and |μn| � σn(
logn

n
)1/2.

Furthermore, assume {�2,�3, . . .} are independent, then:

(b1) lim infn→∞ λmax(�n)

σn

√
n logn

= √
2 a.s. and lim supn→∞ λmax(�n)

σn

√
n logn

= 2 a.s., and the

sequence { λmax(�n)

σn

√
n logn

;n ≥ 2} is dense in [√2,2] a.s. if |μn| � σn(
logn

n
)1/2;

(b2) limn→∞ λmax(�n)
nμn

= 1 a.s. if μn > 0 for n � 1 and μn � σn(
logn

n
)1/2;

(b3) limn→∞ λmax(�n)
nμn

= 0 a.s. if μn < 0 for n � 1 and |μn| � σn(
logn

n
)1/2.

Finally, (a1) and (b1) still hold if λmax(�n) is replaced by ‖�n‖; if ξ
(n)
ij ≥ 0 for all

i, j, n, then (a2) and (b2) still hold if λmax(�n) is replaced by ‖�n‖.

REMARK 1. For the Erdös–Rényi random graph, the condition “(1.5) holds
for some p > p0” with p0 > 2 is true only when pn is bounded away from zero
and one. So, under this condition of pn, Corollary 1.1 holds. Moreover, under the
same restriction of pn, Theorems 2 and 4, that will be given next, also hold.

Let {ν, ν1, ν2, . . .} be a sequence of probability measures on R. We say that νn

converges weakly to ν if
∫
R

f (x)νn(dx) → ∫
R

f (x)ν(dx) for any bounded and
continuous function f (x) defined on R. The Portmanteau lemma says that the
weak convergence can also be characterized in terms of open sets or closed sets
(see, e.g., [17]).

Now we consider the empirical distribution of the eigenvalues of the Laplacian
matrix �n. Bauer and Golinelli [7] simulate the eigenvalues for the Erdös–Rényi
random graph with p fixed. They observe that the limit ν of the empirical distrib-
ution of λi(�n),1 ≤ i ≤ n, has a shape between the Gaussian and the semicircular
curves. Further, they conclude from their simulations that m4/m2

2 is between 2
and 3, where mi is the ith moment of probability measure ν. In fact, we have the
following result.

THEOREM 2. Suppose (1.5) holds for some p > 4. Set F̃n(x) = 1
n

×∑n
i=1 I {λi(�n)−nμn√

nσn
≤ x} for x ∈ R. Then, as n → ∞, with probability one, F̃n

converges weakly to the free convolution γM of the semicircular law and the stan-
dard normal distribution. The measure γM is a nonrandom symmetric probability
measure with smooth bounded density, does not depend on the distribution of
{ξ (n)

ij ;1 ≤ i < j ≤ n,n ≥ 2} and has an unbounded support.

More information on γM can be found in [12]. For the Erdös–Rényi random
graphs, the weighted random graphs in [32, 33] and the sign models in [7, 33, 43,
44], if pn is bounded away from 0 and 1 as n is large, then (1.5) holds for all
p > 4; thus Theorem 2 holds for all of these graphs.

It is interesting to notice that the limiting curve appeared in Theorem 2 is indeed
a hybrid between the standard Gaussian distribution and the semi-circular law, as
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observed in [7]. Moreover, for the limiting distribution, it is shown in [12] that
m4/m2

2 = 8/3 ∈ (2,3), which is also consistent with the numerical result in [7].
Before introducing the next theorem, we now make a remark. It is proved in

[12] that the conclusion in the above theorem holds when ξ
(n)
ij = ξij for all 1 ≤

i < j ≤ n and n ≥ 2, where {ξij ;1 ≤ i < j < ∞} are independent and identically
distributed random variables with Eξ12 = 0 and E(ξ12)

2 = 1. The difference is
that the current theorem holds for any independent, but not necessarily identically
distributed, random variables with arbitrary mean μn and variance σ 2

n .
Now we consider the adjacency matrices. Recall An in (1.1). Wigner [47] es-

tablishes the celebrated semi-circle law for matrix An with entries {ξ (n)
ij = ξij : 1 ≤

i < j < ∞} being i.i.d. N(0,1)-distributed random variables (for its extensions,
one can see, e.g., [5] and literatures therein). Arnold [1, 2] proves that Wigner’s
result holds also for the entries being i.i.d. random variables with a finite sixth
moment. In particular, this implies that, for the adjacency matrix An of the Erdös–
Rényi random graph with p fixed, the empirical distribution of the eigenvalues of
An converges to the semi-circle law (see also Bollobas [10]). In the next result
we show that, under a condition slightly stronger than a finite second moment, the
semicircular law still holds for An.

THEOREM 3. Let ω
(n)
ij := (ξ

(n)
ij − μn)/σn for all i, j, n. Assume (1.5) with

p = 2 and

max
1≤i<j≤n

E
{(

ω
(n)
ij

)2
I
(∣∣ω(n)

ij

∣∣ ≥ ε
√

n
)} → 0

as n → ∞ for any ε > 0, which is particularly true when (1.5) holds for some
p > 2. Set

F̃n(x) = 1

n

n∑
i=1

I

{
λi(An) + μn√

nσn

≤ x

}
, x ∈ R.

Then, almost surely, F̃n converges weakly to the semicircular law with density
1

2π

√
4 − x2I (|x| ≤ 2).

Applying Theorem 3 to the Erdös–Rényi random graph, we have the following
result.

COROLLARY 1.2. Assume (1.5) with P(ξ
(n)
ij = 1) = pn = 1 − P(ξ

(n)
ij = 0)

for all 1 ≤ i < j ≤ n and n ≥ 2. If αn := (npn(1 − pn))
1/2 → ∞ as n → ∞,

then, almost surely, F An/αn converges weakly to the semicircular law with density
1

2π

√
4 − x2I (|x| ≤ 2). In particular, if 1/n � pn → 0 as n → ∞, then, almost

surely, F An/
√

npn converges weakly to the same semicircular law.
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The condition “αn := (npn(1 − pn))
1/2 → ∞ as n → ∞” cannot be relaxed

to that “npn → ∞.” This is because, as pn is very close to 1, say, pn = 1, then
ξ

(n)
ij = 1 for all i �= j . Thus An has eigenvalue n − 1 with one fold and −1 with

n − 1 fold. This implies that F An → δ−1 weakly as n → ∞.
Corollary 1.2 shows that the semicircular law holds not only for p being a con-

stant as in Arnold [1, 2], it also holds for the dilute Erdös–Rényi graph, that is,
1/n � pn → 0 as n → ∞. A result in Rogers and Bray [43] (see also a dis-
cussion for it in Khorunzhy et al. [33]) says that, if P(ξ

(n)
ij = ±1) = pn/2 and

P(ξ
(n)
ij = 0) = 1 − pn, the semicircular law holds for the corresponding An with

1/n � pn → 0. It is easy to check that their result is a corollary of Theorem 3.
Now we study the spectral norms and the largest eigenvalues of An. For the

Erdös–Rényi random graph, the largest eigenvalue of An is studied in [28, 35]. In
particular, following Juház [31], Füredi and Komló [28] showed that the largest
eigenvalue has asymptotically a normal distribution when pn = p is a constant;
Krivelevich and Sudakov [35] proved a weak law of large numbers for the largest
eigenvalue for the full range of pn ∈ (0,1). In the following, we give a result for
An whose entries do not necessarily take values of 0 or 1 only. Recall λk(An) and
‖An‖ are the kth largest eigenvalue and the spectral norm of An, respectively.

THEOREM 4. Assume (1.5) holds for some p > 6. Let {kn;n ≥ 1} be a se-
quence of positive integers such that kn = o(n) as n → ∞. The following hold:

(i) If limn→∞ μn/(n
−1/2σn) = 0, then ‖An‖/√nσn → 2 a.s. and λkn(An)/

(
√

nσn) → 2 a.s. as n → ∞.
(ii) If limn→∞ μn/(n

−1/2σn) = +∞, then λmax(An)/(nμn) → 1 a.s. as n →
∞.

(iii) If limn→∞ |μn|/(n−1/2σn) = +∞, then ‖An‖/(n|μn|) → 1 a.s. as n →
∞.

REMARK 2. The conclusion in (ii) cannot be improved in general to that
λkn(An)/(nμn) → 1 a.s. as n → ∞. This is because when σn is extremely small,
An roughly looks like μn(Jn − In), where all the entries of Jn are equal to one,
and In is the n × n identity matrix. It is easy to see that the largest eigenvalue
of μn(Jn − In) is (n − 1)μn > 0, and all of the remaining n − 1 eigenvalues are
identical to −1.

From the above results, we see two probability distributions related to the spec-
tral properties of the random graphs: the Wigner’s semi-circle law and the free con-
volution of the standard normal distribution and the semi-circle law. The Kesten–
McKay law is another one. It is the limit of the empirical distributions of the
eigenvalues of the random d-regular graphs (see [37]).

The proofs of Theorems 1 and 2 rely on the moment method and some tricks
developed in [12]. Theorems 3 and 4 are derived through a general result from [6]
and certain truncation techniques in probability theory.
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The rest of the paper is organized as follows: we will prove the theorems stated
above in the next section; several auxiliary results for the proofs are collected in
the Appendix.

2. Proofs.

LEMMA 2.1. Let Un = (u
(n)
ij ) be an n × n symmetric random matrix, and

{u(n)
ij ;1 ≤ i ≤ j ≤ n,n ≥ 1} are defined on the same probability space. Suppose,

for each n ≥ 1, {u(n)
ij ;1 ≤ i ≤ j ≤ n} are independent random variables with

Eu
(n)
ij = 0,Var(u(n)

ij ) = 1 for all 1 ≤ i, j ≤ n, and sup1≤i,j≤n,n≥1 E|u(n)
ij |6+δ < ∞

for some δ > 0. Then:

(i) limn→∞ λmax(Un)√
n

= 2 a.s. and limn→∞ ‖Un‖√
n

= 2 a.s.;

(ii) the statements in (i) still hold if Un is replaced by Un − diag(u
(n)
ii )1≤i≤n.

The proof of this lemma is a combination of Lemmas A.2 and A.3 in the Ap-
pendix and some truncation techniques. It is postponed and will be given later in
this section.

PROOF OF THEOREM 1. First, assume (a) and (b) hold. Since μn = 0 for all
n ≥ 2, (a) and (b) also hold if λmax(�n) is replaced by λmax(−�n). From the
symmetry of �n, we know that

‖�n‖ = max{−λmin(�n), λmax(�n)} = max{λmax(−�n), λmax(�n)}.
Now the function h(x, y) := max{x, y} is continuous in (x, y) ∈ R

2, applying the
two assertions

lim sup
n→∞

max{an, bn} = max
{
lim sup
n→∞

an, lim sup
n→∞

bn

}
and

lim inf
n→∞ max{an, bn} ≥ max

{
lim inf
n→∞ an, lim inf

n→∞ bn

}
for any {an ∈ R;n ≥ 1} and {bn ∈ R;n ≥ 1}, we obtain ‖�n‖/√n logn converges
to

√
2 in probability, and

lim inf
n→∞

‖�n‖√
n logn

≥ √
2 a.s. and lim sup

n→∞
‖�n‖√
n logn

= 2 a.s.

and

the sequence
{ ‖�n‖√

n logn
;n ≥ 2

}
is dense in

[√
2,2

]
a.s.

Thus (c) is proved. Now we turn to prove (a) and (b).



2094 X. DING AND T. JIANG

Recall (1.3), �n = Dn−An. First, λmax(Dn)−‖An‖ ≤ λmax(�n) ≤ λmax(Dn)+
‖An‖ for all n ≥ 2. Second, by (ii) of Lemma 2.1, ‖An‖/√n → 2 a.s. as n → ∞.
Thus, to prove (a) and (b) in the theorem, it is enough to show that

Tn√
n logn

→ √
2 in probability;(2.1)

lim inf
n→∞

Tn√
n logn

= √
2 a.s. and lim sup

n→∞
Tn√

n logn
= 2 a.s.;(2.2)

the sequence
{

Tn√
n logn

;n ≥ 2
}

is dense in
[√

2,2
]

a.s.,(2.3)

where Tn = λmax(Dn) = max1≤i≤n

∑
j �=i ξ

(n)
ij for n ≥ 2.

PROOF OF (2.1). By Lemma A.1, for each 1 ≤ i ≤ n and n ≥ 2, there exist
i.i.d. N(0,1)-distributed random variables {η(n)

ij ;1 ≤ j ≤ n, j �= i} for each n ≥ 2
such that

max
1≤i≤n

P

(∣∣∣∣∑
j �=i

ξ
(n)
ij − ∑

j �=i

η
(n)
ij

∣∣∣∣ ≥ ε
√

n logn

)

≤ C

1 + (ε
√

n logn)6

∑
j �=i

E
∣∣ξ (n)

ij

∣∣6(2.4)

≤ C

n2(logn)3 ,

where here and later in all proofs, C stands for a constant not depending on i, j

or n, and may be different from line to line. It is well known that

x√
2π(1 + x2)

e−x2/2 ≤ P
(
N(0,1) ≥ x

) ≤ 1√
2πx

e−x2/2(2.5)

for any x > 0. Since
∑

j �=i ξ
(n)
ij ≤ ∑

j �=i η
(n)
ij + |∑j �=i ξ

(n)
ij − ∑

j �=i η
(n)
ij |, then

P
(
Tn ≥ (α + 2ε)

√
n logn

)
≤ n · max

1≤i≤n
P

(∑
j �=i

ξ
(n)
ij ≥ (α + 2ε)

√
n logn

)
(2.6)

≤ n · max
1≤i≤n

P

(∑
j �=i

η
(n)
ij ≥ (α + ε)

√
n logn

)

+ n · max
1≤i≤n

P

(∣∣∣∣∑
j �=i

ξ
(n)
ij − ∑

j �=i

η
(n)
ij

∣∣∣∣ ≥ ε
√

n logn

)
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for any α > 0 and ε > 0. Noticing
∑

j �=i η
(n)
ij ∼ √

n − 1 ·N(0,1) for any 1 ≤ i ≤ n,
by (2.5) and then (2.4),

P
(
Tn ≥ (α + 2ε)

√
n logn

) ≤ nP
(
N(0,1) ≥ (α + ε)

√
logn

) + C

n(logn)3

(2.7)

≤ Cn1−(α+ε)2/2 + C

n(logn)3

for n sufficiently large. In particular, taking α = √
2, we obtain that

P

(
Tn√

n logn
≥ √

2 + 2ε

)
= O

(
1

nε

)
(2.8)

as n → ∞ for any ε ∈ (0,1], since the last term in (2.7) is of order n−1(logn)−3

as n → ∞.
Define kn = [n/ logn] and Vn = max1≤i≤kn |

∑
1≤j≤kn

ξ
(n)
ij | with ξ

(n)
ii = 0 for all

1 ≤ i ≤ n. By the same argument as in obtaining (2.7), we have that, for any fixed
α > 0,

P

(
Vn√

kn log kn

≥ α + 2ε

)
≤ C(kn)

1−(α+ε)2/2 + C

kn(logkn)3(2.9)

as n is sufficiently large. Noticing n/kn → ∞, and taking α + ε = 10 above, we
have

P
(
Vn ≥ ε

√
n logn

) ≤ 1

n(logn)3/2(2.10)

as n is sufficiently large. Observe that

Tn ≥ max
1≤i≤kn

n∑
j=kn+1

ξ
(n)
ij − Vn.(2.11)

Similarly to (2.4), by Lemma A.1, for each 1 ≤ i ≤ n and n ≥ 2, there exist i.i.d.
N(0,1)-distributed random variables {ζ (n)

ij ;1 ≤ i ≤ n, j �= i} such that

max
1≤i≤kn

P

(∣∣∣∣∣
n∑

j=kn+1

ξ
(n)
ij −

n∑
j=kn+1

ζ
(n)
ij

∣∣∣∣∣ ≥ ε
√

n logn

)

≤ C

1 + (ε
√

n logn)6

n∑
j=kn+1

E
∣∣ξ (n)

ij

∣∣6(2.12)

≤ C

n2(logn)3
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as n is sufficiently large for any ε > 0. Fix β > 0. By (2.11), (2.10) and then
independence

P
(
Tn ≤ (β − 2ε)

√
n logn

)
≤ P

(
max

1≤i≤kn

n∑
j=kn+1

ξ
(n)
ij ≤ (β − ε)

√
n logn

)
+ P

(
Vn ≥ ε

√
n logn

)
(2.13)

≤ max
1≤i≤kn

P

(
n∑

j=kn+1

ξ
(n)
ij ≤ (β − ε)

√
n logn

)kn

+ 1

n(logn)3/2

as n is sufficiently large. Observe that

P

(
n∑

j=kn+1

ξ
(n)
ij ≤ (β − ε)

√
n logn

)

≤ P

(
n∑

j=kn+1

ζ
(n)
ij ≤

(
β − ε

2

)√
n logn

)
(2.14)

+ P

(∣∣∣∣∣
n∑

j=kn+1

ξ
(n)
ij −

n∑
j=kn+1

ζ
(n)
ij

∣∣∣∣∣ ≥ ε

2

√
n logn

)
.

Use the fact that
∑n

j=kn+1 ζ
(n)
ij ∼ √

n − kn · N(0,1) and (2.5) to have

P

(
n∑

j=kn+1

ζ
(n)
ij >

(
β − ε

2

)√
n logn

)

= P

(
N(0,1) >

(
β − ε

2

)√
n

n − kn

·
√

logn

)

≥ C

n(β−ε/3)2/2 logn

uniformly for all 1 ≤ i ≤ kn as n is sufficiently large and as 0 < ε/3 < β , where in
the last inequality we use the fact that (β − (ε/2))

√
n/(n − kn) ≤ (β − (ε/3)) as

n is sufficiently large. This, (2.12) and (2.14) imply

max
1≤i≤kn

P

(
n∑

j=kn+1

ξ
(n)
ij ≤ (β − ε)

√
n logn

)
≤ 1 − C1

n(β−ε/3)2/2 logn
+ C2

n2(logn)3

≤ 1 − C3

n(β−ε/3)2/2 logn
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as n is sufficiently large for any 0 < ε/3 < β ≤ 2. Use inequality 1 − x ≤ e−x for
any x > 0 to obtain

max
1≤i≤kn

P

(
n∑

j=kn+1

ξ
(n)
ij ≤ (β − ε)

√
n logn

)kn

≤ exp
{−Cn1−(β−ε/4)2/2}(2.15)

as n is sufficiently large for any 0 < ε/4 < β ≤ 2. From (2.13), we conclude that

P
(
Tn ≤ (β − 2ε)

√
n logn

) ≤ exp
{−Cn1−(β−ε/4)2/2} + 1

n(logn)3/2(2.16)

as n is sufficiently large for any 0 < ε/4 < β ≤ 2. Now, take β = √
2, and we get

P

(
Tn√

n logn
≤ √

2 − 2ε

)
= O

(
1

n(logn)3/2

)
(2.17)

as n → ∞ for sufficiently small ε > 0. This and (2.8) imply (2.1).

PROOF OF (2.2) AND (2.3). To prove these, it suffices to show

lim sup
n→∞

Tn√
n logn

≤ 2 a.s. and lim inf
n→∞

Tn√
n logn

≥ √
2 a.s.(2.18)

and

P

(
Tn√

n logn
∈ [a, b) for infinitely many n ≥ 2

)
= 1(2.19)

for any (a, b) ⊂ (
√

2,2).
First, choosing α = 2 in (2.7), we have that P(Tn ≥ (2 + 2ε)

√
n logn) =

O(n−1(logn)−3) as n → ∞ for any ε ∈ (0,1). Thus,
∑

n≥2 P(Tn ≥ (2 + 2ε) ×√
n logn) < ∞. By the Borel–Cantelli lemma,

lim sup
n→∞

Tn√
n logn

≤ 2 + 2ε a.s.

for any ε ∈ (0,1). This gives the first inequality in (2.18). By the same reasoning,
the second inequality follows from (2.17). To prove (2.19), since {Tn,n ≥ 2} are
independent from assumption, by the second Borel–Cantelli lemma, it is enough
to show ∑

n≥2

P

(
Tn√

n logn
∈ [a, b)

)
= ∞(2.20)

for any (a, b) ⊂ (
√

2,2). By (2.7), we have that

P

(
Tn√

n logn
≥ b

)
≤ C

n(b−ε)2/2−1
(2.21)
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as n is sufficiently large and ε > 0 is sufficiently small. By (2.11),

max
1≤i≤kn

n∑
j=kn+1

ξ
(n)
ij ≤ Tn + Vn

for n ≥ 2. Thus, by independence and (2.10),

P
(
Tn ≥ a

√
n logn

)
≥ P

(
max

1≤i≤kn

n∑
j=kn+1

ξ
(n)
ij ≥ (a + ε)

√
n logn

)

− P
(
Vn ≥ ε

√
n logn

)
(2.22)

≥ 1 −
(

1 − min
1≤i≤kn

P

(
n∑

j=kn+1

ξ
(n)
ij ≥ (a + ε)

√
n logn

))kn

− 1

n(logn)3/2

as n is sufficiently large. By (2.12)

P

(
n∑

j=kn+1

ξ
(n)
ij ≥ (a + ε)

√
n logn

)

≥ P

(
n∑

j=kn+1

ζ
(n)
ij ≥ (a + 2ε)

√
n logn

)

− P

(∣∣∣∣∣
n∑

j=kn+1

ξ
(n)
ij −

n∑
j=kn+1

ζ
(n)
ij

∣∣∣∣∣ ≥ ε
√

n logn

)

≥ P
(
N(0,1) ≥ (a + 3ε)

√
logn

) − 1

n2

uniformly for all 1 ≤ i ≤ kn as n is sufficiently large. From (2.5), for any ε > 0,

P
(
N(0,1) ≥ (a + 3ε)

√
logn

) ∼ C

n(a+3ε)2/2
√

logn

as n is sufficiently large. Noting that a ∈ (
√

2,2), we have

P

(
n∑

j=kn+1

ξ
(n)
ij ≥ (a + ε)

√
n logn

)
≥ C

n(a+3ε)2/2
√

logn
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uniformly for all 1 ≤ i ≤ kn as n is sufficiently large and ε is sufficiently small.
Thus, since kn = [n/ logn], relate the above to (2.22) to give us that

P
(
Tn ≥ a

√
n logn

) ≥ 1 −
(

1 − C

n(a+3ε)2/2
√

logn

)kn

− 1

n(logn)3/2

∼ Ckn

n(a+3ε)2/2
√

logn

(
1 + o(1)

) − 1

n(logn)3/2

≥ C

n(a+3ε)2/2−1(logn)2

as n is sufficiently large and ε > 0 is small enough, where in the “∼” step above
we use the fact that 1 − (1 − xn)

kn ∼ knxn if xn → 0, kn → +∞ and knxn → 0 as
n → ∞. Combining this and (2.21), we eventually arrive at

P

(
Tn√

n logn
∈ [a, b)

)
= P

(
Tn√

n logn
≥ a

)
− P

(
Tn√

n logn
≥ b

)

≥ C3

n(a+3ε)2/2−1(logn)2
− C4

n(b−ε)2/2−1

∼ C3

n(a+3ε)2/2−1(logn)2

as n is sufficiently large and ε > 0 is sufficiently small, where [a, b) ⊂ (
√

2,2).
Finally, choosing ε > 0 so small that (a + 3ε)2/2 − 1 ∈ (0,1), we get (2.20). �

PROOF OF COROLLARY 1.1. Recalling (1.2), let ξ̃
(n)
ij = (ξ

(n)
ij − μn)/σn for

all 1 ≤ i < j ≤ n and n ≥ 2. Then {ξ̃ (n)
ij ;1 ≤ i < j ≤ n,n ≥ 2} satisfies (1.5) with

μn = 0, σn = 1 and p > 6. Let �̃n be generated by {ξ̃ (n)
ij } as in (1.2). By Theo-

rem 1, the conclusions there hold if λmax(�n) is replaced by λmax(�̃n). Notice

�n = σn�̃n + μn · (nIn − Jn),(2.23)

where In is the n × n identity matrix, and Jn is the n × n matrix with all of its
entries equal to 1. It is easy to check that the eigenvalues of nIn − Jn are 0 with
one fold and n with n − 1 folds, respectively. First, apply the triangle inequality
to (2.23) to have that |λmax(�n) − σnλmax(�̃n)| ≤ ‖μn · (nIn − Jn)‖ ≤ n|μn|. It
follows that ∣∣∣∣ λmax(�n)√

n lognσn

− λmax(�̃n)√
n logn

∣∣∣∣ ≤ |μn|
(logn)1/2n−1/2σn

→ 0

provided |μn| � σn

√
logn/n. Then (a1) and (b1) follow from Theorem 1. By the

same argument∣∣λmax(�n) − λmax
(
μn · (nIn − Jn)

)∣∣ ≤ σn‖�̃n‖ = O
(
σn

√
n logn

)
a.s.
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as n → ∞. Note that λmax(μn · (nIn − Jn)) = 0 if μn < 0, and is equal to nμn if
μn > 0 for any n ≥ 2. Thus, if μn � σn

√
logn/n, we have λmax(�n)/(nμn) →

1 a.s. as n → ∞. If μn < 0 for all n ≥ 2, and |μn| � σn

√
logn/n, we obtain

λmax(�n)/(nμn) → 0 a.s. as n → ∞. Then (a2), (a3), (b2) and (b3) are yielded.
Finally, since E(−ξ

(n)
ij ) = −μn and Var(−ξ

(n)
ij ) = Var(ξ (n)

ij ) = σ 2
n for all i, j, n,

by using the proved (a1) and (b1), we know that (a1) and (b1) are also true if
λmax(�n) is replaced by λmax(−�n). Now, use the same arguments as in the proof
of part (c) in Theorem 1 to get (a1) and (b1) when λmax(�n) is replaced with ‖�n‖.
On the other hand, it is well known that �n is nonnegative definite if ξ

(n)
ij ≥ 0 for

all i, j, n (see, e.g., page 5 in [14]). Thus ‖�n‖ = λmax(�n). Consequently (a2)
and (b2) follow when λmax(�n) is replaced with ‖�n‖. �

To prove Theorem 2, we need some preliminary results.

LEMMA 2.2. Let {ξ (n)
ij ;1 ≤ i < j ≤ n,n ≥ 2} be defined on the same proba-

bility space. For each n ≥ 2, let {ξ (n)
ij ;1 ≤ i < j ≤ n} be independent r.v.s with

Eξ
(n)
ij = 0. Define ξ

(n)
ji = ξ

(n)
ij for all i, j, n and Sn,1 = ∑

1≤i �=j≤n(ξ
(n)
ij )2 and

Sn,2 = ∑n
i=1(

∑
j �=i ξ

(n)
ij )2. If sup1≤i<j≤n,n≥2 E|ξ (n)

ij |4+δ < ∞ for some δ > 0, then

lim
n→∞

Sn,k − ESn,k

n2 = 0 a.s. for k = 1,2.(2.24)

PROOF. To make notation simple, we write ξij = ξ
(n)
ij for all 1 ≤ i ≤ j ≤ n

when there is no confusion.
Case 1: k = 1. Recall the Marcinkiewicz–Zygmund inequality (see, e.g., Corol-

lary 2 and its proof on page 368 in [13]), for any p ≥ 2, there exists a constant Cp

depending on p only such that

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ Cpnp/2−1
n∑

i=1

E|Xi |p(2.25)

for any sequence of independent random variables {Xi;1 ≤ i ≤ n} with EXi = 0
and E(|Xi |p) < ∞ for all 1 ≤ i ≤ n. Taking p = 2+ (δ/2) in (2.25), we have from
the Hölder inequality that

E(|ξ2
ij − Eξ2

ij |p) ≤ 2p−1E|ξij |2p + 2p−1(E|ξij |2)p

≤ 2p · sup
1≤i,j≤n,n≥1

E
∣∣ξ (n)

ij

∣∣4+δ(2.26)

< ∞
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uniformly for all 1 ≤ i < j ≤ n,n ≥ 2. Write Sn,1 − ESn,1 = 2
∑

1≤i<j≤n(ξ
2
ij −

Eξ2
ij ). By (2.25),

E|Sn,1 − ESn,1|p ≤ C ·
(

n(n − 1)

2

)δ/4

· ∑
1≤i<j≤n

E(|ξ2
ij − Eξ2

ij |p)

(2.27)
≤ C · n2+(δ/2),

where C here and later, as earlier, is a constant not depending on n, and may
be different from line to line. Then P(|Sn,1 − ESn,1| ≥ n2ε) ≤ (n2ε)−pE|Sn,1 −
ESn,1|p = O(n−2−(δ/2)) for any ε > 0 by the Markov inequality. Then (2.24) holds
for k = 1 by the Borel–Cantelli lemma.

Case 2: k = 2. For n ≥ 2, set u1 = vn = 0 and

ui =
i−1∑
j=1

ξij for 2 ≤ i ≤ n + 1 and vi =
n∑

j=i+1

ξij for 0 ≤ i ≤ n − 1.

Then,
∑

j �=i ξij = ui + vi for all 1 ≤ i ≤ n. Clearly, Sn,2 = ∑n
i=1 u2

i + ∑n
i=1 v2

i +
2
∑n

i=1 uivi for all n ≥ 1. Since E(uivi) = (Eui)Evi = 0 by independence, to
prove the lemma for k = 2, it suffices to show

1

n2

n∑
i=1

(u2
i − Eu2

i ) → 0 a.s.,
1

n2

n∑
i=1

(v2
i − Ev2

i ) → 0 a.s.

and

1

n2

n∑
i=1

uivi → 0 a.s.(2.28)

as n → ∞. We will only prove the first and the last assertions in two steps. The
proof of the middle one is almost the same as that of the first and, therefore, is
omitted.

Step 1. Similarly to the discussion in (2.26) and (2.27), we have E|ui |4+δ ≤
Ci2+(δ/2) for all 1 ≤ i ≤ n and n ≥ 2. Now set Yn,i = (u2

i − Eu2
i )/i for i =

1,2, . . . , n. Then, {Yn,i;1 ≤ i ≤ n} are independent random variables with

EYn,i = 0, sup
1≤i,j≤n,n≥1

E|Yn,i |2+δ′
< ∞(2.29)

and

1

n2

n∑
i=1

(u2
i − Eu2

i ) = 1

n2

n∑
i=1

iYn,i(2.30)

for all 1 ≤ i ≤ n and n ≥ 2, where δ′ = δ/2. By (2.25) and (2.29),

E

∣∣∣∣∣
n∑

i=1

iYn,i

∣∣∣∣∣
2+δ′

≤ C · n(2+δ′)/2−1
n∑

i=1

i2+δ′ = O
(
n3+(3δ′/2))
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as n → ∞, where the inequality
∑n

i=1 i2+δ′ ≤ ∑n
i=1 n2+δ′ ≤ n3+δ′

is used in the
above inequality. For any t > 0,

P

(
1

n2

∣∣∣∣∣
n∑

i=1

iYn,i

∣∣∣∣∣ ≥ t

)
≤ E|∑n

i=1 iYn,i |2+δ′

(n2t)2+δ′ = O

(
1

n1+(δ′/2)

)

as n → ∞. This together with (2.30) concludes the first limit in (2.28) by the
Borel–Cantelli lemma.

Step 2. We will prove the last assertion in (2.28) in this step. Define σ -algebra

Fn,0 = {∅,�} and Fn,k = σ
(
ξ

(n)
ij ;1 ≤ i ≤ k, i + 1 ≤ j ≤ n

)
for 1 ≤ k ≤ n − 1. Obviously, Fn,0 ⊂ Fn,1 ⊂ · · · ⊂ Fn,n−1. It is easy to verify that

E

(
k+1∑
i=1

uivi |Fn,k

)
=

k∑
i=1

uivi

for k = 1,2, . . . , n−1. Therefore, {∑k
i=1 uivi, Fn,k,1 ≤ k ≤ n−1} is a martingale.

By the given moment condition, τ := sup1≤i,j≤n,n≥1 E|ξ (n)
ij |4 < ∞. From (2.25),

E(u4
i ) ≤ Ci2 ≤ Cn2 and E(v4

i ) ≤ C(n − i)2 ≤ Cn2 for 1 ≤ i ≤ n and n ≥ 2. By
applying the Burkholder inequality (see, e.g., Theorem 2.10 from [29] or Theo-
rem 1 on page 396 and the proof of Corollary 2 on page 268 from [13]), we have

E

(
n−1∑
i=1

uivi

)4

≤ Cn(4/2)−1
n−1∑
i=1

E((uivi)
4) = Cn

n−1∑
i=1

E(ui)
4 · E(vi)

4 = O(n6)

as n → ∞. By the Markov inequality,

P

(
1

n2

∣∣∣∣∣
n∑

i=1

uivi

∣∣∣∣∣ ≥ δ

)
≤ E|∑n−1

i=1 uivi |4
n8δ4 = O

(
1

n2

)

as n → ∞. The Borel–Cantelli says that
∑n

i=1 uivi/n2 → 0 a.s. as n → ∞. �

For any two probability measures μ and ν on R, define

dBL(μ, ν) = sup
{∫

f dμ −
∫

f dν :‖f ‖∞ + ‖f ‖L ≤ 1
}
,(2.31)

where ‖f ‖∞ = supx∈R |f (x)|,‖f ‖L = supx �=y |f (x) − f (y)|/|x − y|. It is well
known (see, e.g., Section 11.3 from [17]), that dBL(·, ·) is called the bounded Lip-
schitz metric, which characterizes the weak convergence of probability measures.
Reviewing (1.4), for the spectral measures of n × n real and symmetric matrices
M1 and M2, we have (see, e.g., (2.16) from [12])

d2
BL(μ̂(M1), μ̂(M2)) ≤ 1

n
tr
(
(M1 − M2)

2).(2.32)
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To prove Theorem 2, we first reduce it to the case that all random variables in the
matrices are uniformly bounded. This step will be carried out through a truncation
argument by using (2.32).

LEMMA 2.3. If Theorem 2 holds for all uniformly bounded r.v.s {ξ (n)
ij ;1 ≤ i <

j ≤ n,n ≥ 2} satisfying (1.5) with μn = 0 and σn = 1 for all n ≥ 2, then it also
holds for all r.v.s {ξ (n)

ij ;1 ≤ i < j ≤ n,n ≥ 2} satisfying (1.5) with p = 4 + δ for
some δ > 0, and μn = 0 and σn = 1 for all n ≥ 2.

PROOF. As in the proof of Lemma 2.2, we write ξij for ξ
(n)
ij if there is no

danger of confusion. Fix u > 0. Let

ξ̃ij = ξij I {|ξij | ≤ u} − E(ξij I {|ξij | ≤ u})
and

σij (u) =
√

Var(ξ̃ij )

for all i and j . Note that∣∣σij (u) −
√

Var(ξij )
∣∣ ≤ √

Var(ξij − ξ̃ij ) ≤
√

Eξ2
ij I {|ξij | > u}

by the triangle inequality. Thus, with condition that sup1≤i<j≤n,n≥2 E|ξ (n)
ij |4+δ <

∞, we see that

sup
1≤i<j≤n,n≥2

|σij (u) − 1| → 0 and sup
1≤i<j≤n,n≥2

E(ξij − ξ̃ij )
2 → 0(2.33)

as u → +∞. Take u > 0 large enough such that σij (u) > 1/2 for all 1 ≤ i �= j ≤ n

and n ≥ 2. Write

ξij = ξ̃ij

σij (u)︸ ︷︷ ︸
x

(n)
ij

+ σij (u) − 1

σij (u)
· ξ̃ij︸ ︷︷ ︸

y
(n)
ij

+ (ξij − ξ̃ij )︸ ︷︷ ︸
z
(n)
ij

for all 1 ≤ i �= j ≤ n,n ≥ 2. Obviously, for a
(n)
ij = x

(n)
ij , y

(n)
ij or z

(n)
ij , we know

{a(n)
ij ;1 ≤ i < j ≤ n} are independent for each n ≥ 2, and

Ea
(n)
ij = 0 and sup

1≤i<j≤n,n≥2
E
∣∣a(n)

ij

∣∣4+δ
< ∞.(2.34)

Again, for convenience, write xij , yij and zij for x
(n)
ij , y

(n)
ij and z

(n)
ij . Clearly,

{xij ;1 ≤ i < j ≤ n,n ≥ 2} are uniformly bounded. Besides, it is easy to see from
(2.33) that

sup
1≤i<j≤n,n≥2

(
E(y2

ij ) + E(z2
ij )

) → 0(2.35)
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as u → +∞.
Let Xn,Yn and Zn be the Laplacian matrices generated by {xij }, {yij } and {zij }

as in (1.2), respectively. Then �n = Xn + Yn + Zn. With (2.32), use the inequality
that tr((M1 + M2)

2) ≤ 2 tr(M2
1) + 2 tr(M2

2) for any symmetric matrices M1 and
M2 to obtain that

d2
BL

(
�n√

n
,

Xn√
n

)
≤ 1

n2 tr
(
(Yn + Zn)

2)

≤ 2

n2

∑
1≤i �=j≤n

(
(yij )

2 + (zij )
2)

+ 2

n2

n∑
i=1

{(∑
j �=i

yij

)2

+
(∑

j �=i

zij

)2}
.

By independence and symmetry,

E

((∑
j �=i

yij

)2

+
(∑

j �=i

zij

)2)
= 2

∑
j �=i

{E(yij )
2 + E(zij )

2}.

Recalling (2.34), by applying Lemma 2.2, we have

lim sup
n→∞

d2
BL

(
�n√

n
,

Xn√
n

)
(2.36)

≤ C · sup
1≤i<j≤n,n≥2

(
E(y2

ij ) + E(z2
ij )

) → 0 a.s.

as u → +∞ thanks to (2.35). Noticing Exij = 0,Ex2
ij = 1 for all i, j , and

{xij ;1 ≤ i < j ≤ n,n ≥ 2} are uniformly bounded. By assumption, dBL(μ̂(n−1/2×
Xn), γM) → 0 as n → ∞, where γM is the probability measure mentioned in The-
orem 2. With this, (2.36) and the triangle inequality of metric dBL, we see that
dBL(μ̂(n−1/2�n), γM) → 0 as n → ∞. �

Given n ≥ 2, let �n = {(i, j);1 ≤ j < i ≤ n} be a graph. We say a = (i1, j1) and
b = (i2, j2) form an edge and denote it by a ∼ b, if one of i1 and j1 is identical to
one of i2 and j2. For convenience of notation, from now on, we write a = (a+, a−)

for any a ∈ �n. Of course, a+ > a−. Given a, b ∈ �n, define an n × n matrix

Qa,b[i, j ] =
⎧⎨
⎩

−1, if i = a+, j = b+ or i = a−, j = b−;
1, if i = a+, j = b− or i = a−, j = b+;
0, otherwise.

With this notation, we rewrite Mn as follows

−�n = ∑
a∈�n

ξ (n)
a Qa,a,(2.37)
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where ξ
(n)
a = ξ

(n)

a+a− for a ∈ �n. Let ta,b = tr(Qa,b). We summarize some facts from
[12] in the following lemma.

LEMMA 2.4. Let a, b ∈ �n. The following assertions hold:

(i) ta,b = tb,a .

(ii) ta,b =

⎧⎪⎪⎨
⎪⎪⎩

−2, if a = b;
−1, if a �= b and a− = b− or a+ = b+;
1, if a �= b and a− = b+ or a+ = b−;
0, otherwise.

(iii) Qa,b × Qc,d = tb,cQa,d . Therefore, tr(Qa1,a1 × Qa2,a2 × · · · × Qar ,ar ) =∏r
j=1 taj ,aj+1 , where a1, . . . , ar ∈ �n, and ar+1 = a1.

We call π = (a1, . . . , ar) a circuit of length r if a1 ∼ · · · ∼ ar ∼ a1. For such a
circuit, let

ξ (n)
π =

r∏
j=1

taj ,aj+1

r∏
j=1

ξ (n)
aj

.(2.38)

From (2.37), we know

tr(�r
n) = (−1)r

∑
π

ξ (n)
π and E tr(�r

n) = (−1)r
∑
π

Eξ(n)
π ,(2.39)

where the sum is taken over all circuits of length r in �n.

DEFINITION 2.1. We say that a circuit π = (a1 ∼ · · · ∼ ar ∼ a1) of length r

in �n is vertex-matched if for each i = 1, . . . , r there exists some j �= i such that
ai = aj , and that it has a match of order 3 if some value is repeated at least three
times among {aj , j = 1, . . . , r}.

Clearly, by independence, the only possible nonzero terms in the second sum
in (2.39) come from vertex-matched circuits. For x ≥ 0, denote by �x� the integer
part of x. The following two lemmas will be used later.

LEMMA 2.5 (Propositions 4.10 and 4.14 from [12]). Fix r ∈ N.

(i) Let N denote the number of vertex-matched circuits in �n with vertices
having at least one match of order 3. Then N = O(n�(r+1)/2�) as n → ∞.

(ii) Let N denote the number of vertex-matched quadruples of circuits in �n

with r vertices each, such that none of them is self-matched. Then N = O(n2r+2)

as n → ∞.
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Let Un be a symmetric matrix of form

Un =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j �=1

Y1j −Y12 −Y13 · · · −Y1n

−Y21
∑
j �=2

Y2j −Y23 · · · −Y2n

−Y31 −Y32
∑
j �=3

Y3j · · · −Y3n

...
...

...
...

...

−Yn1 −Yn2 −Yn3 · · · ∑
j �=n

Ynj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(2.40)

where {Yij ;1 ≤ i < j < ∞} are i.i.d. standard normal random variables not de-
pending on n.

LEMMA 2.6. Suppose the conditions in Theorem 2 hold with μn = 0 and σn =
1 for all n ≥ 2. Furthermore, assume {ξ (n)

ij ;1 ≤ i < j ≤ n,n ≥ 2} are uniformly
bounded. Then:

(i) limn→∞ 1
nk+1/2 E tr(�2k−1

n ) = 0;

(ii) limn→∞ 1
nk+1 (E tr(�2k

n ) − E tr(U2k
n )) = 0

for any integer k ≥ 1, where Un is as in (2.40).

PROOF. (i) As remarked earlier, all nonvanishing terms in the representa-
tion of E tr(�2k−1

n ) in (2.39) are of form Eξ
(n)
π with the vertices of the path

a1 ∼ a2 ∼ · · · ∼ a2k−1 ∼ a1 in π repeating at least two times. Since 2k − 1 is
an odd number, there exists a vertex such that it repeats at least three times. Also,
in view of (2.38) and that |ta,b| ≤ 2 for any a, b ∈ �n, thus all such terms Eξ

(n)
π are

uniformly bounded. Therefore, by (i) of Lemma 2.5,∣∣∣∣ 1

nk+1/2 · E tr(�2k−1
n )

∣∣∣∣ ≤ C√
n

→ 0

as n → ∞, where C is a constant not depending on n.
(ii) Recall (2.40). Define Y

(n)
π similarly to ξ

(n)
π in (2.38). We then have that

|E tr(�2k
n ) − E tr(U2k

n )| =
∣∣∣∣∑

π

(
Eξ (n)

π − EY (n)
π

)∣∣∣∣
≤

∣∣∣∣ ∑
π∈A1

(
Eξ (n)

π − EY (n)
π

)∣∣∣∣ +
∣∣∣∣ ∑
π∈A2

(
Eξ (n)

π − EY (n)
π

)∣∣∣∣
:= I1 + I2,

where A1 denotes the set of the vertex-matched circuits with match of order 3, and
A2 denotes the set of the vertex-matched circuits in �n such that there are exactly
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k distinct matches. Observe that each vertex of any circuit in A2 matches exactly
two times. From the independence assumption and that E|ξ (n)

ij |2 = 1 for all 1 ≤
i < j ≤ n and n ≥ 2, we know Eξ

(n)
π = EY

(n)
π = 1 for π ∈ A2. This gives I2 = 0.

By Lemma 2.5, the cardinality of A1 ≤ nk . Since ξ
(n)
ij are uniformly bounded and

Yij are standard normal random variables, we have I1 ≤ Cnk for some constant
C > 0 not depending on n. In summary

1

nk+1 |E tr(�2k
n ) − E tr(U2k

n )| = O

(
1

n

)
as n → ∞. The proof is complete. �

LEMMA 2.7. Suppose (1.5) holds for some p > 4. Assume μn = 0, σn = 1 for
all n ≥ 2. Then, as n → ∞, F�n/

√
n converges weakly to the free convolution γM

of the semicircular law and standard normal distribution. The measure γM is a
nonrandom symmetric probability measure with smooth bounded density, does not
depend on the distribution of {ξ (n)

ij ;1 ≤ i < j ≤ n,n ≥ 2} and has an unbounded
support.

PROOF. By Lemma 2.3, without loss of generality, we now assume that
{ξ (n)

ij ;1 ≤ i < j ≤ n,n ≥ 2} are uniformly bounded random variables with mean

zero and variance one, and {ξ (n)
ij ;1 ≤ i < j ≤ n} are independent for each n ≥ 2.

Proposition A.3 from [12] says that γM is a symmetric distribution and uniquely
determined by its moments. Thus, to prove the theorem, it is enough to show that

1

n
tr(n−1/2�n)

r = 1

nr/2+1 tr(�r
n) =

∫
xr dFn−1/2�n

(2.41)
→

∫
xr dγM as n → ∞ a.s.

for any integer r ≥ 1. First, we claim that

E
[(

tr(�r
n) − E tr(�r

n)
)4] = O(n2r+2)(2.42)

as n → ∞. In fact, by (2.39), we have

E
[(

tr(�r
n) − E tr(�r

n)
)4] = ∑

π1,π2,π3,π4

E

[ 4∏
j=1

(
ξπj

− E(ξπj
)
)]

,(2.43)

where the sum runs over all circuits πj , j = 1,2,3,4 in �n, each having r ver-

tices. From the assumption, we know {ξ (n)
ij ,1 ≤ i < j ≤ n} are independent ran-

dom variables of mean zero, and it is enough to consider the terms in (2.43) with
all vertex-matched quadruples of circuits on �n, such that none of them is self-
matched. By assumption, {ξ (n)

ij ;1 ≤ i < j ≤ n;n ≥ 2} are uniformly bounded, so
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all terms E[∏4
j=1(ξπj

− E(ξπj
))] in the sum are uniformly bounded. By (ii) of

Lemma 2.5, we obtain (2.42).
By the Markov inequality,

P

(
1

n
| tr((n−1/2�n)

r) − E tr((n−1/2�n)
r)| ≥ ε

)
(2.44)

≤ E| tr(�r
n) − E tr(�r

n)|4
(n1+(r/2)ε)4 = O

(
1

n2

)
as n → ∞. It follows from the Borel–Cantelli lemma that

1

n

(
tr((n−1/2�n)

r) − E tr((n−1/2�n)
r)
) → 0 a.s.(2.45)

as n → ∞. Recalling Un in (2.40), Proposition 4.13 in [12] says that

1

n
E tr((n−1/2Un)

2k) →
∫

R

x2k dγM

as n → ∞ for any k ≥ 1. This, (ii) of Lemma 2.6 and (2.45) imply (2.41) for any
even number r ≥ 1. For odd number r , (i) of Lemma 2.6 and (2.45) yield (2.41)
since γM is symmetric, hence its odd moments are equal to zero. �

PROOF OF THEOREM 2. Recalling (1.2), let ξ̃
(n)
ij = (ξ

(n)
ij − μn)/σn for all

1 ≤ i < j ≤ n and n ≥ 2. Then {ξ̃ (n)
ij ;1 ≤ i < j ≤ n,n ≥ 2} satisfies (1.5) with

μn = 0, σn = 1 and p > 4. Let �n,1 be generated by {ξ̃ (n)
ij } as in (1.2). By Lem-

ma 2.7, almost surely,

F�n,1/
√

n converges weakly to γM(2.46)

as n → ∞. It is easy to verify that

�n = σn�n,1 + (nμn)In︸ ︷︷ ︸
�n,2

− μnJn,(2.47)

where In is the n×n identity matrix, and Jn is the n×n matrix with all of its entries
equal to 1. Obviously, the eigenvalues of �n,2 are σn · λi(�n,1) + nμn,1 ≤ i ≤ n.
By (2.46),

1

n

n∑
i=1

I

(
λi(�n,2) − nμn√

nσn

≤ x

)
converges weakly to γM(2.48)

almost surely as n → ∞. By (2.47) and the rank inequality (see Lemma 2.2 from
[6]), ∥∥F (�n−nμnIn)/

√
nσn − F (�n,2−nμnIn)/

√
nσn

∥∥
(2.49)

≤ 1

n
· rank

(
�n√
nσn

− �n,2√
nσn

)
= 1

n
· rank

(
μn√
nσn

Jn

)
≤ 1

n
→ 0,



SPECTRAL OF LAPLACIAN MATRICES 2109

where ‖f ‖ = supx∈R |f (x)| for any bounded, measurable function f (x) defined
on R. Finally, (2.48) and (2.49) lead to the desired conclusion. �

PROOF OF THEOREM 3. Let Vn = (v
(n)
ij ) be defined by

v
(n)
ii = 0 and v

(n)
ij = ξ

(n)
ij − μn

σn

(2.50)

for any 1 ≤ i �= j ≤ n and n ≥ 2, where An = (ξ
(n)
ij )n×n as in (1.1) with ξ

(n)
ii = 0

for all 1 ≤ i ≤ n and n ≥ 2. It is easy to check that An = μn(Jn − In) + σnVn,
where all the entries of Jn are equal to one, and In is the n × n identity matrix.
Thus

An + μnIn√
nσn

− Vn√
n

= μnJn√
nσn

where all entries of Jn are equal to 1.

By the rank inequality (see Lemma 2.2 from [6]),

∥∥F (An+μnI)/
√

nσn − Fn−1/2Vn
∥∥ ≤ 1

n
· rank

(
An + μnIn√

nσn

− Vn√
n

)
≤ 1

n
→ 0,

where ‖f ‖ = supx∈R |f (x)| for any bounded, measurable function f (x) defined

on R as in (2.49). So, to prove the theorem, it is enough to show that Fn−1/2Vn

converges weakly to the semicircular law with the density given in statement of
the theorem. In view of normalization (2.50), without loss of the generality, we
only need to prove the theorem under the conditions that

Eω
(n)
ij = 0, E

(
ω

(n)
ij

)2 = 1

and

max
1≤i<j≤n

E
{(

ω
(n)
ij

)2
I
(∣∣ω(n)

ij

∣∣ ≥ ε
√

n
)} → 0 as n → ∞

for all 1 ≤ i, j ≤ n and n ≥ 2. Given δ > 0, note that

1

n2δ2

∑
1≤i,j≤n

E
{(

ω
(n)
ij

)2
I
(∣∣ω(n)

ij

∣∣ ≥ δ
√

n
)}

≤ 2

δ2 · max
1≤i<j≤n

E
{(

ω
(n)
ij

)2
I
(∣∣ω(n)

ij

∣∣ ≥ δ
√

n
)} → 0

as n → ∞. By Lemma A.2 in the Appendix, F̃n := Fn−1/2Vn , and hence
Fn−1/2(An+μnI), converges weakly to the semicircular law. �

PROOF OF COROLLARY 1.2. To apply Theorem 3, we first need to verify

max
1≤i<j≤n

E
{(

ω
(n)
ij

)2
I
(∣∣ω(n)

ij

∣∣ ≥ ε
√

n
)} → 0(2.51)
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as n → ∞ for any ε > 0, where ω
(n)
ij := (ξ

(n)
ij − μn)/σn. Note that μn = pn and

σ 2
n = pn(1−pn). Now, use the fact that ξ

(n)
ij take values one and zero only, and then

the condition npn(1 − pn) → ∞ to see that |ω(n)
ij | ≤ 1/σn = o(

√
n) as n → ∞.

Then (2.51) follows. By Theorem 3,

1

n

n∑
i=1

I

{
λi(An) + pn√
npn(1 − pn)

≤ x

}
(2.52)

converges weakly to the distribution with density 1
2π

√
4 − x2I (|x| ≤ 2) almost

surely. Notice{
λi(An) + pn√
npn(1 − pn)

≤ x

}
=

{
λi(An)√

npn(1 − pn)
≤ x − pn√

npn(1 − pn)

}

and pn/
√

npn(1 − pn) → 0 as n → ∞. By using a standard analysis, we obtain
that, with probability one, F An/αn converges weakly to the semicircular law with
density 1

2π

√
4 − x2I (|x| ≤ 2), where αn = √

npn(1 − pn). Further, assume now
1/n � pn → 0 as n → ∞. Write{

λi(An) + pn√
npn(1 − pn)

≤ x

}
=

{
λi(An)√

npn

≤ x
√

1 − pn −
√

pn

n

}
.

Clearly, x
√

1 − pn − √
pn/n → x as n → ∞. Thus, by (2.52), we have 1

n
×∑n

i=1 I {λi(An)√
npn

≤ x} converges weakly to the semicircular law with density 1
2π

×√
4 − x2I (|x| ≤ 2). �

We need the following lemma to prove Theorem 4.

LEMMA 2.8. For n ≥ 2, let λn,1 ≥ λn,2 ≥ · · · ≥ λn,n be real numbers. Set
μn = (1/n)

∑n
i=1 δλn,i

. Suppose μn converges weakly to a probability measure μ.
Then, for any sequence of integers {kn;n ≥ 2} satisfying kn = o(n) as n → ∞, we
have lim infn→∞ λn,kn ≥ α, where α = inf{x ∈ R :μ([x,+∞]) = 0} with inf ∅ =
+∞.

PROOF. Since μ is a probability measure, we know that α > −∞. Without
loss of the generality, assume that α > 0. For brevity of notation, write kn = k. Set
μ̃n = (n − k + 1)−1 ∑n

i=k δλn,i
for n ≥ k. Observe that

μn(B) − μ̃n(B) = 1

n

k−1∑
i=1

I (λn,i ∈ B) − k − 1

n(n − k + 1)

n∑
i=k

I (λn,i ∈ B)

for any set B ⊂ R, where
∑k−1

i=1 I (λn,i ∈ B) is understood to be zero if k = 1. Thus,
|μn(B) − μ̃n(B)| ≤ 2k/n. Therefore,

μ̃n converges weakly to μ(2.53)
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since k = kn = o(n) as n → ∞. Easily,

λm
n,kI (λn,k > 0) ≥ 1

n − k + 1

n∑
i=k

λm
n,iI (λn,i > 0) =

∫ ∞
0

xmμ̃n(dx)

for any integer m ≥ 1. Write the last term above as
∫
R

g(x)μ̃n(dx), where g(x) :=
xmI (x ≥ 0), x ∈ R, is a continuous and nonnegative function. By (2.53) and the
Fatou lemma,

lim inf
n→∞ λm

n,kI (λn,k > 0) ≥ lim inf
n→∞

∫
R

g(x)μ̃n(dx) ≥
∫ ∞

0
xmμ(dx)(2.54)

for any m ≥ 1. If α < ∞, then∫ ∞
0

xmμ(dx) ≥
∫ α

α−ε
xmμ(dx) ≥ (α − ε)mμ([α − ε,α]) > 0(2.55)

for any ε ∈ (0, α). Take the (1/m)th power for each term in (2.54) and (2.55), and
let m → ∞ to get

lim inf
n→∞ {λn,kI (λn,k > 0)} ≥ α − ε

for any ε ∈ (0, α). By sending ε ↓ 0 and using the fact α > 0, the conclusion is
yielded.

If α = +∞, notice∫ ∞
0

xmμ(dx) ≥
∫ ∞
ρ

xmμ(dx) ≥ ρmμ([ρ,∞)) > 0

for any ρ > 0. Using the same argument as above and then letting ρ → +∞, we
get the desired assertion. �

PROOF OF LEMMA 2.1. (i) By Theorem 3, Fn−1/2Un converges weakly to the
semicircular law with density function 1

2π

√
4 − x2I (|x| ≤ 2). Use Lemma 2.8 to

have that

lim inf
n→∞

λmax(Un)√
n

≥ 2 a.s.(2.56)

Now we prove the upper bound, that is,

lim sup
n→∞

λmax(Un)√
n

≤ 2 a.s.(2.57)

Define

δn = 1

log(n + 1)
, ũ

(n)
ij = u

(n)
ij I

(∣∣u(n)
ij

∣∣ ≤ δn

√
n
)

and Ũn = (
ũ

(n)
ij

)
1≤i,j≤n
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for 1 ≤ i ≤ j ≤ n and n ≥ 1. By the Markov inequality,

P(Un �= Ũn) ≤ P
(∣∣u(n)

ij

∣∣ > δn

√
n for some 1 ≤ i, j ≤ n

)
≤ n2 max

1≤i,j≤n
P
(∣∣u(n)

ij

∣∣ > δn

√
n
)

≤ K(log(n + 1))6+δ

n1+(δ/2)
,

where K = sup1≤i,j≤n,n≥1 E|u(n)
ij |6+δ < ∞. Therefore, by the Borel–Cantelli

lemma,

P(Un = Ũn for sufficiently large n) = 1.(2.58)

From Eu
(n)
ij = 0, we have that

∣∣Eu
(n)
ij I

(∣∣u(n)
ij

∣∣ ≤ δn

√
n
)∣∣ = ∣∣Eu

(n)
ij I

(∣∣u(n)
ij

∣∣ > δn

√
n
)∣∣ ≤ K

(δn

√
n)5+δ

(2.59)

for any 1 ≤ i ≤ j ≤ n,n ≥ 1. Note that λmax(A + B) ≤ λmax(A) + λmax(B), and
λmax(A) ≤ ‖A‖ ≤ n · max1≤i,j≤n |aij | for any n× n symmetric matrices A = (aij )

and B. We have from (2.59) that

λmax(Ũn) − λmax
(
Ũn − E(Ũn)

)
≤ λmax(EŨn) ≤ n max

1≤i,j≤n

∣∣Eu
(n)
ij I

(
u

(n)
ij ≤ δn

√
n
)∣∣

≤ K

δ5+δ
n (

√
n)3+δ

for any n ≥ 1. This and (2.58) imply that

lim sup
n→∞

λmax(Un)√
n

= lim sup
n→∞

λmax(Ũn)√
n

≤ lim sup
n→∞

λmax(Ũn − EŨn)√
n

almost surely. Note that |ũ(n)
ij | ≤ |u(n)

ij | and Var(ũ(n)
ij ) ≤ E(u

(n)
ij )2 = 1, to save nota-

tion, without loss of generality, we will prove (2.57) by assuming that

E
(
u

(n)
ij

) = 0, E
(
u

(n)
ij

)2 ≤ 1,
∣∣u(n)

ij

∣∣ ≤ 2
√

n

log(n + 1)

and

max
1≤i,j≤n,n≥1

E
∣∣u(n)

ij

∣∣6+δ
< ∞

for all 1 ≤ i, j ≤ n and n ≥ 1. Now,

max
i,j,n

E
∣∣u(n)

ij

∣∣3 ≤ max
i,j,n

(
E
∣∣u(n)

ij

∣∣6+δ)3/(6+δ) = K3/(6+δ)
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by the Hölder inequality. Hence,

max
1≤i,j≤n

E
∣∣u(n)

ij

∣∣l ≤ K3/(6+δ) ·
(

2
√

n

log(n + 1)

)l−3

(2.60)

for all n ≥ 1 and l ≥ 3, where K is a constant. The inequality in (2.57) follows
from Lemma A.3 in the Appendix. Thus the first limit in the lemma is proved.
Applying this result to −Un, we obtain

lim
n→∞

λmin(Un)√
n

= − lim
n→∞

λmax(−Un)√
n

= −2 a.s.(2.61)

Since ‖Un‖ = max{λmax(Un),−λmin(Un)}, the above and the first limit in the
lemma yield the second limit.

(ii) Let Ûn = Un − diag(u
(n)
ii )1≤i≤n. It is not difficult to check that both

|λmax(Ûn) − λmax(Un)| and |‖Ûn‖ − ‖Un‖| are bounded by ‖diag(u
(n)
ii )1≤i≤n‖ =

max1≤i≤n |u(n)
ii |. By (i), it is enough to show

max
1≤i≤n

∣∣u(n)
ii

∣∣/n1/3 → 0 a.s.(2.62)

as n → ∞. In fact, by the Markov inequality

∞∑
n=1

P
(

max
1≤i≤n

∣∣u(n)
ii

∣∣ ≥ n1/3t
)

≤
∞∑

n=1

n · max
1≤i≤n

P
(∣∣u(n)

ii

∣∣ ≥ n1/3t
)

≤
∞∑

n=1

t−6−δ

n1+(δ/3)
· sup

1≤i,j≤n,n≥1
E
∣∣u(n)

ij

∣∣6+δ
< ∞

for any t > 0. Thus, (2.62) is concluded by the Borel–Cantelli lemma. �

PROOF OF THEOREM 4. Let Jn be the n × n matrix whose n2 entries are all
equal to 1. Let Vn be defined as in (2.50). Then Bn := An +μnIn = σnVn +μnJn.
First, by Lemma 2.1,

lim
n→∞

λmax(Vn)√
n

= 2 a.s. and lim
n→∞

‖Vn‖√
n

= 2 a.s.(2.63)

Since Vn is symmetric, ‖Vn‖ = supx∈Rn : ‖x‖=1‖Vnx‖ = sup‖x‖=1|xT Vnx|. By de-
finition

λmax(Bn) = sup
‖x‖=1

{σn(x
T Vnx) + μn(x

T Jnx)}
(2.64)

= sup
‖x‖=1

{σn(x
T Vnx) + μn(1′x)2},
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because J = 1 · 1T , where 1 = (1, . . . ,1)T ∈ R
n. Second, by Theorem 3, F Bn/

√
nσn

converges weakly to the semicircular law 1
2π

√
4 − x2I (|x| ≤ 2). From Lemma 2.8,

we know that

lim inf
n→∞

λkn(Bn)√
nσn

≥ 2 a.s.(2.65)

Now we are ready to prove the conclusions.

(i) It is easy to check that sup‖x‖=1{(1′x)2} = n. By (2.64), λmax(Bn) ≤
σn‖Vn‖ + n|μn|. Thus lim supn→∞ λmax(Bn)/

√
nσn ≤ 2 a.s. by (2.63) under the

assumption μn/(n
−1/2σn) → 0 as n → ∞. Since λmax(Bn) = μn + λmax(An).

From (2.65) we see that limn→∞ λkn(An)/
√

nσn = 2 a.s. when μn/(n
−1/2σn) → 0

as n → ∞. In particular, limn→∞ λmax(An)/
√

nσn = 2 a.s. Under the same con-
dition, we also have limn→∞ λmax(−An)/

√
nσn = 2 a.s. Finally, using ‖An‖ =

max{λmax(An), λmax(−An)}, we obtain that limn→∞ ‖An‖/√nσn = 2 a.s.
(ii) Without loss of generality, assume μn > 0 for all n ≥ 2. From (2.64) we

see that

μn sup
‖x‖=1

{(1′x)2} − σn sup
‖x‖=1

{|xT Vnx|}

≤ λmax(Bn) ≤ μn sup
‖x‖=1

{(1′x)2} + σn sup
‖x‖=1

{|xT Vnx|}.

Hence, nμn − σn‖Vn‖ ≤ λmax(Bn) ≤ nμn + σn‖Vn‖. Consequently, if μn �
n−1/2σn, by (2.63), we have

lim
n→∞

λmax(An)

nμn

= lim
n→∞

λmax(Bn)

nμn

= 1 a.s.

since λmax(Bn) = μn + λmax(An).
(iii) Since Bn = σnVn + μnJn and ‖Jn‖ = n, by the triangle inequality of ‖ · ‖,

n|μn| − σn‖Vn‖ ≤ ‖Bn‖ ≤ n|μn| + σn‖Vn‖.
By (2.63) and the definition that An = Bn − μnIn, we obtain

lim
n→∞

‖An‖
n|μn| = lim

n→∞
‖Bn‖
n|μn| = 1 a.s.

as |μn| � n−1/2σn. �

APPENDIX

LEMMA A.1 (Sakhanenko). Let {ξi; i = 1,2, . . .} be a sequence of indepen-
dent random variables with mean zero and variance σ 2

i . If E|ξi |p < ∞ for some
p > 2, then there exists a constant C > 0 and {ηi; i = 1,2, . . .}, a sequence of
independent normally distributed random variables with ηi ∼ N(0, σ 2

i ) such that

P
(

max
1≤k≤n

|Sk − Tk| > x
)

≤ C

1 + |x|p
n∑

i=1

E|ξi |p
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for any n and x > 0, where Sk = ∑k
i=1 ξi and Tk = ∑k

i=1 ηi .

Let Wn = (ωn
ij )1≤i,j≤n be an n × n symmetric matrix, where {ωn

ij ;1 ≤ i ≤ j ≤
n} are random variables defined on the same probability space. We need the fol-
lowing two results from Bai [6].

LEMMA A.2 (Theorem 2.4 in [6]). For each n ≥ 2, let {ωn
ij ;1 ≤ i ≤ j ≤ n} be

independent random variables (not necessarily identically distributed) with ωn
ii =

0 for all 1 ≤ i ≤ n, E(ωn
ij ) = 0 and E(ωn

ij )
2 = σ 2 > 0 for all 1 ≤ i < j ≤ n, and

lim
n→∞

1

n2δ2

∑
1≤i,j≤n

E(ωn
ij )

2I
(|ωn

ij | ≥ δ
√

n
) = 0

for any δ > 0. Then Fn−1/2Wn converges weakly to the semicircular law of scale-
parameter σ with density function

pσ (x) =
⎧⎨
⎩

1

2πσ 2

√
4σ 2 − x2, if |x| ≤ 2σ ;

0, otherwise.
(A.1)

Some recent results in [4, 41] are in the realm of the above lemma.

LEMMA A.3 (Remark 2.7 in [6]). Suppose, for each n ≥ 1, {ω(n)
ij ;1 ≤ i ≤ j ≤

n} are independent random variables (not necessarily identically distributed) with
mean μ = 0 and variance no larger than σ 2. Assume there exist constants b > 0
and δn ↓ 0 such that sup1≤i,j≤n E|ω(n)

ij |l ≤ b(δn

√
n)l−3 for all n ≥ 1 and l ≥ 3.

Then

lim sup
n→∞

λmax(Wn)

n1/2 ≤ 2σ a.s.
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