
The Annals of Applied Probability
2010, Vol. 20, No. 4, 1537–1566
DOI: 10.1214/09-AAP655
© Institute of Mathematical Statistics, 2010

ON THE WIENER DISORDER PROBLEM

BY SEMIH ONUR SEZER

Sabancı University

In the Wiener disorder problem, the drift of a Wiener process changes
suddenly at some unknown and unobservable disorder time. The objective is
to detect this change as quickly as possible after it happens. Earlier work on
the Bayesian formulation of this problem brings optimal (or asymptotically
optimal) detection rules assuming that the prior distribution of the change
time is given at time zero, and additional information is received by observ-
ing the Wiener process only. Here, we consider a different information struc-
ture where possible causes of this disorder are observed. More precisely, we
assume that we also observe an arrival/counting process representing exter-
nal shocks. The disorder happens because of these shocks, and the change
time coincides with one of the arrival times. Such a formulation arises, for
example, from detecting a change in financial data caused by major financial
events, or detecting damages in structures caused by earthquakes. In this pa-
per, we formulate the problem in a Bayesian framework assuming that those
observable shocks form a Poisson process. We present an optimal detection
rule that minimizes a linear Bayes risk, which includes the expected detection
delay and the probability of early false alarms. We also give the solution of
the “variational formulation” where the objective is to minimize the detection
delay over all stopping rules for which the false alarm probability does not
exceed a given constant.

1. Introduction. Suppose that at time t = 0 we start observing a Wiener
process X and a simple Poisson process N with arrival times (Tn)n≥0. The Poisson
process is assumed to apply external shocks on X, and these shocks will eventu-
ally cause a change in the drift of X. The time �, at which the drift changes is
unknown and unobservable. We only know that it coincides with one of the arrival
times according to the prior distribution

P{� = 0} = π, P{� = Tn} = (1 − π)(1 − p)n−1p for all n ≥ 1(1.1)

for some known π ∈ [0,1) and p ∈ (0,1]. We also assume that pre- and post-
disorder drifts μ0 and μ1 are given, and the arrival rate λ of the Poisson process is
known.

Our aim is to detect the time � as quickly as possible after it happens, and by
using our observations from the processes X and N only. More precisely, if we
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let F ≡ {Ft }t≥0 be the observation filtration, our objective is to find an F-stopping
time τ that minimizes the Bayes risk

R(τ,π) := P{τ < �} + c · E(τ − �)+(1.2)

for some delay cost c > 0. If such a stopping time exists, then it resolves optimally
the trade-off between early false alarms and detection delay.

We also consider an alternative but related formulation, in which the objective is
to minimize the detection delay E(τ −�)+ over all F-stopping times, for which the
false alarm frequency P{τ < �} is bounded above by a given constant α ∈ (0,1).
Needless to say, this formulation is more desirable if frequent false alarms cannot
be tolerated.

Change detection problems have been studied in the literature with numerous
applications in different contexts. These applications include quality control and
fault detection in industrial processes, detection of onset of an epidemic in bio-
medical signal processing, target identification in national defense, intrusion de-
tection in computer networks and security systems, threat detection in national
security, pattern recognition in seismology, detection of change in the riskiness of
financial assets, and many others. The reader may refer to [1, 3, 11–13, 23–27],
and the references therein for an extensive discussion on these and other applica-
tions.

Earlier foundational studies on change detection problems include [14] and [16]
on non-Bayesian settings; and [9] and [22] on Bayesian formulations respectively.
In particular, [22] gives the solution of the Bayesian formulation of the Wiener
disorder problem for the Bayes risk in (1.2) assuming that the change time has
an exponential prior distribution (see also [20, 21]). Later, following [19], this
problem is reconsidered by [6] for a different Bayes risk including an exponential
penalty term (which is more suitable for financial applications). Recently, [8] ob-
tained the solution of the finite-horizon version of the original formulation of [22]
(see also [17], Chapter 6.22). The extension to the case where observations consist
of multiple Wiener processes is given by [7].

The common assumption in this line of work is that the change-time has (zero-
modified) exponential distribution. Under this assumption, the sufficient statistic
(i.e., conditional probability process) is one dimensional, and it is possible to ob-
tain explicit results. In addition to this analytical advantage, the exponential distri-
bution can be regarded as a reasonable choice for highly reliable systems consid-
ering the asymptotic approximation of the exponential distribution with geometric
distribution. That is, if we perform independent experiments at times δ,2δ,3δ, . . . ,

for δ > 0, where the failure (disorder) probability is λδ, then as δ → 0+ we have
P(time to first failure > t) → e−λt .

In other settings where the prior distribution is not exponential, the literature
offers asymptotically optimal Bayes rules. When the prior distribution is not expo-
nential, sufficient statistics are not one-dimensional anymore, and explicit results
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are difficult to obtain, in which case asymptotically optimal rules prove useful
for online implementation. The reader may refer to, for example, [4] and [5] for
such asymptotical results including explicit expansions of the optimal Bayes risks
[which are modified versions of (1.2)]; see also [18] for related results. We re-
fer the reader to the recent work [2] for a comprehensive asymptotical analysis
of more general continuous-time models (including the Wiener disorder problem).
The same work [2] can also be consulted for a brief survey and overview of the
earlier work on asymptotical detection theory.

In the aforementioned models, the observed Wiener process is the only source
of information for detecting the change time. However, it is sometimes possible
to observe the external factors that are responsible for the disorder. This is usu-
ally the case if we would like to detect, for example, a sudden change in financial
data caused by major financial events/news, or damages in structures caused by
earthquakes using continuously acquired vibration measurements (see [3], Chap-
ters 1.2.5 and 11.1.4, for a discussion on vibration monitoring in mechanical sys-
tems). Here, we consider such a setting where the underlying system is exposed to
observable shocks/impulses, and the disorder happens at one of these shocks.

Such a formulation is considered for the first time by [15] for a Brownian mo-
tion in a non-Bayesian framework, and under the assumption that these shocks
form a Poisson process. Sections 4 and 5 in [15] derive an optimal solution for
an (extended) Lorden criteria in terms of the (extended) CUSUM process. How-
ever, to our knowledge, no Bayesian formulation of this problem has been given
yet. This formulation and its solution are the contributions of the current paper.
It should be noted that under the distribution in (1.1), the unconditional distribu-
tion of � is (zero-modified) exponential with parameter λp. Hence, our model can
also be considered as a modification of the original formulation in [22]. The major
difference is that we not only observe the underlying Wiener process but also the
external causes of the disorder. In this “more informed” setting, the detection deci-
sion may improve greatly and this is indeed confirmed by our numerical example
in Figure 1.

As an additional remark, we would like to note that although the change can
happen only at discrete points in time, a detection decision can be made at any
time. Hence, the problem is rather a continuous-time problem as expected. It is
essentially composed of a sequence of hypothesis-testing problems: between two
arrivals of the Poisson process, the observer tests the hypotheses

H0 : drift = μ0 vs. H1 : drift = μ1

using the observations received from the Brownian motion. Indeed, on every inter-
arrival period (Tn, Tn+1), the conditional probability process �t := P{� ≤ t |Ft },
for t ≥ 0, follows the same dynamics as those of the sufficient statistic �̂t :=
P{H1 is true|Ft }, for t ≥ 0, of the sequential hypothesis-testing problem in [22],
Section 4.2; see Remark 2.1. If a decision has not been made by the next arrival
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time Tn+1, then the conditional probabilities are updated and the hypothesis-testing
problem restarts again with new (updated) prior likelihoods.

In this paper, we show that the problem of minimizing the Bayes risk in (1.2) is
equivalent to an optimal stopping problem in terms of the conditional probability
process � ≡ {�t }t≥0, and it is optimal to stop the first time the process � exceeds
a threshold π∞. The conditional probability process � is a jump-diffusion jointly
driven by the observed Wiener process and the Poisson process [see (2.9) for its
dynamics]. To compute the optimal threshold π∞ and the optimal Bayes risk, we
transform the corresponding optimal stopping problem into a sequence of stop-
ping problems for the diffusive part of the process �. Each of these sub-problems
are solved by studying a free-boundary problem under a smooth fit principle, and
these solutions are then combined using a jump operator; see Sections 3 and 4
below for details. This approach is introduced for the first time by [7] in order to
solve an optimal stopping problem involving a discounted running cost only. In our
setting, the problem includes a running cost and a terminal cost, and involves no
discounting. This requires nontrivial modifications of their arguments as illustrated
in Sections 3 and 4.

In Section 2 below, we formulate the problem as an optimal stopping prob-
lem for the conditional probability process �, and we study the dynamics of this
process. In Section 3, we introduce a jump operator whose role is to incorporate the
information generated by the Poisson process at every arrival time. Using this oper-
ator, we construct the optimal Bayes risk sequentially in Section 4, and we identify
an optimal Bayes rule. Finally, in Section 5, we solve the variational formulation
using the properties of the optimal solution given in Section 4. Appendices at the
end include some of the lengthy derivations.

2. Problem description. Let (	, H,P) be a probability space hosting a
Wiener process W and a simple Poisson process N with arrival times (Tn)n≥0
and rate λ > 0. On this space, we have also an independent random variable ζ

with the zero-modified geometric distribution

P{ζ = 0} = π, P{ζ = n} = (1 − π)(1 − p)n−1p for all n ∈ N(2.1)

for some π ∈ [0,1) and p ∈ (0,1]. In terms of these elements, we introduce a new
R+-valued variable

� :=
∞∑
i=0

Ti1{ζ=i}(2.2)

representing the disorder time. Then, our observation process X = {Xt }t≥0 can be
defined as

Xt := Wt + μ · (t − �)+ for all t ≥ 0.(2.3)
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In other words, as described in Section 1, the process X is a Brownian motion
gaining a drift μ at time �, and the change time � has zero-modified geometric
distribution on the Poissonian clock. With the notation in Section 1, we assume
that μ0 = 0 and μ1 = μ �= 0 without loss of generality.

Let F ≡ {Ft }t≥0 be the filtration of the observed pair (X,N); that is, Ft :=
σ {Xs,Ns : s ≤ t}, for t ≥ 0. For an F-stopping time τ , let R(τ,π) denote the Bayes
risk

R(τ,π) := P
π {τ < �} + c · E

π(τ − �)+,

in which P
π is the probability measure P where ζ has the distribution in (2.1). The

Bayes risk above includes the false alarm probability and the expected detection
delay cost for some c > 0. Our objective in this problem is to compute

V (π) := inf
τ∈F

R(τ,π),(2.4)

and if exists, find a stopping time attaining this infimum.
Using the standard arguments in [22], Chapter 4, we can transform the problem

in (2.4) into an optimal stopping problem for the conditional probability process
defined as

�t := P{� ≤ t |Ft }, t ≥ 0.(2.5)

More precisely, the minimal Bayes risk in (2.4) is the value function of the optimal
stopping problem

V (π) = inf
τ∈F

E
π

[∫ τ

0
g(�s) ds + h(�τ )

]
,(2.6)

where g(π) := c · π and h(π) := 1 − π .
In Appendix A, we show that the process � has the characterization

�t = �t

1 + �t

, where

(2.7)

�t : = Lt

(1 − p)Nt

(
π

1 − π
+

Nt∑
i=1

(1 − p)i−1p

LTi

)
in terms of

Lt := exp
{
μXt − μ2

2
t

}
for t ≥ 0.(2.8)

Using (2.7) and (2.8), we obtain

d�t = μ�t−(1 − �t−) dŴt + p(1 − �t−) dNt ,(2.9)

where Ŵt := Xt − μ
∫ t

0 �s ds, for t ≥ 0, is a (P,F)-Wiener process. In Appen-
dix B, we also show that for t ≤ s1 and t ≤ s2 and for r, q ∈ R, we have

E[exp{ir(Ŵs1 − Ŵt ) + iq(Ns2 − Nt)}|Ft ]
(2.10)

= exp
{−1

2r2(s1 − t) + λ(eiq − 1)(s2 − t)
}
,
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which implies that Ŵ and N are independent. This further implies that the
process � whose dynamics are given in (2.9) is a strong Markov process.

REMARK 2.1. Between two arrival times, the process � satisfies d�t =
μ�t−(1 − �t−) dŴt , which coincides with the dynamics of the conditional prob-
ability process in the sequential hypothesis-testing problem considered in [22],
Section 4.2. In that problem, an observer is given two hypotheses

H0 : drift = 0 and H1 : drift = μ(2.11)

about an observed Wiener process. The hypotheses have prior likelihoods 1 − π

and π respectively, and the aim is to identify the correct one as soon as possible.
In our problem, the change can happen only at one of the arrival times of

the Poisson process. Hence, between two arrival times [Tn,Tn+1) the role of the
process � is to indicate the posterior likelihood of the hypothesis H1, whose initial
prior is �Tn as of time Tn. In this setting, if a decision is made by the next arrival
time, the hypothesis-testing problem terminates. Otherwise, it restarts with new
priors 1 − �Tn+1 and �Tn+1 , respectively.

REMARK 2.2. Using its definition in (2.5), it can easily be verified that the
process � is a bounded submartingale with a last element �∞ ≤ 1. Moreover,
thanks to bounded convergence theorem we have

1 ≥ E
π�∞ = lim

t→∞E
π�t = lim

t→∞E
π [

1{�≤t}
]

= lim
t→∞E

π [
E

[
1{�≤t}|Nu : u ≤ t

]]
= lim

t→∞E
π [1 − (1 − π)(1 − p)Nt ] = 1,

which implies that �∞ = 1, P
π -a.s., for all π ∈ [0,1].

The limiting behavior of � implies that the exit time τ̃r of � from an interval
[0, r), for r ∈ [0,1), is finite P

π -almost surely, for π ∈ [0,1]. Indeed, the dynamics
in (2.9) give

E
π�t∧τ̃r = π + E

π

[∫ t∧τ̃r

0
μ�u−(1 − �u−) dŴu

+
∫ t∧τ̃r

0
p(1 − �u−)(dNu − λdu)

+
∫ t∧τ̃r

0
λp(1 − �u−) du

]
.

Since � is bounded, the first two integral has zero expectations. Moreover, for
u ≤ τ̃r , we have 1 − �u ≥ 1 − r , and this yields

1 ≥ E
π�t∧τ̃r ≥ λp(1 − r)Eπ t ∧ τ̃r ,(2.12)
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showing that E
π τ̃r is uniformly bounded, for all π ∈ [0,1], thanks to monotone

convergence theorem.

3. Dynamic programming operator. The first arrival time T1 is a regenera-
tion time of the conditional probability process �. Therefore, if the process � has
not been stopped yet, the minimal Bayes risk that one can attain starting from T1
should be computed by evaluating the function V (·) at �T1 . This tells us that the
value function should satisfy the dynamic programming equation

V (π) = inf
τ∈F

E
π

[∫ τ∧T1

0
g(�t) dt + 1{τ<T1}h(�τ ) + 1{τ≥T1}V (�T1)

]
.(3.1)

Until the first arrival time, � coincides with a diffusion starting from Y0 = π

and satisfying

dYt = μYt(1 − Yt ) dŴt for t ≥ 0.(3.2)

Hence, a given stopping time τ ∈ F should coincide on the event {τ < T1} with
another stopping time of the process Y . This observation suggests that the func-
tion V (·) should be a fixed point of the operator

J [w](π) := inf
τ∈FY

E
π

[∫ τ∧T1

0
g(Yt ) dt + 1{τ<T1}h(Yτ )

(3.3)

+ 1{τ≥T1}w
(
YT1 + p(1 − YT1)

)]
,

which is obtained by replacing F in (3.1) with the filtration F
Y of the process Y ,

and V (·) with a bounded function w(·) on [0,1]. Using the independence of Ŵ

and N , and the distribution of T1 we can rewrite this operator

J [w](π) = inf
τ∈FY

E
π

[∫ τ

0
e−λt [g(Yt ) + λw(S(Yt ))]dt + e−λτh(Yτ )

]
,(3.4)

where S(π) := π + p(1 − π).
In this section, we study the properties of the operator J for a suitable class

of function w(·)’s. Under certain assumptions on w(·), we show that the infi-
mum in (3.4) is attained by the exit time of the process Y from an interval of
the form [0, r), and that the function J [w](·) solves the variational inequalities
of the optimal stopping problem in (3.4). Using the results of this section, we
show in Section 4 that the function V (·) indeed satisfies V (·) = J [V ](·) as ex-
pected.

REMARK 3.1. For a bounded function w : [0,1] 
→ R+, we have 0 ≤
J [w](·) ≤ h(·). Moreover for two bounded functions w1(·) ≤ w2(·), we have
J [w1](·) ≤ J [w2](·).
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PROOF. The upper bound J [w](·) ≤ h(·) follows by taking τ = 0 in (3.4).
Nonnegativity of J [w](·) and the monotonicity of w 
→ J [w] are obvious. �

3.1. Solving the optimal stopping problem in (3.4). Below we solve the mini-
mization problem in (3.4) under the following assumption.

ASSUMPTION A1. The function w(·) is an arbitrary (but fixed) nonnegative
and continuous function on [0,1] bounded above by h(·).

Let us define the functions

ψ(π) := πm1(1 − π)1−m1 and
(3.5)

η(π) := πm2(1 − π)1−m2 for π ∈ [0,1],
where m1 > 1 and m2 < 0 are the roots of the quadratic equation

m(m − 1) = 2λ

μ2 .(3.6)

The functions ψ(·) and η(·) are respectively, the increasing and decreasing so-
lutions (up to multiplication by a constant) of the equation A0f (π) = λf (π),
where A0 is the infinitesimal generator of the diffusion process Y in (3.2); that
is, A0f (π) := 1

2μ2π2(1 − π)2f ′′(π). It is easy to verify that the functions ψ(·)
and η(·) satisfy the boundary conditions

ψ(0+) = ψ ′(0+) = 0 = η′(1−) = η(1−),
(3.7)

ψ(1−) = ψ ′(1−) = ∞ = η′(0+) = η(0+),

and that their Wronskian is m1 − m2.
In terms of the drift r(·) ≡ 0 and the volatility σ(π) = μπ(1 − π) of the

process Y [see the dynamics in (3.2)], let S(·) denote the scale function

S(π) :=
∫ π

d
S(dy), where S(dy) := exp

{∫ y

c

r(z)

σ 2(z)
dz

}
dy = dy

for arbitrary c, d ∈ (0,1), and let M(·) be the speed measure

M(dy) := dy

σ 2(y)S′(y)
= dy

μ2π2(1 − π)2

for y ∈ (0,1). Feller boundary test at the right boundary {1} gives∫ 1

c

∫ 1

y
S(dz)M(dy) = ∞,

∫ 1

c

∫ 1

y
M(dz)S(dy) = ∞,(3.8)
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and according to [10], Table 6.2, we conclude that the right boundary is natural.
This implies that the process Y cannot reach the right boundary in finite time.
On the other hand, the process {1 − Yt }t≥0 has the same dynamics in (3.2) and
by symmetry the left boundary {0} is also natural for Y . Indeed, by a change
of variable in (3.8) as u = 1 − y and q = 1 − z we get the Feller boundary test
at {0}

∞ =
∫ 1

c

∫ 1

y
S(dz)M(dy) =

∫ 1−c

0

∫ u

0
dq

du

μ2u2(1 − u)2

=
∫ 1−c

0

∫ u

0
S(dq)M(du),

∞ =
∫ 1

c

∫ 1

y
M(dz)S(dy) =

∫ 1−c

0

∫ u

0

dq

μ2q2(1 − q)2 du

=
∫ 1−c

0

∫ u

0
M(dq)S(du),

which gives the same conclusion for the left boundary.

REMARK 3.2. The process Y is a bounded martingale [see (3.2)], and we have

E
π

[∫ ∞
0

e−λt [g(Yt ) + λw(S(Yt ))]dt

]
≤ E

π

[∫ ∞
0

e−λt [g(Yt ) + λ‖w‖]dt

]
=

∫ ∞
0

e−λt [Eπg(Yt ) + λ‖w‖]dt

=
∫ ∞

0
e−λt [g(π) + λ‖w‖]dt < ∞.

LEMMA 3.1. For 0 < l ≤ r < 1, and let τl,r be the exit time of the process Y

from the interval (l, r). The expectation

Hl,r [w](π) := E
π

[∫ τl,r

0
e−λt [g(Yt ) + λw(S(Yt ))]dt + e−λτl,r h(Yτl,r

)

]
,(3.9)

has the explicit form

Hl,r [w](π) = ψ(π)

[
C1 +

∫ r

π
u1[w](y) dy

]
+ η(π)

[
C2 −

∫ r

π
u2[w](y) dy

]
(3.10)

+ h(l)
ψ(π)η(r) − ψ(r)η(π)

ψ(l)η(r) − ψ(r)η(l)
+ h(r)

ψ(l)η(π) − ψ(π)η(l)

ψ(l)η(r) − ψ(r)η(l)
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for π ∈ (l, r), in terms of

u1[w](y) := 2
g(y) + λw(S(y))

(m1 − m2)σ 2(y)
η(y),

u2[w](y) := 2
g(y) + λw(S(y))

(m1 − m2)σ 2(y)
ψ(y),

(3.11)

C2 := η(l)
∫ r
l u2[w](y) dy − ∫ r

l u2[w](y) dy ψ(l)

ψ(r)η(l) − ψ(l)η(r)
ψ(r),

C1 := − η(r)

ψ(r)
C2.

Clearly, Hl,r [w](·) is nonnegative, and we have Hl,r [w](π) = h(π), for π /∈ (l, r).

PROOF. Nonnegativity of Hl,r [w](·) and the identity Hl,r [w](·) = h(·), on
[0,1] \ (l, r), are obvious. For π ∈ (l, r), let f (·) denote the function on the right-
hand side in (3.10). Direct computation shows that f (·) satisfies

(−λ + A0)f (π) + g(π) + λw(S(y)) = 0 on π ∈ (l, r),

with boundary conditions f (l+) = h(l) and f (r−) = h(r). Moreover, its deriva-
tive (with respect to π ) is

ψ ′(π)

[
C1 +

∫ r

π
u1[w](y) dy

]
+ η′(π)

[
C2 −

∫ r

π
u2[w](y) dy

]

+ h(l)
ψ ′(π)η(r) − ψ(r)η′(π)

ψ(l)η(r) − ψ(r)η(l)
+ h(r)

ψ(l)η′(π) − ψ ′(π)η(l)

ψ(l)η(r) − ψ(r)η(l)
,

which is bounded on [l, r]. Also, observe that the exit time τl,r of the regular
diffusion Y is finite and h(Yτl,r

) = f (Yτl,r
), P

π -almost surely for all π ∈ (0,1).
Then, by applying Itô’s rule, we obtain

E
πe−λτl,r h(Yτl,r

) = E
πe−λτl,r f (Yτl,r

)

= f (π) + E
π

∫ τl,r

0
e−λt (−λ + A0)f (Yu) du

= f (π) − E
π

∫ τl,r

0
e−λt [g(Yu) + λw(S(Yu))]du,

and this shows f (·) = Hl,r [w](·) on (l, r). �

LEMMA 3.2. For 0 < r < 1, and τr := inf{t ≥ 0 :Yt ≥ r}, let us define

Hr [w](π) := E
π

[∫ τr

0
e−λt [g(Yt ) + λw(S(Yt ))]dt

(3.12)

+ e−λτr h(Yτr )

]
, π ∈ [0,1],
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which clearly equals h(·), for π ≥ r . For π ∈ (0, r), the function Hr [w](·) can be
computed by taking the limit of (3.10) as l ↘ 0. That is,

Hr [w](π) = lim
l↘0

Hl,r [w](π)

= ψ(π)

(
− η(r)

ψ(r)

∫ r

0
u2[w](y) dy +

∫ r

π
u1[w](y) dy + h(r)

ψ(r)

)
(3.13)

+ η(π)

∫ π

0
u2[w](y) dy.

The expression in (3.13) is twice-continuously differentiable [on (0, r)] and solves

(−λ + A0)Hr [w](π) + g(π) + λw(S(y)) = 0.(3.14)

Moreover, the function Hr(·) is continuous on [0,1] with

lim
π↘0

Hr [w](π) = w(p) = Hr [w](0).(3.15)

PROOF. The point {0} is a natural boundary for Y ; therefore, we have τr =
liml↘0 τl,r , P

π -almost surely, for π ∈ (0, r). Then, the dominated convergence
theorem (see Remark 3.2) implies that Hr [w](π) = liml↘0 Hl,r [w](π).

To compute the limit of Hl,r [w](π) as l ↘ 0, we first observe

lim
l↘0

h(l)
ψ(π)η(r) − ψ(r)η(π)

ψ(l)η(r) − ψ(r)η(l)
+ h(r)

ψ(l)η(π) − ψ(π)η(l)

ψ(l)η(r) − ψ(r)η(l)
(3.16)

= ψ(π)
h(r)

ψ(r)
.

Moreover, since 0 ≤ g(·) + λw(S(·)) ≤ c + λ‖w‖, we have∫ π

0
u2[w](y) dy ≤ c + λ‖w‖

m1 − m2

∫ π

0

2ψ(y)

σ 2(y)
dy

= c + λ‖w‖
m1 − m2

∫ π

0

ψ ′′(y)

λ
dy

= (c/λ) + ‖w‖
m1 − m2

ψ ′(π) < ∞ for π < 1,

and using (3.11) we get

lim
l↘0

C2 =
∫ r

0
u2[w](y) dy and lim

l↘0
C1 = η(r)

ψ(r)

∫ r

0
u2[w](y) dy.(3.17)

Finally letting l ↘ 0 in (3.10) and using the limits found in (3.16) and (3.17),
we obtain the expression in (3.13). It is evident that this expression is twice-
continuously differentiable. Moreover, by direct computation [using (3.11)] it can
be verified easily that it solves the equation in (3.14).
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Clearly, Hr [w](·) is continuous on (0, r) and (r,1). The continuity at {r} can be
checked by letting π ↗ r in the expression given in (3.13), which goes to h(r). To
establish (3.15), we first note that Yt = 0, for all t > 0, if Y0 = π = 0. This implies

Hr [w](0) = E
π

[∫ ∞
0

e−λt [g(0) + λw(S(0))]dt

]
= w(p).

On the other hand, applying L’Hôpital rule and using the explicit form of ψ(·)
and η(·), we obtain

lim
π↘0

ψ(π)

∫ r

π
u1[w](y) dy = 2λw(p)

μ2m1(m1 − m2)
,

lim
π↘0

η(π)

∫ π

0
u2[w](y) dy = − 2λw(p)

μ2m2(m1 − m2)
.

Since m1 ·m2 = −2μ2/λ [see (3.6)], taking the limit in (3.13) gives w(p), and this
concludes the proof. �

Lemma 3.2 shows that at the point π = r , we have (Hr [w])′(r+) = −1 and

(Hr [w])′(r−) = ψ ′(r)
(
− η(r)

ψ(r)

∫ r

0
u2[w](y) dy + h(r)

ψ(r)

)
+ η′(r)

∫ r

0
u2[w](y) dy.

Since the Wronskian ψ ′(r)η(r) − ψ(r)η′(r) equals m1 − m2, we can rewrite the
left derivative as

(Hr [w])′(r−) = 1

ψ(r)

(
−

∫ r

0
2

ψ(y)

σ 2(y)
[g(y) + λw(S(y))]dy + ψ ′(r)h(r)

)
.

Hence, the derivative is continuous at π = r if and only if

−
∫ r

0
2

ψ(y)

σ 2(y)
[g(y) + λw(S(y))]dy + ψ ′(r)h(r) + ψ(r) = 0

(3.18)

⇐⇒ B[w](r) :=
∫ r

0

2ψ(y)

σ 2(y)
[−g(y) − λw(S(y)) + λh(y)]dy = 0,

where the second equation follows after noting that

ψ ′(r)h(r) + ψ(r) =
∫ r

0
h(y)[2λψ(y)/σ 2(y)]dy,

which can be verified using λψ(·) = A0ψ(·).
LEMMA 3.3. If w(·) is concave, then the function −g(π) − λw(S(π)) +

λh(π) has a unique root d[w] ∈ (0,1). The function π 
→ B[w](π) equals zero
for π = 0, strictly increases on (0, d[w]) and strictly decreases on (d[w],1) with
limπ↗1 B[w](π) = −∞. Hence, there exists a unique point r[w] ∈ (d[w],1) at
which B[w](r[w]) = 0.
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PROOF. The function π 
→ −g(π)−λw(S(π))+λh(π) = cπ −λw(S(π))+
λ(1 − π) is convex and continuous on [0,1]. At the point π = 0, it equals
λ(−w(p) + 1) ≥ λ(−h(p) + 1) > 0; and at π = 1, its value is −c − λw(p) < 0.
Hence, there exists a single point d[w] ∈ (0,1) at which it is zero. To the left of
this point it is positive, and to the right it is negative. Therefore, π 
→ B[w](π) is
zero at π = 0, strictly increases on (0, d[w]) and strictly decreases on (d[w],1).
Also, observe that, for π < 1,

|B[w](π)| ≤ (c+2λ)

∫ π

0

2ψ(y)

σ 2(y)
dy = c + 2λ

λ

∫ π

0
ψ ′′(y) dy = c + 2λ

λ
ψ ′(π) < ∞

and∫ 1

d[w]+δ

2ψ(y)

σ 2(y)
[−g(y) − λw(S(y)) + λh(y)]dy

≤
(

min
π∈[d[w]+δ,1]{−g(π) − λw(S(π)) + λh(π)}

)
·
∫ 1

d[w]+δ

2ψ(y)

σ 2(y)
dy

=
(

min
π∈[d[w]+δ,1]{−g(π) − λw(S(π)) + λh(π)}

)
· [ψ ′(π)]|1d[w]+δ = −∞

for all δ ∈ (0,1 − d[w]), where the last equality follows using (3.5). Hence, we
conclude that B[w](π) goes to −∞ as π → 1, and this implies that it has a unique
root r[w] ∈ (d[w],1). �

REMARK 3.3. For two concave functions w1(·) ≤ w2(·) satisfying Assump-
tion A1, we have B[w1](·) ≥ B[w2](·); therefore r[w1] ≥ r[w2]. If we select the
zero function (which equals zero on [0,1]), direct computation yields

B[0](π) = ψ(π)

π(1 − π)

[
−π

(
(m1 − 1)

c

λ
+ m1

)
+ m1

]
,

and for h(π) = 1 − π , we get

B[h](π) = ψ(π)

π(1 − π)

[
−π

(
(m1 − 1)

c

λ
+ m1p

)
+ m1p

]
.

Hence, we have the bounds

m1p

(m1 − 1)(c/λ) + m1p
≤ r[w] ≤ m1

(m1 − 1)(c/λ) + m1
.(3.19)

Observe that, if the function w(·) is concave, Hr[w][w](·) is continuously dif-
ferentiable on (0,1). On (r[w],1), Hr[w][w](·) coincides with h(·), and

(−λ + A0)Hr[w][w](π) + g(π) + λw(S(π)) = −λh(π) + g(π) + λw(S(π)) > 0,

since d[w] < r[w].
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On (0, r[w]), the function Hr[w][w](·) solves (−λ+ A0)Hr[w][w](π)+g(π)+
λw(S(π)) = 0. In Appendix B, we also show that

λHr[w][w](π) − g(π) − λw(S(π)) < 0 for 0 < π < r[w].(3.20)

Since A0Hr[w][w](π) = (σ 2(π)/2) · (Hr[w][w](π))′′, the inequality in (3.20) im-
plies that Hr[w][w](·) is strictly concave and Hr[w][w](·) < h(·) on (0, r[w]).

Finally, the (strict) concavity on (0, r[w]) and the “smooth-fit” at {r[w]} imply
that Hr[w][w](·) is also concave on (0,1). The following remark is a summary of
the analytical properties of Hr[w][w](·) described above.

REMARK 3.4. Suppose that the function w(·) is concave. Then, Hr[w][w](·)
is nonnegative, continuous and concave on [0,1]. It is continuously differentiable
on (0,1), twice-continuously differentiable on (0,1) \ {r[w]}, and it satisfies{

Hr[w][w](π) = h(π)

(−λ + A0)Hr[w][w](π) + g(π) + λw(S(π)) > 0

}
, π ∈ (r[w],1),

(3.21) {
Hr[w][w](π) < h(π)

(−λ + A0)Hr[w][w](π) + g(π) + λw(S(π)) = 0

}
, π ∈ (0, r[w]).

LEMMA 3.4. If w(·) is concave, we have J [w](·) = Hr[w][w](·), and τr[w] :=
inf{t ≥ 0 :Yt ≥ r[w]} is an optimal stopping time for (3.4).

PROOF. For π ∈ (0,1), let τ be an F
Y -stopping time, and τl,r be the exit time

of Y from (l, r) for 0 < l ≤ r < 1. Then, by Itô’s rule

e−λ·τ∧τl,r Hr[w][w](Yτ∧τl,r
)

= Hr[w][w](π) +
∫ τ∧τl,r

0
e−λt (−λ + A0)Hr[w][w](Yt ) dt

+
∫ τ∧τl,r

0
e−λtσ (Yt )

(
Hr[w][w])′(Yt ) dŴt .

The function Hr[w][w](·) is continuously differentiable on (0,1). Its derivative
is therefore bounded on [l, r] and ‖σ(·)‖ ≤ |μ|. Then, taking expectations above
gives

E
πe−λ·τ∧τl,r Hr[w][w](Yτ∧τl,r

)

= Hr[w][w](π) + E
π

∫ τ∧τl,r

0
e−λt (−λ + A0)Hr[w][w](Yt ) dt

≥ Hr[w][w](π) − E
π

∫ τ∧τl,r

0
e−λt (g(Yt ) + λw(S(Yt ))

)
dt,
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where the inequality is due to (3.21). Since both boundaries are natural, we first let
r ↗ 1 and then l ↘ 0 to obtain

E
πe−λ·τ h(Yτ ) ≥ E

πe−λ·τHr[w][w](Yτ )
(3.22)

≥ Hr[w][w](π) − E
π

∫ τ

0
e−λt (g(Yt ) + λw(S(Yt ))

)
dt

thanks to dominated convergence theorem (see Remark 3.2), and this shows
Hr[w][w](·) ≤ J [w](·) on (0,1).

When we repeat the steps above with τ = τr[w] = inf{t ≥ 0 :Yt ≥ r[w]}, the
inequalities become equalities again by (3.21). Hence, J [w](·) = Hr[w][w](·) on
(0,1).

If Y0 = π = 0; then Yt = 0, for t ≥ 0, and

J [w](0) = inf
τ

E
π [λw(S(0))(1 − e−λτ ) + e−λτh(0)]

= w(S(0)) = w(p) = Hr[w](0),

thanks to Lemma 3.2 [note that w(p) ≤ h(p) < h(0)]. Moreover, this value is
attained by selecting τ = ∞ = τr[w]. Similarly, if Y0 = 1, we have J [w](1) =
h(1) = 0 = Hr[w](1), which is attained by τ = 0 = τr[w]. �

4. The value function and an optimal detection rule. Using the dynamic
programming operator J , let us define the sequence of functions

v0 ≡ h(·) and vn+1(·) := J [vn](·) = Hr[vn][vn](·) for n ∈ N.

REMARK 4.1. The sequence (vn)n∈N is nonincreasing, and each element of
the sequence is a nonnegative, continuous and concave function on [0,1].

PROOF. We have v1(·) = J [h](·) ≤ h(·) = v0(·), where the inequality follows
from the definition of the operator J in (3.4). Next, assume that vn(·) ≤ vn−1(·), for
some n ∈ N. Then Remark 3.1 implies vn+1(·) = J [vn](·) ≤ J [vn−1](·) = vn(·),
and this shows that the sequence (vn)n∈N is nonincreasing by induction. Finally,
since v0(·) = h(·) is nonnegative, continuous and concave, these properties also
hold for each vn(·), n ∈ N, by induction thanks to Remark 3.4. �

For n ∈ N, let πn := r[vn−1] be the solution of the equation B[vn−1](r) = 0
[see (3.18)]. Since vn−1(·) is concave and satisfies Assumption A1, this equa-
tion has a unique root on (0,1) thanks to Lemma 3.3. Moreover, Remark 3.4
and Lemma 3.4 imply that vn(·) is continuously differentiable on (0,1), twice-
continuously differentiable on (0,1) \ {πn} and solves the variational inequali-
ties {

vn(π) = h(π)

(−λ + A0)vn(π) + g(π) + λvn−1(S(π)) > 0

}
, π ∈ (πn,1),{

vn(π) < h(π)

(−λ + A0)vn(π) + g(π) + λvn−1(S(π)) = 0

}
, π ∈ (0, πn).
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Observe that πn = inf{π ∈ [0,1] :vn(π) = h(π)}; hence, {πn}n∈N is nondecreas-
ing.

Let v∞(·) := infn∈N vn(·) be the pointwise limit of (vn)n∈N. Then dominated
convergence theorem gives

v∞(π) = inf
n∈N

J [vn−1](π)

= inf
n∈N

inf
τ∈FY

E
π

[∫ τ

0
e−λt [g(Yt ) + λvn−1(S(Yt ))]dt + e−λτh(�π

τ )

]

= inf
τ∈FY

inf
n∈N

E
π

[∫ τ

0
e−λt [g(Yt ) + λvn−1(S(Yt ))]dt + e−λτh(�π

τ )

]
(4.1)

= inf
τ∈FY

E
π

[∫ τ

0
e−λt [g(Yt ) + λv∞(S(Yt ))]dt + e−λτh(�π

τ )

]
= J [v∞](π),

which shows that the function v∞(·) is a fixed point of the operator J .

LEMMA 4.1. The sequence (vn)n≥1 converges to v∞(·) uniformly on [0,1].
More precisely, we have

v∞(π) ≤ vn(π) ≤ v∞(π) + (1 − p)n(1 − π)(4.2)

for all n ∈ N.

PROOF. The first inequality in (4.2) is immediate since the sequence (vn)n∈N

is nonincreasing. The second inequality is also obvious for n = 0 as v∞(·) =
infn∈N vn(·) ≥ 0. Assume the second inequality holds for some n ∈ N. This im-
plies that vn(S(π)) = vn(π +p(1 −π)) ≤ v∞(π +p(1 −π))+ (1 −p)n(1 −π −
p(1 − π)) = v∞(S(π)) + (1 − p)n+1(1 − π). Then we have

vn+1(π) = J [vn](π)

= inf
τ∈FY

E
π

[∫ τ

0
e−λt [g(Yt ) + λvn(S(Yt ))]dt + e−λτh(�π

τ )

]

≤ inf
τ∈FY

E
π

[∫ τ

0
e−λt [g(Yt ) + λv∞(S(Yt )) + λ(1 − p)n+1(1 − Yt )]dt

+ e−λτh(�π
τ )

]

≤ inf
τ∈FY

E
π

[∫ τ

0
e−λt [g(Yt ) + λv∞(S(Yt ))]dt + e−λτh(�π

τ )

]

+ E
π

[∫ ∞
0

e−λtλ(1 − p)n+1(1 − Yt ) dt

]
.
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Since v∞(·) satisfies v∞(·) = J [v∞](·), the last inequality gives

vn+1(π) ≤ v∞(π) +
∫ ∞

0
e−λtλ(1 − p)n+1

E
π [1 − Yt ]dt

= v∞(π) + (1 − p)n+1(1 − π),

where we used the martingale property of Y to justify the last equality. This
shows the second inequality in (4.2) for n+ 1, and the proof is complete by induc-
tion. �

COROLLARY 4.1. The uniform convergence in Lemma 4.1 implies that v∞(·)
is continuous on [0,1]. Moreover, as the infimum of nonnegative concave functions
vn(·)’s, it is also nonnegative and concave.

Corollary 4.1 and the identity v∞(·) = J [v∞](·) [see (4.1)] allow us to conclude
that v∞(·) is continuously differentiable on (0,1) and twice-continuously differ-
entiable on (0,1) \ {π∞}, where π∞ := r[v∞] is the unique root of the equation
B[v∞](r) = 0 defined in (3.18). Furthermore, v∞(·) satisfies{

v∞(π) = h(π)

(−λ + A0)v∞(π) + g(π) + λv∞(S(π)) > 0

}
, π ∈ (π∞,1),

(4.3) {
v∞(π) < h(π)

(−λ + A0)v∞(π) + g(π) + λv∞(S(π)) = 0

}
, π ∈ (0, π∞),

which also implies that π∞ = inf{π ∈ [0,1] :v∞(π) = h(π)}. Since vn(·) ↘ v(·),
we have πn ↗ π∞.

PROPOSITION 4.1. The function v∞(·) is the value function V (·) of the op-
timal stopping problem in (2.6), and the first entrance time τ̃π∞ of the process �

to the interval [π∞,1] is an optimal solution for the change-detection problem
in (2.4).

PROOF. The claim is obvious if �0 = π = 1; both v∞(1) and V (1) are non-
negative and bounded by h(1) = 0, which is also the expected reward in (2.6) by
stopping immediately.

For π ∈ (0,1) and 0 < l ≤ r < 1, let τ̃[0,l] and τ̃[r,1] be respectively, the entrance
times of the process � to the intervals [0, l] and [r,1]. Also, define τ̃l,r := τ̃[0,l] ∧
τ̃[r,1]. Then for an F-stopping time τ , Itô’s rule gives

v∞(�τ∧τ̃l,r
) = v∞(π) +

∫ τ∧τ̃l,r

0
[(−λ + A0)v∞(�u−) + λv∞(S(�u−))]du

+
∫ τ∧τ̃l,r

0
μ�u−(1 − �u−)v′∞(�u−) dŴu

+
∫ τ∧τ̃l,r

0
[v∞(S(�u−)) − v∞(�u−)](dNu − λdu).
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FIG. 1. We present a numerical example where μ = 1, λ = 2, p = 0.5 and c = 0.5. Panel (a)
illustrates the sequential approximation of the optimal Bayes risk. The functions vn(·), for n ≤ 10, are
computed by first finding the threshold πn and then evaluating the exit time expectation Hπn [vn](·)
in (3.13) for π ≤ πn. The convergence is uniformly fast as given by Lemma 4.1. For n = 10, we
have ‖V − v10‖ ≤ 9.76 · 10−4. Panel (b) compares two information levels on this detection problem.
Recall that unconditional distribution of the change time is exponential with parameter λp = 1. If
we only observe the Wiener process (given this prior distribution) without observing the Poisson
process N , then we are in the framework considered by [17], Section 6.22. The function Vexp(·) is
the value function corresponding to this “less information” setting. It is computed by evaluating the
expressions in [17], pages 311–312, with the values of μ and c given above. The figure illustrates
that another observer who is also presented the process N performs significantly better in detecting
the change.

Since the function v∞ is bounded, the stochastic integral with respect to the mar-
tingale {Nt − λt}t≥0 is a square-integrable martingale stopped at τ ∧ τ̃l,r [whose
expectation is finite due to (2.12)]. Similarly, so is the integral with respect to Ŵ

as v′∞ is continuous and bounded on [l, r]. Then taking expectations, we ob-
tain

E
πv∞(�τ∧τ̃l,r

)

= v∞(π) + E
π

∫ τ∧τ̃l,r

0
[(−λ + A0)v∞(�u−) + λv∞(S(�u−))]du

(4.4)

≥ v∞(π) − E
π

∫ τ∧τ̃l,r

0
g(�u−) du

= v∞(π) − E
π

∫ τ∧τ̃l,r

0
g(�u)du

thanks to the inequalities in (4.3).
The left boundary {0} is natural for the diffusion in (3.2). Between two arrivals

of N , the process � follows these dynamics, and at an arrival time Tn it jumps to
the right by an amount of p(1 − �Tn). Hence, as we let l ↘ 0, τ̃[0,l] goes to ∞
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thanks to strong Markov property, and τ̃l,r ↗ τ̃[r,1]. Moreover, limt→∞ �t = 1,
and �t < 1 [since �t < ∞ in (2.7)] for finite t , if π < 1. Hence, as r ↗ 1, we have
τ̃[r,1] ↗ ∞. Therefore, when we let l ↘ 0 and r ↗ 1 in (4.4), bounded convergence
and monotone convergence theorems give

E
πv∞(�τ ) ≥ v∞(π) − E

π
∫ τ

0
g(�u)du.(4.5)

Also note that we have E
πh(�τ ) ≥ E

πv∞(�τ ). Then we obtain

E
π

[∫ τ

0
g(�u)du + h(�τ )

]
≥ v∞(π),

which implies that v∞(π) ≤ V (π) on (0,1).
When we replace τ in (4.4) with the entrance time τ̃π∞ , the inequality in (4.5)

becomes an equality. Then the equality E
πh(�τ̃π∞ ) = E

πv∞(�τ̃π∞ ) yields

v∞(π) = E
π

[∫ τ̃[π∞,1]

0
g(�u)du + h

(
�τ̃[π∞,1]

)]
,(4.6)

and this implies V (π) = v∞(π), for π ∈ (0,1).
To show the same equality for �0 = π = 0, we first note that �t = 0 for t < T1,

and �T1 = p if the process � starts from the point {0}. Also note that the identity
v∞(·) = J [v∞](·) implies v∞(0) = v∞(p) [see (3.3)]. Then for an F-stopping
time τ , by modifying the arguments above, we get

E
0v∞

(
�τ∧(τ̃l,r◦θT1 )

)
= v∞(0) + E

01{τ≥T1}
∫ τ∧(τ̃l,r◦θT1 )

T1

[(−λ + A0)v∞(�u)

+ λv∞(S(�u−))]du(4.7)

≥ v∞(0) − E
01{τ≥T1}

∫ τ∧(τ̃l,r◦θT1 )

T1

g(�u)du

= v∞(0) − E
0
∫ τ∧(τ̃l,r◦θT1 )

0
g(�u)du,

where θ is the time-shift operator. Letting l ↘ 0 and r ↗ 1 in (4.7), and using the
inequality E

0h(�τ ) ≥ E
0v∞(�τ ), we obtain v∞(0) ≤ V (0).

Replacing τ above with τ̃[π∞,1], we get equalities in (4.7). Then, letting l ↘ 0,
r ↗ 1, and using the equality E

0h(�τ̃[π∞,1]) = E
0v∞(�τ̃[π∞,1]) we obtain (4.6) for

π = 0. Hence, we have v∞(0) = V (0), and this concludes the proof. �

REMARK 4.2. For ε > 0, let us fix n ∈ N such that n ≥ ln(ε)/ ln(1 − p) and
vn(·) ≤ v∞(·) + ε, on [0,1]. The exit time τ̃πn of � from the interval [0, πn) =
{π ∈ [0,1] :vn(π) < h(π)} is ε-optimal for the problem in (2.6). That is,

E
π

[∫ τ̃πn

0
g(�t) dt + h(�τ̃πn

)

]
≤ V (π) + ε for all π ∈ [0,1].(4.8)
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PROOF. For π > 0, a localization argument and Itô’s rule (as in the proof of
Proposition 4.1) give

E
πv∞(�τ̃πn

) = v∞(π) + E
π

∫ τ̃πn

0
[(−λ + A0)v∞(�u−) + λv∞(S(�u−))]du

= v∞(π) − E
π

∫ τ̃πn,1

0
g(�u)du,

where the last equality follows from (4.3) (recall that πn ≤ π∞). Note that τ̃πn < ∞
and vn(�τ̃πn

) = h(�τ̃πn
), P

π -almost surely. Then the inequality vn(·) ≤ v∞(·) + ε

yields

E
πh(�τ̃πn

) − ε = E
πvn(�τ̃πn

) − ε

≤ E
πv∞(�τ̃πn

)

= v∞(π) − E
π

∫ τ̃πn

0
g(�u)du,

and (4.8) follows.
For π = 0, we have

E
0
∫ τ̃πn

0
g(�u)du + h(�τ̃πn

) = E
0
∫ τ̃πn◦θT1

T1

g(�u)du + h(�τ̃πn◦θT1
)

≤ V (p) + ε = V (0) + ε,

where the inequality is due the strong Markov property (and also the result al-
ready proved above for π = p > 0), and the last equality follows from the identity
V (0) = J [V ](0) = V (p). �

5. Variational formulation. In this section, we solve the variational formu-
lation of the problem where the objective is to minimize the expected detection
delay E

π(τ − �)+ over all F-stopping times for which the false alarm probabil-
ity P

π(τ < �) is less than or equal to some predetermined value α ∈ (0,1). The
optimality of τ = 0 is immediate when π = 1; hence, this case is excluded below.

When π ∈ (0,1), τ = 0 is also an optimal solution if α ≥ 1 − π . On the other
hand, if π = 0 and α ≥ 1 − p, the first arrival time T1 of N yields a false alarm
probability of 1 − p and its expected delay is still zero [see (2.1)–(2.2)].

If none of these trivial cases hold, we can find an optimal stopping time (for
the variational formulation) using the solution of the problem in (2.4) as explained
in [22]. More precisely, let π∞(c) be the optimal threshold found in Section 4 as
a function of c, and let τ̃π∞(c) be the corresponding exit time of the process �.
For a given value of α, assume there exists a value of c > 0 such that the false
alarm probability P

π(τ̃π∞(c) < �) = E
πh(�τ̃π∞(c)

) equals α. Then τ̃π∞(c) solves
the variational formulation. Indeed, the optimality of τ̃π∞(c) for the original prob-
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lem in (2.4) implies that, for any F-stopping time τ , we have

cE
π (

τ̃π∞(c) − �
)+ + P

π (
τ̃π∞(c) < �

) ≤ cE
π(τ − �)+ + P

π(τ < �).

Since P
π(τ̃[π∞(c),1] < �) = α, its expected detection delay has to be minimal com-

pared to other stopping time τ ’s for which P
π(τ < �) ≤ α.

In this section, we show that c 
→ E
πh(�τ̃π∞(c)

) is a continuous function of
c ∈ (0,∞) with limits 0 (0) and 1 − π (1 − p) as c ↘ 0 and c ↗ ∞, respectively
if π > 0 (π = 0). Hence, for a given pair (π,α) the arguments in [22] work, and
τ̃π∞(c) is optimal for the value of c, for which E

πh(�τ̃π∞(c)
) = α.

5.1. False alarm probabilities. For a given threshold r ∈ (0,1), let τ̃r :=
inf{t ≥ 0 :�t ≥ r} be the exit time of � from the interval [0, r), and let

Fr(π) := P
π(τ̃r < �) = E

πh(�τ̃r )(5.1)

be the corresponding false alarm probability. On the event {τ̃r < T1}, the exit time
of � coincides with the exit time τr of the process Y [in (3.2)], and we have
h(�τ̃r ) = h(Yτr ). On the other hand, conditioned on {τ̃r ≥ T1}, strong Markov
property implies that the false alarm probability should be computed by evaluating
the function Fr(·) at the point �T1 . Therefore, we expect the function Fr(·) to
solve

Fr(π) = E
π [

1{τr<T1}h(Yτr ) + 1{τr≥T1} · Fr

(
YT1− + p(1 − YT1−)

)]
= E

π

[
e−λτr h(Yτr ) +

∫ τr

0
λe−λt · Fr(S(Yt )) dt

]
=: H(0)

r [Fr ](π),

where H
(0)
r [·](·) denotes the operator Hr [·](·) in (3.12)–(3.13) with c = 0 [see

also (3.11)]. Hence, if we apply the operator H
(0)
r [·](·) successively starting with a

suitably selected initial function, the sequence that we obtain should convergence
to the function Fr(·). Indeed, in Appendix A.2, we show that the sequence con-
structed as

u0,r (·) = h(·) and un+1,r (·) = H(0)
r [un,r ](·) for n ∈ N,(5.2)

is nonincreasing and converges uniformly to Fr(·) with error bounds

0 ≤ Fr(π) ≤ un,r (π) ≤ Fr(π) + (1 − p)n(1 − π) for all n ∈ N.(5.3)

It can easily be verified that the results in Lemmas 3.1 and 3.2 still hold for
c = 0. Hence, on the region {(π, r) :π < r}, un,r(π) has the form

ψ(π)

(
− η(r)

ψ(r)

∫ r

0

un−1,r (S(y))

m1 − m2
ψ ′′(y) dy

+
∫ r

π

un−1,r (S(y))

m1 − m2
η′′(y) dy + h(r)

ψ(r)

)
(5.4)

+ η(π)

∫ π

0

un−1,r (S(y))

(m1 − m2)
ψ ′′(y) dy,
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thanks to identities A0ψ(·) = λψ(·) and A0η(·) = λη(·). On the region {(π, r) :
π ≥ r}, obviously, we have un,r (π) = 1 − π .

LEMMA 5.1. For each π ∈ [0,1], the functions r 
→ un,r (π), for n ∈ N, and
r 
→ Fr(π) are continuous on r ∈ (0,1).

PROOF. The result is obvious for π = 1, since un,r(1) = Fr(1) = 1, for all
r ∈ (0,1). To prove the result for π < 1, we will show that (π, r) 
→ un,r (π) is
jointly continuous on (0,1) × (0,1). However, observe that un,r (π) = 1 − π , for
π ≤ r ; and un,r (0) = un−1,r (p), for r > π = 0 thanks to (5.4) [see also (3.15) in
Lemma 3.2]. Then direct computation gives

lim
r→0+ un,r (0) = lim

r→0+ un−1,r (p) = 1 − p < 1 = un,0(0),

which shows that (π, r) 
→ un,r (π) is not continuous at (0,0).
Clearly, (π, r) 
→ u0,r (π) = 1 − π is continuous on (0,1) × (0,1). Suppose

that the result holds for some n ∈ N. On the region {(π, r) :π ≥ r}, un+1,r (π)

again equals h(π), and continuity is immediate.
Also, using the joint continuity on (0,1) × (0,1) of the bounded function

un,r(π) [and the boundary conditions ψ ′(0+) = 0 and η′(1−) = 0], it can be ver-
ified that the expression in (5.4) is jointly continuous on {(π, r) ∈ (0,1) × (0,1) :
π ≤ r}. When we let r → π in (5.4), direct computation gives

ψ(π)

(
− η(π)

ψ(π)

∫ π

0

un,r (S(y))

(m1 − m2)
ψ ′′(y) dy + h(π)

ψ(π)

)

+ η(π)

∫ π

0

un,r (S(y))

(m1 − m2)
ψ ′′(y) dy = h(π).

This implies that un+1,r (π) is jointly continuous on (0,1) × (0,1), and the result
is true all n ∈ N by induction.

For π = 0 and n ∈ N, we have un+1,r (0) = un,r (p), and the continuity of r 
→
un+1,r (0) follows from the first part of the proof. Finally, the uniform convergence
in (5.3) imply that r 
→ Fr(π) is also continuous, for each π ∈ [0,1], and this
concludes the proof. �

By the definition of Fr(π) given in (5.1), we have

lim
r→0+ Fr(π) = 1 − π for π > 0 and

(5.5)
lim

r→0+ Fr(0) = 1 − p,

where the second limit follows from the behavior of the process � at {0}. That is,
if �0 = 0, the process remains at this point until the first arrival time T1, and then
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it jumps to the point {p} [see (2.9)]. Also note that, for all π ∈ [0,1] and r < 1, the
exit time τ̃r is finite P

π -almost surely, and �τ̃r ∈ (r, r + p(1 − r)). Hence,

lim
r→1− Fr(π) = lim

r→1− E
π [1 − �τ̃r ] = 0 for π ≥ 0.(5.6)

REMARK 5.1. The optimal threshold of the Bayesian formulation is a nonin-
creasing and continuous function of the cost parameter c. If we let π∞(c) denote
the optimal threshold as a function of c, we have

lim
c→0+ π∞(c) = 1 and lim

c→∞π∞(c) = 0.(5.7)

The limits in (5.7) can be obtained using the bounds in (3.19). Monotonicity of
π∞(c) in c is also obvious and follows from (1.2) and Remark 3.3. For the proof
of the continuity of c 
→ π∞(c), Appendix B can be consulted.

Lemma 5.1 and Remark 5.1 imply that Fπ∞(c)(π) is continuous with respect to
c on (0,∞). Moreover, thanks to (5.5)–(5.6) we have

lim
c→0+ Fπ∞(c)(π) = lim

r→1−Fr(π) = 0, with

lim
c→∞Fπ∞(c)(π) = lim

r→0+Fr(π) = 1 − π

for π > 0, and

lim
c→0+ Fπ∞(c)(0) = lim

r→1−Fr(0) = 0, with

lim
c→∞Fπ∞(c)(0) = lim

r→0+Fr(0) = 1 − p.

Hence (excluding the trivial cases) it is possible to pick a value of c such that the
exit time τ̃π∞(c) has a false alarm probability α and solves the variational formula-
tion.

APPENDIX A: ON THE CONDITIONAL PROBABILITY PROCESS

A.1. An auxiliary probability measure and the proof of (2.7). Let (	, H,

P0) be a probability space hosting the following independent stochastic elements:

• a Wiener process X (with μ = 0),
• a simple Poisson process N with arrival rate λ and arrival times (Tn)n≥0,
• an integer valued random variable with distribution P0{ζ = 0} = π and P0{ζ =

n} = (1 − π)(1 − p)n−1p for n ∈ N,
• a random variable � defined as in (2.2).

Let G ≡ {G}t≥0 be an extended filtration such that Gt := σ {Xs,Ns, ζ : s ≤ t}.
In terms of the process Lt = exp{μXt − μ2t/2}, we introduce a new probability
measure P whose Radon–Nykodyn derivative is

Zt := dP

dP0

∣∣∣∣
Gt

= 1{�>t} + 1{�≤t}
Lt

L�

.



1560 S. O. SEZER

Under the new measure, the process X is a Brownian motion that gains a drift μ

at �. The random variables ζ and � have the same distribution under P since
ζ ∈ G0 and Z0 = 1. In other words, we have the same setup described in Sections 1
and 2.

Let us now define the likelihood ratio process

�t := P{� ≤ t |Ft }
P{� > t |Ft } = E0[Zt1{�≤t}|Ft ]

E0[Zt1{�>t}|Ft ] ,

where the equality follows from Bayes’ rule. Using the independence of X,N and
ζ under P0, we obtain

E0
[
Zt1{�≤t}|Ft

] = πLt + (1 − π)

Nt∑
i=1

(1 − p)i−1p
Lt

LTi

and

E0
[
Zt1{�>t}|Ft

] = P0
[
1{�>t}|Ft

] = (1 − π)(1 − p)Nt .

Therefore, we have

�t = Lt

(1 − p)Nt

(
π

1 − π
+

Nt∑
i=1

(1 − p)i−1p

LTi

)
,

and this proves (2.7).

A.2. Constructing the exit time (false alarm) probabilities. Let H
(0)
r de-

notes Hr defined in (3.12) with c = 0. It should be noted that the proofs of Lem-
mas 3.1 and 3.2 use only the continuity of the given function w(·) and the bounds
0 ≤ w(·) ≤ h(·). Hence, they also cover the case c = 0.

REMARK A.1. The operator H
(0)
r is monotone in w(·); that is for w1(·) ≤

w2(·), we have H
(0)
r [w1](·) ≤ H

(0)
r [w2](·). Moreover, if w(·) is a continuous func-

tion bounded as 0 ≤ w(·) ≤ h(·), then so is H
(0)
r [w](·).

PROOF. The claim on monotonicity is obvious. Given w(·) continuous and
bounded as 0 ≤ w(·) ≤ h(·), H

(0)
r [w](·) is again continuous by Lemma 3.2.

Since the process Y in (3.2) is a bounded martingale, we have

�(π) := E
π

∫ ∞
0

e−λtλh(S(Yt )) dt

= E
π

∫ ∞
0

e−λtλ(1 − p)(1 − Yt ) dt

= (1 − p)(1 − π).
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Then, for a function w(·) bounded as 0 ≤ w(·) ≤ h(·), strong Markov property
gives

0 ≤ H(0)
r [w](π) ≤ E

π

[
e−λτr h(Yτr ) +

∫ τr

0
e−λtλh(S(Yt )) dt

]
= �(π) + E

πe−λτr [h(Yτr ) − �(Yτr )]
= �(π) + E

πe−λτr p(1 − Yτr ) ≤ �(π) + E
πp(1 − Yτr ) = h(·).

Hence, 0 ≤ H
(0)
r [w](·) ≤ h(·) again. �

Using Remark A.1 above, it can be shown by induction (as in the proof of
Remark 4.1) that the sequence

u0,r (·) = h(·) and un+1,r (·) = H(0)
r [un,r ](·) for n ∈ N,(A.1)

is nonincreasing, and each function is nonnegative, continuous and bounded above
by h(·). The pointwise limit u∞,r (·) := infn∈N un,r (·) exists and it is bounded as
0 ≤ u∞,r (·) ≤ h(·).

REMARK A.2. The limit function u∞,r (·) solves u∞,r (·) = H
(0)
r [u∞,r ](·), on

[0,1].
PROOF. The proof follows from a straightforward modification of (4.1) by

replacing v∞, vn, τ with u∞,r , un,r , τr respectively. �

REMARK A.3. The sequence defined in (A.1) converges uniformly on [0,1],
and we have the explicit error bounds

0 ≤ un,r (π) − u∞,r (π) ≤ (1 − p)n(1 − π) for n ∈ N.(A.2)

PROOF. We will establish the inequalities above by modifying the proof of
Lemma 4.1.

The first inequality in (5.3) is obvious. The second inequality follows immedi-
ately for n = 0 since 0 ≤ u∞,r (·) ≤ h(·). Assume it holds for some n ∈ N. Then
using the induction hypothesis and the identity u∞,r (·) = H

(0)
r [u∞,r ](·), we have

un+1,r (π) = H(0)
r [un,r ](π)

≤ E
π

[
e−λτr h(Yτr )

+
∫ τr

0
e−λtλ[u∞,r (S(Yt )) + (1 − p)n+1(1 − Yt )]dt

]
≤ u∞,r (·) + E

π

[∫ ∞
0

e−λtλ[(1 − p)n+1(1 − Yt )]dt

]
= u∞,r (·) + (1 − p)n+1(1 − π),

and (A.2) follows. �
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COROLLARY A.1. Since, each un,r(·) is continuous, so is u∞,r (·) thanks to
Remark A.3. Then, the identity u∞,r (·) = H

(0)
r [u∞,r ](·) and Lemma 3.2 imply that

the function u∞,r (·) solves

(−λ + A0)u∞,r (π) + λu∞,r (S(y)) = 0 on (0, r),(A.3)

and at π = 0, we have u∞,r (0) = u∞,r (p) [see (3.15)].

PROPOSITION A.1. The limit function u∞,r (·) coincides on [0,1] with the
exit time expectation Fr(·) defined in (5.1).

PROOF. The characterization in (3.13) indicates that the derivative of u∞,r is
bounded on (l, r), for 0 < l < r . Then, for π ∈ (l, r), a localization argument and
Itô’s rule gives

E
πu∞,r

(
�τ̃[l,r]

)
= u∞,r (π) + E

π
∫ τ̃[l,r]

0
[(−λ + A0)u∞,r (�u−) + λu∞,r (S(�u−))]du(A.4)

= u∞,r (π),

where τ̃[l,r] is the exit time of � from the interval (l, r). The boundary {0} is natural
for the diffusive part of the process � and its jumps are positive (toward {1}). This
implies that τ̃[l,r] ↗ τ̃r = inf{t ≥ 0 :�t ≥ r} as l → 0+, P

π -almost surely [see
also (2.12)]. Therefore, when we let l → 0+ in (A.4) we obtain

u∞,r (π) = lim
l→0+ E

πu∞,r

(
�τ̃[l,r]

)
= lim

l→0+ u∞,r (l)P
π{

τ̃[l,r] < τ̃r

} + E
π1{τ̃[l,r]=τ̃r }h(�τ̃r )

= E
πh(�τ̃r ).

This shows u∞,r (·) = Fr(·) on (0, r).
When �0 = 0, the process stays at {0} until the first arrival time T1 of N . It

jumps to {p} at T1. Hence, by strong Markov property, we have Fr(0) = Fr(p),
and this shows u∞,r (0) = Fr(0) [since u∞,r (0) = u∞,r (p)]. Finally, for π ≥ r , we
have u∞,r (π) = 1 − π by the construction in (A.1); hence, the equality u∞,r (·) =
Fr(·) is obvious. �

APPENDIX B: OTHER PROOFS

PROOF OF (2.10). The process Ŵ is a (P,F)-Brownian motion (this can be
verified using Lévy’s characterization for Brownian motion) and N is a (P,F)-
Poisson process. Therefore, it is sufficient to show (2.10) for s1 = s2 = s.
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Note that the process Ŵ can be written as

Ŵt = Wt + μ

∫ t

0

[
1{�≤u} − �u

]
du.(B.1)

Therefore, if we apply Itô formula to real and imaginary parts of the process Kt :=
f (Ŵt ,Nt ), for f (x, y) = exp{irx + iqy}, we obtain

Ks = Kt + i

[∫ s

t
rKu dWu +

∫ s

t
rμKu1{�≤u} du −

∫ s

t
rμKu�u du

]
− 1

2
r2

∫ s

t
Ku du +

∫ s

t
(eiq − 1)Ku(dNu − λdu)(B.2)

+
∫ s

t
λ(eiq − 1)Ku du

for t ≤ u ≤ s. Clearly, we have

E

[∫ s

t
(eiq − 1)Ku(dNu − λdu)

∣∣∣Ft

]
= 0 = E

[∫ s

t
Ku dWu

∣∣∣Ft

]
.

Moreover, for a set A ∈ Ft we have E1AKu1{�≤u} = E1AKu�u. Then by multi-

plying both sides in (B.2) with 1A/Kt = 1A · e−irŴt−iqNt and taking the expecta-
tions we get

E[1A exp{ir(Ŵs − Ŵt ) + iq(Ns − Nt)}]

= P(A) +
∫ s

t

(
−r2

2
+ λ(eiq − 1)

)
× E[1A exp{ir(Ŵu − Ŵt ) + iq(Nu − Nt)}]du.

By solving this integral equation for the (deterministic) function

�t (·) : s 
→ E[1A exp{ir(Ŵs − Ŵt ) + iq(Ns − Nt)}]
we obtain �t (s) = P(A) · exp{(− r2

2 + λ(eiq − 1))(s − t)}, and this proves (2.10)
for s1 = s2 = s. �

PROOF OF (3.20). Let π be a fixed point on (0, r[w]). For any r ≥ r[w],
Hr [w](π) is given by (3.13) with

∂Hr [w](π)

∂r
= − ψ(π)

ψ2(r)

{
h(r)ψ ′(r) + ψ(r) − (m1 − m2)

∫ r

0
u2[w](y) dy

}

= − ψ(π)

ψ2(r)
B[w](r).

The last expression is strictly positive for r > r[w] since B[w](r) is strictly nega-
tive thanks to Lemma 3.3. This implies that Hr[w][w](π) < Hr1(π) < Hr2(π), for
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all r[w] < r1 < r2, and we have Hr [w](π) < limr↗1 Hr [w](π). Since the right
boundary is natural, τr ↗ ∞ as r ↗ 1. Then by dominated convergence theorem
(see Remark 3.2), we obtain

Hr [w](π) < E
π

[∫ ∞
0

e−λt (g(Yt ) + λw(S(Yt ))
)
dt

]
≤

∫ ∞
0

(
g(π) + λw(S(π))

)
dt

= g(π) + λw(S(π))

λ
,

where the second inequality is by Jensen’s inequality [recall that Y is a martingale
and w(·) is concave], and (3.20) follows. �

PROOF OF REMARK 5.1. The limits in (5.7) follow easily from (3.19). It is
also clear that c 
→ π∞(c) is nonincreasing thanks to (1.2) and Remark 3.3. Here,
we show that c 
→ π∞(c) is continuous on (0,∞).

Let Vc(π) and Bc[·] denote respectively the dependence on c of the value func-
tion V and the operator B[·] defined in (3.18).

Since the value function V is a fixed point of the operator J , Lemma 3.3 gives

Bc1[Vc1](π∞(c1)) = 0 = Bc1[Vc1](π∞(c2)) for 0 < c1 ≤ c2 < ∞.

By using these equalities together with the explicit form of B·[·] in (3.18) [and the
identity A0ψ(·) = λψ(·)], we obtain

0 ≤ Bc1[Vc1](π∞(c2)) − Bc1[Vc1](π∞(c1))

≡
∫ π∞(c1)

π∞(c2)

ψ ′′(y)

λ
[c1y + λVc1(S(y)) − λh(y)]dy(B.3)

=
∫ π∞(c2)

0

ψ ′′(y)

λ

[
(c2 − c1)y + λ

(
Vc2(S(y)) − Vc1(S(y))

)]
dy.

Moreover, we have Vc2(π) ≤ P
π(τ̃π∞(c1) < �) + c2E

π(τ̃π∞(c1) − �)+, and this
gives the Lipschitz condition

Vc2(π) − Vc1(π)

c2 − c1
≤ E

π (
τ̃π∞(c1) − �

)+ ≤ Vc1(π)

c1
≤ 1

δ

for any δ < c1. Using this inequality in (B.3), we obtain

0 ≤
∫ π∞(c1)

π∞(c2)

ψ ′′(y)

λ
[c1y + λVc1(S(y)) − λh(y)]dy

≤
∫ π∞(c2)

0

ψ ′′(y)

λ
(c2 − c1)

[
y + λ

δ

]
dy(B.4)

≤ (c2 − c1)

[
1

λ
+ 1

δ

]
ψ ′(π∞(c2)).
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This implies that π∞(c2) ↗ π∞(c1) as c2 ↘ c1.
Similarly, it is easy to show that

0 ≤
∫ π∞(c1)

π∞(c2)

ψ ′′(y)

λ
[c2y + λVc2(S(y)) − λh(y)]dy

=
∫ π∞(c1)

0

ψ ′′(y)

λ

[
(c2 − c1)y + λ

(
Vc2(S(y)) − Vc1(S(y))

)]
dy

≤
∫ π∞(c1)

0

ψ ′′(y)

λ
(c2 − c1)

[
1 + λ

δ

]
dy

= (c2 − c1)

[
1

λ
+ 1

δ

]
ψ ′(π∞(c1))

for some δ < c1. This shows that π∞(c1) ↘ π∞(c2) as c1 ↗ c2, and the continuity
of c 
→ π∞(c) follows. �
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