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NUMERICAL METHOD FOR OPTIMAL STOPPING OF
PIECEWISE DETERMINISTIC MARKOV PROCESSES1

BY BENOÎTE DE SAPORTA, FRANÇOIS DUFOUR AND KAREN GONZALEZ

Université de Bordeaux

We propose a numerical method to approximate the value function for
the optimal stopping problem of a piecewise deterministic Markov process
(PDMP). Our approach is based on quantization of the post jump location—
inter-arrival time Markov chain naturally embedded in the PDMP, and path-
adapted time discretization grids. It allows us to derive bounds for the conver-
gence rate of the algorithm and to provide a computable ε-optimal stopping
time. The paper is illustrated by a numerical example.

1. Introduction. The aim of this paper is to propose a computational method
for optimal stopping of a piecewise deterministic Markov process {X(t)} by using
a quantization technique for an underlying discrete-time Markov chain related to
the continuous-time process {X(t)} and path-adapted time discretization grids.

Piecewise-deterministic Markov processes (PDMPs) have been introduced in
the literature by Davis [6] as a general class of stochastic models. PDMPs are a
family of Markov processes involving deterministic motion punctuated by random
jumps. The motion of the PDMP {X(t)} depends on three local characteristics,
namely the flow φ, the jump rate λ and the transition measure Q, which specifies
the post-jump location. Starting from x the motion of the process follows the flow
φ(x, t) until the first jump time T1 which occurs either spontaneously in a Poisson-
like fashion with rate λ(φ(x, t)) or when the flow φ(x, t) hits the boundary of the
state-space. In either case the location of the process at the jump time T1 :X(T1) =
Z1 is selected by the transition measure Q(φ(x,T1), ·). Starting from Z1, we now
select the next interjump time T2 − T1 and postjump location X(T2) = Z2. This
gives a piecewise deterministic trajectory for {X(t)} with jump times {Tk} and
post jump locations {Zk} which follows the flow φ between two jumps. A suitable
choice of the state space and the local characteristics φ, λ and Q provide stochastic
models covering a great number of problems of operations research [6].

Optimal stopping problems have been studied for PDMPs in [3, 5, 6, 9, 11, 13].
In [11] the author defines an operator related to the first jump time of the process
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and shows that the value function of the optimal stopping problem is a fixed point
for this operator. The basic assumption in this case is that the final cost function
is continuous along trajectories, and it is shown that the value function will also
have this property. In [9, 13] the authors adopt some stronger continuity assump-
tions and boundary conditions to show that the value function of the optimal stop-
ping problem satisfies some variational inequalities related to integro-differential
equations. In [6], Davis assumes that the value function is bounded and locally
Lipschitz along trajectories to show that the variational inequalities are necessary
and sufficient to characterize the value function of the optimal stopping problem.
In [5], the authors weakened the continuity assumptions of [6, 9, 13]. A paper re-
lated to our work is [3] by Costa and Davis. It is the only one presenting a compu-
tational technique for solving the optimal stopping problem for a PDMP based on
a discretization of the state space similar to the one proposed by Kushner in [12].
In particular, the authors in [3] derive a convergence result for the approximation
scheme but no estimation of the rate of convergence is derived.

Quantization methods have been developed recently in numerical probability,
nonlinear filtering or optimal stochastic control with applications in finance [1, 2,
14–17]. More specifically, powerful and interesting methods have been developed
in [1, 2, 17] for computing the Snell-envelope associated to discrete-time Markov
chains and diffusion processes. Roughly speaking, the approach developed in [1,
2, 17] for studying the optimal stopping problem for a continuous-time diffusion
process {Y(t)} is based on a time-discretization scheme to obtain a discrete-time
Markov chain {Y k}. It is shown that the original continuous-time optimization
problem can be converted to an auxiliary optimal stopping problem associated
with the discrete-time Markov chain {Y k}. Under some suitable assumptions, a rate
of convergence of the auxiliary value function to the original one can be derived.
Then, in order to address the optimal stopping problem of the discrete-time Markov
chain, a twofold computational method is proposed. The first step consists in ap-
proximating the Markov chain by a quantized process. There exists an extensive
literature on quantization methods for random variables and processes. We do not
pretend to present here an exhaustive panorama of these methods. However, the
interested reader may, for instance, consult [10, 14, 17] and the references therein.
The second step is to approximate the conditional expectations which are used
to compute the backward dynamic programming formula by the conditional ex-
pectation related to the quantized process. This procedure leads to a tractable for-
mula called a quantization tree algorithm (see Proposition 4 in [1] or Section 4.1
in [17]). Providing the cost function and the Markov kernel are Lipschitz, some
bounds and rates of convergence are obtained (see, e.g., Section 2.2.2 in [1]).

As regards PDMPs, it was shown in [11] that the value function of the optimal
stopping problem can be calculated by iterating a functional operator, labeled L

[see (3.5) for its definition], which is related to a continuous-time maximization
and a discrete-time dynamic programming formula. Thus, in order to approximate
the value function of the optimal stopping problem of a PDMP {X(t)}, a natural
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approach would have been to follow the same lines as in [1, 2, 17]. However, their
method cannot be directly applied to our problem for two main reasons related to
the specificities of PDMPs.

First, PDMPs are in essence discontinuous at random times. Therefore, as
pointed out in [11], it will be problematic to convert the original optimization
problem into an optimal stopping problem associated to a time discretization of
{X(t)} with nice convergence properties. In particular, it appears ill-advised to
propose as in [1] a fixed-step time-discretization scheme {X(k�)} of the original
process {X(t)}. Besides, another important intricacy concerns the transition semi-
group {Pt }t∈R+ of {X(t)}. On the one hand, it cannot be explicitly calculated from
the local characteristics (φ,λ,Q) of the PDMP (see [4, 7]). Consequently, it will
be complicated to express the Markov kernel P� associated with the Markov chain
{X(k�)}. On the other hand, the Markov chain {X(k�)} is, in general, not even a
Feller chain (see [6], pages 76 and 77), and therefore it will be hard to ensure it is
K-Lipschitz (see Definition 1 in [1]).

Second, the other main difference stems from the fact that the function appear-
ing in the backward dynamic programming formula associated with L and the
reward function g is not continuous even if some strong regularity assumptions
are made on g. Consequently, the approach developed in [1, 2, 17] has to be re-
fined since it can only handle conditional expectations of Lipschitz-continuous
functions.

However, by using the special structure of PDMPs, we are able to overcome
both these obstacles. Indeed, associated to the PDMP {X(t)}, there exists a nat-
ural embedded discrete-time Markov chain {�k} with �k = (Zk, Sk) where Sk is
given by the inter-arrival time Tk − Tk−1. The main operator L can be expressed
using the chain {�k} and a continuous-time maximization. We first convert the
continuous-time maximization of operator L into a discrete-time maximization by
using a path-dependent time-discretization scheme. This enables us to approximate
the value function by the solution of a backward dynamic programming equation
in discrete-time involving conditional expectation of the Markov chain {�k}. Then,
a natural approximation of this optimization problem is obtained by replacing {�k}
by its quantized approximation. It must be pointed out that this optimization prob-
lem is related to the calculation of conditional expectations of indicator functions
of the Markov chain {�k}. As said above, it is not straightforward to obtain con-
vergence results as in [1, 2, 17]. We deal successfully with indicator functions
by showing that the event on which the discontinuity actually occurs is of small
enough probability. This enables us to provide a rate of convergence for the ap-
proximation scheme.

In addition, and more importantly, this numerical approximation scheme en-
ables us to propose a computable stopping rule which also is an ε-optimal stopping
time of the original stopping problem. Indeed, for any ε > 0 one can construct a
stopping time, labeled τ , such that

V (x) − ε ≤ Ex[g(X(τ))] ≤ V (x),
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where V (x) is the optimal value function associated to the original stopping prob-
lem. Our computational approach is attractive in the sense that it does not require
any additional calculations. Moreover, we can characterize how far it is from op-
timal in terms of the value function. In [1], Section 2.2.3, Proposition 6, another
criteria for the approximation of the optimal stopping time has been proposed. In
the context of PDMPs, it must be noticed that an optimal stopping time does not
generally exist as shown in [11], Section 2.

An additional result extends Theorem 1 of Gugerli [11] by showing that the iter-
ation of operator L provides a sequence of random variables which corresponds to
a quasi-Snell envelope associated with the reward process {g(X(t))}t∈R+ where
the horizon time is random and given by the jump times (Tn)n∈{0,...,N} of the
process {X(t)}t∈R+ .

The paper is organized as follows. In Section 2 we give a precise definition of
PDMPs and state our notation and assumptions. In Section 3, we state the opti-
mal stopping problem, recall and refine some results from [11]. In Section 4, we
build an approximation of the value function. In Section 5, we compute the error
between the approximate value function and the real one. In Section 6 we pro-
pose a computable ε-optimal stopping time and evaluate its sharpness. Finally in
Section 7 we present a numerical example. Technical results are postponed to the
Appendix.

2. Definitions and assumptions. We first give a precise definition of a piece-
wise deterministic Markov process. Some general assumptions are presented in the
second part of this section. Let us introduce first some standard notation. Let M

be a metric space. B(M) is the set of real-valued, bounded, measurable functions
defined on M . The Borel σ -field of M is denoted by B(M). Let Q be a Markov
kernel on (M, B(M)) and w ∈ B(M), Qw(x) = ∫

M w(y)Q(x, dy) for x ∈ M . For
(a, b) ∈ R

2, a ∧ b = min(a, b) and a ∨ b = max(a, b).

2.1. Definition of a PDMP. Let E be an open subset of R
n, ∂E its boundary

and E its closure. A PDMP is determined by its local characteristics (φ,λ,Q)

where:
• The flow φ : Rn × R → R

n is a one-parameter group of homeomorphisms: φ

is continuous, φ(·, t) is an homeomorphism for each t ∈ R satisfying φ(·, t + s) =
φ(φ(·, s), t)).

For all x in E, let us denote

t∗(x)
.= inf{t > 0 :φ(x, t) ∈ ∂E}

with the convention inf ∅ = ∞.
• The jump rate λ :E → R+ is assumed to be a measurable function satisfying

(∀x ∈ E), (∃ε > 0) such that
∫ ε

0
λ(φ(x, s)) ds < ∞.
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• Q is a Markov kernel on (E, B(E)) satisfying the following property:

(∀x ∈ E), Q(x,E − {x}) = 1.

From these characteristics, it can be shown [6], pages 62–66, that there exists a fil-
tered probability space (�, F , {Ft}, {Px}x∈E) such that the motion of the process
{X(t)} starting from a point x ∈ E may be constructed as follows. Take a random
variable T1 such that

Px(T1 > t)
.=

{
e−�(x,t), for t < t∗(x),
0, for t ≥ t∗(x),

where for x ∈ E and t ∈ [0, t∗(x)]
�(x, t)

.=
∫ t

0
λ(φ(x, s)) ds.

If T1 generated according to the above probability is equal to infinity, then for
t ∈ R+, X(t) = φ(x, t). Otherwise select independently an E-valued random
variable (labelled Z1) having distribution Q(φ(x,T1), ·), namely Px(Z1 ∈ A) =
Q(φ(x,T1),A) for any A ∈ B(E). The trajectory of {X(t)} starting at x, for
t ≤ T1, is given by

X(t)
.=

{
φ(x, t), for t < T1,
Z1, for t = T1.

Starting from X(T1) = Z1, we now select the next inter-jump time T2 − T1 and
post-jump location X(T2) = Z2 is a similar way.

This gives a strong Markov process {X(t)} with jump times {Tk}k∈N (where
T0 = 0). Associated with {X(t)}, there exists a discrete time process (�n)n∈N

defined by �n = (Zn,Sn) with Zn = X(Tn) and Sn = Tn − Tn−1 for n ≥ 1 and
S0 = 0. Clearly, the process (�n)n∈N is a Markov chain.

We introduce a standard assumption (see, e.g., equations (24.4) or (24.8) in [6]).

ASSUMPTION 2.1. For all (x, t) ∈ E × R+, Ex[∑k 1{Tk≤t}] < ∞.

In particular, it implies that Tk → ∞ as k → ∞.
For n ∈ N, let Mn be the family of all {Ft }-stopping times which are dominated

by Tn, and for n < p, let Mn,p be the family of all {Ft }-stopping times ν satis-
fying Tn ≤ ν ≤ Tp . Let Bc denote the set of all real-valued, bounded, measurable
functions, w defined on E and continuous along trajectories up to the jump time
horizon: for any x ∈ E, w(φ(x, ·)) is continuous on [0, t∗(x)]. Let Lc be the set
of all real-valued, bounded, measurable functions, w defined on E and Lipschitz
along trajectories:

1. there exists [w]1 ∈ R+ such that for any (x, y) ∈ E2, u ∈ [0, t∗(x)∧ t∗(y)], one
has

|w(φ(x,u)) − w(φ(y,u))| ≤ [w]1|x − y|;



1612 B. DE SAPORTA, F. DUFOUR AND K. GONZALEZ

2. there exists [w]2 ∈ R+ such that for any x ∈ E, and (t, s) ∈ [0, t∗(x)]2, one has

|w(φ(x, t)) − w(φ(x, s))| ≤ [w]2|t − s|;
3. there exists [w]∗ ∈ R+ such that for any (x, y) ∈ E2, one has

|w(φ(x, t∗(x))) − w(φ(y, t∗(y)))| ≤ [w]∗|x − y|.
In the sequel, for any function f in Bc, we denote by Cf its bound

Cf = sup
x∈E

|f (x)|,

and for any Lipschitz-continuous function f in B(E) or B(E), we denote by [f ]
its Lipschitz constant

[f ] = sup
x �=y∈E

|f (x) − f (y)|
|x − y| .

REMARK 2.2. Lc is a subset of Bc and any function in Lc is Lipschitz on E

with [w] ≤ [w]1.

Finally, as a convenient abbreviation, we set for any x ∈ E, λQw(x) =
λ(x)Qw(x).

2.2. Assumptions. The following assumptions will be in force throughtout.

ASSUMPTION 2.3. The jump rate λ is bounded and there exists [λ]1 ∈ R+
such that for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)[,

|λ(φ(x,u)) − λ(φ(y,u))| ≤ [λ]1|x − y|.
ASSUMPTION 2.4. The exit time t∗ is bounded and Lipschitz-continuous

on E.

ASSUMPTION 2.5. The Markov kernel Q is Lipschitz in the following sense:
there exists [Q] ∈ R+ such that for any function w ∈ Lc the following two condi-
tions are satisfied:

1. for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)], one has

|Qw(φ(x,u)) − Qw(φ(y,u))| ≤ [Q][w]1|x − y|;
2. for any (x, y) ∈ E2, one has

|Qw(φ(x, t∗(x))) − Qw(φ(y, t∗(y)))| ≤ [Q][w]∗|x − y|.
The reward function g associated with the optimal stopping problem satisfies

the following hypothesis.

ASSUMPTION 2.6. g is in Lc.
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3. Optimal stopping problem. From now on, assume that the distribution of
X(0) is given by δx0 for a fixed state x0 ∈ E. Let us consider the following optimal
stopping problem for a fixed integer N :

sup
τ∈MN

Ex0[g(X(τ))].(3.1)

This problem has been studied by Gugerli [11].
Note that Assumption 2.3 yields �(x, t) < ∞ for all x, t . Hence, for all x in E,

the jump time horizon s∗(x) defined in [11] by t∗(x) ∧ inf{t ≥ 0, e−�(x,t) = 0}
is equal to the exit time t∗(x). Therefore, operators H : B(E) → B(E × R+),
I : B(E) → B(E × R+), J : B(E) × B(E) → B(E × R+), K : B(E) → B(E) and
L : B(E) × Bc → Bc introduced by Gugerli ([11], Section 2) reduce to

Hf (x, t) = f
(
φ

(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)),

Iw(x, t) =
∫ t∧t∗(x)

0
λQw(φ(x, s))e−�(x,s) ds,

J (w,f )(x, t) = Iw(x, t) + Hf (x, t),(3.2)

Kw(x) =
∫ t∗(x)

0
λQw(φ(x, s))e−�(x,s) ds

(3.3)
+ Qw(φ(x, t∗(x)))e−�(x,t∗(x)),

L(w,h)(x) = sup
t≥0

J (w,h)(x, t) ∨ Kw(x).

It is easy to derive a probabilistic interpretation of operators H , I , K and L in
terms of the embedded Markov chain (Zn,Sn)n∈N.

LEMMA 3.1. For all x ∈ E, w ∈ B(E), f ∈ B(E), h ∈ Bc and t ≥ 0, one has

Hf (x, t) = f
(
φ

(
x, t ∧ t∗(x)

))
Px

(
S1 ≥ t ∧ t∗(x)

)
,

Iw(x, t) = Ex

[
w(Z1)1{S1<t∧t∗(x)}

]
,

Kw(x) = Ex[w(Z1)],(3.4)

L(w,h)(x) = sup
u≤t∗(x)

{
Ex

[
w(Z1)1{S1<u}

] + h(φ(x,u))Px(S1 ≥ u)
}

(3.5)
∨ Ex[w(Z1)].

For a reward function g ∈ Bc, it has been shown in [11] that the value function
can be recursively constructed by the following procedure:

sup
τ∈MN

Ex0[g(X(τ))] = v0(x0)

with {
vN = g,

vk = L(vk+1, g), for k ≤ N − 1.
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DEFINITION 3.2. Introduce the random variables (Vn)n∈{0,...,N} by

Vn = vn(Zn)

or equivalently

Vn = sup
u≤t∗(Zn)

{
E

[
vn+1(Zn+1)1{Sn+1<u} + g(φ(Zn,u))1{Sn+1≥u}|Zn

]}
(3.6)

∨ E[vn+1(Zn+1)|Zn].

The following result shows that the sequence (Vn)n∈{0,...,N} corresponds to a
quasi-Snell envelope associated with the reward process {g(X(t))}t∈R+ where the
horizon time is random and given by the jump times (Tn)n∈{0,...,N} of the process
{X(t)}t∈R+ :

THEOREM 3.3. Consider an integer n < N . Then

Vn = sup
ν∈Mn,N

Ex0[g(X(ν))|FTn].

PROOF. Let ν ∈ Mn,N . According to Proposition B.4 and Corollary B.6
in Appendix B, there exists ν̂ :E × (R+ × E)n × � → R+ such that for all
(z0, γ ) ∈ E × (R+ × E)n the mapping ν̂(z0, γ ) :� → R+ is an {Ft }t∈R+-
stopping time satisfying ν̂(z0, γ ) ≤ TN−n, and ν = Tn + ν̂(Z0,�n, θTn), where
�n = (S1,Z1, . . . , Sn,Zn) and θ is the shift operator. For (z0, γ ) ∈ E × (R+ ×E)n

define W :E × (R+ × E)n → R by

W (z0, γ ) = Ezn[g(X(̂ν(z0, γ )))] ≤ sup
τ∈MN−n

EZn[g(X(τ))],

where γ = (s1, z1, . . . , sn, zn). Hence, the strong Markov property of the process
{X(t)} yields

Ex0[g(X(ν))|FTn] = Ex0

[
g
(
X

(
Tn + ν̂(Z0,�n, θTn)

))|FTn

] = W(Z0,�n).

Consequently, one has

Ex0[g(X(ν))|FTn] ≤ sup
τ∈MN−n

EZn[g(X(τ))]

and, therefore, one has

sup
ν∈Mn,N

Ex0[g(X(ν))|FTn] ≤ sup
τ∈MN−n

EZn[g(X(τ))].(3.7)

Conversely, consider τ ∈ MN−n. It is easy to show that Tn + τ ◦ θTn ∈ Mn,N .
The strong Markov property of the process {X(t)} again yields

EZn[g(X(τ))] = Ex0

[
g
(
X(Tn + τ ◦ θTn)

)|FTn

] ≤ sup
ν∈Mn,N

Ex0[g(X(ν))|FTn]
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and hence we obtain

sup
τ∈MN−n

EZn[g(X(τ))] ≤ sup
ν∈Mn,N

Ex0[g(X(ν))|FTn].(3.8)

Combining equations (3.7) and (3.8), one has

sup
τ∈MN−n

EZn[g(X(τ))] = sup
ν∈Mn,N

Ex0[g(X(ν))|FTn].

Finally, it is proved in [11], Theorem 1, that vn(x) = supτ∈MN−n
Ex[g(X(τ))],

whence

Vn = sup
τ∈MN−n

EZn[g(X(τ))],

showing the result. �

4. Approximation of the value function. To approximate the sequence of
value functions (Vn), we proceed in two steps. First, the continuous-time maxi-
mization of operator L is converted into a discrete-time maximization by using a
path-dependent time-discretization scheme to give a new operator Ld . In partic-
ular, it is important to remark that these time-discretization grids depend on the
the post-jump locations {Zk} of the PDMP (see Definition 4.1 and Remark 4.2).
Second, the conditional expectations of the Markov chain (�k) in the definition
of Ld are replaced by the conditional expectations of its quantized approximation
(�̂k) to define an operator L̂d .

First, we define the path-adapted discretization grids as follows.

DEFINITION 4.1. For z ∈ E, set �(z) ∈ ]0, t∗(z)[. Define n(z) = int( t∗(z)
�(z)

) −
1, where int(x) denotes the greatest integer smaller than or equal to x. The set of
points (ti)i∈{0,...,n(z)} with ti = i�(z) is denoted by G(z). This is the grid associ-
ated with the time interval [0, t∗(z)].

REMARK 4.2. It is important to note that, for all z ∈ E, not only one has
t∗(z) /∈ G(z), but also maxG(z) = tn(z) ≤ t∗(z) − �(z). This property is crucial
for the sequel.

DEFINITION 4.3. Consider for w ∈ B(E) and z ∈ E,

Ld(w,g)(z) = max
s∈G(z)

{
E

[
w(Z1)1{S1<s} + g(φ(z, s))1{S1≥s}|Z0 = z

]}
∨ E[w(Z1)|Z0 = z].

Now let us turn to the quantization of (�n). The quantization algorithm will pro-
vide us with a finite grid ��

n ⊂ E × R+ at each time 0 ≤ n ≤ N as well as weights
for each point of the grid (see, e.g., [1, 14, 17]). Set p ≥ 1 such that �n has finite
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moments at least up to the order p and let pn be the closest-neighbor projection
from E × R+ onto ��

n (for the distance of norm p; if there are several equally
close neighbors, pick the one with the smallest index). Then the quantization of
�n is defined by

�̂n = (Ẑn, Ŝn) = pn(Zn,Sn).

We will also denote by �Z
n , the projection of ��

n on E, and by �S
n , the projection

of ��
n on R+.

In practice, one will first compute the quantization grids and weights, and then
compute a path-adapted time-grid for each z ∈ �Z

n , for all 0 ≤ n ≤ N − 1. Hence,
there is only a finite number of time grids to compute, and like the quantization
grids, they can be computed and stored off-line.

The definition of the discretized operators now naturally follows the characteri-
zation given in Lemma 3.1.

DEFINITION 4.4. For k ∈ {1, . . . ,N}, w ∈ B(�Z
k ), z ∈ �Z

k−1, and s ∈ R+

Ĵk(w,g)(z, s) = E
[
w(Ẑk)1{Ŝk<s} + g(φ(z, s))1{Ŝk≥s}|Ẑk−1 = z

]
,

K̂k(w)(z) = E[w(Ẑk)|Ẑk−1 = z],
L̂d

k (w,g)(z) = max
s∈G(z)

{Ĵk(w,g)(z, s)} ∨ K̂k(w)(z).

Note that �̂n is a random variable taking finitely many values, hence the expec-
tations above actually are finite sums, the probability of each atom being given by
its weight on the quantization grid. We can now give the complete construction of
the sequence approximating (Vn).

DEFINITION 4.5. Consider v̂N (z) = g(z) where z ∈ �Z
N and for k ∈ {1,

. . . ,N}
v̂k−1(z) = L̂d

k (v̂k, g)(z),(4.1)

where z ∈ �Z
k−1.

DEFINITION 4.6. The approximation of Vk is denoted by

V̂k = v̂k(Ẑk)(4.2)

for k ∈ {0, . . . ,N}.

5. Error estimation for the value function. We are now able to state our
main result, namely the convergence of our approximation scheme with an upper
bound for the rate of convergence.
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THEOREM 5.1. Set n ∈ {0, . . . ,N − 1}, and suppose that �(z), for z ∈ �z
n,

are chosen such that

min
z∈�z

n

{�(z)} > (2Cλ)
−1/2([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p)1/2.

Then the discretization error for Vn is no greater than the following:

‖Vn − V̂n‖p ≤ ‖Vn+1 − V̂n+1‖p + α‖�(Ẑn)‖p + βn‖Ẑn − Zn‖p

+ 2[vn+1]‖Ẑn+1 − Zn+1‖p

+ γ ([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p)1/2,

where α = [g]2 + 2CgCλ, βn = [vn] + [vn+1]1E2 + CgE4 + ([g]1 + [g]2[t∗]) ∨
([vn+1]∗[Q]), γ = 4Cg(2Cλ)

1/2, and E2 and E4 are defined in Appendix A.

Recall that VN = g(ZN) and V̂N = g(ẐN), hence ‖VN − V̂N‖p ≤ [g]‖ẐN −
ZN‖p . In addition, the quantization error ‖�n − �̂n‖p goes to zero as the number
of points in the grids goes to infinity (see, e.g., [14]). Hence |V0 − V̂0| can be made
arbitrarily small by an adequate choice of the discretizations parameters.

Remark that the square root in the last error term is the price to pay for integrat-
ing noncontinuous functions, see the definition of operator J with the indicator
functions, and the introduction of Section 5.2.

To prove Theorem 5.1, we split the left-hand side difference into four terms

‖Vn − V̂n‖p ≤
4∑

i=1

�i,

where

�1 = ‖vn(Zn) − vn(Ẑn)‖p,

�2 = ‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p,

�3 = ‖Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)‖p,

�4 = ‖L̂d
n+1(vn+1, g)(Ẑn) − L̂d

n+1(v̂n+1, g)(Ẑn)‖p.

The first term is easy enough to handle thanks to Proposition A.7 in Appendix A.2.

LEMMA 5.2. A upper bound for �1 is

‖vn(Zn) − vn(Ẑn)‖p ≤ [vn]‖Zn − Ẑn‖p.

We are going to study the other terms one by one in the following sections.

5.1. Second term. In this part we study the error induced by the replacement
of the supremum over all nonnegative t smaller than or equal to t∗(z) by the max-
imum over the finite grid G(z) in the definition of operator L.
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LEMMA 5.3. Let w ∈ Lc. Then for all z ∈ E,∣∣∣ sup
t≤t∗(z)

J (w,g)(z, t) − max
s∈G(z)

J (w,g)(z, s)
∣∣∣ ≤ (CwCλ + [g]2 + CgCλ)�(z).

PROOF. Clearly, there exists t ∈ [0, t∗(z)] such that supt≤t∗(z) J (w,g)(z, t) =
J (w,g)(z, t), and there exists 0 ≤ i ≤ n(z) such that t ∈ [ti , ti+1] [with tn(z)+1 =
t∗(z)]. Consequently, Lemma A.2 yields

0 ≤ sup
t≤t∗(z)

J (w,g)(z, t) − max
s∈G(z)

J (w,g)(z, s)

≤ J (w,g)(z, t) − J (w,g)(z, ti)

≤ (CwCλ + [g]2 + CgCλ)|t − ti |
≤ (CwCλ + [g]2 + CgCλ)|ti+1 − ti |,

implying the result. �

Turning back to the second error term, one gets the following bound.

LEMMA 5.4. A upper bound for �2 is

‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p ≤ ([g]2 + 2CgCλ)‖�(Ẑn)‖p.

PROOF. From the definition of L and Ld we readily obtain

‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p

≤
∥∥∥ sup
t≤t∗(Ẑn)

J (vn+1, g)(Ẑn, t) − max
s∈G(Ẑn)

J (vn+1, g)(Ẑn, s)
∥∥∥
p
.

Now in view of the previous lemma, one has

‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p

≤ (Cvn+1Cλ + [g]2 + CgCλ)‖�(Ẑn)‖p.

Finaly, note that Cvn+1 = Cg (see Appendix A.2), completing the proof. �

5.2. Third term. This is the crucial part of our derivation, where we need to
compare conditional expectations relative to the real Markov chain (Zn,Sn) and
its quantized approximation (Ẑn, Ŝn). The main difficulty stems from the fact that
some functions inside the expectations are indicator functions and in particular
they are not Lipschitz-continuous. We manage to overcome this difficulty by prov-
ing that the event on which the discontinuity actually occurs is of small enough
probability; this is the aim of the following two lemmas.
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LEMMA 5.5. For all n ∈ {0, . . . ,N − 1} and 0 < η < minz∈�Z
n
{�(z)},∥∥∥ max

s∈G(Ẑn)
E

[∣∣1{Sn+1<s} − 1{Ŝn+1<s}
∣∣|Ẑn

]∥∥∥
p

≤ 2

η
‖Sn+1 − Ŝn+1‖p + Cλη + 2[t∗]‖Zn − Ẑn‖p

η
.

PROOF. Set 0 < η < minz∈�Z
n
{�(z)}. Remark that the difference of indicator

functions is nonzero if and only if Sn+1 and Ŝn+1 are on either side of s. Hence,
one has ∣∣1{Sn+1<s} − 1{Ŝn+1<s}

∣∣ ≤ 1{|Sn+1−Ŝn+1|>η/2} + 1{|Sn+1−s|≤η/2}.
This yields∥∥∥ max

s∈G(Ẑn)
E

[∣∣1{Sn+1<s} − 1{Ŝn+1<s}
∣∣|Ẑn

]∥∥∥
p

(5.1)
≤ ∥∥1{|Sn+1−Ŝn+1|>η/2}

∥∥
p +

∥∥∥ max
s∈G(Ẑn)

E
[
1{s−η/2≤Sn+1≤s+η/2}|Ẑn

]∥∥∥
p
.

On the one hand, Chebyshev’s inequality yields

∥∥1{|Sn+1−Ŝn+1|>η/2}
∥∥p
p = P

(
|Sn+1 − Ŝn+1| > η

2

)
≤ 2p‖Sn+1 − Ŝn+1‖p

p

ηp
.(5.2)

On the other hand, as s ∈ G(Ẑn) and by definition of η, one has s + η < t∗(Ẑn)

(see Remark 4.2). Thus, one has

E
[
1{s−η/2≤Sn+1≤s+η/2}|Ẑn

]
= E

[
E

[
1{s−η/2≤Sn+1≤s+η/2}|Zn

]|Ẑn

]
(5.3)

≤ E
[∫ s+η/2

s−η/2
λ(φ(Zn,u)) du|Ẑn

]
+ E

[
1{t∗(Zn)≤s+η/2}|Ẑn

]
≤ ηCλ + E

[
1{t∗(Zn)≤t∗(Ẑn)−η/2}|Ẑn

]
.

Combining equations (5.1)–(5.3), the result follows. �

LEMMA 5.6. For all n ∈ {0, . . . ,N} and 0 < η < minz∈�Z
n
{�(z)},

∥∥1t∗(Zn)<t∗(Ẑn)−η

∥∥
p ≤ [t∗]‖Zn − Ẑn‖p

η
.

PROOF. We use Chebyshev’s inequality again. One clearly has

E
[∣∣1t∗(Zn)<t∗(Ẑn)−η

∣∣p] = P
(
t∗(Zn) < t∗(Ẑn) − η

)
≤ P

(|t∗(Zk) − t∗(Ẑk)| > η
)

≤ [t∗]p‖Zk − Ẑk‖p
p

ηp
,



1620 B. DE SAPORTA, F. DUFOUR AND K. GONZALEZ

showing the result. �

Now we turn to the consequences of replacing the Markov chain (Zn,Sn) by its
quantized approximation (Ẑn, Ŝn) in the conditional expectations.

LEMMA 5.7. Let w ∈ Lc, then one has

|E[w(Zn+1)|Zn = Ẑn] − E[w(Ẑn+1)|Ẑn]|
≤ (CwE4 + [w]1E2 + [w]∗[Q])E[|Zn − Ẑn||Ẑn]

+ [w]E[|Zn+1 − Ẑn+1||Ẑn].
PROOF. First, note that

E[w(Zn+1)|Zn = Ẑn] − E[w(Ẑn+1)|Ẑn]
= E[w(Zn+1)|Zn = Ẑn] − E[w(Zn+1)|Ẑn]

+ E[w(Zn+1)|Ẑn] − E[w(Ẑn+1)|Ẑn].
On the one hand, Remark 2.2 yields

|E[w(Zn+1)|Ẑn] − E[w(Ẑn+1)|Ẑn]| ≤ [w]E[|Zn+1 − Ẑn+1||Ẑn].
On the other hand, recall that by construction of the quantized process, one
has (Ẑn, Ŝn) = pn(Zn,Sn). Hence we have the following property: σ {Ẑn} ⊂
σ {Zn,Sn}. By using the special structure of the PDMP {X(t)}, we have σ {Zn,

Sn} ⊂ FTn . Now, by using the Markov property of the process {X(t)}, it follows
that

E[w(Zn+1)|Ẑn] = E[E[w(Zn+1)|FTn]|Ẑn] = E[E[w(Zn+1)|Zn]|Ẑn].
Equation (3.4) thus yields

E[w(Zn+1)|Zn = Ẑn] − E[w(Zn+1)|Ẑn]
= E

[
E[w(Zn+1)|Zn = Ẑn] − E[w(Zn+1)|Zn]|Ẑn

]
= E[Kw(Ẑn) − Kw(Zn)|Ẑn].

Now we use Lemma A.4 to conclude. �

Now we combine the preceding lemmas to derive the third error term.

LEMMA 5.8. For all 0 < η < minz∈�Z
n
{�(z)}, an upper bound for �3 is

‖Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)‖p

≤
{
[vn+1]1E2 + CgE4 + 2Cg

[t∗]
η

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])
}
‖Ẑn − Zn‖p

+ [vn+1]‖Ẑn+1 − Zn+1‖p + 2Cg

(
2Cλη + ‖Sn+1 − Ŝn+1‖p

η

)
.
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PROOF. To simplify notation, set �(x, y, t) = vn+1(y)1{t<s} + g(φ(x, t)) ×
1{t≥s}. From the definition of Ld and L̂d

n+1, one readily obtains

|Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)|

≤ max
s∈G(Ẑn)

|E[�(Zn,Zn+1, Sn+1)|Zn = Ẑn]
(5.4)

− E[�(Ẑn, Ẑn+1, Ŝn+1)|Ẑn]|
∨ |E[vn+1(Zn+1)|Zn = Ẑn] − E[vn+1(Ẑn+1)|Ẑn]|.

On the one hand, combining Lemma 5.7 and the fact that vn+1 is in Lc (see Propo-
sition A.7), we obtain

|E[vn+1(Zn+1)|Zn = Ẑn] − E[vn+1(Ẑn+1)|Ẑn]|
≤ [vn+1]E[|Zn+1 − Ẑn+1|Ẑn](5.5)

+ (CgE4 + [vn+1]1E2 + [vn+1]∗[Q])E[|Zn − Ẑn||Ẑn].
On the other hand, similar arguments as in the proof of Lemma 5.7 yield

E[�(Zn,Zn+1, Sn+1)|Zn = Ẑn] − E[�(Ẑn, Ẑn+1, Ŝn+1)|Ẑn]
= E

[
E[�(Zn,Zn+1, Sn+1)|Zn = Ẑn]
− E[�(Zn,Zn+1, Sn+1)|Zn = Zn]|Ẑn

]
(5.6)

+ E[�(Zn,Zn+1, Sn+1)|Ẑn] − E[�(Ẑn, Ẑn+1, Ŝn+1)|Ẑn]
= ϒ1 + ϒ2.

The second difference of the right-hand side of (5.6), labeled ϒ2, clearly satisfies

|ϒ2| ≤ [vn+1]E[|Ẑn+1 − Zn+1||Ẑn] + [g]1E[|Ẑn − Zn||Ẑn]
(5.7)

+ 2CgE
[∣∣1{Sn+1<s} − 1{Ŝn+1<s}

∣∣|Ẑn

]
.

Let us turn now to the first difference of the right-hand side of (5.6), labeled ϒ1.
We meet another difficulty here. Indeed, we know by construction that s < t∗(Ẑn),
but we know nothing regarding the relative positions of s and t∗(Zn). In the event
where s ≤ t∗(Zn) as well, we recognize operator J inside the expectations. In the
opposite event s > t∗(Zn), we crudely bound � by Cvn+1 +Cg = 2Cg . Hence, one
obtains

|ϒ1| ≤ E
[|J (vn+1, g)(Ẑn, s) − J (vn+1, g)(Zn, s)|1{s≤t∗(Zn)}|Ẑn

]
+ 2CgE

[
1{t∗(Zn)<s}|Ẑn

]
.

Now Lemma A.3 gives an upper bound for the first term. As for the indicator
function, by definition of G(Ẑn) and our choice of η, we have s < t∗(Ẑn) − η.
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Thus, one has

|ϒ1| ≤ (CgE1 + [vn+1]1E2 + E3)E[|Ẑn − Zn||Ẑn]
(5.8)

+ 2CgE
[
1{t∗(Zn)<t∗(Ẑn)−η}|Ẑn

]
.

Now, combining (5.4), (5.5), (5.7) and (5.8), and the fact that CgE1 + E3 =
CgE4 + [g]1 + [g]2[t∗], one gets

|Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)|

≤ {[vn+1]1E2 + CgE4

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])}E[|Ẑn − Zn||Ẑn]
+ [vn+1]E[|Ẑn+1 − Zn+1||Ẑn]
+ 2CgE

[
1t∗(Zn)<t∗(Ẑn)−η|Ẑn

]
+ 2Cg max

s∈G(Ẑn)
E

[∣∣1{Sn+1<s} − 1{Ŝn+1<s}
∣∣|Ẑn

]
.

Finally, we conclude by taking the Lp norm on both sides and using Lemmas 5.5
and 5.6. �

5.3. Fourth term. The last error term is a mere comparison of two finite sums.

LEMMA 5.9. An upper bound for �4 is

‖L̂d
n+1(vn+1, g)(Ẑn) − L̂d

n+1(v̂n+1, g)(Ẑn)‖p

≤ [vn+1]‖Ẑn+1 − Zn+1‖p + ‖Vn+1 − V̂n+1‖p.

PROOF. By definition of operator L̂d
n , one has

‖L̂d
n+1(vn+1, g)(Ẑn) − L̂d

n+1(v̂n+1, g)(Ẑn)‖p

=
∥∥∥ max
s∈G(Ẑn)

{
E

[
vn+1(Ẑn+1)1{Ŝn+1<s} + g(φ(Ẑn, s))1{Ŝn+1≥s}|Ẑn

]}
∨ E[vn+1(Ẑn+1)|Ẑn]
− max

s∈G(Ẑn)

{
E

[
v̂n+1(Ẑn+1)1{Ŝn+1<s}

+ g(φ(Ẑn, s))1{Ŝn+1≥s}|Ẑn

]} ∨ E[v̂n+1(Ẑn+1)|Ẑn]
∥∥∥
p

≤ ‖E[vn+1(Ẑn+1) − v̂n+1(Ẑn+1)|Ẑn]‖p

≤ ‖vn+1(Ẑn+1) − vn+1(Zn+1)‖p + ‖vn+1(Zn+1) − v̂n+1(Ẑn+1)‖p.

We conclude using the fact that vn+1 ∈ Lc (see Proposition A.7) and the definitions
of Vn and V̂n. �
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5.4. Proof of Theorem 5.1. We can finally turn to the proof of Theorem 5.1.
Lemmas 5.2, 5.4, 5.8 and 5.9 from the preceding sections directly yield, for all
0 < η < minz∈�z

n
{�(z)},

‖Vn − V̂n‖p ≤ [vn]‖Ẑn − Zn‖p + ([g]2 + 2CgCλ)‖�(Ẑn)‖p

+
{
[vn+1]1E2 + CgE4 + 2Cg

[t∗]
η

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])
}
‖Ẑn − Zn‖p

+ [vn+1]‖Ẑn+1 − Zn+1‖p + 2Cg

(
2Cλη + ‖Sn+1 − Ŝn+1‖p

η

)

+ [vn+1]‖Ẑn+1 − Zn+1‖p + ‖Vn+1 − V̂n+1‖p.

The optimal choice for η clearly satisfies

2Cλη = 1

η
([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p),

providing it also satisfies the condition 0 < η < minz∈�z
n
{�(z)}. Hence, rearrang-

ing the terms above, one gets the expected result

‖Vn − V̂n‖p ≤ ‖Vn+1 − V̂n+1‖p + ([g]2 + 2CgCλ)‖�(Ẑn)‖p

+ {[vn] + [vn+1]1E2 + CgE4

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])}‖Ẑn − Zn‖p

+ 2[vn+1]‖Ẑn+1 − Zn+1‖p

+ 4Cg(2Cλ)
1/2([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p)1/2.

6. Numerical construction of an ε-optimal stopping time. In [11], The-
orem 1, Gugerli defined an ε-optimal stopping time for the original problem.
Roughly speaking, this stopping time depends on the embedded Markov chain
(�n) and on the optimal value function. Therefore, a natural candidate for an ε-
optimal stopping time should be obtained by replacing the Markov chain (�n)

and the optimal value function by their quantized approximations. However, this
leads to un-tractable comparisons between some quantities involving (�n) and
its quantized approximation. It is then far from obvious to show that this method
would provide a computable ε-optimal stopping rule. Nonetheless, by modifying
the approach of Gugerli [11], we are able to propose a numerical construction of
an ε-optimal stopping time of the original stopping problem.

Here is how we proceed. First, recall that pn be the closest-neighbor projection
from E ×R+ onto ��

n , and for all (z, s) ∈ E ×R+ define (̂zn, ŝn) = pn(z, s). Note
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that ẑn and ŝn depend on both z and s. Now, for n ∈ {1, . . . ,N}, define

s∗
n(z, s) = min

{
t ∈ G(̂zn−1)|Ĵn(v̂n, g)(̂zn−1, t) = max

u∈G(̂zn−1)
Ĵn(v̂n, g)(̂zn−1, u)

}
and

rn,β(z, s) =
⎧⎪⎨
⎪⎩

t∗(z), if K̂nv̂n(̂zn−1) > max
u∈G(̂zn−1)

Ĵn(v̂n, g)(̂zn−1, u),

s∗
n(z, s)1{s∗

n(z,s)<t∗(z)} + (
t∗(z) − β

)
1{s∗(z,s)≥t∗(z)},

otherwise.

Note the use of both the real jump time horizon t∗(z) and the quantized approxi-
mations of K , J and (z, s). Set

τ1 = rN,β(Z0, S0) ∧ T1

and for n ∈ {1, . . . ,N − 1}, set

τn+1 =
{

rN−n,β(Z0, S0), if T1 > rN−n,β(Z0, S0),
T1 + τn ◦ θT1, otherwise.

Our stopping rule is then defined by τN .

REMARK 6.1. This procedure is especially appealing because it requires no
more calculation: we have already computed the values of K̂n and Ĵn on the grids.
One just has to store the point where the maximum of Ĵn is reached.

LEMMA 6.2. τN is an {FT }-stopping time.

PROOF. Set U1 = r1,β(Z0, S0) and for 2 ≤ k ≤ N Uk = rk,β(Zk−1, Sk−1) ×
1{rk−1,β (Zk−2,Sk−2)≥Sk−1}. One then clearly has τN = ∑N

k=1 Uk ∧ Sk which is an
{FT }-stopping time by Proposition B.5. �

Now let us show that this stopping time provides a good approximation of the
value function V0. Namely, for all z ∈ E set

vn(z) = E[g(XτN−n
)|Zn = z]

and in accordance to our previous notation introduce, for n ∈ {1, . . . ,N − 1}
V n = vn(Zn).

The comparison between V0 and V 0 is provided by the next two theorems.

THEOREM 6.3. Set n ∈ {0, . . . ,N − 2} and suppose the discretization para-
meters are chosen such that there exists 0 < a < 1 satisfying

β

a
= (2Cλ)

−1/2
( [t∗]

1 − a
‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p

)1/2

< min
z∈�z

n

{�(z)}.
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Then one has

‖V n − Vn‖p ≤ ‖V n+1 − Vn+1‖p + ‖V̂n+1 − Vn+1‖p + ‖V̂n − Vn‖p

+ 2[vn+1]‖Zn+1 − Ẑn+1‖p + an‖Zn − Ẑn‖p

+ 4Cg(2Cλ)
1/2

( [t∗]
1 − a

‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p

)1/2

with an = (2[vn+1]1E2 +2CgCt∗[λ]1(2+Ct∗Cλ)+ (4CgCλ[t∗]+2[vn+1]∗[Q])∨
(3[g]1)).

PROOF. The definition of τn and the strong Markov property of the process
{X(t)} yield

vn(Zn) = E
[
g
(
Xrn+1,β (Zn,Sn)

)
1{Sn+1>rn+1,β (Zn,Sn)}|Zn

]
+ E

[
vn+1(Zn+1)1{Sn+1≤rn+1,β (Zn,Sn)}|Zn

]
= 1{rn+1,β (Zn,Sn)≥t∗(Zn)}Kvn+1(Zn)

+ 1{rn+1,β (Zn,Sn)<t∗(Zn)}J (vn+1, g)(Zn, rn+1,β(Zn,Sn)).

However, our definition of rn,β with the special use of parameter β implies

{rn+1,β(Zn,Sn) ≥ t∗(Zn)} =
{
K̂n+1v̂n+1(Ẑn) > max

s∈G(Ẑn)
Ĵn+1(v̂n+1, g)(Ẑn, s)

}
.

Consequently, one obtains

vn(Zn) = K̂n+1v̂n+1(Ẑn) ∨ max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)

+ 1{rn+1,β (Zn,Sn)≥t∗(Zn)}[Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)]
(6.1)

+ 1{rn+1,β (Zn,Sn)<t∗(Zn)}
[
J (vn+1, g)(Zn, rn+1,β(Zn,Sn))

− max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
]
.

Let us study the term with operator K . First, we insert Vn to be able to use our
work from the previous section (we cannot directly apply it to vn because it may
not be Lipschitz-continuous). Clearly, one has

|Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)|
(6.2)

≤ E[|V n+1 − Vn+1||Zn] + |Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)|.
Similar calculations to those of Lemmas A.4, 5.7 and 5.9, and equation (5.5) yield

|Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)|
≤ (CgE4 + [vn+1]1E2 + [vn+1]∗[Q])(|Zn − Ẑn| + E[|Zn − Ẑn||Ẑn])(6.3)

+ 2[vn+1]E[|Zn+1 − Ẑn+1||Ẑn] + E[|Vn+1 − V̂n+1||Ẑn].
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Now we turn to operator J . Set Rn = rn+1,β(Zn,Sn). We first study the case when
Rn = s∗

n+1(Zn,Sn) < t∗(Zn). By definition, one has

Ĵn+1(v̂n+1, g)(Ẑn,Rn) = max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s).

As above, we insert Vn and obtain∣∣∣[J (vn+1, g)(Zn,Rn) − max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
]
1{Rn=s∗

n+1(Zn,Sn)}
∣∣∣

≤ E[|V n+1 − Vn+1||Zn]1{Rn=s∗
n+1(Zn,Sn)}(6.4)

+ |J (vn+1, g)(Zn,Rn) − Ĵn+1(v̂n+1, g)(Ẑn,Rn))|1{Rn=s∗
n+1(Zn,Sn)}.

Again, similar arguments as those used for Lemmas A.3, 5.6 and 5.9, and equations
(5.6), (5.7) and (5.8) yield, on {Rn = s∗

n+1(Zn,Sn)}
|J (vn+1, g)(Zn,Rn) − Ĵn+1(v̂n+1, g)(Ẑn,Rn)|

≤ ([vn+1]1E2 + [g]1 + CgCt∗[λ]1(2 + Ct∗Cλ)
)

× (|Zn − Ẑn| + E[|Zn − Ẑn||Ẑn])
(6.5)

+ 2[vn+1]E[|Zn+1 − Ẑn+1||Ẑn] + E[|Vn+1 − V̂n+1||Ẑn]
+ [g]1E[|Zn − Ẑn||Ẑn]
+ 2CgE

[∣∣1{Sn+1<Rn} − 1{Ŝn+1<Rn}
∣∣|Ẑn

]
.

Note that all the constants with a factor [t∗] have vanished because we know here
that both Rn < t∗(Zn) and Rn < t∗(Ẑn) hold on {Rn = s∗

n+1(Zn,Sn)}.
Finally, on {s∗(Zn) ≥ t∗(Zn) = Rn +β}, by construction of the grid G(Ẑn) (see

Remark 4.2), one has for all 0 < η < minz∈�Z
n
{�(z)},

Rn = t∗(Zn) − β < s∗(Zn) < t∗(Ẑn) − η.

Consequently, using the crude bound

|J (vn+1, g)(Zn,Rn)| +
∣∣∣ max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
∣∣∣ ≤ 2Cg,

one obtains∣∣∣J (vn+1, g)(Zn, rn+1,β(Zn,Sn)) − max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
∣∣∣

× 1{rn+1,β (Zn,Sn)=t∗(Zn)−β}(6.6)

≤ 2Cg

∣∣1{t∗(Zn)−β<t∗(Ẑn)−η}
∣∣.
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Now the combination of equations (6.1)–(6.6) and Lemmas 5.5 and 5.6 yields, for
all β < η < minz∈�Z

n
{�(z)}

‖V n − V̂n‖p ≤ ‖V n+1 − Vn+1‖p + ‖Vn+1 − V̂n+1‖p + 2[vn+1]‖Zn+1 − Ẑn+1‖p

+ ‖Zn − Ẑn‖p

(
2[vn+1]1E2 + 2CgCt∗[λ]1(2 + Ct∗Cλ)

+ (4CgCλ[t∗] + 2[vn+1]∗[Q]) ∨ (3[g]1)
)

+ 2Cg

(
2Cλη + 1

η
‖Sn+1 − Ŝn+1‖p + [t∗]

η − β
‖Zn − Ẑn‖p

)
.

Now suppose there exists 0 < a < 1 such that η = a−1β . Then the optimal choice
for η satisfies

2Cλη = 1

η

( [t∗]
1 − a

‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p

)
,

providing it also satisfies the condition 0 < η < minz∈�z
n
{�(z)}, hence the result.

�

Theorem 6.3 gives a recursive error estimation. Here is the initializing step.

THEOREM 6.4. Suppose the discretization parameters are chosen such that
there exists 0 < a < 1 satisfying

β

a
= (2Cλ)

−1/2
( [t∗]

1 − a
‖ẐN−1 − ZN−1‖p + ‖SN − ŜN‖p

)1/2
< min

z∈�z
N−1

{�(z)}.

Then one has

‖V N−1 − VN−1‖p

≤ ‖V̂N−1 − VN−1‖p + 3[g]‖ZN − ẐN‖p + aN−1‖ZN−1 − ẐN−1‖p

+ 4Cg(2Cλ)
1/2

( [t∗]
1 − a

‖ẐN−1 − ZN−1‖p + ‖SN − ŜN‖p

)1/2

with aN−1 = (2[g]1E2 + 2CgCt∗[λ]1(2 + Ct∗Cλ) + (4CgCλ[t∗] + 2[g]∗[Q]) ∨
(3[g]1)).

PROOF. As before, the strong Markov property of the process {X(t)} yields

vN−1(ZN−1) = E
[
g
(
XrN,β(ZN−1,SN−1)

)
1{SN>rN,β(ZN−1,SN−1)}|ZN−1

]
+ E

[
g(ZN)1{SN≤rN,β(ZN−1,SN−1)}|ZN−1

]
= 1{rN,β(ZN−1,SN−1)≥t∗(ZN−1)}Kg(ZN−1)

+ 1{rN,β(ZN−1,SN−1)<t∗(ZN−1)}J (g, g)(ZN−1, rN,β(ZN−1, SN−1)).
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The rest of the proof is similar to that of the previous theorem. �

As in Section 5, it is now clear that an adequate choice of discretization para-
meters yields arbitrarily small errors if one uses the stopping-time τN .

7. Example. Now we apply the procedures described in Sections 4 and 6 on
a simple PDMP and present numerical results.

Set E = [0,1[ and ∂E = {1}. The flow is defined on [0,1] by φ(x, t) = x + vt

for some positive v, the jump rate is defined on [0,1] by λ(x) = βxα , with β > 0
and α ≥ 1, and for all x ∈ [0,1], one sets Q(x, ·) to be the uniform law on [0,1/2].
Thus the process moves with constant speed v toward 1, but the closer it gets to
the boundary 1, the higher the probability to jump backward on [0,1/2]. Figure 1
shows two trajectories of this process for x0 = 0, v = α = 1 and β = 3 and up to
the 10th jump.

The reward function g is defined on [0,1] by g(x) = x. Our assumptions are
clearly satisfied, and we are even in the special case when the flow is Lipschitz-
continuous (see Remark A.8). All the constants involved in Theorems 5.1 and 6.3
can be computed explicitly.

The real value function V0 = v0(x0) is unknown, but, as our stopping rule τN is
a stopping time dominated by TN , one clearly has

V 0 = Ex0[g(X(τN))] ≤ V0 = sup
τ∈MN

Ex0[g(X(τ))]
(7.1)

≤ Ex0

[
sup

0≤t≤TN

g(X(t))
]
.

The first and last terms can be evaluated by Monte Carlo simulations, which pro-
vide another indicator of the sharpness of our numerical procedure. For 106 Monte
Carlo simulations, one obtains Ex0[sup0≤t≤TN

g(X(t))] = 0.9878. Simulation re-
sults (for d = 2, x0 = 0, v = α = 1, β = 3, up to the 10th jump and for 105 Monte

FIG. 1. Two trajectories of the PDMP.
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TABLE 1
Simulation results

P t QE � ̂V0 V 0 B1 B2 B3

10 0.0943 0.151 0.7760 0.8173 0.1705 74.64 897.0
50 0.0418 0.100 0.8298 0.8785 0.1093 43.36 511.5

100 0.0289 0.083 0.8242 0.8850 0.1028 34.15 400.3
500 0.0133 0.056 0.8432 0.8899 0.0989 21.03 243.1
900 0.0102 0.049 0.8514 0.8968 0.0910 17.98 206.9

P t Number of points in each quantization grid
QE Quantization error: QE = max0≤k≤N‖�k − �̂k‖2
� For all z, �(z) = �

B1 Empirical bound Ex0 [sup0≤t≤TN
g(X(t))] − V 0

B2 Theoretical bound given by Theorem 5.1
B3 Theoretical bound given by Theorems 6.3 and 6.4

Carlo simulations) are given in Table 1. Note that, as expected, the theoretical
errors decrease as the quantization error decreases. From (7.1), it follows that

V0 − V 0 ≤ Ex0

[
sup

0≤t≤TN

g(X(t))
]
− V 0.

This provides an empirical upper bound for the error.

APPENDIX A: AUXILIARY RESULTS

A.1. Lipschitz properties of J and K . In this section, we derive useful
Lipschitz-type properties of operators J and K . The first result is straightforward.

LEMMA A.1. Let h ∈ Lc. Then for all (x, y) ∈ E2 and (t, u) ∈ R
2+, one has∣∣h(

φ
(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)) − h

(
φ

(
y,u ∧ t∗(y)

))
e−�(y,u∧t∗(y))

∣∣
≤ D1(h)|x − y| + D2(h)|t − u|,

where:

• if t < t∗(x) and u < t∗(y),

D1(h) = [h]1 + ChCt∗[λ]1, D2(h) = [h]2 + ChCλ,

• if t = t∗(x) and u = t∗(y),

D1(h) = [h]∗ + ChCt∗[λ]1 + ChCλ[t∗], D2(h) = 0,

• otherwise,

D1(h) = [h]1 + ChCt∗[λ]1 + [h]2[t∗] + ChCλ[t∗], D2(h) = [h]2 + ChCλ.
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LEMMA A.2. Let w ∈ B(E). Then for all x ∈ E, (t, u) ∈ R
2+, one has

|J (w,g)(x, t) − J (w,g)(x,u)| ≤ (CwCλ + [g]2 + CgCλ)|t − u|.
PROOF. By definition of J , we obtain

|J (w,g)(x, t) − J (w,g)(x,u)|

≤
∣∣∣∣
∫ u∧t∗(x)

t∧t∗(x)
λQw(φ(x, s))e−�(x,s) ds

∣∣∣∣
+ ∣∣g(

φ
(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)) − g

(
φ

(
x,u ∧ t∗(x)

))
e−�(x,u∧t∗(x))

∣∣.
Applying Lemma A.1 to h = g, the result follows. �

LEMMA A.3. Let w ∈ Lc. Then for all (x, y) ∈ E2, t ∈ R+,

|J (w,g)(x, t) − J (w,g)(y, t)| ≤ (CwE1 + [w]1E2 + E3)|x − y|,
where

E1 = Cλ[t∗] + Ct∗[λ]1(1 + Ct∗Cλ),

E2 = Ct∗Cλ[Q],
E3 = [g]1 + [g]2[t∗] + Cg{Ct∗[λ]1 + Cλ[t∗]}.

PROOF. Again by definition, we obtain

|J (w,g)(x, t) − J (w,g)(y, t)|

≤
∣∣∣∣
∫ t∧t∗(x)

0
λQw(φ(x, s))e−�(x,s) ds −

∫ t∧t∗(y)

0
λQw(φ(y, s))e−�(y,s) ds

∣∣∣∣
+ ∣∣g(

φ
(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)) − g

(
φ

(
y, t ∧ t∗(y)

))
e−�(y,t∧t∗(y))

∣∣.
Without loss of generality it can be assumed that t∗(x) ≤ t∗(y). From Lemma A.1
for h = g and using the fact that |t ∧ t∗(x) − t ∧ t∗(y)| ≤ |t∗(x) − t∗(y)|, we get

|J (w,g)(x, t) − J (w,g)(y, t)|

≤
∫ t∧t∗(x)

0

∣∣λQw(φ(x, s))e−�(x,s) − λQw(φ(y, s))e−�(y,s)
∣∣ds

+ (CwCλ[t∗] + E3)|x − y|.
By using a similar results as Lemma A.1 for h = λQw, we obtain the result. �

LEMMA A.4. Let w ∈ Lc. Then for all (x, y) ∈ E2,

|Kw(x) − Kw(y)| ≤ (CwE4 + [w]1E2 + [w]∗[Q])|x − y|,
where E4 = 2Cλ[t∗] + Ct∗[λ]1(2 + Ct∗Cλ).

PROOF. The proof is similar to the previous ones and is therefore omitted. �
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A.2. Lipschitz properties of the value functions. Now we turn to the Lip-
schitz continuity of the sequence of value functions (vn). Namely, we prove that
under our assumptions, vn belongs to Lc for all 0 ≤ n ≤ N . We also compute the
Lipschitz constant of vn on E as it is much sharper in this case than [vn]1 (see
Remark 2.2).

We start with proving sharper results on operator J .

LEMMA A.5. Let w ∈ Lc. Then for all x ∈ E and (s, t) ∈ R
2+,∣∣∣sup

u≥t
J (w,g)(x,u) − sup

u≥s
J (w,g)(x,u)

∣∣∣ ≤ (CwCλ + [g]2 + CgCλ)|t − s|.

PROOF. Without loss of generality it can be assumed that t ≤ s. Therefore,
one has ∣∣∣sup

u≥t
J (w,g)(x,u) − sup

u≥s
J (w,g)(x,u)

∣∣∣
(A.1)

= sup
u≥t

J (w,g)(x,u) − sup
u≥s

J (w,g)(x,u).

Note that there exists t ∈ [t ∧ t∗(x), t∗(x)] such that supu≥t J (w,g)(x,u) =
J (w,g)(x, t). Consequently, if t ≥ s then one has |supu≥t J (w,g)(x,u) −
supu≥s J (w,g)(x,u)| = 0.

Now if t ∈ [t ∧ t∗(x), s[, then one has

sup
u≥t

J (w,g)(x,u) − sup
u≥s

J (w,g)(x,u) ≤ J (w,g)(x, t) − J (w,g)(x, s).

From Lemma A.2, we obtain the following inequality:

sup
u≥t

J (w,g)(x,u) − sup
u≥s

J (w,g)(x,u) ≤ (CwCλ + [g]2 + CgCλ)|t − s|.(A.2)

Combining (A.1), (A.2) and the fact that |t − s| ≤ |t − s| the result follows. �

Similarly, we obtain the following result.

LEMMA A.6. Let w ∈ Lc. Then for all (x, y) ∈ E2,∣∣∣ sup
t≤t∗(x)

J (w,g)(x, t) − sup
t≤t∗(y)

J (w,g)(y, t)
∣∣∣ ≤ (CwE5 + [w]1E2 + E6)|x − y|,

where E5 = E1 + Cλ[t∗] and E6 = E3 + ([g]2 + CgCλ)[t∗].

Now we turn to (vn). Recall from [11] that for all 0 ≤ n ≤ N , (vn) is bounded
with Cvn = Cg .
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PROPOSITION A.7. For all 0 ≤ n ≤ N , vn ∈ Lc and

[vn]1 ≤ eCλCt∗ (
2[vn+1]1E2 + CgE1 + CgE4 + CgCt∗[λ]1(1 + CλCt∗)

)
(A.3)

+ eCλCt∗ {([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])},
[vn]2 ≤ eCλCt∗ {CgCλ(4 + CλCt∗) + [g]2},(A.4)

[vn]∗ ≤ [vn]1 + [vn]2[t∗],
[vn] ≤ [vn+1]1E2 + CgE5 + {E6 ∨ ([vn+1]∗[Q] + CgCt∗[λ]1)}.

PROOF. Clearly, vN = g is in Lc. Assume that vn+1 is in Lc, then by using the
semi-group property of the drift φ it can be shown that for any x ∈ E, t ∈ [0, t∗(x)],
one has (see [11], equation (8))

vn(φ(x, t)) = e�(x,t)
{(

sup
u≥t

J (vn+1, g)(x,u) ∨ Kvn+1(x)
)

(A.5)
− Ivn+1(x, t)

}
.

Note that for x ∈ E, t ∈ R+, one has

sup
u≥t

J (vn+1, g)(x,u) ∨ Kvn+1(x)

≤ sup
u

J (vn+1, g)(x,u) ∨ Kvn+1(x)(A.6)

= vn(x).

Set (x, y) ∈ E2 and t ∈ [0, t∗(x) ∧ t∗(y)]. It is easy to show that∣∣e�(x,t) − e�(y,t)
∣∣ ≤ eCλCt∗ [λ]1Ct∗ |x − y|,(A.7)

|Ivn+1(x, t) − Ivn+1(y, t)| ≤ (Cvn+1E1 + [vn+1]1E2)|x − y|.(A.8)

Then, (A.5)–(A.8) yield

|vn(φ(x, t)) − vn(φ(y, t))|
≤ {|vn(x)| + |Ivn+1(x, t)|}eCλCt∗ [λ]1Ct∗ |x − y|

+ e�(y,t)
{
sup
u≥t

|J (vn+1, g)(x,u) − J (vn+1, g)(y,u)|(A.9)

∨ |Kvn+1(x) − Kvn+1(y)|
}

+ e�(y,t)(Cvn+1E1 + [vn+1]1E2)|x − y|.
For x ∈ E, t ∈ [0, t∗(x)] and n ∈ N, note that

e�(x,t) ≤ eCλCt∗ ,
(A.10)

|Ivn+1(x, t)| ≤ CλCvn+1Ct∗ and |vn+1(x)| ≤ Cg.
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Therefore, we obtain inequality (A.3) by using (A.9), (A.10) and Lemma A.3, A.5,
and the fact that CgE1 + E3 = CgE4 + [g]1 + [g]2[t∗].

Now, set x ∈ E and t , s ∈ [0, t∗(x)]. Similarly, one has∣∣e�(x,t) − e�(x,s)
∣∣ ≤ eCλCt∗ Cλ|t − s|,(A.11)

|Ivn+1(x, t) − Ivn+1(x, s)| ≤ CλCvn+1 |t − s|.(A.12)

Combining (A.5), (A.6), (A.11) and (A.12), it yields

|vn(φ(x, t)) − vn(φ(x, s))|
≤ {|vn(x)| + |Ivn+1(x, t)|}eCλCt∗ Cλ|t − s|

(A.13)
+ e�(x,t)

{∣∣∣sup
u≥t

J (vn+1, g)(x,u) − sup
u≥s

J (vn+1, g)(x,u)
∣∣∣

+ CλCvn+1 |t − s|
}
.

Finally, inequality (A.4) follows from equations (A.10), (A.13) and Lemma A.4.
One clearly has [vn]∗ ≤ [vn]1 +[vn]2[t∗]. Finally, set (x, y) ∈ E2. By definition,

one has

|vn(x) − vn(y)|
≤

∣∣∣ sup
u≤t∗(x)

J (vn+1, g)(x,u) − sup
u≤t∗(y)

J (vn+1, g)(y,u)
∣∣∣

∨ |Kvn+1(x) − Kvn+1(y)|
and we conclude using Lemmas A.6 and A.4, and the fact that E4 = E5 +Ct∗[λ]1.

�

REMARK A.8. Note that [vn] is much sharper than [vn]1. If in addition to
our assumptions, the drift φ is Lipschitz-continuous in both variables, then with
obvious notation, one has [vn]i ≤ [vn][φ]i for i ∈ {1,2,∗}, which should yield
better constants (see, e.g., Section 7).

APPENDIX B: STRUCTURE OF THE STOPPING TIMES OF PDMPs

Let τ be an {Ft }t∈R+-stopping time. Let us recall the important result from
Davis [6].

THEOREM B.1. There exists a sequence of nonnegative random variables
(Rn)n∈N∗ such that Rn is FTn−1-measurable and τ ∧ Tn+1 = (Tn + Rn+1) ∧ Tn+1
on {τ ≥ Tn}.
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LEMMA B.2. Define R1 = R1, and Rk = Rk1{Sk−1≤Rk−1}. Then one has

τ =
∞∑

n=1

Rn ∧ Sn.

PROOF. Clearly, on {Tk ≤ τ < Tk+1}, one has Rj ≥ Sj and Rk+1 < Sk+1 for
all j ≤ k. Consequently, by definition Rj = Rj for all j ≤ k + 1, whence

∞∑
n=1

Rn ∧ Sn =
k∑

n=1

Rn ∧ Sn + {Rk+1 ∧ Sk+1} +
∞∑

n=k+2

Rn ∧ Sn

= Tk + Rk+1 +
∞∑

n=k+2

Rn ∧ Sn.

Since Rk+1 = Rk+1 < Sk+1 we have Rj = 0 for all j ≥ k + 2. Therefore,∑∞
n=1 Rn ∧ Sn = Tk + Rk+1 = τ , showing the result. �

There exists a sequence of measurable mappings (rk)k∈N∗ defined on E×(R+×
E)k−1 with value in R+ satisfying

R1 = r1(Z0),

Rk = rk(Z0,�k−1),

where �k = (S1,Z1, . . . , Sk,Zk).

DEFINITION B.3. Consider p ∈ N∗. Let (R̂k)k∈N∗ be a sequence of mappings
defined on E × (R+ × E)p × � with value in R+ defined by

R̂1(y, γ,ω) = rp+1(y, γ )

and for k ≥ 2

R̂k(y, γ,ω) = rp+k(y, γ,�k−1(ω))1{Sk−1≤R̂k−1}(y, γ,ω).

PROPOSITION B.4. Assume that Tp ≤ τ ≤ TN . Then, one has

τ = Tp + τ̂ (Z0,�p, θTp),

where τ̂ :E × (R+ × E)p × � → R+ is defined by

τ̂ (y, γ,ω) =
N−p∑
n=1

R̂n(y, γ,ω) ∧ Sn(ω).(B.1)
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PROOF. First, let us prove by induction that for k ∈ N∗, one has

R̂k(Z0,�p, θTp) = Rp+k.(B.2)

Indeed, one has R̂1(Z0,�p, θTp) = Rp+1, and on the set {τ ≥ Tp}, one also has
Rp+1 = Rp+1. Consequently, R̂1(Z0,�p) = Rp+1. Now assume that R̂k(Z0,�p ,
θTp) = Rp+k . Then, one has

R̂k+1(Z0(ω),�p(ω), θTp(ω))

= rp+k+1(Z0(ω),�p(ω),�k(θTp(ω)))1{Sk≤R̂k}(Z0(ω),�p(ω), θTp(ω)).

By definition, one has �k(θTp(ω)) = (Sp+1(ω),Zp+1(ω), . . . , Sp+k(ω),Zp+k(ω))

and the induction hypothesis easily yields 1{Sk≤R̂k}(Z0(ω),�p(ω), θTp(ω)) =
1{Sp+k≤Rp+k}(ω). Therefore, we get R̂k+1(Z0,�p, θTp) = Rp+k+1, showing (B.2).

Combining (B.1) and (B.2) yields

τ̂ (Z0,�p, θTp) =
N−n∑
n=1

Rp+n ∧ Sp+n.(B.3)

However, we have already seen that on the set {T ≥ Tp}, one has Rk = Rk ≥ Sk ,
for k ≤ p. Consequently, using (B.3), we obtain

Tp + τ̂ (Z0,�p, θTp) =
p∑

k=1

Sk +
N∑

k=p+1

Rk ∧ Sk =
N∑

k=1

Rk ∧ Sk.

Since τ ≤ TN , we obtain from Lemma B.2 and its proof that τ = ∑N
n=1 Rn ∧ Sn,

showing the result. �

PROPOSITION B.5. Let (Un)n∈N∗ be a sequence of nonnegative random vari-
ables such that Un is FTn−1-measurable and Un+1 = 0 on {Sn > Un}, for all
n ∈ N∗. Set

U =
∞∑

n=1

Un ∧ Sn.

Then U is an {Ft }t∈R+ -stopping time.

PROOF. Assumption 2.1 yields

{U ≤ t} =
∞⋃

n=0

[({Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {t < Tn+1})
(B.4)

∪ ({Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {Tn+1 ≤ t})].
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From the definition of Un, one has {U ≥ Tn} = {Un ≥ Sn}; hence one has

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {t < Tn+1}
= {Sn ≤ Un} ∩ {Tn + Un+1 ≤ t} ∩ {Tn ≤ t} ∩ {t < Tn+1}.

Theorem 2.10(ii) in [8] now yields {Sn ≤ Un} ∩ {Tn + Un+1 ≤ t} ∩ {Tn ≤ t} ∈ Ft ;
thus one has

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {t < Tn+1} ∈ Ft .(B.5)

On the other hand, one has

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {Tn+1 ≤ t}
= {Sn ≤ Un} ∩ {Un+1 < Sn+1} ∩ {Tn+1 ≤ t}.

Hence Theorem 2.10(ii) in [8] again yields

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {Tn+1 ≤ t} ∈ Ft .(B.6)

Combining equations (B.4), (B.5) and (B.6) we obtain the result. �

COROLLARY B.6. For any (y, γ ) ∈ E×(R+×E)p , τ̂ (y, γ, ·) is an {Ft }t∈R+-
stopping time satisfying τ̂ (y, γ, ·) ≤ TN−p .

PROOF. It follows form the definition of R̂k that R̂k(y, γ,ω) < Sk(ω) im-
plies R̂k+1(y, γ,ω) = 0 and the nonnegative random variable R̂k(y, γ, ·) is FTk−1 -
measurable. Therefore, Proposition B.5 yields that τ̂ (y, γ, ·) is an {Ft }t∈R+-
stopping time. Finally, by definition of τ̂ [see (B.1)], one has τ̂ (y, γ, ·) ≤∑N−p

n=1 Sn = TN−p showing the result. �
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