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STOCHASTIC VORTEX METHOD FOR FORCED
THREE-DIMENSIONAL NAVIER–STOKES EQUATIONS

AND PATHWISE CONVERGENCE RATE1

BY J. FONTBONA

Universidad de Chile

We develop a McKean–Vlasov interpretation of Navier–Stokes equations
with external force field in the whole space, by associating with local mild
Lp-solutions of the 3d-vortex equation a generalized nonlinear diffusion with
random space–time birth that probabilistically describes creation of rotation
in the fluid due to nonconservativeness of the force. We establish a local well-
posedness result for this process and a stochastic representation formula for
the vorticity in terms of a vector-weighted version of its law after its birth
instant. Then we introduce a stochastic system of 3d vortices with mollified
interaction and random space–time births, and prove the propagation of chaos
property, with the nonlinear process as limit, at an explicit pathwise conver-
gence rate. Convergence rates for stochastic approximation schemes of the
velocity and the vorticity fields are also obtained. We thus extend and re-
fine previous results on the probabilistic interpretation and stochastic approx-
imation methods for the nonforced equation, generalizing also a recently in-
troduced random space–time-birth particle method for the 2d-Navier–Stokes
equation with force.

1. Introduction. The Navier–Stokes equation for a homogeneous and incom-
pressible fluid in the whole plane or space, subject to an external force field F, is
given by

∂u
∂t

+ (u · ∇)u = ν�u − ∇p + F;
(1)

div u(t, x) = 0; u(t, x) → 0 as |x| → ∞.

Here, u denotes the velocity field, p is the (unknown) pressure function and
ν > 0 is the (constant) viscosity coefficient. When F = 0 or, more generally, when
F = ∇� is a conservative field, a probabilistic interpretation of (1) in space dimen-
sion two was first developed in 1982 by Marchioro and Pulvirenti [19]. Their ap-
proach was based on the vortex equation satisfied by the (scalar) field curl u, which
in 2d and for the case of a conservative external field, was interpreted as a nonlin-
ear Fokker–Planck (or McKean–Vlasov) equation with signed initial condition.
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This was associated with a nonlinear diffusion process in the sense of McKean,
involving singular interactions through the kernel of Biot–Savart. (For a general
background on the McKean–Vlasov model, we refer the reader to Sznitman [26]
and Méléard [20].) This approach led them to the definition of a stochastic sys-
tem of particle or vortices with “mollified” mean field interaction, for which the
time-marginal empirical measures converge to a solution of the vortex equation
associated with (1). The convergence on the path space of that particles system
(or, equivalently, the propagation of chaos property) was proved later by Méléard
in [21]. Those works provided a rigorous mathematical meaning of Chorin’s vor-
tex algorithm, heuristically proposed in [3] as a probabilistic method to simulate
the solution of the 2d-Navier–Stokes equation (see also [4]).

In dimension 3, the vorticity field w = curl u is a solution of the vectorial non-
linear equation

∂w
∂t

+ (u · ∇)w = (w · ∇)u + ν�w + g,

(2)
divw0 = 0,

where g = curl F and where the relation

u(t, x) = K(w)(t, x) := − 1

4π

∫
R3

(x − y)

|x − y|3 ∧ w(t, y) dy(3)

holds, thanks to the incompressibility condition div u = 0 and the Biot and Savart
law. Here, ∧ stands for the vectorial product in R

3, K(x)∧ := − 1
4π

x
|x|3 ∧ is the

three-dimensional Biot–Savart kernel and K is the Biot–Savart operator in 3d. (We
refer to Bertozzi and Majda [18] for this and for background on vorticity.)

In absence of external forces, the problem of proving the approximation of solu-
tions of the 3d-Navier–Stokes equations by a stochastic system of mean field inter-
acting particles was first addressed by Esposito and Pulvirenti [7]. In that work, an
approximation result of local solutions by a stochastic system of three-dimensional
vortices with cutoff and mollified interactions was obtained for each time instant,
for initial vorticities that belonged to L1 together with their Fourier transform. The
convergence held for mollifying parameters that depended on the realizations of
the empirical measures of the paths of the driving Brownian motions.

Recently, we considered in [9] the mild version of the 3d-vortex equation with
g = 0 in the Lp spaces for p > 3

2 . We proved local (in time) well posedness and
regularity results for that equation, and, under an additional L1 assumption on w0,
we showed the equivalence between such solutions and a generalized nonlinear
McKean–Vlasov process with values in R

3 ×R
3⊗3 and singular drift term at t = 0.

We then introduced a system of stochastic 3d vortices with cutoff and mollified
interaction, and proved the pathwise propagation of chaos property with as limit
the nonlinear process, deducing moreover stochastic particle approximation results
for the velocity and vorticity fields. (We refer to [10] for a rectification of the
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discussion in [9] about the work [7].) During the preparation of this work, we have
also become aware of the more recent work of Philipowski [22], who obtained
(also in the case g = 0) a convergence rate for a mean field particle approximation
of the vorticity field, for a simpler variation of the system introduced in [9]. (The
pathwise propagation of chaos property was not addressed.)

In presence of an external force field, the additional additive term g = curl F in
the (2d or 3d) vortex equation is physically interpreted as creation of rotation in the
fluid. In order to describe this phenomenon probabilistically, a nonlinear McKean–
Vlasov diffusion process with random space–time birth was recently associated
with the 2d-vortex equation in Fontbona and Méléard [11]. More precisely, the
law P0(dt, dx) of the instant and position of birth was suitable, defined in terms of
the initial vorticity and of the external field curl F, and it was shown that a scalar-
weighted version of the time marginal law of this process after its birth time was
equal to the solution to the 2d-vortex equation (with L1 data) in a given interval.
The propagation of chaos property was established for an approximating system of
interacting vortices, which were given birth independently at random positions and
times following the law P0, and a pathwise convergence rate was obtained under
slight additional integrability assumptions on the data.

The first purpose of the present paper is to extend the results of [9] and [11]
to the 3d-Navier–Stokes equation with nonconservative external force field. More
precisely, fix T > 0 and assume that w0 : R3 → R

3 and g : R3 × [0, T ] → R
3 are

divergence-free L1-fields. Denote by I3 the identity matrix in R
3 and let (Bt ) be a

standard 3d-Brownian motion. Our main goal will be to study the well posedness
on [0, T ] of the following nonlinear process, with singular interaction kernel and
values in R

3 × R
3⊗3:

Xt = X0 + √
2ν

∫ t

0
1{s≥τ } dBs +

∫ t

0
K(ρ̃)(s,Xs)1{s≥τ } ds,

(4)

	t = I3 +
∫ t

0
∇K(ρ̃)(s,Xs)	s1{s≥τ } ds,

where: (τ,X0) is a random variable in [0, T ] × R
3 (independent of B) with law

P0(dt, dx) ∝ δ0(dt)|w0(x)|dx + |g(t, x)|dx dt,

ρ̃ = ρ̃(t, x) is defined for each t from the law of (τ,X,	) as∫
R3

f(y)ρ̃(t, y) dy := E
(
f(Xt)	th(τ,X0)1{t≥τ }

)
for f : R3 → R

3,(5)

and h in (5) is the density with respect to P0 of the vectorial measure δ0(dt) ×
w0(x) dx + g(t, x) dx dt . [We observe that it is (4) together with relation (5) that
specify a “nonlinear process” in McKean’s sense.]

As we shall see, there will exist a correspondence between mild Lp(R3) ∩
L1(R3)-solutions w of (2) for p > 3

2 , and suitable solutions of the nonlinear sto-
chastic differential equation (4) and (5), through the relation w = ρ̃. Thus, (5)
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provides a representation formula for solutions w of (2) which extends the one
obtained in [9] when g ≡ 0 (or τ ≡ 0). In the present case, this representation
can be intuitively understood as follows. A point vortex is given birth at random
instant and position (τ,X0), rotating in direction h(τ,X0) ∈ R

3. It then evolves
under the effect of diffusion and of the velocity field K(w) in (4), while its rota-
tion direction and magnitude are changed under the action of the matrix process
	t which accounts for the vortex stretching proper to dimension 3. Averaging
the rotation vectors on the position of infinitely “already born vortices” yields a
macroscopic vorticity field w(t) = ρ̃(t), weakly defined by (5). The velocity field
instantaneously experienced by each individual vortex is finally recovered from w
as a mean field effect through the interaction kernel of Biot–Savart.

We will adapt the ideas and analytic techniques in [9] to first establish local well-
posedness and regularity results for the mild formulation of the vortex equation.
Based on this, we shall then prove local [i.e., for small enough T > 0 or data
(w0,g)] pathwise well posedness for the nonlinear stochastic differential equation
(4) and (5), which will have singular drift terms at t = 0.

We shall then introduce a stochastic system of n particles in R
3 × R

3⊗3 (or
3d-vortices) with cutoff and mollified interaction kernels, and with random space–
time births. The second goal of this paper will be to prove the strong pathwise
convergence of each of these particles as n goes to ∞, towards the nonlinear
process, at an explicit rate. To that end, we will improve the techniques used in
[9] to study the nonlinear process, which relied on tightness estimates for approx-
imating processes and martingale problem characterization. More precisely, by a
fine use of regularity properties of the equation, and inspired by ideas introduced
in [11], we will show that the approximating “mollified processes” converge path-
wise at the same rate at which mollified versions of the vortex equation converge
to the original one. We will be able to exhibit that rate for a large class of mollified
kernels, thanks to classic regularization techniques in Raviart [23] (which are also
similar to those used in [22]). These results will imply the propagation of chaos
in a strong norm and, classically, an explicit rate in some pathwise Wasserstein
distance W . From this we will also deduce convergence rates for approximation
schemes of the vorticity and velocity fields. Unfortunately, the mollifying parame-
ter will be required to go very slowly to 0 as n goes to ∞, which will yield a very
slow (but not necessarily optimal) rate for the particles convergence.

Finally, we point out that our regularity results on the mild equation in Lp will
ensure that the stochastic flow

ξs,t (x) = x + √
2ν(Bt − Bs) +

∫ t

s
u(r, ξs,r (x)) dr(6)

is of class C1(R3), and so one can write

(Xt ,	t)1{t≥τ } = (ξτ,t (X0),∇xξτ,t (X0))1{t≥τ }.(7)
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Equation (5) can thus be seen as a stochastic analog for the 3d-Navier–Stokes
equation of the “Lagrangian representation” of the vorticity of the 3d-Euler equa-
tion ν = 0 (see, e.g., [5], Chapter 1), an analogy established in [7, 9] when g ≡ 0.
Lagrangian representations of the 3d-Navier–Stokes equations as stochastic ana-
logues to representations formulae for the Euler equation have been studied by
several authors, some of which have led to (local) well-posedness results for the
equation. See, for example, Esposito et al. [6] and, for more recent developments,
Busnello et al. [2] and Iyer [14]. The latter works follow approaches that are in
some sense “dual” to ours, establishing representations of strong solutions of the
vortex or Navier–Stokes equations in terms of expectations of the initial data, af-
ter being transported and modified by the stochastic flow. A related stochastic
approach is adopted in Gomes [13] to establish a variational formulation of the
Navier–Stokes equation, analogous to Arnold’s variational characterization of the
Euler equation. A seemingly very different further probabilistic point of view, pro-
viding global well posedness for small initial data, was introduced by Le Jan and
Sznitman in [16], who associated with the Fourier transform of the velocity field a
multitype branching process or stochastic cascade. See, for example, Bhattacharya
et al. [1] for more recent developments in that direction.

The remainder of this work is organized as follows. In Section 2 we first present
a weak formulation of (4) and (5) in terms of a nonlinear martingale problem,
and discuss its connection with (2). In Section 3, we shall obtain local well-
posednes and regularity results for the mild version of the vortex equation in Lp ,
for p ∈ (3

2 ,3). In Section 4 we state some results about a nonlinear Fokker–Planck
equation with external field associated with the process with random space–time
birth X in (4). We use this and the previous results to show strong local-in-time
well posedness for the nonlinear stochastic differential equation (4) and (5). We,
moreover, obtain the pathwise convergence result and estimates for approximating
mollified versions of that problem. In Section 5, we introduce the system of 3d-
stochastic vortices with random space–time birth, and deduce the propagation of
chaos property and its rate. We also prove approximation results for the velocity
and the vorticity of the forced 3d-Navier–Stokes equation with their corresponding
convergence rates. In Section 6 we shall discuss how these rates of convergence
are slightly improved when Sobolev regularity of the initial condition and external
field is assumed.

Let us establish some notation:

– By MeasT we denote the space of measurable real-valued functions on [0, T ]×
R

3.
– C1,2 is the set of real-valued functions on [0, T ] × R

3 with continuous deriva-
tives up to the first order in t ∈ [0, T ] and up to the second order in x ∈ R

3. C
1,2
b

is the subspace of bounded functions in C1,2 with bounded derivatives.
– D is the space of compactly supported functions on R

3 with infinitely many
derivatives.
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– For all 1 ≤ p ≤ ∞ we denote by Lp the space Lp(R3) of real-valued functions
on R

3. By ‖·‖p we denote the corresponding norm, and p∗ stands for the Hölder
conjugate of p. We write W 1,p = W 1,p(R3) for the Sobolev space of functions
in Lp with partial derivatives of first order in Lp .

– If E is a space of real-valued functions (defined on R
3 or on [0, T ] × R

3),
then the notation (E)3 is used for the space of R

3-valued functions with scalar
components in E. If E has a norm, the norm in (E)3 is denoted in the same way.

– For notational simplicity, if f,g : R3 → R
3 are vector fields and Z : R3 → R

3⊗3

is a matrix function, we will write fg := ∑3
i figi and fZ for the row-vector

(ftZ)i := ∑3
j=1 fjZj,i . By ∇f we denote the gradient of f, that is, the matrix

(∇f)i,j := ∂fi
∂xj

. We will simply write (∇f)g for the column-vector (
∑

j
∂fi
∂xj

gj )i

[instead of the usual “(g · ∇)f”].
– C and C(T ) are finite positive constants that may change from line to line.

2. The weak 3d-vortex equation and a probabilistic interpretation of the
external field. Let us recall a that vector field w : R3 → R

3 with components
in D′, and such that

∫
R3 ∇f (x)w(x)dx = 0 for all f ∈ D, is said to have null

divergence in the distribution sense. We write it divw = 0.
If the following two conditions hold, we shall say that w0 : R3 → R

3 and
g : R+ × R

3 → R
3 satisfy the hypothesis:

(Hp):

• there exists p ∈ [1,∞[ such that w0 ∈ (Lp(R3))3 and g(t, ·) ∈ (Lp(R3))3 for
all t ∈ [0, T ], and supt∈[0,T ] ‖g(t, ·)‖p < ∞;

• divw0 = 0 and div g(t, ·) = 0 for all t ∈ [0, T ].
A necessary assumption for our probabilistic approach will be that (Hp) holds

with p = 1. We then denote

‖g‖1,T :=
∫ T

0

∫
R3

|g(s, x)|dx ds.

In that functional setting, the following notion of solution to (2) will appear to
be natural:

DEFINITION 2.1. Let w0 and g satisfy (H1). A function w ∈ L∞([0, T ],
(L1(R3))3) is a weak solution on [0, T ] of the vortex equation with initial con-
dition w0 and external field g (or “weak solution”) if:

(i) For i, j, k = 1,2,3,∫
[0,T ]×R3

|wi (t, x)||K(w)j (t, x)|dx dt < ∞,

(8) ∫
[0,T ]×R3

|wi (t, x)|
∣∣∣∣∂K(w)j

∂xk

(t, x)

∣∣∣∣dx dt < ∞.
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(ii) For any f ∈ (C
1,2
b )3,∫

R3
f(t, y)w(t, y) dy

=
∫

R3
f(0, y)w0(y) dy +

∫ t

0

∫
R3

f(s, y)g(s, y) dy ds

(9)

+
∫ t

0

∫
R3

[
∂f
∂s

(s, y) + ν�f(s, y)

+ ∇f(s, y)K(w)(s, y) + f(s, y)∇K(w)(s, y)

]
w(s, y) dy ds.

REMARK 2.2. We observe that for any function v : R3 → R
3 in L1, the func-

tions K(v) and ∇K(v) are defined a.e. on R
3. Indeed, the first one can be bounded

by a (scalar) Riesz potential operator (see Stein [24]), and thus belongs to a suit-
able weak Lebesgue space. The second one is defined through a singular integral
operator acting on v (see, e.g., [18] for this fact), and this implies (see also [24])
that it is an almost everywhere defined function of some other weak Lebesgue
space.

We next introduce the central probabilistic objects we shall be dealing with,
which extend the ideas introduced in two dimensions in [11].

DEFINITION 2.3. We write CT := [0, T ]×C([0, T ],R
3 ×R

3⊗3). The canon-
ical process in CT will be denoted by (τ,X,	), and the space of probability mea-
sures on CT is written P(CT ).

For an element P ∈ P(CT ), we write P ◦ = law(X) for the second marginal and
P ′ = law(	) for the third marginal.

We shall also denote

w̄0(x) = |w0(x)|
‖w0‖1 + ‖g‖1,T

and

(10)

ḡ(t, x) = |g(t, x)|
‖w0‖1 + ‖g‖1,T

.

We then define a probability measure P0(dt, dx) on [0, T ] × R
3 by

P0(dt, dx) = δ0(dt)w̄0(x) dx + ḡ(t, x) dx dt,(11)

together with the vectorial weight function

h(t, x) = 1{t=0}
w0(x)

|w0(x)|(‖w0‖1 + ‖g‖1,T )

(12)

+ g(t, x)

|g(t, x)|(‖w0‖1 + ‖g‖1,T )1{t>0},
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where 1 denotes the indicator function and the convention “ 0
0 = 0” is made. We

notice that |h(t, x)| = ‖w0‖1 + ‖g‖1,T or 0. Moreover, we have

REMARK 2.4. For measurable bounded functions f : [0, T ] × R
3 → R

3, we
have ∫

[0,T ]×R3
f(s, x)h(s, x)P0(ds, dx)

=
∫

R3
f(0, x)w0(x) dx +

∫
[0,T ]×R3

f(s, x)g(s, x) dx ds.

Consider now Q ∈ P(CT ) such that for all ∈ [0, T ], E
Q(|	t |) < ∞. Then, we

can associate with Q a family of R
3-valued vector measures (Q̃t )t∈[0,T ] on R

3,
defined for all bounded measurable function f : R3 → R

3 by

Q̃t (f) = E
Q(

f(Xt)	th(τ,X0)1{τ≤t}
)
.(13)

Moreover, Q̃t is absolutely continuous with respect to Q◦
t , with

dQ̃t

dQ◦
t

(x) = EQ(
	th(τ,X0)1{τ≤t}|Xt = x

)
,(14)

and its total mass is bounded by (‖w0‖1 + ‖g‖1,T )EQ(|	t |).
DEFINITION 2.5. We denote by Pb(CT ) the subset of probability measures

Q ∈ P(CT ) under which the process 	 belongs to L∞([0, T ] × �,dt ⊗ Q).

Then, we consider the following nonlinear martingale problem:

(MP): to find P ∈ Pb(CT ) such that:

• Xt = X0 in [0, τ ], P -almost surely.
• The law of (τ,X0) under P is P0 given by (11), and P̃t constructed according

to (13) has a bi-measurable density family (t, x) �→ ρ̃(t, x).
• f (t,Xt) − f (0,X0) − ∫ t

0
∂f
∂s

(s,Xs) + [ν�f (s,Xs) + K(ρ̃)(s,Xs)∇f (s,

Xs)]1s≥τ ds, 0 ≤ t ≤ T , is a continuous P -martingale for all f ∈ C 1,2
b w.r.t.

the filtration Ft = σ(τ, (Xs,	s), s ≤ t).
• 	t = I3 + ∫ t

0 ∇K(ρ̃)(s,Xs)	s1s≥τ ds, for all 0 ≤ t ≤ T , P -almost surely.

The following statement partially explains the relation between (MP) and (2),
and will be useful later on:

LEMMA 2.6. Assume that the problem (MP) has a solution P ∈ Pb(CT ) sat-
isfying

E

(∫ T

0
|K(ρ̃)(t,Xt)|dt

)
< ∞(15)
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and

E

(∫ T

0
|∇K(ρ̃)(t,Xt)|dt

)
< ∞.(16)

Then, ρ̃ is a weak solution of the vortex equation with external force field (9).

PROOF. The assumptions on P imply that point (i) in Definition 2.1 is satisfied
and, moreover, that

∫ t
0 K(ρ̃)(s,Xs) ds and

∫ t
0 ∇K(ρ̃)(s,Xs) ds are both processes

with integrable variation (and thus absolutely continuous on [0, T ]). Since under
P the process 	t is almost surely bounded in [0, T ], it follows that it has finite
variation too.

On the other hand, the martingale associated with f ∈ C 1,2
b in (MP) equals

f (t,Xt) − f (τ ∧ t,X0)

−
∫ t

0

[
∂f

∂s
(s,Xs) + ν�f (s,Xs) + K(ρ̃)(s,Xs)∇f (s,Xs)

]
1s≥τ ds

thanks to the first condition of (MP).
Therefore, by Itô’s product rule, we see that for each f ∈ (C

1,2
b )3

f(t,Xt)	t − f(τ∧,X0)

−
∫ t

0

[
∂f
∂s

(s,Xs) + ν�f(s,Xs) + ∇f(s,Xs)K(ρ̃)(s,Xs)

+ f(s,Xs)∇K(ρ̃)(s,Xs)

]
	s1{s≥τ } ds

is a local martingale issued from 0. Moreover, the assumptions (16) and (15) on ρ̃

and the fact that 	 is bounded imply that it is a true martingale. Consequently, as
h(τ,X0)1{τ≤t} is F0-measurable and 1{τ≤s}∩{τ≤t} = 1{τ≤s} for s ≤ t , we see that

EP (
f(t,Xt)	th(τ,X0)1{τ≤t}

) − EP (
f(τ,X0)h(τ,X0)1{τ≤t}

)

− EP

(∫ t

0

[
∂f
∂s

(s,Xs) + ν�f(s,Xs)

(17)
+ ∇f(s,Xs)K(ρ̃)(s,Xs)

+ f(s,Xs)∇K(ρ̃)(s,Xs)

]
	sh(τ,X0)1{τ≤s} ds

)
= 0.

Recalling that ρ̃(t) is the density of the vector measure (13) for Q = P , the first
term in the previous equation is seen to be equal to

∫
f(t, x)ρ̃(t, x) dx. The second

term is equal to the expression in Remark 2.4 with f(s, x) replaced by f(s, x)1s≤t ,
that is,

∫
f(0, y)w0(y) dy + ∫ t

0
∫

f(s, y)g(s, y) dy ds. The third expectation can be
interchanged with the time integral thanks to the assumptions and Fubini’s theo-
rem, and the result follows using again the definition of ρ̃(s) in the resulting time
integral. �
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The proof of the well posedness of problem (MP) will be based on analytical
results about the “mild form” of the vortex equation (2), which we state in next
section. These will in particular provide a framework where the conditions required
in Lemma 2.6 will hold.

3. The mild vortex equation in Lp with an external field. We shall next
introduce the mild formulation of the forced vortex equation. We refer the reader
to the book of Lemarié-Rieusset [17] for a comprehensive account on the mild-
form approach to the Navier–Stokes equation in its velocity form. Our techniques
are adapted from that framework.

We denote the heat kernel in R
3 by

Gν
t (x) := (4πνt)−3/2 exp

(
−|x|2

4νt

)
,(18)

where ν > 0. One has

LEMMA 3.1. For all p ∈ [1,∞], r ≥ p and w ∈ (Lp)3, there exist positive
constants C̄0(p; r) and C̄1(p; r) such that for all t > 0:

(i) ‖Gν
t ∗ w‖r ≤ C̄0(p; r)t−3/2(1/p−1/r)‖w‖p ,

(ii) ‖∇Gν
t ∗ w‖r ≤ C̄1(p; r)t−1/2−3/2(1/p−1/r)‖w‖p .

PROOF. Use Young’s inequality and the well-known estimates

sup
t≥0

‖Gν
t ‖mt3/2−3/(2m) < ∞, sup

t≥0
‖∇Gν

t ‖mt2−3/(2m) < ∞. �

DEFINITION 3.2. Let w0 and g be functions satisfying (Hp) for some p ∈
[1,∞]. A function w ∈ L∞([0, T ], (Lp(R3))3) is a mild solution on [0, T ] of the
vortex equation with initial condition w0 and external field (or “mild solution”) if:

(i) The functions K(w)i(t, x) := K(w(t, ·))i(x), i = 1,2,3 are defined a.e. on
[0, T ] × R

3 and satisfy the integrability conditions (8).
(ii) For dt-almost every t , the following identity holds in (Lp)3:

w(t, x) = Gν
t ∗ w0(x) +

∫ t

0
Gν

t−s ∗ g(s, ·)(x) ds

+
3∑

j=1

∫ t

0

∫
R3

∂Gν
t−s

∂yj

(x − y)[K(w)j (s, y)w(s, y)(19)

− wj (s, y)K(w)(s, y)]dy ds.

We shall state in Theorems 3.6 and 3.8 below the analytical results we need
about (19). As we shall see, that equation will admit an abstract formulation which
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is the same as in the case g = 0, and so we will be able to adapt the techniques
in [9] with no difficulties. We therefore provide an abbreviated account of these
results.

We shall simultaneously deal with a family of “mollified” versions of (19). Con-
sider a smooth function ϕ : R3 → R satisfying:

(i)
∫
R3 ϕ(x)dx = 1,

(ii)
∫
R3 |x||ϕ(x)|dx < ∞,

which is called a “cutoff function of order 1.” For ε > 0, let ϕε : R3 → R denote
the regular approximation of the Dirac mass ϕε(x) = 1

ε3 ϕ( ε
x
). We define the con-

volution operators

Kε(w)(x) :=
∫

R3
Kε(x − y) ∧ w(y)dy,(20)

where Kε := ϕε ∗ K = K(ϕε). The fact that Kε is a regular function will follow
from part (ii) in Lemma 3.3 below. To unify notation, we also write K0 = K and
K0(w)(x) := K(w)(x).

We introduce the family {Bε}ε≥0 of operators (formally) defined on functions
w,v : [0, T ] × R

3 → R
3 by

Bε(w,v)(t, x)

=
∫ t

0

3∑
j=1

∫
R3

∂Gν
t−s

∂yj

(x − y)(21)

× [Kε(w)j (s, y)v(s, y) − vj (s, y)Kε(w)(s, y)]dy ds.

We are interested in the following family of “abstract” equations, for ε ≥ 0:

v = w0 + Bε(v,v),(22)

where

w0(t, x) := Gν
t ∗ w0(x) +

∫ t

0
Gν

t−s ∗ g(s, ·)(x) ds.

For a given time interval [0, T ] we shall work in the Banach spaces

F0,r,(T ;p), F1,r,(T ;p), F0,p,T and F1,p,T

with norms, respectively, defined by:

• ‖|w‖|0,r,(T ;p) := sup0≤t≤T t3/2(1/p−1/r)‖w(t)‖r ,
• ‖|w‖|1,r,(T ;p) := sup0≤t≤T {t3/2(1/p−1/r)‖w(t)‖r + t1/2+3/2(1/p−1/r) ×∑3

k=1‖ ∂w(t)
∂xk

‖r},
• ‖|w‖|0,p,T := ‖|w‖|0,p,(T ;p) and
• ‖|w‖|1,p,T := ‖|w‖|1,p,(T ;p).
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The following continuity property of the Biot–Savart kernel is crucial:

LEMMA 3.3. Let 1 < p < 3 be given and q ∈ (3
2 ,∞) be defined by 1

q
=

1
p

− 1
3 .

(i) For every w ∈ (L3)p , the integral (20) is absolutely convergent for almost
every x and one has Kε(w) ∈ (Lq)3. There exists further a positive constant C̃p,q

such that

sup
ε≥0

‖Kε(w)‖q ≤ C̃p,q‖w‖p(23)

for all w ∈ (Lp)3.
(ii) If moreover w ∈ (W 1,p)3, then we have Kε(w) ∈ (W 1,q)3, with

∂
∂xk

Kε(w) = Kε( ∂w
∂xk

), and

sup
ε≥0

∥∥∥∥∂Kε(w)

∂xk

∥∥∥∥
q

≤ C̃p,q

∥∥∥∥ ∂w

∂xk

∥∥∥∥
p

(24)

for all k = 1,2,3.

PROOF. See Lemma 2.2 in [9] for the case ε = 0 and Remark 4.3 therein for
the general case. �

LEMMA 3.4. (i) Let p ∈ [1,3) and assume (Hp). Then, we have for all r ∈
[p,

3p
3−p

) that

w0 ∈ F1,r,(T ;p) with ‖|w0‖|1,r,(T ;p) ≤ C(r,p)(‖w0‖p + T ‖|g‖|0,p,T )

for some finite constant C(r,p) > 0.
(ii) Let 3

2 < p < 3,p ≤ l < min{ 6p
6−p

,3} and 3l
6−l

≤ l′ < 3l
6−2l

. Then, there
exists a finite constant C1(l, l

′;p) not depending on T > 0 such that for all
w,v ∈ F1,l,(T ;p),

sup
ε≥0

‖|Bε(w,v)‖|1,l′,(T ;p) ≤ C1(l, l
′;p)T 1−3/(2p)‖|w‖|1,l,(T ;p)‖|v‖|1,l,(T ;p),

where 1 − 3
2p

> 0.

PROOF. Part (i) follows from Lemma 3.1. To bound the time integral we use,
moreover, the fact that for all r ≥ p, on has

∥∥∥∥
∫ t

0
Gν

t−s ∗ g(s, ·) ds

∥∥∥∥
r

≤ Ct1+1/r−1/p
(

sup
t∈[0,T ]

‖gt‖p

)
.
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On the other hand, since t �→ t−1/2+3/2(1/r−1/p) is integrable in 0 if and only if
r <

3p
3−p

, we have
∥∥∥∥∇

(∫ t

0
Gν

t−s ∗ g(s, ·) ds

)∥∥∥∥
r

≤ C′t1/2+3/2(1/r−1/p)
(

sup
t∈[0,T ]

‖g(t, ·)‖p

)

from where the statement follows. Part (ii) uses Lemma 3.3 and is proved in parts
(ii) and (iv) of Proposition 3.1 in [9]. See also Remarks 4.3 and 6.3 therein for the
uniformity (in ε ≥ 0) of the bounds. �

REMARK 3.5. Observe that the previous lemma, in particular, implies (taking
p = r = l = l′) that for p ∈ (3

2 ,3), the abstract equation (22) makes sense in F1,p,T

for each ε ≥ 0.

Now we can state the extension of Theorem 3.1 in [9] to the 3d-vortex equation
with external field.

THEOREM 3.6. Assume that (Hp) for some 3
2 < p < 3.

(a) For each T > 0 and ε ≥ 0, equation (22) has, at most, one solution in F0,p,T .
(b) There is a constant �0(p) > 0 independent of ε ≥ 0 such that for all T > 0,

w0 and g satisfying

T 1−3/(2p)(‖w0‖p + T ‖|g‖|0,p,θ ) < �0(p),

each one of (22) with ε ≥ 0, has a solution wε ∈ F1,p,T . Moreover, we have

sup
ε≥0

‖|wε‖|1,p,T ≤ 2‖|w0‖|0,p,T .

PROOF. For later purposes, we give, in detail, the argument of [9]. By Lem-
ma 3.1(ii) (with p in the place of r and 3p

6−p
in that of p) and Lemma 3.3(i), we

have for all v,w ∈ F0,p,T that

‖Bε(w,v)(t)‖p ≤ C

∫ t

0
(t − s)−3/(2p)‖w(s)‖p‖v(s)‖p ds.

It follows that if w and v are two solutions, one has

‖w(t) − v(t)‖p ≤ C(‖|w‖|0,p,T + ‖|v‖|0,p,T )

∫ t

0
(t − s)−3/(2p)‖w(s) − v(s)‖p ds

and iterating the latter sufficiently many times [using the identity
∫ t

0 sε−1(t −
s)θ−1 ds = Ctε+θ−1 for θ, ε > 0] we get ‖w(t)−v(t)‖p ≤ C

∫ t
0 ‖w(s)−v(s)‖p ds.

Gronwall’s lemma concludes the proof.
(b) We notice that for T > 0 small enough, one has

4C(p,p)C1(p,p;p)T 1−3/(2p)(‖w0‖p + T ‖|g‖|0,p,T ) < 1,
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where C(p,p) and C1(p,p;p) are, respectively, the constants in parts (i) and (ii)
of Lemma 3.4 with all parameters equal to p. From this and Lemma 3.4(i), the
same contraction argument used in Theorem 3.1(b) of [9] can be applied here in
the space F1,p,T . �

We observe that for v ∈ F0,p,T , with p ∈ (3
2 ,3) we have K(v) ∈ F0,q,T for

q ∈ (3,∞). The previous global uniqueness and local existence result also holds in
that space, and one can, moreover, show that the solution w(t) ∈ (Lp) is a continu-
ous function of t . That type of result corresponds to a “vorticity version” of Kato’s
theorem for the mild Navier–Stokes equation in (Lq)3, q ∈ (3,∞) (see [17], The-
orem 15.3(A)).

We shall, later on, need additional regularity properties of the function wε and,
more importantly, their uniformity in ε ≥ 0. These results will rely on continuity
properties of the “derivative” of the Biot–Savart operator.

LEMMA 3.7. Let 1 < r < ∞.

(i) For all w ∈ (Lr)3 and ε ≥ 0, we have ∂
∂xk

Kε(w) ∈ (Lr)3 for k = 1,2,3.
There exists further a positive constant Cr depending only on r such that

sup
ε≥0

∥∥∥∥∂Kε(w)j

∂xk

∥∥∥∥
r

≤ C̃r‖w‖r(25)

for all j = 1,2,3, where Kε(w)j is the j th component of Kε(w).
(ii) If, moreover, w ∈ (W 1,r )3, we then have ∂

∂xk
Kε(w) ∈ (W 1,r )3, with

∂
∂xi

( ∂
∂xk

Kε(w)) = ∂
∂xk

Kε( ∂
∂xi

w) and

sup
ε≥0

∥∥∥∥∂2Kε(w)j

∂xi ∂xk

∥∥∥∥
r

≤ C̃r

∥∥∥∥ ∂w

∂xi

∥∥∥∥
r

(26)

for all i, k = 1,2,3.

PROOF. See Lemma 3.1 and Remark 4.3 in [9] for the proof, which relies on
the fact that w �→ ∂K(w)

∂xk
is a singular integral operator. �

THEOREM 3.8. For p ∈ (3
2 ,3), let wε ∈ F1,p,T , ε ≥ 0 be the solution of (22)

given by Theorem 3.6, and write uε(s, x) := Kε(wε)(s, x). Let Cα denote the space
of Hölder continuous functions R

3 → R
3 of index α ∈ (0,1).

(i) For all r ∈ [p,
3p

3−p
), we have

sup
ε≥0

‖|wε‖|1,r,(T ;p) < ∞.
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(ii) We have

sup
ε≥0

sup
t∈[0,T ]

t1/2{‖uε(t)‖∞ + ‖uε(t)‖C(2p−3)/p} < ∞.(27)

(iii) For all r ∈ (3,
3p

3−p
), i = 1,2,3 we have

sup
ε≥0

sup
t∈[0,T ]

t1/2+3/2(1/p−1/r)

{∥∥∥∥∂uε(t)

∂xi

∥∥∥∥∞
+

∥∥∥∥∂uε(t)

∂xi

∥∥∥∥
C 1−3/r

}
< ∞.(28)

In particular, the functions

t �→ ‖u(t)‖∞ and t �→
∥∥∥∥∂u(t)

∂xi

∥∥∥∥∞
, i = 1,2,3,

belong to L1([0, T ],R).

PROOF. Observe that parts (i) and (ii) of Lemma 3.4 provide an estimate of
the form

‖|wε‖|1,l′,(T ;p) ≤ C(l′,p)(‖w0‖p + T ‖|g‖|0,p,T ) + �(T , l, l′)A2
l

for suitable l and l′ and with �(T , l, l′) a uniform upper bound for the norms
of the operators Bε : (F1,l,(T ;p))

2 → F1,l′,(T ;p) and Al a given upper bound of
‖|wε‖|1,l,(T ;p). Then, starting from the fact that the functions wε ∈ F1,p,(T ;p) =
F1,p,T are uniformly bounded in ε ≥ 0, we can apply several times Lemma 3.4
and the previous inequality (using, also, the fact that w0 ∈ F1,l′,(T ;p) for all l′ ∈
[p,

3p
3−p

)), and obtain an increasing sequence l′ = ln such that l0 = p, ln ↗ 3p
3−p

,
and wε ∈ F1,ln,(T ;p) with ‖|wε‖|1,ln,(T ;p) controlled in terms of ‖|wε‖|1,ln−1,(T ;p)

and ‖|w0‖|1,ln,(T ;p). One can thus chose N large enough such that lN ≥ r and con-
clude with an interpolation inequality in the spaces F1,l,(T ;p). We refer to the proof
of Theorem 3.2(ii) in [9] for this and for an explicit construction of the sequence ln.

Next, Lemma 3.3 and Theorem 3.6 imply that for q = 3p
3−p

> 3,

sup
ε≥0

‖|uε‖|1,q,T ≤ C sup
ε≥0

‖|wε‖|1,p,T ≤ C′(‖w0‖p + T ‖|g‖|0,p,T ).

Using the continuous embedding of (W 1,m)3 into (L∞)3 ∩ C 1−3/m for all m > 3,
we deduce part (ii), taking m = q . To prove part (iii) we use part (i), Lemma 3.7
and the same embedding result as before but with m = r . See Corollary 3.1 in [9]
for details. �

4. The nonlinear process. We shall, in this section, use the notation F0,p,T ,
F1,p,T , F0,r,(T ;p) and F1,r,(T ;p) for the scalar-function analogues of the spaces F
defined in Section 3.
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We also need the following definition.

DEFINITION 4.1. P T
b,3/2 is the space of probability measures Q ∈ Pb(CT )

satisfying the following conditions:

• For each t ∈ [0, T ], Q◦
t (dx) defined in Definition 2.3 is absolutely continuous

with respect to Lebesgue’s measure.
• The family of densities of (Q◦

t (dx))t∈[0,T ], which we denote by (t, x) �→
ρQ(t, x), has a version that belongs to F0,p,T for some p > 3

2 .
• The family of densities of the vectorial measures (Q̃t (dx))t∈[0,t] [cf. (13)],

which we denote by (t, x) �→ ρ̃Q(t, x), satisfies div ρ̃
Q
t = 0 for dt-almost every

t ∈ [0, T ].
We are ready to study the nonlinear process described in (MP).

THEOREM 4.2. Assume that (H1) and (Hp) are satisfied for some p ∈ (3
2 ,3).

Then, the following hold:

(a) For every T > 0, the nonlinear martingale problem (MP) has, at most, one
solution P in the class P T

b,3/2. Moreover, if such a solution P exists, then the
function defined by

w(t, x) := ρ̃P (t, x) = ρP (t, x)EP (
	th(τ,X0)1{t≥τ }|Xt = x

)
is the unique solution in F0,1,T ∩ F0,p,T of the mild equation (19).

(b) In a given filtered probability space (�, F , Ft ,P), consider a standard three-
dimensional Brownian motion B , and an F0-measurable random variable
(τ,X0) independent of B with law P0 [defined as in (11)]. Then, on each in-
terval [0, T ], the McKean nonlinear stochastic differential equation

(i) Xt = X0 + √
2ν

∫ t

0
1{s≥τ } dBs +

∫ t

0
K(ρ̃)(s,Xs)1{s≥τ } ds,

(ii) 	t = I3 +
∫ t

0
∇K(ρ̃)(s,Xs)	s1{s≥τ } ds,(29)

(iii) law(τ,X,	) ∈ P T
b,3/2 and ρ̃(t, x) = ρ̃law(τ,X,	)(t, x),

has, at most, one pathwise solution. Moreover, if a solution exists, its law is a
solution of (MP). Thus, by (a), uniqueness in law for (29) holds.

(c) If the condition

T 1−3/(2p)(‖w0‖p + T ‖|g‖|0,p,θ ) < �0(p)

is satisfied, where �0(p) > 0 is the constant provided by Theorem 3.6, then a
unique solution P ∈ P T

b,3/2 to (MP) exists. Moreover, under the previous con-
dition, strong existence holds for the nonlinear stochastic differential equation
(29) in [0, T ], and by (a) and (b), one has P = law(τ,X,	). Finally, ρP is
the unique solution in F0,1,T ∩ F0,p,T to the vortex equation (19).
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The proof of Theorem 4.2 requires some preliminary facts about a scalar prob-
lem implicitly included in the vectorial problem (MP).

4.1. A nonlinear Fokker–Planck equation with external field associated with
the 3d-vortex equation. Recall that the notation Q̃t and Q◦

t were, respectively,
defined in Definition 2.3 and (13).

For any Q ∈ P(CT ), we now denote by Q̂t the sub-probability measure on R
3

defined for scalar functions by

Q̂t (f ) = E
Q(

f (Xt)1{τ≤t}
)
,(30)

where (τ,X) are the two first marginal of the canonical process (τ,X,	) in CT .
Obviously, for Q ∈ Pb(CT ) we have

Q̃t � Q̂t � Q◦
t ,

and we shall denote

k
Q
t (x) := dQ̃t

dQ̂t

(x).(31)

Notice that, indeed,

k
Q
t (x) = EQ(	th(τ,X0)1{τ≤t}|Xt = x)

Q(τ ≤ t |Xt = x)
1{Q(τ≤t |Xt=x)>0}.

DEFINITION 4.3. If Q◦
t (dx) has a density ρQ(t, x) with respect to Lebesgue

measure, we shall denote by ρ̂Q(t, x) the family of densities of Q̂t .

Notice that one has

ρ̃Q(t, x) = k
Q
t (x)ρ̂Q(t, x).

REMARK 4.4. If Q ∈ Pb(CT ) is such that Qt is absolutely continuous for all
t ∈ [0, T ], the existence of a joint measurable version of (t, x) �→ ρQ(t, x) is stan-
dard by continuity of Xt under Q◦

t . We always work with such a version. Moreover,
there exist measurable versions of (t, x) �→ ρ̂Q(t, x) and (t, x) �→ ρ̃Q(t, x). This
can be seen by Lebesgue derivation (see, e.g., Theorem 3.22 in [8]), taking δ → 0
in the quotients

Q(τ ≤ t,Xt ∈ B(x, δ))

Q(Xt ∈ B(x, δ))
and

EQ(	th(τ,X0)1{τ≤t},Xt ∈ B(x, δ))

Q(Xt ∈ B(x, δ))

and using the previous relation between ρ̂Q(t, x) and kQ [here, B(x, δ) is the open
ball of radius r centered at x].
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LEMMA 4.5. Assume that (MP) has a solution P ∈ Pb(CT ) such that P ◦
t has

a density for each t ∈ [0, T ]. Let ρ̂ := ρ̂P and ρ̃ := ρ̃P , respectively, denote the
densities of P̂t and P̃t and, moreover, assume that (15) holds. We have:

(i) The couple (ρ̂, ρ̃) satisfies the weak evolution equation∫
R3

f (t, y)ρ̂(t, y) dy

=
∫

R3
f (0, y)w̄0(y) dy +

∫ t

0

∫
R3

f (s, y)ḡ(s, y) dy ds

(32)

+
∫ t

0

∫
R3

[
∂f

∂s
(s, y) + ν�f (s, y)

+ K(ρ̃)(s, y)∇f (s, y)

]
ρ̂(s, y) dy ds,

for all f ∈ C
1,2
b , where w̄0 and ḡ were defined in (10).

(ii) ρ̂ is, moreover, a solution of the mild equation in [0, T ],

ρ̂(t, x) = Gν
t ∗ w̄0(x) +

∫ t

0
Gν

t−s ∗ ḡ(s, ·)(x) ds

(33)

+
∫ t

0

3∑
j=1

∫
R3

∂Gν
t−s

∂yj

(x − y)K(kρ̂)j (s, y)ρ̂(s, y) dy ds,

with the multiple integral being absolutely convergent, and where k := kP is the
function defined in (31).

PROOF. (i) By the definition of (MP) and the fact that 1{τ≤t} is F0-measurable,
we deduce that the expectation of the expression

f (t,Xt)1{t≥τ } − f (τ,X0)1{t≥τ }

−
∫ t

0

[
∂f

∂s
(s,Xs) + ν�f (s,Xs) ds + K(ρ̃)(s,Xs)∇f (s,Xs)

]
1{s≥τ } ds

vanishes (see also the beginning of the proof of Lemma 2.6). Taking expectation
and recalling the definition of ρ̂ and P0 [cf. (30) and (11)], we obtain the desired
result applying Fubini’s theorem in the time integral, which is possible since

∫
[0,T ]×R3

|K(ρ̃)(t, x)|ρ̂(t, x) dx dt < ∞,

thanks to condition (15).
(ii) Fix ψ ∈ D and t ∈ [0, T ] and take in (32) the C

1,2
b -function ft : [0, t]×R

3 →
R

3 given by ft (s, y) = Gν
t−s ∗ ψ(y) (which solves the backward heat equation
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on [0, t] × R
3 with final condition ft (t, y) = ψ(y)). By Lemma 3.1 and condi-

tion (15), it is not hard to check that
∫ t

0

∫
(R3)2

3∑
j=1

∣∣∣∣∂Gν
t−s

∂yj

(x − y)

∣∣∣∣|K(ρ̃)j (s, y)||ψ(x)|ρ(s, y) dx dy ds < ∞.

By Fubini’s theorem we easily conclude. �

Consider now a fixed but arbitrary function k : [0, T ] × R
3 → R

3 of class
L∞([0, T ], (L∞)3), and formally define an operator bk on functions η, ν ∈
MeasT by

bk(η, ν)(t, x) =
∫ t

0

3∑
j=1

∫
R3

∂Gν
t−s

∂yj

(x − y)K(kν)j (s, y)η(s, y) dy ds.

REMARK 4.6. For each p ∈ [1,∞] (resp., each p ∈ [1,∞] and r ≥ p), the
mapping η �→ kη is continuous from F0,p,T to F0,p,T (resp., from F0,r,(T ;p) to
F0,r,(T ;p)).

Write now

γ0(t, x) := Gν
t ∗ w̄0(x) +

∫ t

0
Gν

t−s ∗ ḡ(s, ·)(x) ds,

where w̄0 and ḡ were defined in (10). We can state the following properties of the
scalar equation (33).

PROPOSITION 4.7. Assume (H1) and (Hp) with p ∈ (3
2 ,3), and let k ∈

L∞([0, T ], (L∞)3) be a fixed but arbitrary function.

(i) For each r ∈ [p,∞), we have

γ0 ∈ F0,r,(T ;p) with ‖|γ0‖|0,r,(T ;p) ≤ C(r,p)‖w̄0‖p + T ‖|ḡ‖|0,p,T

for some finite constant C(r,p) > 0.
(ii) Suppose that 3

2 < p < 3,p ≤ l < min{ 6p
6−p

,3} and 3l
6−l

≤ l′ < 3l
6−2l

. Then,
there exists a finite constant C0(l, l

′;p) not depending on T > 0 such that for all
η, ν ∈ F0,l,(T ;p),

‖|bk(η, ν)‖|0,l′,(T ;p) ≤ C0(l, l
′;p)T 1−3/(2p)‖|η‖|0,l,(T ;p)‖|ν‖|0,l,(T ;p).

(iii) The mild Fokker–Planck equation with external field (33) has, at most, one
solution ρ̂ ∈ F0,p,T for each T > 0.

(iv) If ρ̂ ∈ F0,p,T is a solution of (33), then ρ̂ ∈ F0,r,(T ;p) for all r ∈ [p,∞)

with ‖|ρ̂‖|0,r,(T ;p) ≤ C(T ,p, r,‖|ρ̂‖|0,p,T ) < ∞.
(v) We deduce that for all l ∈ [ 3p

3−p
,∞), K(kρ̂) ∈ F1,l,(T ;3p/(3−p)).
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PROOF. Part (i) follows from Lemma 3.1 in a similar way as part (i) of Lem-
ma 3.4. We notice that the restriction on r in the latter was needed only to ensure
that the derivative of time integral was convergent, and so it is not needed here.
Thanks to Remark 4.6, part (ii) is similar to part (ii) of Proposition 3.1 in [9].

From the previous parts, equation (33) admits the abstract formulation in F0,p,T

ρ̂ = γ0 + bk(ρ̂, ρ̂).

Then, the arguments yielding parts (i) of Theorems 3.6 and 3.8 also provide the
assertions of parts (iii) and (iv), respectively. For part (v), we notice that from (iv),
kρ̂ ∈ F0,r,(T ;p) holds for all r ∈ [p,∞[. Thus, if we take l ≥ q := 3p

3−p
and set

r := (1
l
+ 1

3)−1, then one has r ≥ p, and so Lemma 3.3(i) implies that

sup
t∈[0,T ]

t3/2(1/p−1/r)‖K(kρ̂)(t, ·)‖l = sup
t∈[0,T ]

t3/2(1/q−1/l)‖K(kρ̂)(t, ·)‖l < ∞.

This shows that K(kρ̂) ∈ F0,l,(T ;q). We conclude that K(kρ̂) ∈ F1,l,(T ;q), not-

ing that since kρ̂ ∈ F0,l,(T ;p) for all l ≥ q , Lemma 3.7(i) implies that ∂K(kρ̂)
∂xk

∈
F0,l,(T ;p) for all k = 1,2,3. In other words,

sup
t∈[0,T ]

t3/2(1/p−1/l)

∥∥∥∥∂K(kρ̂)(t, ·)
∂xk

∥∥∥∥
l

= sup
t∈[0,T ]

t1/2+3/2(1/q−1/l)

∥∥∥∥∂K(kρ̂)(t, ·)
∂xk

∥∥∥∥
l

< ∞,

which is the required estimate. �

4.2. Uniqueness in law and pathwise uniqueness. We need the following ver-
sion of Gronwall’s lemma:

LEMMA 4.8. Let g and k be positive functions on [0, T ], such that∫ T
0 k(s) ds < ∞, g is bounded, and

g(t) ≤ C +
∫ t

0
g(s)k(s) ds for all t ∈ [0, T ].

Then, we have

g(t) ≤ C exp
∫ T

0
k(s) ds for all t ∈ [0, T ].

We are ready to prove parts (a) and (b) in Theorem 4.2.

PROOF OF THEOREM 4.2. Let P ∈ P T
b,3/2 be a solution of (MP). Since

ρ ∈ F0,1,T ∩ F0,p,T , by interpolation we have ρ ∈ F0,3/2,T . By Lemma 3.3(i)
we deduce that (15) holds. Moreover, by Lemma 4.5(ii), Proposition 4.7(iv) and



3D-VORTEX METHOD FOR FORCED NAVIER–STOKES EQUATIONS 1781

Lemma 3.7(i), we have that ∇K(ρ̃) ∈ F0,3,(T ;p), and, consequently, condition (16)
also holds. By Lemma 2.6 we deduce that ρ̃ is a weak solution of the vortex equa-
tion, and, since kP

t is bounded, we have ρ̃ ∈ F0,p,T .
We now need to prove that the latter implies that ρ̃ ∈ F0,p,T is uniquely de-

termined. By Theorem 3.6(a) this will follow by checking that ρ̃ is also mild
solution. For fixed ψ ∈ (D)3 and t ∈ [0, T ], define ft : [0, t] × R

3 → R
3 by

ft (s, y) = Gν
t−s ∗ ψ(y), which is a function of class (C

1,2
b )3 that solves the back-

ward heat equation on [0, t]×R
3 with final condition f(t, y) = ψ(y). One can thus

take ft in the weak vortex equation and, thanks to conditions (15) and (16), apply
Fubini’s theorem to deduce [since ψ ∈ (D)3 is arbitrary] that

ρ̃(t, x) = w0(t, x) +
∫ t

0

3∑
j=1

∫
R3

[
∂Gν

t−s

∂yj

(x − y)[K(ρ̃)j (s, y)ρ̃(s, y)]

+ Gν
t−s(x − y)

[
ρ̃j (s, y)

∂K(ρ̃)

∂yj

(s, y)

]]
dy ds.

Since ρ̃ is divergence-free, to see that ρ̃ solves the mild equation it is enough
to justify an integration by parts of the last term in the previous equation. We
cannot do that at this point since we cannot ensure enough (Sobolev) regularity
of ρ̃. But noting that for q = 3p

3−p
one has 1 < q∗ < 3

2 , we see that the func-

tion ρ̃ = kP ρ̂ belongs to F0,q∗,T by interpolation. On the other hand, one has
Gν

t−s(x − ·)K(ρ̃)(s, ·) ∈ (W 1,q)3 thanks to Proposition 4.7(v). Since by hypoth-
esis, div ρ̃(s) = 0 in the distribution sense, the fact that ρ̃(s) ∈ (Lq)3 and a density
argument allow us to check that

3∑
j=1

∫
R3

ρ̃j (s, y)
∂

∂yj

[Gν
t−s(x − y)K(ρ̃)(s, y)]dy = 0

for all s ∈ ]0, T ]. Thus, w := ρ̃ is the unique solution of (19) in F0,p,T .
Now, by a standard argument using the semi-martingale decomposition of the

coordinate processes Xi and their products XiXj , we obtain that the martingale
part of f (t,Xt) in (MP) is given by the stochastic integral

√
2ν

∫ t
0 ∇f (s,Xs) ×

1{s≥τ } dBs, with respect to a Brownian motion B defined on some extension of the
canonical space. From this and the previously established uniqueness of ρ̃, P is
the law of a weak solution of the stochastic differential equation

(i) Xt = X0 + √
2ν

∫ t

0
1{s≥τ } dBs +

∫ t

0
K(w)(s,Xs)1{s≥τ } ds,

(34)

(ii) 	t = I3 +
∫ t

0
∇K(w)(s,Xs)	s1{s≥τ } ds.

Since (34) is linear in the sense of McKean, to conclude uniqueness in law it is
enough to prove pathwise uniqueness for it. This is done first for X and then for 	,



1782 J. FONTBONA

both with help of the estimate on ‖∇K(w)(t)‖∞ in Theorem 3.8 and Gronwall’s
lemma. �

4.3. Pathwise convergence of the mollified processes and strong existence for
small time. To prove part (c) of Theorem 4.2, we shall construct a strong solution
to the nonlinear SDE of part (b) therein. We shall do so via approximation by
solutions to nonlinear SDEs with regular drift terms Kε(wε) and ∇Kε(wε), where
for each ε > 0, wε ∈ F1,p,T ∩F0,1,T is given by Theorem 3.6. Thus, our arguments
improve the ones developed in [9] by providing a pathwise approximation result at
an explicit rate. This will be the key to carry out the additional improvements on
that work in the forthcoming sections.

If q = 3p
3−p

, Hölder’s inequality and the properties of K imply that that for all
t ∈ [0, T ],

‖Kε(wε)(t, ·)‖∞ ≤ C‖ϕε‖q∗‖|K(wε)‖|0,q,T

≤ C‖ϕε‖q∗‖|wε‖|0,p,T .

Similarly, one has ‖∇Kε(wε)(t)‖∞ ≤ C‖∇ϕε‖q∗‖|wε‖|0,p,T and analogous es-
timates hold for all derivatives. Thus, for each ε > 0, the function (s, y) �→
Kε(wε)(s, y) is bounded and continuous in y ∈ R

3, and has infinitely many deriv-
atives in y ∈ R

3, which are uniformly bounded in [0, T ] × R
3.

We fix now the time interval [0, T ] given by Theorem 4.2. It will be useful to
consider in what follows the stochastic flow

ξε
s,t (x) = x + √

2ν(Bt − Bs)
(35)

+
∫ t

s
Kε(wε)(θ, ξε

s,θ (x)) dθ for all t ∈ [s, T ],

which has a version that is continuously differentiable in x for all (s, t) thanks to
the previously mentioned regularity properties of Kε(wε) (cf. Kunita [15]).

We also consider the strong solution of the stochastic differential equation in
[0, T ],

Xε
t = X0 + √

2ν

∫ t

0
1{s≥τ } dBs +

∫ t

0
Kε(wε)(s,Xε

s )1{s≥τ } ds,

(36)

	ε
t = I3 +

∫ t

0
∇Kε(wε)(s,Xε

s )	
ε
s1{s≥τ } ds,

where (τ,X0) is independent of B . We denote by P ε the joint law of (τ,Xε,	ε)

and observe that P ε ∈ P T
b . Since Xε

t = X0 for all t ≤ τ , we have that

Xε
t = ξε

τ,t (X0)1{t≥τ } + X01{t<τ }.
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Denoting by Gε(s, x; t, y), (s, x, t, y) ∈ (R+ × R
2)2, s < t , the density of

ξε
s,t (x) (which is a continuous function of (s, x, t, y), see [12]), and conditioning

with respect to (τ,X0), we obtain for bounded and measurable functions f that

E(f (Xε
t )) =

∫ t

0

∫
(R3)2

f (y)Gε(s, x;y, t) dyP0(ds, dx)

+
∫ T

t

∫
R3

f (x)P0(ds, dx)

=
∫

R3
f (x)w̄0(x) dx

+
∫ t

0

∫
R3

[∫
R3

f (y)Gε(s, x; t, y) dy

]
ḡ(s, x) dx ds

+
∫ T

t

∫
R3

f (x)ḡ(s, x) dx ds.

Consequently, Xε
t has a (bi-measurable) family of densities that we denote by ρε .

Observe that one has ρε(t) ∈ Lp for all t ∈ [0, T ] from the assumption on w0 and
g and standard Gaussian bounds for Gε(s, x; t, y).

The functions ρ̂ε and ρ̃ε correspond to the densities of, respectively, the sub-
probability measure and the vectorial measure

f �→ E
[
f (ξε

τ,t (Xτ ))1{t≥τ }
]

and

f �→ E
[
f(ξε

τ,t (Xτ ))∇xξ
ε
τ,t (Xτ )h(τ,X0)1{t≥τ }

]
.

They are bi-measurable by similar arguments as in Remark 4.4, and we have
ρ̂ε(t) ∈ Lp and ρ̃ε(t) ∈ L

p
3 .

The assumptions on ϕ ensure the following estimate concerning the approxima-
tions ϕε of the Dirac mass (see Lemma 4.4 in Raviart [23]):

LEMMA 4.9. Let ϕ be a cutoff function of order 1. Then, for all v ∈ W 1,r and
r ∈ [1,∞], one has

‖v − ϕε ∗ v‖r ≤ Cε

3∑
i=1

∥∥∥∥ ∂v

∂xi

∥∥∥∥
r

.

We deduce the following result:

LEMMA 4.10. (i) We have ρ̃ε = wε and, consequently,

sup
ε>0

‖|ρ̃ε‖|0,p,T < ∞ and sup
ε>0

‖|ρ̂ε‖|0,p,T < ∞.(37)
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(ii) If ϕ is a cutoff function of order 1, then we have that

sup
t∈[0,T ]

t3/(2p)−1/2‖wε(t) − w(t)‖p ≤ C(T )ε

for some finite constant C(T ).

PROOF. (i) Since E(
∫ T

0 |Kε(wε)(t,Xε
t )|dt) and E(

∫ T
0 |∇Kε(wε)(t,Xε

t )|dt)

are finite, we can follow the lines of Lemma 2.6 and use Remark 2.4 to see that for
all f ∈ (C

1,2
b )3,

∫
R3

f(t, y)ρ̃ε(t, y) dy

=
∫

R3
f(0, y)w0(y) dy +

∫ t

0

∫
R3

f(s, y)g(s, y) dy ds

+
∫ t

0

∫
R3

[
∂f
∂s

(s, y) + ν�f(s, y)(38)

+ ∇f(s, y)Kε(wε)(s, y)

+ f(s, y)∇Kε(wε)(s, y)

]
ρ̃ε(s, y) dy ds.

On the other hand, the regularity properties of the stochastic flow (35) imply that
for all φ ∈ D and θ ∈ ]0, T ], the Cauchy problem

∂

∂s
f (s, y) + ν�f (s, y)

+ Kε(wε)(s, y)∇f (s, y) = 0, (s, y) ∈ [0, θ [ × R
3,(39)

f (θ, y) = φ(y)

has a unique solution f that belongs to C
1,3
b ([0, θ ] × R

3) (see Lemma 4.3 in [9]).
One can thus use the function f = ∇f in (38), and after simple computations ob-
tain, thanks to the null divergence of w0 and g(s, ·), that∫

R3
∇φ(y)ρ̃(n)(t, y) dy

=
∫ t

0

∫
R3

∇
[
∂f

∂s
(s, y) + ν�f (s, y) + Kε(wε)(s, y)∇f (s, y)

]

× ρ̃(n)(s, y) dy ds = 0

for all φ ∈ D. Thus, div ρ̃ε(t) = 0, and we can adapt the arguments of Section 4.2
to conclude that ρ̃ε solves the linear mild equation

v = w0 + Bε(v,wε), v ∈ F0,p,T .(40)
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Since uniqueness for (40) holds (by similar arguments as for the nonlinear version),
and wε also solves the equation, we conclude that ρ̃ε = wε . The asserted uniform
bound for ρ̃ε is thus granted by Theorem 3.6. To obtain the uniform bound for ρ̂ε ,
we take Lp norm to (40), and follow the arguments of the proof of Theorem 3.6(i),
to get that

‖ρ̃ε(t)‖p ≤ ‖|w0‖|0,p,T + C‖|wε‖|0,p,T

∫ t

0
(t − s)−3/(2p)‖ρ̃ε(s)‖p ds.

The conclusion follows by a similar application of Gronwall’s lemma as therein.
(ii) By an iterative argument as in the proof of Theorem 3.6(i), we get that

‖ρ̃ε(t) − w(t)‖p ≤ C

∫ t

0
α(t − s)‖Kε(w)(s) − K(w)(s)‖q ds

(41)

+ C(T )

∫ t

0
‖ρ̃ε(s) − w(s)‖q ds,

where α(s) = ∑Ñ(p)
k=1 skθ0−1, θ0 = 1 − 3

2p
and Ñ(p) = �θ−1

0 � + 1. Integrating in
time and using Gronwall’s lemma, Theorem 3.8(i) and Lemma 4.9, we obtain that
for all θ ∈ [0, T ],

∫ θ

0
‖ρ̃ε(t) − w(t)‖p dt ≤ C

∫ T

0

∫ t

0
α(t − s)‖Kε(w)(s) − K(w)(s)‖q ds dt

≤ Cε

∫ T

0

Ñ(p)∑
k=1

tk(1−3/(2p))−1/2 dt = εC(T ).

Substituting the latter in (41), we obtain

‖ρ̃ε(t) − w(t)‖p ≤ εC(T ) + C

∫ t

0
α(t − s)‖Kε(w)(s) − K(w)(s)‖q ds

≤ εC(T ) + Ct1/2−3/(2p)ε,

and the conclusion follows. �

The proof of Theorem 4.2(c) will be completed by the following result, which,
moreover, establishes the strong pathwise convergence of the nonlinear processes
(Xε,	ε) as ε → 0. We are inspired here by ideas introduced in [11], but we need a
finer use of analytical properties, as we shall improve the rate of εδ with δ ∈ (0,1),
that was obtained therein for a particular choice of kernel. Further difficulties also
will arise because of the additional (and more singular) drift term of the “vortex
stretching processes” 	, proper to dimension 3.

PROPOSITION 4.11. Let ϕ be a cutoff of order 1 and Kε be defined in terms
of ϕ as before. Then, as ε goes to 0, the family of processes (Xε − X0,	

ε), ε > 0
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is Cauchy in the Banach space of continuous processes (Y,�) with values in R
3 ×

R
3⊗3 with finite norm E(supt∈[0,T ]|Yt | + |�t |). Moreover, one has

E
(

sup
t∈[0,T ]

|Xt − Xε
t | + |	t − 	ε

t |
)

≤ C(T )ε,

where (X,	) is a solution of the nonlinear s.d.e. (29).

PROOF. We observe that the substraction of X0 is only needed to avoid a
moment-type assumption on X0. Let ε > ε′ > 0. We have

E
(
sup
s≤t

|Xε
s − Xε′

s |
)

≤
∫ t

0
E

∣∣(Kε(wε)(s,Xε
s ) − Kε′

(wε)(s,Xε
s )

)
1{s≥τ }

∣∣ds

(42)

+
∫ t

0
E

∣∣(Kε′
(wε)(s,Xε

s ) − Kε′
(wε′

)(s,Xε
s )

)
1{s≥τ }

∣∣ds

+
∫ t

0
E

∣∣(Kε′
(wε′

)(s,Xε
s ) − Kε′

(wε′
)(s,Xε′

s )
)
1{s≥τ }

∣∣ds.

The third term on the right-hand side of (42) is bounded thanks to Theorem 3.8(iii)
by

C

∫ t

0
s−1/2−3/2(1/p−1/r)E

(
sup
θ≤s

|Xε
θ − Xε′

θ |
)
ds

for any fixed r ∈ (3,
3p

3−p
). Writing q = 3p

3−p
and q∗ for its Hölder conjugate, and

using Lemmas 3.3 and 4.10(ii), we bound the second term by
∫ T

0
‖Kε′

(wε)(s) − Kε′
(wε′

)(s)‖q‖ρ̂ε(s)‖q∗ ds ≤ C(T )ε.

We have used the fact that supε>0‖|ρ̂ε‖|0,q∗,T < ∞ by interpolation since q∗ <
3
2 < p. By similar arguments, the first term on the right-hand side of (42) can be
bounded above by

∫ T

0
‖Kε′

(wε)(s) − Kε(wε)(s)‖q‖ρ̂ε(s)‖q∗ ds ≤ C(T )ε.

Bringing all together and using Gronwall’s lemma we deduce that

E
(

sup
s≤T

|Xε
t − Xε′

t |
)

≤ C(T )ε.(43)

Now, notice that Gronwall’s lemma and Theorem 3.8(iii) imply that the
processes 	ε

t are bounded in L∞([0, T ] × �,dt ⊗ P) uniformly in ε. Therefore,
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we have

E
(
sup
s≤t

|	ε
s − 	ε′

s |
)

≤ C

∫ t

0
E

∣∣(∇Kε(wε)(s,Xε
s ) − ∇Kε′

(wε)(s,Xε
s )

)
1{s≥τ }

∣∣ds

+ C

∫ t

0
E

∣∣(∇Kε′
(wε)(s,Xε

s ) − ∇Kε′
(wε′

)(s,Xε
s )

)
1{s≥τ }

∣∣ds(44)

+ C

∫ t

0
E

∣∣(∇Kε′
(wε′

)(s,Xε
s ) − ∇Kε′

(wε′
)(s,Xε′

s )
)
1{s≥τ }

∣∣ds

+ C

∫ t

0
E

(
|∇Kε′

(wε′
)(s,Xε′

s )| sup
θ≤s

|	ε
θ − 	ε′

θ |
)
ds.

By Theorem 3.8(iii), for fixed r ∈ (3, q) the last term in the right-hand side of (44)
is bounded by

C

∫ t

0
s−1/2−3/2(1/p−1/r)E

(
sup
θ≤s

|	ε
θ − 	ε′

θ |
)
ds,

and the third one is by

C

∫ t

0
s−1/2−3/2(1/p−1/r)E|Xε

s − Xε′
s |ds ≤ C(T )ε,

using also the previous estimates on E|Xε
s − Xε′

s |. The first term in (44) is upper
bounded by

C

∫ T

0
‖ρ̂ε(s)‖p∗‖∇Kε(wε)(s) − ∇Kε′

(wε)(s)‖p ds.(45)

If p ≥ 2, then we have p∗ ≤ 2 and so by (37) and interpolation, we deduce that
(45) is bounded by

C‖|ρ̂ε‖|0,p∗,T

∫ T

0
‖∇K(ϕε ∗ wε)(s) − ∇K(wε)‖p

+ ‖∇K(wε) − ∇K(ϕε′ ∗ wε)(s)‖p ds ≤ CT ε.

This last inequality is obtained by Lemmas 3.7(i), 4.9, 4.10(i) and the uniform
boundedness of (wε)ε≥0 in F1,p,T . If now 3

2 < p < 2, then we have 3 > p∗ > 2 >

p and by similar steps as in the previous case p ≥ 2, we can upper bound (45) by

C‖|ρ̂ε‖|0,p∗,(T ;p)

∫ T

0
s−3/2(1/p−1/p∗)‖∇Kε(wε)(s) − ∇Kε′

(wε)(s)‖p ds

≤ ε sup
δ≥0

‖|ρ̂δ‖|0,p∗,(T ;p)

∫ T

0
s−3/2(1/p−1/p∗)s−1/2 ds

≤ εC(T ) sup
δ≥0

‖|ρ̂δ‖|0,p∗,(T ;p).
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We have used here Lemma 4.9, the fact that (wε)ε≥0 is uniformly bounded in
F1,p,T and that −3

2( 1
p

− 1
p∗ ) − 1

2 > −1 since p > 3
2 . The fact that the supremum

in the previous estimate is finite, is seen in the same way as part (vi) of Propo-
sition 4.7, namely by an iterative argument using the mild equation (similar as
therein) satisfied by ρ̂ε , starting from the uniform bound in Lemma 4.10(i).

Thus, we have shown that the first term in the right-hand side of (44) is bounded
by a constant times ε. Let us now tackle the second term in the right-hand side
of (44). This is bounded by

C

∫ T

0
‖ρ̂ε(s)‖p∗‖∇Kε′

(wε)(s) − ∇Kε′
(wε′

)(s)‖p ds

(46)

≤ C

∫ T

0
‖ρ̂ε(s)‖p∗‖wε(s) − wε′

(s)‖p ds

thanks to Lemma 3.7. By Lemma 4.10(ii) we can upper bound (46), respectively,
by

Cε

∫ T

0
s1/2−3/(2p) ds = εC(T )

in the case p ≥ 2, or by

Cε

∫ T

0
s−3/2(1/p−1/p∗)s1/2−3/(2p) ds = C′(T )ε

in the case p < 2, where the constants are finite since p > 3
2 .

Consequently, we have an estimate of the form

E
(
sup
s≤t

|	ε
s − 	ε′

s |
)

≤ Cε + C

∫ t

0
s−1/2−3/2(1/p−1/r)E

(
sup
θ≤s

|	ε
θ − 	ε′

θ |
)
ds

for each fixed r ∈ (3, q), and Gronwall’s lemma yields

E
(
sup
s≤t

|	ε
s − 	ε′

s |
)

≤ C(T )ε(47)

for all ε ≥ ε′ > 0.
Estimates (43) and (47) thus show that (Xε − X0,	

ε) is a Cauchy sequence in
the Banach space of continuous processes (Y,�) with values in R

3 × R
3⊗3 and

finite norm E(supt∈[0,T ]|Yt | + |�t |). Write the limit in the form (X − X0,	), for
a continuous process (X,	) and define E 1

t and E 2
t by the relations

Xt = X0 + √
2ν

∫ t

0
1{s≥τ } dBs +

∫ t

0
K(w)(s,Xs)1{s≥τ } ds + E 1

t ,

(48)

	t = I3 +
∫ t

0
∇K(w)(s,Xs)	s1{s≥τ } ds + E 2

t .

Comparing (X,	) and (Xε,	ε), and using similar estimates as so far in this proof,
but with 0 instead of ε′ (and w instead of wε′

), we get that (X,	) satisfies (48)
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with E i
t = 0, i = 1,2. Since that is a linear s.d.e. (in McKean’s sense), the proof

that (X,	) is the asserted nonlinear process will be achieved by checking that for
all bounded Lipschitz function f : R3 → R

3, one has

E
(
f(Xt)	th(τ,X0)1{s≥τ }

) =
∫

R3
f(x)w(t, x) dx.

The latter follows from the facts that

E
(
f(Xε

t )	
ε
t h(τ,X0)1{s≥τ }

) =
∫

R3
f(x)wε(t, x) dx

and ∣∣E(
f(Xt)	th(τ,X0)1{s≥τ }

) − E
(
f(Xε

t )	
ε
t h(τ,X0)1{s≥τ }

)∣∣
≤ (‖	‖L∞([0,T ]×�) + 1

)‖h‖∞‖f‖LipE(|Xt − Xε
t | + |	t − 	ε

t |)(49)

≤ C‖f‖Lipε. �

REMARK 4.12. (a) By Lemma 4.10(i), the process (Xε,	ε) defined in (36)
is a solution in [0, T ] of the nonlinear s.d.e.:

(i) Xε
t = X0 + √

2ν

∫ t

0
1{s≥τ } dBs +

∫ t

0
Kε(ρ̃ε)(s,Xε

s )1{s≥τ } ds,

(ii) 	ε
t = I3 +

∫ t

0
∇Kε(ρ̃ε)(s,Xε

s )	
ε
s1{s≥τ } ds and

(50)
(iii) the law P ε of (τ,Xε,	ε) belongs to P T

b,3/2 and

P̃ ε
t (dx) = ρ̃ε(t, x) dx.

(b) It is also possible to associate a unique pathwise solution of (29) with any
solution w ∈ F0,p,T ∩ F0,1,T of the mild vortex equation (i.e., not necessarily the
one given by Theorem 3.6). This can be done by an approximation argument sim-
ilar to the previous one, but considering linear processes in the sense of McKean
[with drift terms Kε(w) and ∇Kε(w)] instead of the processes (36).

(c) Denote now by WT the Wasserstein distance in P(CT ) associated with the
metric in CT := [0, T ] × C([0, T ],R

3 × R
3⊗3)

d((θ, y,ψ), (η, x,φ))

= |θ − η| + sup
t∈[0,T ]

(
min{|x(t) − y(t)|,1} + min{|ψ(t) − φ(t)|,1}).

Then, the previous proof states that

WT (P ε,P ) ≤ C(T )ε,

where P is the law of the nonlinear process (29).
(d) By the regularity results of Section 3, one can prove in a similar way as in

Corollary 4.3 of [9] that the stochastic flow (6) is of class C1, in spite of the fact
that u and ∇u are singular at t = 0. Thus, identity (7) holds.
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5. The stochastic vortex method. We first consider a McKean–Vlasov model
with mollified interaction and cutoff. This extends the model studied in [9] to the
present situation involving random space–time births.

Denote by Mε the sup-norm of Kε on R
3 and by Lε a Lipschitz constant for

it, which, respectively, behave like 1
ε3 and 1

ε4 when ε � 1. Notice that divKε =
(divK) ∗ ϕε = 0.

For R > 0, we denote by χR : R3⊗3 → R
3⊗3 a Lipschitz continuous truncation

function such that |χR(φ)| ≤ R. We may and shall assume that χR has Lipschitz
constant less than or equal to 1.

Consider now a filtered probability space endowed with an adapted standard
three-dimensional Brownian motion B and with a [0, T ]×R

3-valued random vari-
able (τ,X0) independent of B and with law P0.

THEOREM 5.1. There is existence and uniqueness (pathwise and in law) for
the nonlinear process with random space–time births, nonlinear in the sense of
McKean

X
ε,R
t = X0 + √

2ν

∫ t

0
1{s≥τ } dBs +

∫ t

0
uε,R(s,Xε,R

s )1{s≥τ } ds

(51)

	
ε,R
t = I3 +

∫ t

0
∇uε,R(s,Xε,R

s )χR(	ε,R
s )1{s≥τ } ds

with

uε,R(s, x) = E
[
Kε(x − Xε,R

s ) ∧ χR(	ε,R
s )h(τ,X0)1{s≥τ }

]
.(52)

The proof is based in the classic contraction argument of Sznitmann [26] and is
not hard to obtain by combining elements of Theorems 5.1 in [9] and Theorem 3.1
in [11].

Consider next a probability space endowed with a sequence (Bi)i∈N of indepen-
dent three-dimensional Brownian motions, and a sequence of independent random
variables (τ i,Xi

0)i∈N with law P0 and independent of the Brownian motions. For
each n ∈ N and R,ε > 0, we define the following system of interacting particles:

X
i,ε,R,n
t = Xi

0 + √
2ν

∫ t

0
1{s≥τ i} dBi

s

+
∫ t

0

1

n

∑
j �=i

Kε(X
i,ε,R,n
s − Xj,ε,R,n

s )

∧ χR(	j,ε,R,n
s )h(τ j ,X

j
0)1{s≥τ i ,τ j } ds,

(53)

	
i,ε,R,n
t = I3 +

∫ t

0

1

n

∑
j �=i

[∇Kε(X
i,ε,R,n
s − Xj,ε,R,n

s )

∧ χR(	j,ε,R,n
s )h(τ j ,X

j
0)]

× χR(	i,ε,R,n
s )1{s≥τ i ,τ j } ds,
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for i = 1, . . . , n, and with ∇K(y) ∧ z = ∇y(K(y) ∧ z) for y, z ∈ R
3, y �= 0. Path-

wise existence and uniqueness can be proved by adapting standard arguments,
thanks to the Lipschitz continuity of the coefficients.

In the same probability space, we also consider the sequence

X
i,ε,R
t = Xi

0 + √
2ν

∫
0

1{s≥τ i} dBi
s +

∫ t

0
uε,R(s,Xi,ε,R

s )1{s≥τ i} ds,

(54)

	
i,ε,R
t = I3 +

∫ t

0
∇uε,R(s,Xi,ε,R

s )χR(	i,ε,R
s )1{s≥τ i} ds, i ∈ N,

of independent copies of (51). Their common law in CT is denoted by P ε,R , and
we write h̄ := ‖w0‖1 + ‖g‖1,T . Recall that χR is a Lipschitz-continuous function,
bounded by R > 0 and with Lipschitz constant less than or equal to 1. It is not hard
to adapt the proof of Theorem 5.2 in [9] to get the following:

THEOREM 5.2. For ε > 0 sufficiently small and all R > 0, we have

E

[
sup

t∈[0,T ]
{|Xi,ε,R,n

t − X
i,ε,R
t | + |	i,ε,R,n

t − 	
i,ε,R
t |}

]
≤ 1√

n
C(ε,R, h̄, T )(55)

for all i ≤ n, where

C(ε,R, h̄, T ) = C1ε(1 + Rh̄T )(Rh̄T ) exp{C2ε
−9h̄T (R + 1)(h̄ + RT )}

for some positive constants C1,C2 independent of R, ε, T and h̄.

Let us now make the assumptions of Theorem 3.6, and consider, in the corre-
sponding time interval [0, T ], independent copies (Xi,ε,	i,ε) and (X,	i) of the
processes (29) and (50) constructed on the given data (Xi

0, τ
i,Bi), i ∈ N.

Recall again that the uniform bound of Theorem 3.8(iii) and Gronwall’s lemma
imply that the processes 	ε are uniformly bounded, say

sup
t∈[0,T ],ε≥0,ω∈�

|	ε
t (ω)| ≤ R◦(T ,w0)

for some finite positive constant R◦(T ,w0). Thus, for any R ≥ R◦, one has for all
t ∈ [0, T ] that

(X
i,ε
t ,	

i,ε
t ) = (X

i,ε
t , χR(	

i,ε
t )).

Consequently, (Xi,ε,	i,ε) is a pathwise solution in [0, T ] of (54), and so we con-
clude that

(Xi,ε,	i,ε) = (Xi,ε,R,	i,ε,R)

almost surely. Bringing it all together, we obtain the following pathwise approxi-
mation result:
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THEOREM 5.3. Assume that (H1) and (Hp) hold with p ∈ (3
2 ,3) and that

the hypothesis of Theorem 3.6(i) is satisfied. Let Kε be defined as in (20), with
ϕ a cutoff function of order 1 and write h̄ = ‖w0‖1 + ‖g‖1,T . Let, furthermore,
R ≥ R◦(T ,w0) and

εn = (cα lnn)−1/9

with

0 < cα < α
(
C2h̄T (R + 1)(h̄ + RT )

)−1

for some alpha α ∈ (0, 1
2). Then, we have for all i ≤ n,

E

[
sup

t∈[0,T ]
{|Xi,εn,R,n

t − Xi
t | + |	i,εn,R,n

t − 	i
t |}

]

(56)

≤ C(T ,w0,g, α)

[
1

n1/2−α(lnn)1/9 + 1

(lnn)1/9

]
,

where (X,	) is the unique pathwise solution of (29), and the constant C(T ,w0,

g, α) depends on the data w0 and g only through the quantities ‖w0‖p,‖|g‖|0,p,T

and ‖w0‖1 + ‖g‖1,T .

REMARK 5.4. (i) The rate at which the second term in the right-hand side of
(56) goes to 0 is exactly that of ε = εn. The logarithmic order of latter was needed
to make the upper bound in Theorem 5.2 go to 0 with n, which then happens at an
algebraic rate. The global rate is, therefore, conditioned by the techniques used in
the proof of Theorem 5.2 (see [9] for details). Under additional regularity assump-
tions, it is possible by analytic arguments to slightly improve the convergence rate
(see the discussion at the end). An attempt for a more substantial improvement
should, however, exploit specific features of the interaction at the level of the par-
ticle systems.

(ii) The previous result implies as usual that WT (law(Xi,ε,R,n,	i,ε,R,n),P )

goes to 0 at least that fast, and that (with the obviously extended meaning of WT )

WT (law((X1,ε,R,n,	1,ε,R,n), . . . , (Xk,ε,R,n,	k,ε,R,n)),P ⊗k) ≤ kδn,

where δn stands for the quantity in the right-hand side of (56).

We deduce the convergence at the level of empirical processes:

COROLLARY 5.5. Under the assumptions of Theorem 5.3, the family
(μ̃

n,εn,R
t )0≤t≤T of R

3-weighted empirical measures on R
3

μ̃
n,εn,R
t := 1

n

n∑
i=1

δ
X

i,εn,R,n
t

· (χR(	
i,εn,R,n
t )h0(τ,X

i
0))1{t≥r}
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converges in probability to (w(t, x) dx)0≤t≤T in the space C([0, T ], M3(R
3)),

where M3(R
3) denotes the space of finite R

3-valued measures on R
3 endowed

with the weak topology. Moreover, we have

sup
t∈[0,T ],‖f‖Lip≤1

E|〈μ̃n,εn,R
t − w(t), f〉|

≤ C

[
1√
n

+ 1

n1/2−α(lnn)1/9 + 1

(lnn)1/9

]
,

where ‖f‖Lip is the usual norm in the space of bounded Lipshitz continuous func-
tions f : R3 → R

3.

PROOF. It is enough to prove the bound for Lipshitz bounded functions. For
such a function f : R3 → R

3, it holds that

|〈μ̃n,εn,R
t , f〉 − 〈w(t), f〉|

≤
∣∣∣∣∣〈μ̃n,εn,R

t , f〉 − 1

n

n∑
i=1

f(Xi,εn,R
t ) ∧ (χR(	

i,εn,R
t ))h(τ,Xi

0)1{τ≥t}
∣∣∣∣∣

+
∣∣∣∣∣
1

n

n∑
i=1

f(Xi,εn,R
t ) ∧ (χR(	

i,εn,R
t ))h(τ,Xi

0)1{τ≥t}(57)

−
∫

CT

f(y(t)) ∧ χR(φ(t))h(θ, x(0))P εn,R(dθ, dy, dφ)

∣∣∣∣∣
+ |〈wεn(t) − w(t), f〉|

with P εn,R = P εn = law(τ,Xi,εn,R,	i,εn,R). The independence of the processes
(τ i,Xi,εn,R,	i,εn,R), i ∈ N, and the definition of h imply that the expectation of
the second term in the right-hand side of (57) is bounded by 1√

n
2‖f‖LipRh̄, where

h̄ = (‖w0‖1 +‖g‖1,T ). We use the latter and estimate in Theorem 5.2 to bound the
first term, and get that

E|〈μ̃n,εn,R
t − w(t), f〉|
≤ ‖f‖Lip(R + 1)h̄

1√
n
C(εn,R, h̄, T )

+ 2‖f‖LipRh̄√
n

+ |〈wεn − w(t), f〉|.
The last term being equal to the first term in (49), the conclusion follows. �

REMARK 5.6. In the case g = 0, Philipowski [22] obtained a similar approx-
imation result of the vorticity field, for a simpler particle system, under the addi-
tional assumption that the test function f belongs to Lp∗

.
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Finally, we establish an approximation result with convergence rate for the ve-
locity field. To that end, we need to strengthen the already shown convergence of
wε to w. We will need the following:

LEMMA 5.7. For each p̃ ∈ (3
2 ,p), there is a constant C(T , p̃) such that

sup
t∈[0,T ]

t3/(2p̃)‖∇wε(t) − ∇w(t)‖p̃ ≤ C(T , p̃)ε.

PROOF. We need p̃ ∈ (3
2 ,3) in order to dispose from a integrable (in time)

bound for ‖D2Kε(wε)(t)‖3p̃/(3−p̃), which we do not have for p̃ = p. Indeed, for

any p̃ in that interval we have q̃ := 3p̃
3−p̃

∈ (3,
3p

3−p
), and so by Theorem 3.8(i) and

Lemma 3.7 we have for k, j, i = 1,2,3 that

sup
t∈[0,T ],ε≥0

t3/2(1/p−1/q̃)

∥∥∥∥∂Kε(wε)j

∂xi

∥∥∥∥
q̃

(58)

+ sup
t∈[0,T ],ε≥0

t1/2+3/2(1/p−1/q̃)

∥∥∥∥∂2Kε(wε)j

∂xi ∂xk

∥∥∥∥
q̃

< ∞

with −1
2 − 3

2( 1
p

− 1
q̃
) = −1 + 3

2( 1
p̃

− 1
p
) > −1. Let us now check that one has

sup
ε≥0

‖|wε‖1,p̃,T < ∞.(59)

This is not immediate, since T > 0 given by Theorem 3.6 was determined by the
norm of w0 and of the operator Bε in the spaces corresponding to the parame-
ter p > p̃. We will prove (59) using continuity properties of the operators Bε . It
follows from Proposition 3.1(iii) in [9] that for 3

2 ≤ r < 3 and 3r
6−r

≤ r ′ ≤ r , one
has

sup
ε≥0

‖|Bε(v,v)‖|1,r ′,T ≤ Cr,r ′(T )(‖|v‖|1,r,T )2(60)

for some finite constant Cr,r ′(T ). From this, we deduce that wε ∈ F1,p̃,T , with a
uniform (in ε) bound, by the following iterative procedure. Define a real sequence
by r0 = p̃, rn+1 = 6rn

3+rn
, and notice that it is increasingly convergent to 3. We can

thus take N ∈ N such that rN < p ≤ rN+1. The function s �→ 3s
6−s

being increasing

on [0,6], we then have 3p
6−p

≤ 3rN+1
6−rN+1

= rN . By (60) with r = p and r ′ = rN , we
see that Bε(wε,wε) ∈ F1,rN ,T , and since also w0 ∈ F1,rN ,T holds by Lemma 3.4(i)
(taking rN in the place of p and r therein), we get that wε ∈ F1,rN ,T , with a bound
in that space that is uniform in ε. We repeat the previous arguments with r = rN
and r ′ = 3rN

6−rN
= rN−1 and get that wε ∈ F1,rN−1,T , with a bound that is a uniform

in ε. Continuing N − 1 times this scheme we get (59).
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We now take derivatives in the mild vortex equation with ε ≥ 0 (as justified in
the proof of Proposition 3.1 in [9]),

∂(wε)k

∂xi

(t, x) =
∫

R3

∂Gν
t

∂xi

(x − y)(w0)k(y) dy +
∫ t

0

∫
R3

∂Gν
t

∂xi

(x − y)g(0, y) dy ds

−
∫ t

0

3∑
j=1

∫
R3

∂Gν
t−s

∂xi

(x − y)

[
Kε(wε)j (s, y)

∂wε
k(s, y)

∂yj

− wε
j (s, y)

∂Kε(wε)k(s, y)

∂yj

]
dy ds

for k = 1,2,3. Notice now that, thanks to the estimates (59), Lemma 4.10(ii) also
holds with p replaced by p̃. By estimates as those in the proof of Theorem 3.6(i)
and using Lemma 4.10(ii) and estimates (58) and (59), we then have

‖∇wε(t) − ∇w(t)‖p̃

≤ C

∫ t

0
(t − s)−3/(2p̃)s−1/2[‖wε(s) − w(s)‖p̃

+ ‖Kε(w)(s) − K(w)(s)‖q̃]ds

+ C

∫ t

0
(t − s)−3/(2p̃)[‖∇wε(s) + ∇w(s)‖p̃

+ ‖∇Kε(w)(s) − ∇K(w)(s)‖q̃]ds

≤ Cεt1−3/p̃ + Cε

∫ t

0
(t − s)−3/(2p̃)s−1+3/(2p̃)−3/(2p) ds

+ C

∫ t

0
(t − s)−3/(2p̃)‖∇wε(s) − ∇w(s)‖p̃ ds

≤ Cεt−3/(2p̃) + C

∫ t

0
(t − s)−3/(2p̃)‖∇wε(s) − ∇w(s)‖p̃ ds.

Iterating the latter sufficiently many times (using the identity quoted in the proof
of Theorem 3.6) (i), we obtain that

‖∇wε(t) − ∇w(t)‖p̃ ≤ Cε
(
t−3/(2p̃) + 1

)
(61)

+ C(T )

∫ t

0
‖∇wε(s) − ∇w(s)‖p̃ ds.

Integrating (61) in time and using Gronwall’s lemma, and then inserting the ob-
tained bound in the right-hand side of (61), we obtain

‖∇wε(t) − ∇w(t)‖p̃ ≤ Cε
(
t−3/(2p̃) + 1

)
,(62)

and the convergence statement for ∇wε follows. �
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COROLLARY 5.8. Consider fixed real numbers p̃ ∈ (3
2 ,3) and α ∈ (0, 1

2).
Under the assumptions of Theorem 5.3, there exists a constant C depending on
p̃, T ,‖w0‖p,‖|g‖|0,p,T ,‖w0‖1 + ‖g‖1,T and α, such that for all n ∈ N,

sup
t∈[0,T ]

γ (t)E
(|Kεn(μ̃n,εn,R)(t, x) − u(t, x)|)

≤ C
(

(lnn)1/3

n1/2−α
+ (lnn)1/3

√
n

+ 1

(lnn)1/9

)
,

where γ (t) = (t3/(2p̃) + t1−3/2(1/p̃−1/p)).

PROOF. For all (t, x) ∈ [0, T ] × R
3, it holds that

|Kεn(μ̃n,εn,R)(t, x) − u(t, x)|

≤
∣∣∣∣∣Kεn(μ̃n,εn,R)(t, x)

− 1

n

n∑
i=1

Kεn(x − X
i,εn,R
t ) ∧ (χR(	

i,εn,R
t ))h(τ,Xi

0)1{τ≥t}
∣∣∣∣∣

(63)

+
∣∣∣∣∣
1

n

n∑
i=1

Kεn(x − X
i,εn,R
t ) ∧ (χR(	

i,εn,R
t ))h(τ,Xi

0)1{τ≥t}

−
∫

CT

Kεn

(
x − y(t)

) ∧ χR(φ(t))h(θ, x(0))P εn,R(dθ, dy, dφ)

∣∣∣∣∣
+ |Kεn(wεn)(t, x) − u(t, x)|

with P εn,R as in Corollary 5.5. By similar reasons as in (57), the expectation of the
second term is now bounded by 1√

n
2MεnRh̄. With the estimate in Theorem 5.2 we

get that

E|Kεn(μ̃
n,εn,R)(t, x) − u(t, x)|

≤ (LεnR + Mεn)h̄
1√
n
C(εn,R, h̄, T )

+ 2MεnRh̄√
n

+ ‖Kεn(wεn)(t) − K(w)(t)‖∞.

Thus, from the estimates for Lε and Mε we deduce that for fixed p̃ ∈ (3
2 ,3),

E|Kεn(μ̃
n,εn,R)(t, x) − u(t, x)|

≤ C(1 + Rh̄T )(Rh̄T )
(c lnn)1/3

n1/2−α
+ CRh̄

(c lnn)1/3
√

n

+ ‖wεn(t) − w(t)‖W 1,p̃ + ‖Kεn(w)(t) − K(w)(t)‖W 1,q̃ ,
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where q̃ = 3p̃
3−p̃

<
3p

3−p
. We have used here again the Sobolev inclusions quoted in

the proof of Theorem 3.8, and Lemma 3.3. Now, by Lemmas 3.7 and 4.9, one has

‖∇Kεn(w)(t) − ∇K(w)(t)‖q̃ ≤ C‖ϕεn ∗ w(t) − w(t)‖q̃ ≤ Cεn‖∇w(t)‖q̃

≤ Ct−1+3/2(1/p̃−1/p)εn,

where we have also used part (i) of Theorem 3.8 in the last inequality. On the other
hand,

‖Kεn(w)(t) − K(w)(t)‖q̃ ≤ C‖ϕεn ∗ w(t) − w(t)‖p̃ ≤ Cεn‖∇w(t)‖p̃ ≤ Ct−1/2εn

thanks to the estimate (59). From the previous estimates and Lemmas 4.10 and 5.7,
we deduce that

E|Kεn(μ̃
n,εn,R)(t, x) − u(t, x)|

≤ C
(lnn)1/3

n1/2−α
+ C

(lnn)1/3
√

n

+ Cεn

(
t−3/(2p̃) + t−1/2 + t−1+3/2(1/p̃−1/p)),

and the statement follows. �

6. Convergence rate under additional regularity assumptions. Let us fi-
nally explain how the convergence rate can be slightly improved by assuming fur-
ther regularity of the data w0 and g. Since it is an adaptation of the developments
in the previous sections, we only sketch the main arguments.

First, it is possible to show that if the data w0 and g are such that

‖w0‖Wm,p , sup
t∈[0,T ]

‖g(t)‖Wm,p < ∞(64)

for some integer m ≥ 1, then the mild solutions wε , ε ≥ 0, given by Theorem 3.6
belong to the space Fm+1,p,T of functions v(t) such that

m−1∑
i=1

‖|Div‖|0,p,T + ‖|Dmv‖|1,p,T < ∞,

where Di stands for the ith order space derivative. To prove this, one easily first
checks that w0 belongs to that space, since the successive derivatives in the convo-
lutions the heat kernel can be applied to the data w0 and g. On the other hand, on
can show by induction that the bilinear operators Bε are continuous in Fm+1,p,T ,
and more generally, in the naturally generalized versions Fm+1,r,(T ;p) of the space
F1,r,(T ;p). That is, the spaces of functions v such that

m−1∑
i=1

‖|Div‖|0,r,(T ;p) + ‖|Dmv‖|1,r,(T ;p)
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is finite. From this, one gets a local existence result in the space Fm+1,p,T , from
which a regularity result can be obtained by arguments that can be adapted from
those in the proof Theorem 3.2 in [9]. Moreover, one also checks that the norms
‖|wε‖|m+1,r,(T ;p) are bounded uniformly in ε ≥ 0.

Now, we impose additional conditions on the regularizing kernel ϕ, namely:

(i)
∫
R3 ϕ(x)dx = 1.

(ii)
∫
R3 |x|m+1|ϕ(x)|dx < ∞.

(iii)
∫
R3 xi1 · · ·xir ϕ(x) dx = 0 for all i1, . . . , ir ∈ {1,2,3} and r ≤ m.

Such function is called a cutoff function of order m + 1. Then, one has the follow-
ing approximation result (see Lemma 4.4 in [23]):

‖ϕε ∗ w − w‖r ≤ Cεm+1‖Dm+1w‖r

for all w ∈ Wm+1,r . Therefore, without any modification, for such function ϕ, the
proofs of Lemmas 4.10 and 5.7 yield the same convergence results but at rate εm+1.

By following exactly the same steps as in the previous section, we finally de-
duce:

THEOREM 6.1. Assume the hypotheses of Theorems 5.3 and, moreover, that
(64) holds for some integer m ≥ 1 and that ϕ is a cutoff of order m + 1. Then, we
have for all i ≤ n,

E

[
sup

t∈[0,T ]
{|Xi,εn,R,n

t − Xi
t | + |	i,εn,R,n

t − 	i
t |}

]

≤ C(T ,w0,g, α)

[
1

n1/2−α(lnn)1/9 + 1

(lnn)(m+1)/9

]

and

sup
t∈[0,T ],x∈R3

γ (t)E
(|Kεn(μ̃n,εn,R)(t, x) − u(t, x)|)

≤ C
(

(lnn)1/3

n1/2−α
+ (lnn)1/3

√
n

+ 1

(lnn)(m+1)/9

)
,

where γ (t) was defined in Corollary 5.8, where the constants now, moreover, de-
pend on m.
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