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ON OPTIMAL ARBITRAGE

BY DANIEL FERNHOLZ AND IOANNIS KARATZAS1

University of Texas at Austin and INTECH

In a Markovian model for a financial market, we characterize the best ar-
bitrage with respect to the market portfolio that can be achieved using nonan-
ticipative investment strategies, in terms of the smallest positive solution to a
parabolic partial differential inequality; this is determined entirely on the ba-
sis of the covariance structure of the model. The solution is intimately related
to properties of strict local martingales and is used to generate the invest-
ment strategy which realizes the best possible arbitrage. Some extensions to
non-Markovian situations are also presented.

1. Introduction. In a Markovian model for an equity market with mean rates
of return bi (X(t)) and covariance rates aij (X(t)), 1 ≤ i, j ≤ n, for its asset capital-
izations X(t) = (X1(t), . . . ,Xn(t))

′ ∈ (0,∞)n at time t , what is the highest return
on investment [as in (6.3) below] that can be achieved relative to the market on a
given time–horizon [0, T ], using nonanticipative investment strategies? What are
the weights assigned to the different assets by such an investment strategy that
accomplishes this?

Answers: under suitable conditions, 1/U(T ,X(0)) and

Xi(t)Di logU
(
T − t,X(t)

) + Xi(t)

X1(t) + · · · + Xn(t)
, i = 1, . . . , n, t ∈ [0, T ],

respectively. Here U : [0,∞) × (0,∞)n → (0,1] is the smallest nonnegative solu-
tion of the linear parabolic partial differential inequality

∂U

∂τ
(τ,x) ≥ L̂U(τ,x), (τ,x) ∈ (0,∞) × (0,∞)n,(1.1)

subject to the initial condition U(0, ·) ≡ 1, for the linear operator

L̂f := 1

2

n∑
i=1

n∑
j=1

xixj aij (x)D2
ij f +

n∑
i=1

xi

(
n∑

j=1

xj aij (x)

x1 + · · · + xn

)
Dif(1.2)

with Di = ∂/∂xi , D = (∂/∂x1, . . . , ∂/∂xn)
′ and D2

ij = ∂2/∂xi ∂xj . Furthermore,
U(T ,X(0)) is the probability that the ([0,∞)n \ {0})-valued diffusion process
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Y(·) = (Y1(·), . . . , Yn(·))′ with infinitesimal generator L̂ as above and Y(0) =
X(0) ∈ (0,∞)n does not hit the boundary of the orthant [0,∞)n by time t = T . We
note that the answers involve only the covariance structure of the market, not the
actual rates of return; the only role these latter play is to ensure that the diffusion
X(·) lives in (0,∞)n.

Arbitrage relative to the market exists on [0, T ], iff U(T ,X(0)) < 1; this is
deeply related to the importance of strict local martingales in the present context,
and amounts to failure of uniqueness for the Cauchy problem

∂U

∂τ
(τ,x) = L̂U(τ,x), (τ,x) ∈ (0,∞) × (0,∞)n and U(0, ·) ≡ 1.

Sufficient conditions for such failure of uniqueness are provided.
Consider an “auxiliary market” with capitalizations Y(·) = (Y1(·), . . . , Yn(·))′

as above. The probabilistic significance of the change of drift inherent in the def-
inition of the operator L̂, from bi (x) for X(·) to

∑n
j=1(xj aij (x))/(x1 + · · · + xn)

for Y(·), is that it corresponds to a change of probability measure which makes
the weights νi(·) := Yi(·)/(Y1(·) + · · · + Yn(·)), i = 1, . . . , n, of the auxiliary mar-
ket portfolio martingales. Its financial significance is that it bestows to the auxil-
iary market portfolio ν(·) = (ν1(·), . . . , νn(·))′ the so-called numéraire property:
any strategy’s relative performance in the market with capitalizations Y(·) is a
supermartingale, so this market cannot be outperformed. This change need not
come from a Girsanov-type (absolutely continuous) transformation; rather it cor-
responds to, and represents, the exit measure of Föllmer (1972) for an appropriate
supermartingale.

Sections 2 and 3 set up the model, whereas Section 4 introduces the notion and
offers examples of relative arbitrage; Section 5 makes the connection with strict
local martingales. Section 6 formulates the problem, and Section 7 offers some
preliminary results, actually in some modest generality (including non-Markovian
cases). Section 8 sets up the Markovian model; the results are presented in earnest
in Sections 9–11, Section 12 discusses a couple of examples in detail and a few
open questions are raised in Section 13.

Related literature: the questions raised in this study are related to the work of
Delbaen and Schachermayer (1995b). They bear an even closer connection with
issues raised in the Finance literature under the general rubric of “bubbles” [see
Definition 5 and Theorem 1 in Ruf (2009) for the precise connection]. The lit-
erature on this topic is large, so let us mention the papers by Loewenstein and
Willard (2000), Pal and Protter (2007) and, most significantly, Heston, Loewen-
stein and Willard (2007), as the closest in spirit to our approach here. We note
the recent preprint by Hugonnier (2007), which demonstrates that arbitrage oppor-
tunities can arise in equilibrium models; this preprint, and Heston, Loewenstein
and Willard (2007), can be consulted for an up-to-date survey of the literature on
this subject and for some explicit computations of trading strategies that lead to
arbitrage. The need to consider state-price-density processes that are only local (as
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opposed to true) martingales has also been noticed in the context of “stochastic
volatility” models [e.g., Sin (1998), Wong and Heyde (2006)] and of pricing with
long maturities [e.g., Hulley and Platen (2008)].

2. The model. We consider a model consisting of a money-market dB(t) =
B(t)r(t) dt , B(0) = 1 and of n stocks with capitalizations,

dXi(t) = Xi(t)

(
βi(t) dt +

K∑
k=1

σik(t) dWk(t)

)
, Xi(0) = xi > 0,(2.1)

for i = 1, . . . , n. These are defined on a probability space (�, F ,P) and are driven
by the Brownian motion W(·) = (W1(·), . . . ,WK(·))′ whose K ≥ n independent
components are the model’s “factors.”

We shall assume throughout that the interest rate process of the money-
market is r(·) ≡ 0, identically equal to zero; and that the vector-valued process
X(·) = (X1(·), . . . ,Xn(·))′ of capitalizations, the vector-valued process β(·) =
(β1(·), . . . , βn(·))′ of mean rates of return for the various stocks and the (n × K)-
matrix-valued process σ(·) = (σik(·))1≤i≤n,1≤k≤K of volatilities are all progres-
sively measurable with respect to a right-continuous filtration F = {F (t)}0≤t<∞
which represents the “flow of information” in the market with F (0) = {∅,�},
mod P. Let α(·) := σ(·)σ ′(·) be the covariance process of the stocks in the market,
and impose for P-a.e. ω ∈ � the condition

n∑
i=1

∫ T

0

(|βi(t,ω)| + αii(t,ω)
)
dt < ∞ ∀ T ∈ (0,∞).(2.2)

Under this condition the processes X1(·), . . . ,Xn(·) can be expressed as Xi(·) =
xi exp{∫ ·

0(βi(t) − 1
2αii(t)) dt + ∑K

k=1
∫ ·

0 σik(t) dWk(t)} > 0.
In this setting, the Brownian motion W(·) need not be adapted to the “observa-

tions” filtration F. It is adapted, though, to the P-augmentation G = {G(t)}0≤t<∞
of the filtration F, provided that K = n and that the matrix-valued process σ(·) is
invertible—as in Assumption B below.

3. Strategies and portfolios. Consider now a small investor who decides, at
each time t , which proportion πi(t) of current wealth V (t) to invest in the ith
stock, i = 1, . . . , n; the proportion 1 − ∑n

i=1 πi(t) =: π0(t) gets invested in the
money market. Thus, the wealth V (·) ≡ V v,π (·) for an initial capital v ∈ (0,∞)

and an investment strategy π(·) = (π1(·), . . . , πn(·))′ satisfies the initial condition
V (0) = v and

dV (t)

V (t)
=

n∑
i=1

πi(t)
dXi(t)

Xi(t)
+ π0(t)

dB(t)

B(t)

(3.1)
= π ′(t)[β(t) dt + σ(t) dW(t)].
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We shall call investment strategy a G-progressively measurable process π : [0,
∞) × � → Rn which satisfies for P-a.e. ω ∈ � the analogue∫ T

0

(|π ′(t,ω)β(t,ω)| + π ′(t,ω)α(t,ω)π(t,ω)
)
dt < ∞, ∀T ∈ (0,∞)

of (2.2). The collection of investment strategies will be denoted by H.
A strategy π(·) ∈ H with

∑n
i=1 πi(t,ω) = 1 for all (t,ω) ∈ [0,∞) × � will be

called portfolio. A portfolio never invests in the money market and never borrows
from it. We shall say that a process π(·) is bounded, if for it there exists a real con-
stant Cπ > 0 such that ‖π(t,ω)‖ ≤ Cπ holds for all (t,ω) ∈ [0,∞) × �. We shall
call long-only portfolio one that satisfies π1(t,ω) ≥ 0, . . . , πn(t,ω) ≥ 0,∀(t,ω) ∈
[0,∞) × �, that is, never sells any stock short. Clearly, a long-only portfolio is
also bounded.

Corresponding to an investment strategy π(·) and initial capital v > 0, the asso-
ciated wealth process, that is, the solution of (3.1), is

V v,π (·) = v exp
{∫ ·

0
π ′(t)

(
β(t) − α(t)

2
π(t)

)
dt +

∫ ·
0

π ′(t)σ (t) dW(t)

}
> 0.

The strategy �(·) ≡ 0 invests only in the money market at all times; it results in
V v,�(·) ≡ v, that is, in hoarding the initial wealth under the mattress.

3.1. The market portfolio. An important long-only portfolio is the market
portfolio; this invests in all stocks in proportion to their relative weights,

μi(t) := Xi(t)

X(t)
, i = 1, . . . , n,where X(t) := X1(t) + · · · + Xn(t).(3.2)

Clearly V v,μ(·) = vX(·)/X(0), and the resulting vector process μ(·) = (μ1(·),
. . . ,μn(·))′ of market weights takes values in the positive simplex �n+ :=
{(m1, . . . ,mn)

′ ∈ (0,1)n|∑n
i=1 mi = 1} of Rn. An application of Itô’s rule gives,

after some computation, the dynamics of this process as

dμi(t) = μi(t)

[
γ

μ
i (t) dt +

K∑
k=1

τ
μ
ik(t) dWk(t)

]
, i = 1, . . . , n.(3.3)

Here τμ(t) is the matrix with entries τ
μ
ik(t) := σik(t) − ∑n

j=1 μj(t)σjk(t), ei the
ith unit vector in Rn and the vector γ μ(t) := (γ

μ
1 (t), . . . , γ

μ
n (t))′ has

γ
μ
i (t) := (

ei − μ(t)
)′(

β(t) − α(t)μ(t)
)
.(3.4)

4. Relative arbitrage. The following notion was introduced in Fernholz
(2002): given a real number T > 0 and any two investment strategies π(·) and
ρ(·), we call π(·) an arbitrage relative to ρ(·) over [0, T ], if

P
(
V 1,π (T ) ≥ V 1,ρ(T )

) = 1 and P
(
V 1,π (T ) > V 1,ρ(T )

)
> 0.(4.1)

We call such relative arbitrage strong if P(V 1,π (T ) > V 1,ρ(T )) = 1.
Arbitrage (resp., strong arbitrage) relative to �(·) ≡ 0 that invests only in the

money market, is called just that, without the qualifier “relative.”
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4.1. Examples of arbitrage relative to the market. Here are some examples
taken from the survey Fernholz and Karatzas (2009), especially Sections 7 and 8,
Remark 11.4, Examples 11.1 and 11.2. Suppose first that

n∑
i=1

μi(t)αii(t) −
n∑

i=1

n∑
j=1

μi(t)αij (t)μj (t) ≥ h ∀0 ≤ t < ∞(4.2)

holds almost surely for some constant h > 0. Then the long-only portfolio πi(t) =
μi(t)(c − logμi(t))/J (t), i = 1, . . . , n, J (t) := ∑n

j=1 μj(t)(c − logμj(t)) is, for
sufficiently large c > 0, a strong arbitrage relative to the market portfolio μ(·) over
any time–horizon [0, T ] with T > (2 logn)/h.

Another condition guaranteeing the existence of strong arbitrage relative to the
market is that there exists a real constant h > 0 with

n
√

μ1(t) · · ·μn(t)

[
n∑

i=1

αii(t) − 1

n

n∑
i=1

n∑
j=1

αij (t)

]
≥ h ∀0 ≤ t < ∞(4.3)

a.s. Then for c > 0 sufficiently large, the long-only portfolio πi(t) = λ(t)(1/n) +
(1 − λ(t))μi(t), 1 ≤ i ≤ n, 1/λ(t) := 1 + ((μ1(t) · · ·μn(t))

1/n/c), is strong arbi-
trage relative to the market over any [0, T ] with T > (2n1−(1/n))/h.

REMARK 1. Suppose that all the eigenvalues of the covariance matrix-valued
process α(·) are bounded away from both zero and infinity, uniformly on [0,∞)×
�, and that (4.2) holds. Then, for any given constant p ∈ (0,1), the long-only
portfolio μ

(p)
i (t) = (μi(t))

p(
∑n

j=1(μj (t))
p)−1, i = 1, . . . , n, leads again to strong

arbitrage relative to the market portfolio over sufficiently long time–horizons. It is
also of great interest that appropriate modifications of the portfolio μ(p)(·) yield
such arbitrage over any time–horizon [0, T ].

5. Market price of risk and strict local martingales. We shall assume from
now on that there exists a market price of risk ϑ : [0,∞)×� → RK , an F-progres-
sively measurable process that satisfies

σ(t,ω)ϑ(t,ω) = β(t,ω) ∀(t,ω) ∈ [0,∞) × � and
(5.1)

P

(∫ T

0
‖ϑ(t,ω)‖2 dt < ∞, ∀T ∈ (0,∞)

)
= 1.

The existence of a market-price-of-risk process ϑ(·) allows us to introduce an
associated exponential local martingale,

Z(t) := exp
{
−

∫ t

0
ϑ ′(s) dW(s) − 1

2

∫ t

0
‖ϑ(s)‖2 ds

}
, 0 ≤ t < ∞.(5.2)

This process is also a supermartingale; it is a martingale, if and only if E(Z(T )) =
1 holds for all T ∈ (0,∞). For the purposes of this work it is important to allow



1184 D. FERNHOLZ AND I. KARATZAS

such exponential processes to be strict local martingales; that is, not to exclude the
possibility E(Z(T )) < 1 for some T ∈ (0,∞).

From (5.2) and (3.1), now written in the form

dV v,π (t) = V v,π (t)π ′(t)σ (t) dŴ (t), Ŵ (t) := W(t) +
∫ t

0
ϑ(s) ds(5.3)

on the strength of (5.1), the product rule of Itô’s calculus shows that

Z(·)V v,π (·) = v +
∫ ·

0
Z(t)V v,π (t)

(
σ ′(t)π(t) − ϑ(t)

)′
dW(t)(5.4)

is a positive local martingale and a supermartingale, for every π(·) ∈ H.
If α(·) is invertible, we can take ϑ(·) = σ ′(·)α−1(·)β(·) as market price of

risk in (5.1). If β(·) = α(·)μ(·) holds we can select ϑ(·) = σ ′(·)μ(·) and get
Z(·) ≡ v/V v,μ(·) ≡ X(0)/X(·) from (5.4); there is then no arbitrage relative to
the market because V v,π (·)/V v,μ(·) is a supermartingale for all π(·) ∈ H; thus
E[V 1,π (T )/V 1,μ(T )] ≤ 1, a conclusion at odds with (4.1).

5.1. Strict local martingales. Suppose the covariance process α(·) is bounded,
and (4.1) holds for two bounded portfolios π(·) and ρ(·). Then, for any market-
price-of-risk process ϑ(·) as in (5.1), the positive local martingales Z(·) and
Z(·)V v,ρ(·) of (5.2), (5.4) are strict: E[Z(T )V v,ρ(T )] < v, E(Z(T )) < 1 [Fern-
holz and Karatzas (2009), Section 6].

In particular, if the matrix α(·) is bounded, and (4.1) holds for some bounded
portfolio π(·) and for the market portfolio ρ(·) ≡ μ(·) (these assumptions are sat-
isfied, e.g., under the conditions in Remark 1), then

E(Z(T )) < 1, E[Z(T )X(T )] < X(0),
(5.5)

E[Z(T )Xi(T )] < Xi(0), i = 1, . . . , n.

6. Optimal arbitrage relative to the market. The possibility of strong arbi-
trage relative to the market, defined and exemplified in Section 4, raises an obvious
question: what is the best possible arbitrage of this kind?

One way to cast this question is as follows: on a given time–horizon [0, T ], what
is the smallest relative amount,

u(T ) := inf
{
w > 0 | ∃π(·) ∈ H s.t. V wX(0),π (T ) ≥ X(T ), a.s.

}
,(6.1)

of initial capital, starting with which one can match or exceed at time t = T

the market capitalization X(T )? Clearly, 0 < u(T ) ≤ 1; and for 0 < w < u(T ),
no strategy starting with initial capital wX(0) can outperform the market almost
surely, over the horizon [0, T ]. That is, for every π(·) ∈ H and 0 < w < u(T ), we
have P[V wX(0),π (T ) ≥ X(T )] < 1.

We shall impose from now on the following structural assumptions on the fil-
tration F = {F (t)}0≤t<∞, the “flow of information” in the market.
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ASSUMPTION A. Every local martingale of the filtration F can be represented
as a stochastic integral, with respect to the driving Brownian motion W(·) in (2.1),
of some G-progressively measurable integrand.

ASSUMPTION B. We have K = n, and σ(t) is invertible, ∀t ∈ [0, T ].

Under these two assumptions, general results about hedging in so-called com-
plete markets [e.g., Karatzas and Shreve (1998), Fernholz and Karatzas (2009),
Section 10 or Ruf (2009)] based on martingale representation results, show that
the quantity of (6.1) given as

u(T ) = E[Z(T )X(T )]/X(0); that V u(T )X(0),π̂ (T ) = X(T )(6.2)

holds a.s. for some π̂ (·) ∈ H; and that 1/u(T ) gives the highest return,

sup{q ≥ 1| ∃π(·) ∈ H s.t. V 1,π (T ) ≥ qV 1,μ(T ), a.s.},(6.3)

on investment, that one can achieve relative to the market over [0, T ]. Arbitrage
relative to the market is possible on [0, T ], if and only if u(T ) < 1.

The result in (6.2) provides no information about the strategy π̂ (·) that im-
plements this “best possible” arbitrage, apart from ascertaining its existence. In
Section 8 we shall specialize the model of (2.1) to a Markovian context and de-
scribe π̂(·) in terms of partial differential equations (Section 11). We shall also
characterize the quantity u(T ) in terms of the smallest solution to a parabolic par-
tial differential inequality, and as the probability of nonabsorption by time T for a
suitable diffusion (Theorems 1, 2).

Assumption A holds when F is (the augmentation of) FW , the filtration gen-
erated by the Brownian motion W(·); as well as when Assumption B holds, the
βi(·), σiν(·) are all progressively measurable with respect to FX = {F X(t)}0≤t<∞,
F X(t) := σ(X(s),0 ≤ s ≤ t), and F ≡ FX+ [Jacod (1977)].

6.1. Generalized likelihood ratios. The positive local martingale Z(·)X(·),
whose expectation appears in (6.2), can be expressed as

Z(t)X(t) = X(0) · exp
{
−

∫ t

0
(ϑ̃(s))′ dW(s) − 1

2

∫ t

0
‖ϑ̃(s)‖2 ds

}
(6.4)

for 0 ≤ t ≤ T . Here we have solved equation (5.4) for π(·) ≡ μ(·) and set

ϑ̃(·) := ϑ(·) − σ ′(·)μ(·), W̃ (·) := W(·) +
∫ ·

0
ϑ̃(t) dt,(6.5)

whence σ(·)ϑ̃(·) = β(·) − α(·)μ(·) from (5.1); we thus re-cast (2.1) as

dXi(t) = Xi(t)

[ ∑n
j=1 αij (t)Xj (t)

X1(t) + · · · + Xn(t)
dt +

n∑
k=1

σik(t) dW̃k(t)

]
.(6.6)
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On the other hand, we note from (6.4), (6.5) that the reciprocal of the exponen-
tial local martingale Z(·)X(·)/X(0) can be expressed as

�(·) := X(0)

Z(·)X(·) = exp
{∫ ·

0
(ϑ̃(t))′ dW̃(t) − 1

2

∫ ·
0

‖ϑ̃(t)‖2 dt

}
;(6.7)

similarly, the reciprocal of the local martingale Z(·)Xi(·)/Xi(0) is

�i(·) := Xi(0)

Z(·)Xi(·) = exp
{∫ ·

0

(
ϑ̃ (i)(t)

)′
dW̃ (i)(t) − 1

2

∫ ·
0

∥∥ϑ̃ (i)(t)
∥∥2

dt

}
,(6.8)

where ϑ̃ (i)(·) := ϑ(·) − σ ′(·)ei and W̃ (i)(·) := W(·) + ∫ ·
0 ϑ̃ (i)(t) dt .

Comparing (6.7) and (6.8), we observe that μi(0)�(·) = μi(·)�i(·) and cast the
dynamics of (3.3) and (3.4) for the market portfolio μ(·) as

dμi(t) = μi(t)
(
ei − μ(t)

)′
σ(t) dW̃ (t), i = 1, . . . , n.(6.9)

If u(T ) = 1, that is, Z(·)X(·) is a martingale on [0, T ], no arbitrage relative to
the market is possible on this time–horizon; the “reference” measure

P̃T (A) := E[Z(T )X(T )1A]/X(0), A ∈ F (T ),(6.10)

is a probability, that is, u(T ) = P̃T (�) = 1; and under P̃T , the process W̃ (t),0 ≤
t ≤ T , in (6.5) is a Brownian motion by the Girsanov theorem, so from (6.9) the
market weights μ1(t), . . . ,μn(t),0 ≤ t ≤ T are martingales.

We shall characterize next u(T ) in terms of the Föllmer exit measure, of a “gen-
eralized martingale measure” and of a measure Q with respect to which P is locally
absolutely continuous [equations (7.3), (7.6)] and which plays, to a considerable
extent, the rôle of P̃T when Z(·)X(·) fails to be a P-martingale. The processes of
(6.4)–(6.8) are important in this effort.

7. Exit measure of a positive supermartingale. We shall assume in this sec-
tion that the process Z(·) of (5.2) is adapted to F = {F (t)}0≤t<∞ and that this
filtration is, in turn, the right-continuous version F (t) = ⋂

ε>0 F o(t + ε) of a
standard system Fo = {F o(t)}0≤t<∞: to wit, each (�, F o(t)) is isomorphic to the
Borel σ -algebra of some Polish space, and for any decreasing sequence {Aj }j∈N

such that Aj is an atom of F o(tj ), for some increasing sequence {tj }j∈N ⊂ [0,∞),
we have

⋂
j∈N Aj 
= ∅.

The canonical example is the space � of right-continuous paths ω : [0,∞) →
Rn∪{�}, where � is an additional “absorbing point”; paths stay at � once they get
there, that is, after T (ω) = inf{t ≥ 0|ω(t) = �}, and are continuous on (0, T (ω)).
If F o(t) = σ(ω(s),0 ≤ s ≤ t), then Fo = {F o(t)}0≤t<∞ is a standard system [see
Föllmer (1972), the Appendix].

Under these conditions, we can associate to the (P,F)-local martingale Z(·) ·
X(·) a positive measure P on the predictable σ -algebra of [0,∞] × �,

P
(
(T ,∞] × A

) := E[Z(T )X(T )1A]/X(0), A ∈ F (T ), T ∈ [0,∞),
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by invoking an extension result [Parthasarathy (1967), Theorem V.4.1, whence the
assumptions on the nature of the probability space].

This is the “exit measure” of the supermartingale Z(·)X(·), introduced by
Föllmer (1972, 1973) [see also Delbaen and Schachermayer (1995a), Föllmer
and Gundel (2006)]. Föllmer (1972) obtained a characterization of the (process-
theoretic) properties of supermartingales, such as Z(·)X(·) here, in terms of the
properties of P. It follows from his work that Z(·)X(·) is a:

• martingale, if and only if P in concentrated on {∞} × �;
• potential [i.e., u(∞) = 0], if and only if P in concentrated on (0,∞) × �.

7.1. A representation of the Föllmer measure. From Theorem 4 in Delbaen
and Schachermayer (1995a) and Theorem 1 and Lemma 4 of Pal and Protter
(2007), the process �(·) of (6.7) is a continuous martingale under some probabil-
ity measure Q on the filtered space (�, F ),F as above. The measure P is locally
absolutely continuous with respect to Q, with dP = �(T )dQ on each F (T ); and
the process W̃ (·) of (6.5) is Q-Brownian motion [cf. Ruf (2009), Section 5]. Thus,
from (6.9) the weights μ1(·), . . . ,μn(·) are martingales and satisfy

∑n
i=1 μi(·) ≡ 1

a.e., under Q.
We consider the first time the process �(·) hits the origin,

T := inf{t ≥ 0|�(t) = 0} = inf{t ≥ 0|Z(t)X(t) = ∞}(7.1)

(infinite, if the set is empty). We have P(T < ∞) = 0, but Q(T < ∞) can be
positive, so Q may not be absolutely continuous with respect to P; whereas, Q-a.e.
on {T < ∞}, we have Z(T + h)X(T + h) = ∞, ∀h ≥ 0 and

∫ T
0 ‖ϑ̃(t)‖2 dt = ∞.

Intuitively, the role of the absorbing state � is to account for events that have zero
P-measure, but positive Q-measure. We also introduce the first times the processes
μi(·) and �i(·) hit the origin,

Ti := inf{t ≥ 0|μi(t) = 0}, T̃i := inf{t ≥ 0|�i(t) = 0}.(7.2)

PROPOSITION 1. (i) The quantity of (6.1) can be represented as

u(T ) = P
(
(T ,∞] × �

) = Q(T > T ).(7.3)

(ii) Suppose n ≥ 2 and that all capitalizations X1(·), . . . ,Xn(·) are real-valued
Q-a.e. Then we also have the Q-a.e. representations

T = min
1≤i≤n

T̃i; as well as T = min
1≤i≤n

Ti away from the event E,(7.4)

where E := {T < ∞} ∩ {μ1(T ) · · ·μn(T ) > 0}. This event has Q-measure equal
to zero, if for some real constant C > 0 we have

‖ϑ(t,ω)‖2 ≤ C
(
1 + Tr(α(t,ω))

) ∀(t,ω) ∈ [0,∞) × �.(7.5)
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PROOF. We note P((T ,∞] × A) = EP(�−1(T )1A∩{T >T }) = EQ(�(T ) ·
�−1(T )1A∩{T >T }) = Q(A ∩ {T > T }), ∀A ∈ F (T ). With A = �, we get (7.3).
For A = {μ1(T ) · · ·μn(T ) = 0}, this gives Q(A ∩ {T > T }) = 0: all the weights
μ1(·), . . . ,μn(·) are strictly positive [equivalently, all X1(·), . . . ,Xn(·) take values
in (0,∞)] on [0, T ), Q-a.e.

Recall μi(0)�(·) ≡ μi(·)�i(·), ∀ i = 1, . . . , n from (6.7), (6.8); this gives
1/�(·) = ∑n

i=1(μi(0)/�i(·)) on [0, T ), and the first equation in (7.4).
On the event {T < ∞} \ E, for some j ∈ {1, . . . , n} we shall have μj(T ) = 0,

thus also Tj = T and the second equation in (7.4). On the other hand, we have seen
that Ti = ∞, ∀i = 1, . . . , n holds Q-a.e. on {T = ∞}, so this equation is valid on
{T = ∞}.

Finally, from (6.6), (6.7):
∫ T

0 Tr(α(t,ω)) dt < ∞,
∫ T

0 ‖ϑ̃(t,ω)‖2 dt = ∞ for
Q-a.e. ω ∈ E ⊆ {T < ∞}. Then (7.5) implies

∫ T
0 ‖ϑ(t,ω)‖2 dt < ∞, and ϑ̃(·) =

ϑ(·) − σ ′(·)μ(·) gives
∫ T

0 ‖ϑ̃(t,ω)‖2 dt < ∞, thus Q(E) = 0. �

Equation (7.3) can be thought of as a “generalized Wald identity” [cf. Prob-
lem 3.5.7 in Karatzas and Shreve (1991)]. In Section 9.3 we shall obtain a char-
acterization of the type (7.3) in a Markovian context, in terms of properties of an
auxiliary diffusion and with the help of an appropriate partial differential equation.
This will enable us to describe the investment strategy that realizes the optimal
arbitrage.

7.2. A generalized martingale measure. In a similar vein, there exists on the
filtered space (�, F ),F a probability measure Q̂ under which

L(t) := 1/Z(t) = exp
{∫ t

0
ϑ ′(s) dŴ (s) − 1

2

∫ t

0
‖ϑ(s)‖2 ds

}
, 0 ≤ t < ∞,

is a martingale, and dP = L(T )dQ̂ on each F (T ), whereas Ŵ (·) of (5.3) is Q̂-
Brownian motion. Under Q̂, the processes Xi(·), i = 1, . . . , n are nonnegative lo-
cal (and super-)martingales, dXi(t) = Xi(t)

∑K
k=1 σik(t) dŴk(t). This justifies the

appellation “generalized martingale measure” for Q̂.
Defining S := inf{t ≥ 0|L(t) = 0}, we have P(S < ∞) = 0 and Z(·) is a strict

P-local martingale if and only if Q̂(S < ∞) > 0 [a potential, if and only if Q̂(S <

∞) = 1]; and the expression of (6.1), (6.2) is

u(T ) = EQ̂[(
X(T )/X(0)

)
1{S>T }

]
.(7.6)

This last expression takes the form u(T ) = 1 − EQ̂[(X(S)/X(0))1{S≤T }] when
X(· ∧ T ) is a Q̂-martingale; from (5.3), this will be the case under the Novikov
condition EQ̂[exp{1

2

∫ T
0 μ′(t)α(t)μ(t) dt}] < ∞. Moreover, u(T ) = 1 (no arbi-

trage relative to the market is possible on [0, T ]), if and only if: X(· ∧ T ) is a
Q̂-martingale, and X(S)1{S≤T } = 0 holds Q̂-a.e.
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8. A diffusion model. We shall assume from now on that K = n and that the
processes βi(·), σik(·), 1 ≤ i, k ≤ n in (2.1) are of the form

βi(t) = bi (X(t)), σik(t) = sik(X(t)), 0 ≤ t < ∞.(8.1)

Here X(t) = (X1(t), . . . ,Xn(t))
′ is the vector of capitalizations at time t , and

bi : (0,∞)n → R, sik : (0,∞)n → R are continuous functions. We shall denote
by b(·) = (b1(·), . . . ,bn(·))′ and s(·) = (sik(·))1≤i≤n,1≤k≤n the vector and matrix,
respectively, of these local rate-of-return and local volatility functions. With this
setup, the vector process X(t),0 ≤ t < ∞ of capitalizations becomes a diffusion,
with values in (0,∞)n and dynamics

dXi(t) = bi (X(t)) dt +
n∑

k=1

sik(X(t)) dWk(t), i = 1, . . . , n,(8.2)

where for x = (x1, . . . , xn)
′ ∈ (0,∞)n we set aij (x) := ∑n

k=1 sik(x)sjk(x),

bi (x) := xibi (x), sik(x) := xisik(x), aij (x) := xixj aij (x).(8.3)

This diffusion X(·) has infinitesimal generator

Lf := 1

2

n∑
i=1

n∑
j=1

aij (x)D2
ij f +

n∑
i=1

bi (x)Dif.(8.4)

ASSUMPTION C. For every x ∈ (0,∞)n, the matrix s(x) = (sij (x))1≤i,j≤n

is invertible; the system (8.2) has a unique-in-distribution weak solution, with
X(0) = x and values in (0,∞)n; and for �(x) := s−1(x)b(x), the following ana-
logue of (2.2), (5.1) holds for each T ∈ (0,∞):

n∑
i=1

∫ T

0

(|bi (X(t))| + aii (X(t)) + �2
i (X(t))

)
dt < ∞ a.s.(8.5)

It follows from this assumption that the Brownian motion W(·) is adapted to
the augmentation of the filtration FX, and that ϑ(·) = �(X(·)) is a market-price
of risk process as postulated in (5.1). The following conditions from Bass and
Perkins (2003), in particular their Theorem 1.2 and Corollary 1.3, are sufficient
for the existence of a weak solution for (8.2) which is unique in distribution: the
functions sik(·), bi (·) of (8.3) can be extended by continuity on all of [0,∞)n;
bi (·) and hij (x) := √

xixj aij (x) > 0 are Hölder continuous on compact subsets of
[0,∞)n; and we have

bi (x) ≥ 0 for xi = 0;
(8.6)

‖b(x)‖ + ‖s(x)‖ ≤ C(1 + ‖x‖) ∀x ∈ [0,∞)n,

and hij (x) = 0 for i 
= j , x ∈ On, where On is the boundary of [0,∞)n.
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REMARK 2. The diffusion X(·) of (8.2) takes values in (0,∞)n, if and only if
the diffusion �(·) = (�1(·), . . . ,�n(·))′,�i(·) := 1/Xi(·), with dynamics

d�i(t) = qi(�(t)) dt +
n∑

k=1

rik(�(t)) dWk(t), i = 1, . . . , n,(8.7)

and rik(ξ) := −ξisik(1/ξ1, . . . ,1/ξn),qi(ξ) := ξi(aii − bi )(1/ξ1, . . . ,1/ξn), takes
values in (0,∞)n. Thus, any conditions guaranteeing the existence of a nonexplo-
sive solution to the SDEs of (8.7) for all times, such as linear growth for qi (·) and
rik(·), also ensure that X(·) takes values in (0,∞)n.

Alternatively, one may invoke results of Friedman (2006), Section 9.4 and
Chapter 11, to obtain conditions on bi (·), sik(·) under which the diffusion X(·)
of (8.2) never attains any of the faces {x1 = 0}, . . . , {xn = 0} of On. In particular,
if these functions can be extended by continuity on all of [0,∞)n; the sik(·) are
continuously differentiable; the matrix a(·) degenerates on the faces of the orthant;
and the so-called Fichera drifts

fi(x) := bi (x) − 1

2

n∑
j=1

Djaij (x)(8.8)

are nonnegative on {xi = 0}, for each i = 1, . . . , n; then X(·) takes values in
(0,∞)n [see Friedman (2006), Theorem 9.4.1 and Corollary 9.4.2].

ASSUMPTION D. There exists H : (0,∞)n → R of class C 2, such that

b(x) = a(x)DH(x), ∀x ∈ (0,∞)n.(8.9)

In light of Assumption C, this new requirement amounts essentially to postulat-
ing that the vector field a−1(·)b(·) be conservative; it is imposed here for technical
reasons (cf. discussion in Remark 3). Under it, the generator of (8.4) becomes

Lf (x) = ∑n
i=1

∑n
j=1 aij (x)[1

2D2
ij f (x) + Dif (x)DjH(x)], and we have

�(x) = s′(x)DH(x) and s(x)�(x) = b(x), x ∈ (0,∞)n.(8.10)

Throughout the remainder, Assumptions B, C, D will be in force, and F ≡ FX+;
this is a natural choice, and consistent with Assumption A.

9. A parabolic PDE for the function U(τ,x). The uniqueness in distribution
posited in Assumption C implies that X(·) is strongly Markovian; we shall denote
by Px the distribution of this process started at X(0) = x ∈ (0,∞)n. Our objective
now is to study

U(T ,x) := EPx[Z(T )X(T )]/(x1 + · · · + xn),(9.1)

the quantity of (6.1), (6.2) in this diffusion context. We start by observing that
with H(·) as in Assumption D and the notation of (8.4) and (8.10), Itô’s rule gives
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H(X(T )) − H(X(0)) − ∫ T
0 LH(X(t)) dt = ∫ T

0 �′(X(t)) dW(t), and the exponen-
tial local martingale Z(·) of (5.2) becomes

Z(·) = exp
{
H(X(0)) − H(X(·)) −

∫ ·
0

k(X(t)) dt

}
.(9.2)

In particular, Z(·) is FX-adapted. We are setting here

k(x) := −
n∑

i=1

n∑
j=1

aij (x)

2
[D2

ijH(x) + DiH(x)DjH(x)],(9.3)

g(x) := e−H(x)
n∑

i=1

xi, G(T ,x) := EPx[
g(X(T ))e− ∫ T

0 k(X(t)) dt ].(9.4)

With this notation, the function of (9.1) becomes U(T ,x) = G(T ,x)/g(x). A bit
more generally, these considerations—coupled with the Markov property of
X(·)—lead for any 0 ≤ t ≤ T to the a.s. identity

EPx[X(T )Z(T )|F (t)]
X(t)Z(t)

= G(T − t,y)

g(y)

∣∣∣∣
y=X(t)

= U
(
T − t,X(t)

)
.(9.5)

The following Assumption E will also be imposed from now onward. It
amounts to assuming that the function U(·, ·) of (9.1) is of class C 1,2. Note
that (9.6) is satisfied, at least in the support of X(·), thanks to the assumption
U(·, ·) ∈ C 1,2((0,∞) × (0,∞)n) and to the Px-martingale property of the process
G(T − t,X(t))e− ∫ t

0 k(X(u)) du,0 ≤ t ≤ T .

ASSUMPTION E. The function G(·, ·) in (9.4) takes values in (0,∞), is con-
tinuous on [0,∞) × (0,∞)n, of class C 1,2 on (0,∞) × (0,∞)n, and solves

∂G

∂τ
(τ,x) = LG(τ,x) − k(x)G(τ,x), τ ∈ (0,∞),x ∈ (0,∞)n,(9.6)

G(0,x) = g(x), x ∈ (0,∞)n.(9.7)

This Cauchy problem is exactly the one arising in classical Feynman–Kac the-
ory [see, for instance, Friedman (2006), Sections 5.6, 6.5, Karatzas and Shreve
(1991), Section 5.7 and Janson and Tysk (2006)]. From Theorem 1 and the re-
mark following it in Heath and Schweizer (2000), Assumption E holds if: the
functions bi (·), sik(·) of (8.3) are continuously differentiable on (0,∞) and sat-
isfy the growth condition in (8.6); the functions aij (·) of (8.3) satisfy the non-
degeneracy condition (9.14) below; the function g(·) in (9.4) is Hölder continu-
ous, uniformly on compact subsets of (0,∞)n; the continuous function k(·) of
(9.3) is bounded from below; and the function G(·, ·) in (9.4) is real-valued and
continuous on (0,∞) × (0,∞)n. This latter requirement is satisfied, for instance,
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if the functions rik(·),qi (·) in (8.7) obey linear growth conditions, and the func-
tion g(ξ) := g(1/ξ1, . . . ,1/ξn) has polynomial growth [see Karatzas and Shreve
(1991), Problem 5.3.15, as well as Heath and Schweizer (2000), Lemma 2 (and
the paragraph preceding it)].

Sustained computation shows then that the Cauchy problem of (9.6), (9.7) for
G(·, ·), leads to a corresponding Cauchy problem for U(·, ·), namely

∂U

∂τ
(τ,x) = 1

2

n∑
i=1

n∑
j=1

aij (x)D2
ijU(τ,x) +

n∑
i=1

n∑
j=1

aij (x)DiU(τ,x)

x1 + · · · + xn

(9.8)

for (τ,x) ∈ (0,∞) × (0,∞)n; and U(0,x) = 1 for x ∈ (0,∞)n.

9.1. An informal derivation of (9.8). Rather than including the computations
which lead from (9.6) to equation (9.8), we present here a rather simple, informal
argument that we shall find useful also in the next subsection, in a more formal
setting. We start by casting (6.4) as

d(X(t)Z(t))

X(t)Z(t)
=

n∑
k=1

(
n∑

i=1

μi(t)σik(t) − ϑk(t)

)
dWk(t) = −

n∑
k=1

�̃k(X(t)) dWk(t),

where, by analogy with (6.5), we have set

�̃k(x) := �k(x) −
n∑

i=1

(
xisik(x)

x1 + · · · + xn

)
, k = 1, . . . , n.(9.9)

On the other hand, assuming that U(·, ·) of (9.1) is of class C 1,2, we obtain from
Itô’s rule and with Rk(τ,x) := ∑n

i=1 xisik(x)DiU(τ,x), k = 1, . . . , n,

dU
(
T − t,X(t)

) =
(

LU − ∂U

∂τ

)(
T − t,X(t)

)
dt +

n∑
k=1

Rk

(
T − t,X(t)

)
dWk(t).

The product rule of the stochastic calculus applied to the process

N(t) := X(t)Z(t)U
(
T − t,X(t)

) = EPx[X(T )Z(T )|F (t)](9.10)

of (9.5), leads then to

dN(t)

X(t)Z(t)
= dU

(
T − t,X(t)

) + U
(
T − t,X(t)

) d(X(t)Z(t))

X(t)Z(t)

−
n∑

k=1

Rk

(
T − t,X(t)

)
�̃k(X(t)) dt

= C
(
T − t,X(t)

)
dt

+
n∑

k=1

[
Rk

(
T − t,X(t)

) − U
(
T − t,X(t)

)
�̃k(X(t))

]
dWk(t).
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We have set

C(τ,x) :=
(

LU − ∂U

∂τ

)
(τ,x) −

n∑
k=1

Rk(τ,x)�̃k(x)

= 1

2

n∑
i=1

n∑
j=1

aij (x)D2
ijU(τ,x) +

n∑
i=1

n∑
j=1

aij (x)DiU(τ,x)

x1 + · · · + xn

− ∂U

∂τ
(τ,x),

where the last equality is checked easily from (8.4) and (8.10). But the process
N(·) of (9.10) is a martingale, so the term C(τ,x) should vanish, and

dN(t)

N(t)
=

n∑
k=1

[
Rk(T − t,X(t))

U(T − t,X(t))
− �̃k(X(t))

]
dWk(t).(9.11)

In other words, the function U : [0,∞) × (0,∞)n → (0,1] of (9.3) must satisfy
the parabolic partial differential equation (9.8), as postulated earlier.

REMARK 3. This informal derivation suggests that it may be possible to dis-
pense with Assumptions D, E altogether, if it can be shown from first princi-
ples that the function U of (9.1) is of class C 1,2 on (0,∞) × (0,∞)n. Indeed,
under suitable conditions, one can rely on techniques from the Malliavin calcu-
lus and the Hörmander hypoëllipticity theorem [Nualart (1995), pages 99–124]
to show that the (n + 2)-dimensional vector (X(T ),ϒ(T ),�(T )) with ϒ(T ) :=∫ T

0 �(X(t))′ dW(t) and �(T ) := ∫ T
0 ‖�(X(t))‖2 dt has an infinitely differentiable

probability density function, for any given T ∈ (0,∞). This provides the requisite
smoothness for the function

U(T ,x) = 1

x1 + · · · + xn

EPx[(
X1(T ) + · · · + Xn(T )

)
eϒ(T )−(�(T )/2)].

The conditions needed for this approach to work are strong; they include the
infinite differentiability of the functions sik(·), �i(·), 1 ≤ i, k ≤ n, as well as ad-
ditional algebraic conditions which, in the present context, are somewhat opaque
and not very easy to state or verify. For these reasons we have opted for sticking
with Assumptions D, E; these are satisfied in the Examples of Section 12, are easy
to test and allow us to represent Föllmer’s exit measure via (9.23), (9.24) without
involving stochastic integrals.

9.2. Results and ramifications. Equation (9.8) is determined entirely from the
volatility structure of model (2.1). Furthermore, the Cauchy problem of (9.8),
U(0, ·) = 1, admits the trivial solution U(τ,x) ≡ 1; thus, the existence of arbitrage
relative to the market portfolio over a finite time–horizon [0, T ] is tantamount to
failure of uniqueness for the Cauchy problem of (9.8), U(0, ·) = 1 over the strip
[0, T ] × (0,∞)n.
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REMARK 4. Assume there exists some h > 0 such that the continuous func-
tions aij (·),1 ≤ i, j ≤ n satisfy either of the conditions

(x1 + · · · + xn)

n∑
i=1

xiaii (x) −
n∑

i=1

n∑
j=1

xixj aij (x) ≥ h(x1 + · · · + xn)
2,(9.12)

(x1 · · ·xn)
1/n

[
n∑

i=1

aii(x) − 1

n

n∑
i=1

n∑
j=1

aij (x)

]
≥ h(x1 + · · · + xn)(9.13)

for all x ∈ (0,∞)n [we have just re-written (4.2) and (4.3) in the present con-
text]. Then from the results reviewed in Section 4 we deduce that, for all T >

(2 logn)/h under (9.12), and for all T > (2n1−(1/n))/h under (9.13), we have
U(T ,x) < 1,∀x ∈ (0,∞)n. In particular, under either (9.12) or (9.13), uniqueness
fails for the Cauchy problem of (9.8), U(0, ·) ≡ 1.

Whenever uniqueness fails for this problem, it is important to know how to pick
the “right” solution from among all possible solutions, the one which gives the
quantity of (9.1). The next result addresses this issue; it implies that G(·, ·) in (9.4)
is the smallest nonnegative, continuous function, of class C 1,2((0,∞) × (0,∞)n),
which satisfies (∂G/∂τ) ≥ LG − kG and (9.7) [cf. Karatzas and Shreve (1991),
Exercise 4.4.7 for a similar situation].

THEOREM 1. The function U : [0,∞)×(0,∞)n → (0,1] of (9.1) is the small-
est nonnegative continuous function, of class C 1,2 on (0,∞) × (0,∞)n, that satis-
fies U(0, ·) ≡ 1 and (1.1).

PROOF. Consider any continuous function Ũ : [0,∞) × (0,∞)n → [0,∞)

which is of class C 1,2 on (0,∞) × (0,∞)n, and satisfies (1.1) and Ũ (0, ·) ≡ 1 on
(0,∞)n; we shall denote by U the collection of all such functions. We introduce
Ñ(t) := X(t)Z(t)Ũ (T − t,X(t)), 0 ≤ t ≤ T as in (9.10).

Repeating verbatim the arguments in Section 9.1, we use (1.1) to conclude that
the nonnegative process Ñ(·) is a local supermartingale. Thus Ñ(·) is bona-fide su-
permartingale, (x1 + · · · + xn)Ũ(T ,x) = Ñ(0) ≥ EPx

(Ñ(T )) = EPx
(X(T )Z(T ))

holds for every (T ,x) ∈ (0,∞) × (0,∞)n, and Ũ (T ,x) ≥ U(T ,x) follows from
(9.1). �

PROPOSITION 2. Assume that the continuous functions (aij (·))1≤i,j≤n of (8.3)
satisfy the following nondegeneracy condition: for every compact subset K of
(0,∞)n, there exists a number ε = εK > 0 such that

n∑
i=1

n∑
j=1

aij (z)ξiξj ≥ ε‖ξ‖2, ∀ z ∈ K, ξ ∈ Rn.(9.14)

Then, if

U(T ,x) < 1 for some x ∈ (0,∞)n(9.15)
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holds for some T ∈ (0,∞), we have

U(T ,x) < 1, ∀(T ,x) ∈ (0,∞) × (0,∞)n.(9.16)

PROOF. Let us work first under the stronger assumption

U(T ,x) < 1, ∀x ∈ (0,∞)n,(9.17)

for some T ∈ (0,∞). For every τ > 0, we consider the set S(τ ) := {x ∈
(0,∞)n|U(τ,x) = 1} and define τ∗ := sup{τ ∈ (0,∞)|S(τ ) 
= ∅} (with τ∗ = 0
if the set is empty). Assumption (9.17) amounts to τ∗ < ∞, and the claim (9.16)
to τ∗ = 0; we shall prove this claim by contradiction.

Suppose τ∗ > 0; then U(τ∗ − δ,x∗) = 1 for any given δ ∈ (0, τ∗/2), and some
x∗ ∈ (0,∞)n. For any given x ∈ (0,∞)n, consider an open, connected set D which
contains both x and x∗, and whose closure D is a compact subset of (0,∞)n; in
particular, we have inf{‖y − z‖|z ∈ D,y ∈ On} > 0. The function U(·, ·) attains its
maximum value over the cylindrical domain E = {(τ, ξ)|0 < τ < τ∗ + 1, ξ ∈ D}
at the point (τ∗ − δ,x∗), which lies in the interior of this domain. By assumption
then, the operator L̂f = (1/2)

∑n
i=1

∑n
j=1 aij (x)D2

ij f + ∑n
i=1 b̂i (x)Dif of (1.2)

with

b̂i (x) := xi b̂i (x), b̂i (x) :=
n∑

j=1

xj aij (x)

x1 + · · · + xn

, i = 1, . . . , n,(9.18)

is uniformly parabolic with bounded, continuous coefficients on E, so from the
maximum principle for parabolic operators [Friedman (2006), Chapter 6],

U(τ,x) = 1 ∀(τ,x) ∈ [0, τ∗ − δ) × (0,∞)n.(9.19)

Now let us recall the Px-a.s. equality EPx[X(T )Z(T )|F (t)] = U(T − t,X(t)) ·
X(t)Z(t) from (9.5); we apply it with 0 ≤ t ≤ τ∗ − δ, 0 ≤ T − t ≤ τ∗ − δ, then
take expectations with respect to the probability measure Px, and use (9.19) along
with (9.1), to obtain for every T ∈ [0,2(τ∗ − δ)],

U(T ,x) = EPx[X(T )Z(T )]
x1 + · · · + xn

= EPx[X(t)Z(t)]
x1 + · · · + xn

= U(t,x) = 1, ∀x ∈ (0,∞)n.

But since 2(τ∗ − δ) > τ∗, this contradicts the definition of τ∗.
Now we revert to (9.15); as J. Ruf (private communication) observes, yet an-

other application of the maximum principle, as above, leads to (9.17). �

COROLLARY. Under the nondegeneracy condition (9.14), and with either
(9.12) or (9.13), inequality (9.16) holds. That is, arbitrage with respect to the mar-
ket exists then over any time–horizon [0, T ] with T ∈ (0,∞).
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9.3. An auxiliary diffusion. Let us consider now the diffusion process Y(·)
with infinitesimal generator L̂ as in (1.2), (9.18) and dynamics

dYi(t) = b̂i (Y(t)) dt +
n∑

k=1

sik(Y(t)) dWk(t), i = 1, . . . , n.(9.20)

ASSUMPTION F. The system of SDEs (9.20) admits a unique-in-distribution
weak solution with values in [0,∞)n \ {0}.

This will be the case, for instance, if the drift functions b̂i (·),1 ≤ i ≤ n of (9.18)
can be extended by continuity on all of [0,∞)n and satisfy the Bass and Perkins
(2003) conditions preceding, following and including (8.6). The resulting process
Y(·) is then Markovian, and we shall denote by Qy its distribution with Y(0) =
y ∈ [0,∞)n. Unlike the original process X(·), which takes values in (0,∞)n, this
new process Y(·) is only guaranteed to take values in the nonnegative orthant
[0,∞)n \ {0}. In particular, with x ∈ (0,∞)n the first hitting time

T := inf{t ≥ 0|Y(t) ∈ On}(9.21)

of the boundary On of [0,∞)n may be finite with positive Qx-probability.
Our next result shows that this possibility amounts to the existence of arbitrage

relative to the market, and to the lack of uniqueness for the Cauchy problem of
(9.8) and U(0, ·) ≡ 1.

THEOREM 2. With the above notation and assumptions, including (9.14), the
function U : [0,∞) × (0,∞)n → (0,1] of (9.1) admits the representation

U(T ,x) = Qx[T > T ], (T ,x) ∈ (0,∞) × (0,∞)n.(9.22)

PROOF. The function on the right-hand side of (9.22) is space–time harmonic
for the diffusion Y(·) on (0,∞) × (0,∞)n, so it solves equation (9.8) there [cf.
Janson and Tysk (2006), Theorem 2.7]. Consider any function V in the collection
U of Theorem 1; then V (T − t,Y(t))1{T>t},0 ≤ t ≤ T is a nonnegative local (thus
a true) Qx-supermartingale, and we deduce

V (T ,x) ≥ EQx[
V (0,Y(T ))1{T>T }

] = Qx(T > T ),

(T ,x) ∈ (0,∞) × (0,∞)n.

The claim follows now from the proof of Theorem 1. �

COROLLARY. Under the assumptions of Theorem 2, for any given x ∈ (0,∞)n

the Px-supermartingale Z(·)X(·) is under Px a:
• martingale, if and only if Qx(T < ∞) = 0;
• potential [i.e., limT →∞ EPx

(Z(T )X(T )) = 0], iff Qx(T < ∞) = 1;
• strict local (and super-)martingale on any time–horizon [0, T ] with T ∈

(0,∞), if and only if Qx(T < ∞) > 0.
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We represent by analogy with (7.3) the exit measure Px of the supermartingale
Z(·)X(·) with initial configuration X(0) = x, in the form

Px(
(T ,∞] × �

) = U(T ,x) = Qx[T > T ],(9.23)

and from (9.2)–(9.5) we have for A ∈ F (t),0 ≤ t ≤ T ,

Px(
(T ,∞] × A

)
(9.24)

= EPx
[
g(X(t))

g(x)
1A

(
Qz[T > T − t])∣∣z=X(t) e

− ∫ t
0 k(X(s)) ds

]
.

When x ∈ (0,∞)n and the quantity of (9.22) is equal to one, the Qx-distribution
of the process Y(t),0 ≤ t ≤ T in (9.20) is the same as the P̃x

T -distribution of the
original stock-price process X(t),0 ≤ t ≤ T ; this follows by comparing (9.20) and
(9.18) with (6.6), and denoting by P̃x

T the probability measure P̃T of (6.10) with
X(0) = x. We have in this spirit the following result, by analogy with Remark 2.

PROPOSITION 3. Under the assumptions of Theorem 2, suppose that the func-
tions sik(·) are continuously differentiable on (0,∞)n; that the matrix a(·) degen-
erates on On; and that the analogues of (8.8), the Fichera drifts

f̂i (x) := b̂i (x) − 1

2

n∑
j=1

Djaij (x) =
n∑

j=1

(
aij (x)

x1 + · · · + xn

− 1

2
Djaij (x)

)
(9.25)

for the process Y(·) of (9.20), can be extended by continuity on [0,∞)n. If f̂i (·) ≥
0 holds on each face {xi = 0}, i = 1, . . . , n of the orthant, then we have U(·, ·) ≡ 1
in (9.22), and no arbitrage with respect to the market portfolio exists on any time–
horizon.

If, on the other hand, we have f̂i(·) < 0 on each face {xi = 0} of the orthant,
then U(·, ·) < 1 in (9.22) and arbitrage with respect to the market portfolio exists,
on every time–horizon [0, T ] with T ∈ (0,∞).

PROOF. In light of Theorem 2, the first claim follows from Theorem 9.4.1,
Corollary 9.4.2 of Friedman (2006), and the second is a consequence of the support
theorem for diffusions [Ikeda and Watanabe (1989), Section VI.8]. �

REMARK 5. (i) The “relative weights” νi(t) := Yi(t)/(Y1(t) + · · · + Yn(t)),
i = 1, . . . , n have dynamics similar to (6.9),

dνi(t) = νi(t)
(
ei − ν(t)

)′s(Y(t)) dW(t).(9.26)

They are thus Qx-martingales with values in [0,1] (cf. Section 6.1); so, when any
one of them hits either boundary point of the unit interval, it gets absorbed there.
In terms of them, the first hitting time of (9.21) can be expressed as in (7.4), T =
min1≤i≤n Ti , where Ti := inf{t ≥ 0|νi(t) = 0}.
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(ii) The measure Qx corresponds to a change of drift, from b(·) in (8.2) to b̂(·) in
(9.18), (9.20); this ensures that, under Qx, the components of the new, “fictitious”
market portfolio ν(·) are martingales, that ν(·) has the numéraire property, and
thus that ν(·) cannot be outperformed.

10. Markovian market weights. Let us assume now the form

bi (x) = Bi (x1/x, . . . , xn/x), sik(x) = Sik(x1/x, . . . , xn/x)

for the functions of (8.1), with x := ∑n
j=1 xj and suitable continuous func-

tions Bi (·), Sik(·) on �n+. For m = (m1, . . . ,mn)
′ ∈ �n+, we set Aij (m) :=∑n

k=1 Sik(m)Sjk(m). In words, we consider instantaneous growth rates and
volatilities that depend at time t only on the current configuration μ(t) =
(μ1(t), . . . ,μn(t))

′ of relative market weights, so the process μ(·) of (3.3) is now
a diffusion with values in the positive simplex �n+ and

dμi(t) = μi(t)

[
�i(μ(t)) dt +

n∑
k=1

Tik(μ(t)) dWk(t)

]
, i = 1, . . . , n,(10.1)

with Tik(m) := Sik(m) − ∑n
j=1 mjSjk(m), Pij (m) := ∑n

k=1 Tik(m)Tjk(m),

�i(m) := Bi (m) −
n∑

j=1

mjBj (m) −
n∑

j=1

mj Aij (m) +
n∑

j=1

n∑
k=1

mjm�Aj�(m).

In this setup, the function of (9.1) can be expressed in the form U(T ,x) =
Q(T,x1/x, . . . , xn/x), in terms of a function Q : (0,∞) × �n+ → (0,1] that satis-
fies the initial condition Q(0, ·) ≡ 1 and the equation

∂Q

∂τ
(τ,m) = 1

2

n∑
i=1

n∑
j=1

mimj Pij (m)D2
ijQ(τ,m), (τ,m) ∈ (0,∞) × �n+,

which appears on page 56 of Fernholz (2002) and can be derived from (9.8). On
the other hand, by analogy with Theorem 2 and (9.26), the quantity Q(T,m)

is the probability that the process ν(·) = (ν1(·), . . . , νn(·))′ with ν(0) = m ∈ �n+
and dynamics (10.2) below, does not hit the boundary of the nonnegative simplex
�n := {m ∈ [0,1]n|∑n

i=1 mi = 1} before t = T :

dνi(t) = νi(t)

n∑
k=1

Tik(ν(t)) dWk(t), i = 1, . . . , n.(10.2)

11. The investment strategy. Let us substitute now the expressions of (9.9)
into (9.11), to obtain the dynamics of the martingale N(·) ≡ Z(·)X(·)U(T − ·,
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X(·)) in (9.10), with N(0) = ξ := X(0)U(T ,X(0)),

N(t) = ξ +
n∑

k=1

∫ t

0
N(s)�k

(
T − s,X(s)

)
dWk(s), 0 ≤ t ≤ T ,

�k(τ,x) :=
n∑

i=1

sik(x)

(
xiDi logU(τ,x) + xi

x1 + · · · + xn

)
− �k(x).

Thus we can identify the “replicating strategy” π̂(·) of (6.2) as

π̂i(t) = Xi(t)Di logU
(
T − t,X(t)

) + (
Xi(t)/X(t)

)
, i = 1, . . . , n,(11.1)

and its value as V ξ,π̂ (t) = N(t)/Z(t) = X(t)U(T − t,X(t)), 0 ≤ t ≤ T .

REMARK 6. In the special case of a Markovian model (10.1) for the market
weights of μ(·) = (μ1(·), . . . ,μn(·))′, expression (11.1) takes the form

π̂i(t) = μi(t)

(
1 + Di logQ

(
T − t,μ(t)

) −
n∑

j=1

μj(t)Dj logQ
(
T − t,μ(t)

))

of a “functionally-generated portfolio” in the terminology of Fernholz (2002),
page 56; whereas the value is V ξ,π̂ (t) = X(t)Q(T − t,μ(t)), 0 ≤ t ≤ T .

In this case we have
∑n

i=1 π̂i(·) ≡ 1: the strategy that implements the best pos-
sible arbitrage relative to the equity market never borrows or lends.

12. Examples. We discuss in this section two illustrative examples. Addi-
tional examples, in which the investment strategy π̂ (·) of (11.1) that realizes the
optimal arbitrage can be computed in closed form in dimension n = 1, can be
found in Ruf (2009).

For the first of these examples, take n = 1, β(t) = 1/X2(t) and σ(t) = 1/X(t)

in (2.1) where the process X(·) satisfies dX(t) = (1/X(t)) dt + dW(t) and
X(0) = 1. This is a Bessel process in dimension three—the radial part of a 3-D
Brownian motion started at unit distance from the origin—and takes values in
(0,∞). We have then ϑ(t) = 1/X(t), Z(t) = 1/X(t) for 0 ≤ t < ∞ in (5.1) and
(5.2), so Z(·)X(·) is very clearly a martingale. However, Z(·) is the prototypical
example of a strict local martingale—we have E(Z(T )) < 1 for every T ∈ (0,∞)

[e.g., Karatzas and Shreve (1991), Exercise 3.36, page 168]. This example is taken
from Karatzas and Kardaras [(2007), page 469], where an arbitrage with respect
to the money-market is constructed in closed form. It illustrates that it is possible
for Z(·) to be a strict local martingale and Z(·)X(·) to be a martingale; in other
words, the second and third inequalities in (5.5) fail, while the first stands.

Here we have �(x) = 1/x, H(x) = logx and k(·) ≡ 0, g(·) ≡ 1, G(·, ·) ≡ 1 in
(9.3), (9.4), thus U(T , x) ≡ 1 for all T ∈ [0,∞), x ∈ (0,∞). Arbitrage relative to
X(·) does not exist here, despite the existence of arbitrage relative to the money



1200 D. FERNHOLZ AND I. KARATZAS

market and the fact that Z(·) is a strict local martingale. Note that b̂(x) = 1/x

in (9.18), so the diffusion of (9.20) is again a Bessel process in dimension three,
dY (t) = (1/Y (t)) dt + dW(t), Y(0) = y > 0. This process never hits the origin,
so the probability in (9.22) is equal to one, for all T ∈ [0,∞).

12.1. The volatility-stabilized model. Our second example is the model of
“stabilization by volatility” introduced in Fernholz and Karatzas (2005) and stud-
ied further by Goia (2009). With n ≥ 2, ζ ∈ [0,1] this posits

βi(t) = (1 + ζ )/(2μi(t)),
(12.1)

σik(t) = δik(μi(t))
−1/2; 1 ≤ i, k ≤ n,

that is, rates of return and volatilities which are large for the small stocks and
small for the large stocks. The conditions of Bass and Perkins (2003) hold for the
resulting system of SDEs in the notation of (3.2) with κ := (1 + ζ )/2,

dXi(t) = κX(t) dt + √
Xi(t)X(t) dWi(t), i = 1, . . . , n.(12.2)

The unique-in-distribution solution of (12.2) is expressed in terms of independent
Bessel processes R1(·), . . . ,Rn(·) in dimension 4κ with Xi(t) = R2

i (A(t)) > 0
and A(t) := (1/4)

∫ t
0 X(s) ds. In particular, X(·) takes values in (0,∞)n; for more

details on these Lamperti-like descriptions and their implications, see Fernholz and
Karatzas (2005) and Goia (2009). Condition (8.5) is satisfied in this example, so
Assumption C also holds.

For the model of (12.1), we have �i(x)/κ = sii(x) = ((x1 + · · · + xn)/xi)
1/2,

bi (x) = κ(x1 + · · · + xn), hij (x) = δij (x1 + · · · + xn), aij (x) = xihij (x)

for 1 ≤ i, j ≤ n. The assumptions of Theorem 2 and of Propositions 1 and 3 are
all satisfied here, as are (7.5) and (8.9) with H(x) = κ

∑n
i=1 logxi and k(x) = (1 −

ζ 2)(x1 +· · ·+xn)
∑n

j=1(1/(8xj )). This function k(·) is nonnegative, since we have
assumed 0 ≤ ζ ≤ 1, whereas g(x) = (x1 +· · ·+xn)(x1 · · ·xn)

−κ . In particular, with
ζ = 1 we get

U(T ,x) = x1 · · ·xn

x1 + · · · + xn

EPx
[
X1(T ) + · · · + Xn(T )

X1(T ) · · ·Xn(T )

]
(12.3)

[see Goia (2009) and Pal (2009) for a computation of the joint density of
X1(T ), . . . ,Xn(T ) which leads then to an explicit computation of U(T ,x) in
(12.3) above, and shows that this function is indeed of class C 1,2].

With ζ = 1 one computes Z(t) = ∏n
j=1(Xj (0)/Xj (t)), therefore �(t) =

(X(t)/X(0))n−1 ∏n
j=1(μj (t)/μj (0)) as well as �i(t) = (X(t)/X(0))n−1 ·∏

j 
=i (μj (t)/μj (0)) for i = 1, . . . , n. Both representations in (7.4) hold for the
first hitting time of (7.1) in this case; whereas S = T = min1≤i≤n Ti as in (7.1)–
(7.6), since L(t) = (1/Z(t)) = (X(t)/X(0))n

∏n
j=1(μj (t)/μj (0)).
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Both (9.12) and (9.13) hold for the example of (12.1) with h = n − 1, the first
as equality; from the corollary to Proposition 2 and Remark 3, (9.16) holds. We
recover the result of Banner and Fernholz (2008) on the existence of arbitrage
relative to market of (12.1) over arbitrary time–horizons.

The diffusion process Y(·) of (9.20) takes now the form

dYi(t) = Yi(t) dt +
√

Yi(t)
(
Y1(t) + · · · + Yn(t)

)
dWi(t).(12.4)

The conditions of Bass and Perkins (2003) are satisfied again, though one should
compare the “weak drift” b̂i (x) = xi ≥ 0 in (12.4), which vanishes for xi = 0, with
the “strong drift” bi (x) = κ(x1 + · · · + xn) for the the original diffusion X(·) in
(12.2), which is strictly positive on [0,∞)n \ {0}.

The corresponding Fichera drifts in (9.25), (8.8) are given by 2̂fi (x) = xi −
(x1 + · · · + xn), 2fi (x) = ζ(x1 + · · · + xn) − xi , and fi (x) > 0 > f̂i (x) hold on
{xi = 0} ∩ {∑j 
=i xj > 0}; from Remark 2 we verify again that the diffusion X(·)
of (12.2) takes values in (0,∞)n.

In contrast, the new diffusion Y(·) of (12.4) lives in [0,∞)n \ {0}, and hits the
boundary On of this nonnegative orthant with positive probability Qx[T ≤ T ] =
1 − U(T ,x) for every T ∈ (0,∞). The positive Px-supermartingale Z(·)X(·) is
a Px-potential, for every x ∈ (0,∞)n. In this case, the three inequalities of (5.5)
hold for every T ∈ (0,∞): the local martingales Z(·), Z(·)X(·) and Z(·)Xi(·),
i = 1, . . . , n are all strict.

The model (12.1) can be cast in the form (10.1) for the relative market weights,
as a multivariate Jacobi diffusion process with dynamics dμi(t) = (1 + ζ )(1 −
nμi(t)) dt + √

μi(t) dWi(t) − μi(t)
∑n

k=1
√

μk(t) dWk(t), or

dμi(t) = (1 + ζ )
(
1 − nμi(t)

)
dt +

√
μi(t)

(
1 − μi(t)

)
dW

�
i (t)(12.5)

with appropriate Brownian motions W
�
1 (·), . . . ,W�

n(·). Thus, each component
μi(·) is also a diffusion on the unit interval (0,1) with local drift (1 + ζ )(1 − ny)

and local variance y(1 − y) of Wright–Fisher type. Goia (2009) studies in de-
tail this multivariate diffusion μ(·) based on an extension of the Warren and Yor
(1999), Gouriéroux and Jasiak (2006) study of skew-products involving Bessel and
Jacobi processes.

From (12.4), Y(·) := Y1(·)+· · ·+Yn(·) satisfies the stochastic equation dY (t) =
Y(t)[dt + dB(t)], where B(·) := ∑n

j=1
∫ ·

0

√
Yj (t)/Y (t) dWj (t) is Brownian mo-

tion; thus Y(·) a geometric Brownian motion with drift, under Qx. The process
ν(·) = (ν1(·), . . . , νn(·))′ of (10.2) is related to the auxiliary diffusion Y(·) of
(12.4) via νi(·) = Yi(·)/Y (·).

The dynamics of these νi(·)’s are easy to describe in the manner of (9.26),
namely, dνi(t) = √

νi(t) dWi(t) − νi(t)
∑n

k=1
√

νk(t) dWk(t), or in the notation

of (12.5): dνi(t) = √
νi(t)(1 − νi(t)) dW

�
i (t). Then the Feller test [e.g., Karatzas
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and Shreve (1991), pages 348–350] ensures that each νi(·) hits one of the end-
points of (0,1) in finite expected time. Thus, all but one of the Yi(·)’s eventually
get absorbed at zero; from that time T∗ [with EQx

(T∗) < ∞] onward, the only
surviving nonzero component Y(·) behaves like geometric Brownian motion with
drift; in particular, Y(·) never hits the origin.

13. Some open questions. What conditions, if any, on the Markovian co-
variance structure of Section 8 will guarantee that π̂ (·) of (11.1) never borrows
from the money-market, that is,

∑n
i=1 xiDiU(T ,x) ≤ 0? That it is a portfolio, i.e.,

that
∑n

i=1 xiDiU(T ,x) = 0 holds? (See Remark 6 for a partial answer.) Or better,
that π̂ (·) of (11.1) is a long-only portfolio, meaning that both this condition and
Di(G(T ,x)eH(x)) ≥ 0 hold?

Can an iterative method be constructed which converges to the minimal solu-
tion of the parabolic differential inequality (1.1), U(0, ·) ≡ 1 and is numerically
implementable [possibly as in Ekström, Von Sydow and Tysk (2008)]? How about
a Monte Carlo scheme that computes the quantity U(T ,x) of (9.22) by generating
the paths of the diffusion process Y(·), then simulating the probability Qx[T > T ]
that Y(·) does not hit the boundary of the nonnegative orthant by time T , when
started at Y(0) = x ∈ (0,∞)n?

How does U(T ,x) behave as T → ∞? If it decreases to zero, then at what rate?

14. Note added in proof. In the context of Proposition 1, and under the prob-
ability measure Q of Section 7.1, the processes X1(·), . . . ,Xn(·) are real-valued
(do not explode) if and only if their sum X(·) as in (3.2) is real-valued. Now it is
fairly straightforward to check from (6.6) that this sum satisfies the equation

dX(t) = X(t)[d〈M̃〉(t) + dM̃(t)],
where the continuous, Q-local martingale M̃(·) and its quadratic variation process
〈M̃〉(·) are given, respectively, as

M̃(t) :=
n∑

k=1

∫ t

0

(
n∑

i=1

μi(s)σik(s)

)
dW̃k(s), 〈M̃〉(t) =

∫ t

0
μ′(s)α(s)μ(s) ds.

Thus by the Dambis–Dubins–Schwarz result [e.g., Karatzas and Shreve (1991),
Theorem 3.4.6], for some real-valued Q-Brownian motion B̃(·) we have

log
(

X(t)

X(0)

)
=

(
B̃(u) + 1

2
u

)∣∣∣∣
u=〈M̃〉(t)

, 0 ≤ t < ∞.

It is fairly clear form this representation that a sufficient condition for the total
capitalization process X(·) to be real-valued, Q-a.e., is that this should hold for the
quadratic variation process 〈M̃〉(·):

Q
(〈M̃〉(t) < ∞,∀t ∈ [0,∞)

) = 1.

In the volatility-stabilized model of Section 12.1 we have αij (t) = δij /μi(t) and
thus 〈M̃〉(t) = ∑n

i=1
∫ t

0 μi(s) ds = t , so this condition is clearly satisfied.
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