THE RANDOM CONDUCTANCE MODEL WITH CAUCHY TAILS ${ }^{1}$

By Martin T. Barlow and Xinghua Zheng
University of British Columbia and
Hong Kong University of Science and Technology

Abstract

We consider a random walk in an i.i.d. Cauchy-tailed conductances environment. We obtain a quenched functional CLT for the suitably rescaled random walk, and, as a key step in the arguments, we improve the local limit theorem for $p_{n^{2} t}^{\omega}(0, y)$ in [Ann. Probab. (2009). To appear], Theorem 5.14, to a result which gives uniform convergence for $p_{n^{2} t}^{\omega}(x, y)$ for all x, y in a ball.

0. Introduction. In this paper we will establish the convergence to Brownian motion of a random walk in a symmetric random environment in a critical case that has not been covered by the papers [1,3]. We begin by recalling the "random conductance model" (RCM). We consider the Euclidean lattice \mathbb{Z}^{d} with $d \geq 2$. Let E_{d} be the set of nonoriented nearest neighbour bonds, and, writing $e=\{x, y\} \in$ E_{d}, let $\left(\mu_{e}, e \in E_{d}\right)$ be nonnegative i.i.d. r.v. on $[1, \infty)$ defined on a probability space (Ω, \mathbb{P}). We write $\mu_{x y}=\mu_{\{x, y\}}=\mu_{y x}$; let $\mu_{x y}=0$ if $x \nsim y$, and set $\mu_{x}=$ $\sum_{y} \mu_{x y}$.

We consider two continuous time random walks on \mathbb{Z}^{d} which jump from x to $y \sim x$ with probability $\mu_{x y} / \mu_{x}$. These are called in [1] the constant speed random walk (CSRW) and variable speed random walk (VSRW), and have generators

$$
\begin{align*}
& \mathcal{L}_{C}(\omega) f(x)=\mu_{x}(\omega)^{-1} \sum_{y} \mu_{x y}(\omega)(f(y)-f(x)) \tag{0.1}\\
& \mathcal{L}_{V}(\omega) f(x)=\sum_{y} \mu_{x y}(\omega)(f(y)-f(x)) \tag{0.2}
\end{align*}
$$

We write X for the CSRW and Y for the VSRW. Thus X jumps out of a state x at rate 1 while Y jumps out at rate μ_{x}. We will abuse notation slightly by writing P_{ω}^{x} for the laws of both X and Y started at $x \in \mathbb{Z}^{d}$ in the random environment [$\mu_{e}(\omega)$]. Since the generators of these processes differ by a multiple, X and Y are time changes of each other. More explicitly, as in [3], define the clock process

$$
\begin{equation*}
S_{t}=\int_{0}^{t} \mu_{Y_{s}} d s \tag{0.3}
\end{equation*}
$$

[^0]and let A_{t} be its inverse. Then the CSRW can be defined by
\[

$$
\begin{equation*}
X_{t}=Y_{A_{t}}, \quad t \geq 0 \tag{0.4}
\end{equation*}
$$

\]

In the case when $\mu_{e} \in[0,1]$, and $\mathbb{P}\left(\mu_{e}>0\right)>p_{c}(d)$, the critical probability for bond percolation in \mathbb{Z}^{d}, the papers [7,11] prove that both X and Y satisfy a quenched functional central limit theorem (QFCLT), and that the limiting process is nondegenerate. The paper [1] studies the case when $\mu_{e} \in[1, \infty)$, and proves that for $\mathbb{P}-$ a.a. ω the rescaled VSRW, defined by

$$
\begin{equation*}
Y_{t}^{(n)}=n^{-1} Y_{n^{2} t}, \quad t \geq 0 \tag{0.5}
\end{equation*}
$$

converges to ($\sigma_{V} W_{t}, t \geq 0$) where W is a standard Brownian motion, and $\sigma_{V}>0$. It is also proved there that $S_{t} / t \rightarrow \mathbb{E} \mu_{0} \in[1, \infty]$. It follows from (0.4) that the CSRW with the standard rescaling,

$$
X_{t}^{(n, 1)}=n^{-1} X_{n^{2} t}, \quad t \geq 0,
$$

converges to $\sigma_{C} W$ where

$$
\sigma_{C}= \begin{cases}\sigma_{V} / \sqrt{2 d \mathbb{E} \mu_{e}}, & \text { if } \mathbb{E} \mu_{e}<\infty \\ 0, & \text { if } \mathbb{E} \mu_{e}=\infty\end{cases}
$$

If $\mathbb{E} \mu_{e}=\infty$ it is natural to ask if a different rescaling of X will give a nontrivial limit. In the case when $d \geq 3, \mu_{e} \in[1, \infty)$ and there exists $\alpha \in(0,1)$ such that

$$
\begin{equation*}
\mathbb{P}\left(\mu_{e}>u\right) \sim \frac{c}{u^{\alpha}} \quad \text { as } u \rightarrow \infty \tag{0.6}
\end{equation*}
$$

then [3] proves that the process

$$
X_{t}^{(n, \alpha)}=n^{-1} X_{n^{2 / \alpha} t}, \quad t \geq 0,
$$

converges to the "fractional kinetic motion" with index α. (For details of this process, and its connection with aging see [4-6].) These papers leave open the case when $\alpha=1$. In this paper we assume that (μ_{e}) satisfies (0.6) with $\alpha=1$; for simplicity we take $c=1 /(2 d)$, so that μ_{e} satisfies

$$
\begin{align*}
& \mathbb{P}\left(\mu_{e} \geq 1\right)=1, \tag{0.7}\\
& \mathbb{P}\left(\mu_{e} \geq u\right) \sim \frac{1}{2 d u} \quad \text { as } u \rightarrow \infty \tag{0.8}
\end{align*}
$$

We define the process

$$
\begin{equation*}
X_{t}^{(n)}=n^{-1} X_{n^{2}(\log n) t}, \quad t \geq 0 \tag{0.9}
\end{equation*}
$$

Our main theorem follows:
THEOREM 1. Let $d \geq 3$, and assume that μ_{e} satisfies (0.7) and (0.8). Then for \mathbb{P}-a.a. $\omega,\left(X^{(n)}, P_{\omega}^{0}\right)$ converges in $D\left([0, \infty) ; \mathbb{R}^{d}\right)$ to $\sigma_{1} W$ where $\sigma_{1}=\sigma_{V} / \sqrt{2}>0$, and W is a standard d-dimensional Brownian motion.

As in [3] we prove this theorem by using (0.4) and proving convergence of a rescaled clock process. Let

$$
\begin{equation*}
S_{t}^{(n)}=\frac{1}{n^{2} \log n} \int_{0}^{n^{2} t} \mu_{Y_{s}} d s \tag{0.10}
\end{equation*}
$$

then it is easy to check that if $A^{(n)}$ is the inverse of $S^{(n)}$, then

$$
\begin{equation*}
X_{t}^{(n)}=Y_{A_{t}^{(n)}}^{(n)}, \quad t \geq 0 \tag{0.11}
\end{equation*}
$$

It follows that to prove Theorem 1 it is enough to prove.
THEOREM 2. Let $d \geq 3$, and assume that μ_{e} satisfies (0.7) and (0.8). For \mathbb{P}-a.a. ω, under the law $P_{\omega}^{\overline{0}}$,

$$
\begin{equation*}
\left(S_{t}^{(n)}, t \geq 0\right) \Rightarrow(2 t, t \geq 0) \quad \text { on } C([0, \infty) ; \mathbb{R}) \tag{0.12}
\end{equation*}
$$

REMARK 1. For $\lambda \in[1, \infty)$, let $S_{t}^{(\lambda)}=\frac{1}{\lambda^{2} \log \lambda} \int_{0}^{\lambda^{2} t} \mu_{Y_{s}} d s$. Then if $n \leq \lambda \leq$ $(n+1)$,

$$
\frac{n^{2} \log n}{(n+1)^{2} \log (n+1)} \cdot S_{t}^{(n)} \leq S_{t}^{(\lambda)} \leq \frac{(n+1)^{2} \log (n+1)}{n^{2} \log n} \cdot S_{t}^{(n+1)}
$$

It follows that the convergence (0.12) holds for $\left(S_{t}^{(\lambda)}, t \geq 0\right)_{\lambda \geq 1}$, and hence Theorem 1 extends to $\left(X_{t}^{(\lambda)}\right)_{\lambda \geq 1}:=\left(\lambda^{-1} X_{\lambda^{2}(\log \lambda) t}\right)_{\lambda \geq 1}$.

As in [3], the result is proved by estimating the growth of the clock process $S_{t}, 0 \leq t \leq n^{2} T$. Since the limit of the processes $S^{(n)}$ is deterministic, overall this case is much easier than when $\alpha \in(0,1)$: after suitable truncation it is enough to use a mean-variance calculation. There is, however, one respect in which this case is more delicate than when $\alpha<1$. When $\alpha<1$ it turns out that the main contribution to $S_{n^{2} T}$ is from visits by Y to x such that $\varepsilon n^{2 / \alpha} \leq \mu_{x} \leq \varepsilon^{-1} n^{2 / \alpha}$ (see Sections 5 and 7 of [3]). When $\alpha=1$ one finds that each set of edges of the form $E_{i}=\left\{e: 2^{i-1} n \leq \mu_{e}<2^{i} n\right\}, i=1, \ldots, \log n$, has a roughly comparable contribution to $S_{n^{2} T}$, so a much greater range of values of μ_{e} need to be considered.

To motivate the proof, consider the classical case of a sum of i.i.d. r.v. ξ_{i}, with $\mathbb{P}\left(\xi_{i}>t\right) \sim t^{-1}$. We have that if

$$
\begin{equation*}
U_{t}^{(n)}=(n \log n)^{-1} \sum_{i=1}^{[n t]} \xi_{i} \tag{0.13}
\end{equation*}
$$

then $\sup _{0 \leq t \leq T}\left|U_{t}^{(n)}-t\right| \rightarrow 0$ in probability. Let $a_{i}=i(\log i)^{\beta}$ where $\beta \in(1,2)$, and $\xi_{i}^{\prime}=\bar{\xi}_{i} \overline{\mathbf{1}}_{\left(\xi_{i}>a_{i}\right)}$. Then $\sum P\left(\xi_{i} \neq \xi_{i}^{\prime}\right)$ converges, so it is enough to consider the convergence of

$$
\begin{equation*}
V_{t}^{(n)}=(n \log n)^{-1} \sum_{i=1}^{[n t]} \xi_{i}^{\prime} \tag{0.14}
\end{equation*}
$$

A straightforward argument calculating the mean and variance of

$$
\begin{equation*}
M_{t}^{(n)}=(n \log n)^{-1} \sum_{i=1}^{[n t]}\left(\xi_{i}^{\prime}-E \xi_{i}^{\prime}\right) \tag{0.15}
\end{equation*}
$$

then gives convergence of $U^{(n)}$. [Note that one does not have a.s. convergence, since $P\left(\max _{2^{n-1} \leq i \leq 2^{n}} \xi_{i}>2^{n} \log 2^{n}\right) \sim c / n$.]

The equivalent arguments in our case rely on good control of the process Y. Define the heat kernel and Green's functions for Y by

$$
\begin{equation*}
p_{t}^{\omega}(x, y)=P_{\omega}^{x}\left(Y_{t}=y\right), \quad g^{\omega}(x, y)=\int_{0}^{\infty} p_{t}^{\omega}(x, y) d t \tag{0.16}
\end{equation*}
$$

We extend these functions from $\mathbb{Z}^{d} \times \mathbb{Z}^{d}$ to $\mathbb{R}^{d} \times \mathbb{R}^{d}$ by linear interpolation on each cube in \mathbb{R}^{d} with vertices in \mathbb{Z}^{d}. Let W be a standard Brownian motion on \mathbb{R}^{d}, and let $W_{t}^{*}=\sigma_{V} W_{t}$, so that W^{*} is the weak limit of the processes $Y^{(n)}$. Let

$$
\begin{equation*}
k_{t}(x)=\left(2 \pi \sigma_{V}^{2}\right)^{-d / 2} \exp \left(-|x|^{2} / 2 \sigma_{V}^{2}\right) \tag{0.17}
\end{equation*}
$$

be the density of the W^{*}.
A key element of the arguments is the following strengthening of the local limit theorem for $p_{n^{2} t}^{\omega}(0, y)$ in [1], Theorem 5.14, to a result which gives uniform convergence for $p_{n^{2} t}^{\omega}(x, y)$ for all x, y in a ball.

THEOREM 3. Let $d \geq 2$, and assume μ_{e} satisfies (0.7). For any $\varepsilon>0,0<\delta<$ $T<\infty$ and $K>0$, we have the following \mathbb{P}-almost sure uniform convergence:

$$
\begin{align*}
\frac{1}{1+\varepsilon} & <\liminf _{n \rightarrow \infty} \inf _{\delta \leq t \leq T} \inf _{|x|,|y| \leq K} \frac{n^{d} p_{n^{2} t}^{\omega}(n x, n y)}{k_{t}(x, y)} \tag{0.18}\\
& \leq \limsup _{n \rightarrow \infty} \sup _{\delta \leq t \leq T} \sup _{|x|,|y| \leq K} \frac{n^{d} p_{n^{2} t}^{\omega}(n x, n y)}{k_{t}(x, y)}<1+\varepsilon .
\end{align*}
$$

This result is proved in Section 1.1.
Notation. We write

$$
B(x, r)=\left\{y \in \mathbb{Z}^{d}:|x-y| \leq r\right\} \quad \text { and } \quad B_{\mathbb{R}}(x, r)=\left\{y \in \mathbb{R}^{d}:|x-y| \leq r\right\} .
$$

If $e=\left\{x_{e}, y_{e}\right\} \in E_{d}$, we write $e \in B(x, r)$ if $\left\{x_{e}, y_{e}\right\} \subset B(x, r)$. We will follow the custom of writing $f \sim g$ to mean that the ratio f / g converges to 1 , and $f \asymp g$ to mean that the ratio f / g remains bounded away from 0 and ∞. For any $a, b \in \mathbb{R}$, $a \wedge b:=\min (a, b)$, and $a \vee b:=\max (a, b)$. Throughout the paper, c, C, C_{1}, C^{\prime}, et cetera, denote generic constants whose values may change from line to line.

REMARK 2. One can also consider the more general case when the tail of μ_{e} satisfies

$$
\mathbb{P}\left(\mu_{e} \geq u\right) \sim c \frac{(\log u)^{\rho}}{u} \quad \text { as } u \rightarrow \infty
$$

where $\rho \geq-1$ (so that $\mathbb{E} \mu_{e}=\infty$). Define for $t \geq 0$

$$
X_{t}^{(n)}= \begin{cases}n^{-1} X_{n^{2}(\log n)^{1+\rho_{t}},}, & \text { when } \rho>-1 \\ n^{-1} X_{n^{2}(\log \log n) t}, & \text { when } \rho=-1\end{cases}
$$

Then using the same strategy as in this article one can show that for \mathbb{P}-a.a. ω, $\left(X^{(n)}, P_{\omega}^{0}\right)$ converges to a (multiple of a) Brownian motion.

1. Preliminaries.

1.1. Heat kernel: Proof of Theorem 3. We collect some known estimates for $p_{t}^{\omega}(x, y)$ and $g^{\omega}(x, y)$ which will be used in our arguments.

Lemma 4. Let $\eta \in(0,1)$. There exist random variables $U_{x}\left(x \in \mathbb{Z}^{d}\right)$ and constants c_{i} such that

$$
\mathbb{P}\left(U_{x} \geq n\right) \leq c_{1} \exp \left(-c_{2} n^{\eta}\right), \quad \text { for all } n \geq 1
$$

(a) [1], Theorem 1.2(a). There exists $c_{3}>0$ such that for all x, y and t,

$$
p_{t}^{\omega}(x, y) \leq c_{3} t^{-d / 2}
$$

(b) [1], Theorem 1.2(b). If $|x-y| \vee \sqrt{t} \geq U_{x}$, then

$$
\begin{align*}
& p_{t}^{\omega}(x, y) \tag{1.1}\\
& \qquad \begin{cases}c_{4} t^{-d / 2} \exp \left(-c_{5}|x-y|^{2} / t\right), & \text { when } t \geq|x-y|, \\
c_{4} \exp \left(-c_{5}|x-y|(1 \vee \log (|x-y| / t))\right), & \text { when } t \leq|x-y|\end{cases}
\end{align*}
$$

(c) [1], Theorem 1.2(c). If $t \geq U_{x}^{2} \vee|x-y|^{1+\eta}$, then

$$
p_{t}^{\omega}(x, y) \geq c_{6} t^{-d / 2} \exp \left(-c_{7}|x-y|^{2} / t\right)
$$

(d) Let $\tau(x, R)=\inf \left\{t \geq 0:\left|Y_{t}-x\right|>R\right\}$. If $R \geq U_{x}$, then

$$
P_{\omega}^{x}(\tau(x, R) \leq t) \leq c_{8} \exp \left(-c_{9} R^{2} / t\right) .
$$

(e) [3], Lemma 3.4. When $d \geq 3$,

$$
\begin{equation*}
c_{10} U_{x}^{2-d} \leq g^{\omega}(x, x) \leq c_{11} \tag{1.2}
\end{equation*}
$$

(f) [3], Proposition 3.2(b). When $d \geq 3$, if $|x| \geq U_{0}$, then

$$
\begin{equation*}
g^{\omega}(0, x) \leq \frac{c_{12}}{|x|^{d-2}} \tag{1.3}
\end{equation*}
$$

(g) [3], Lemma 3.3. There exists $c_{13}>0$ such that for each $K>0$, if

$$
\begin{equation*}
b_{n}=c_{13}(\log n)^{1 / \eta} \tag{1.4}
\end{equation*}
$$

then with \mathbb{P}-probability no less than $1-c_{14} K^{d} n^{-2}$ the following holds:

$$
\begin{equation*}
\max _{|x| \leq K n} U_{x} \leq b_{n} \tag{1.5}
\end{equation*}
$$

In particular, (1.5) holds for all n large enough \mathbb{P}-a.s.
(h) [1], Theorem 5.14. For any $\delta>0, \mathbb{P}$-a.s.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{Z}^{d}} \sup _{t \geq \delta}\left|n^{d} p_{n^{2} t}^{\omega}(0, x)-k_{t}(x / n)\right|=0 \tag{1.6}
\end{equation*}
$$

(i) There exists $\theta>0$ such that for $x, y, y^{\prime} \in \mathbb{Z}^{d}$,

$$
\begin{equation*}
n^{d}\left|p_{n^{2} t}^{\omega}(x, y)-p_{n^{2} t}^{\omega}\left(x, y^{\prime}\right)\right| \leq c_{15} t^{-(d+\theta) / 2} \cdot\left(\frac{\left|y-y^{\prime}\right| \vee U_{y}}{n}\right)^{\theta} \tag{1.7}
\end{equation*}
$$

Proof. (d) The tail bound on $\tau(x, R)$ in (d) follows from Proposition 2.18 and Theorem 4.3 of [1]. (i) This follows from [1], Theorem 3.7 and [2], Proposition 3.2.

We begin by improving the local limit theorem in (1.6).
LEmmA 5. For any $\varepsilon>0, K>0$ and $0<\delta<T<\infty$, there exists $\varepsilon_{b}>0$ such that \mathbb{P}-a.s., for all but finitely many n,

$$
\begin{align*}
& \sup _{\delta \leq t \leq T} \sup \left\{\frac{p_{n^{2} t}^{\omega}\left(n x_{1}, n y_{1}\right)}{p_{n^{2} t}^{\omega}\left(n x_{2}, n y_{2}\right)}:\left|x_{i}\right|,\left|y_{i}\right| \leq K,\left|x_{1}-x_{2}\right| \leq \varepsilon_{b},\left|y_{1}-y_{2}\right| \leq \varepsilon_{b}\right\} \tag{1.8}\\
& \quad<1+\varepsilon
\end{align*}
$$

Proof. By Lemma 4(g), we can assume that the event $\left\{\max _{|x| \leq K n} U_{x} \leq b_{n}\right\}$ holds. So, by Lemma 4(i) we get that for all $t \geq \delta$,

$$
n^{d}\left|p_{n^{2} t}^{\omega}\left(n x_{1}, n y_{1}\right)-p_{n^{2} t}^{\omega}\left(n x_{1}, n y_{2}\right)\right| \leq C \delta^{-(d+\theta) / 2} \cdot\left|y_{1}-y_{2}\right|^{\theta} \vee\left|\frac{b_{n}}{n}\right|^{\theta}
$$

On the other hand, by Lemma 4(c), there exists $\varepsilon_{1}>0$ such that for all n large such that $n^{2} \delta \geq b_{n}^{2} \vee n^{1+\eta}(2 K)^{1+\eta}$, all $\delta \leq t \leq T$ and $\left|x_{1}\right|,\left|y_{1}\right| \leq K$,

$$
n^{d} p_{n^{2} t}^{\omega}\left(n x_{1}, n y_{1}\right) \geq \varepsilon_{1} .
$$

Hence

$$
\left|1-\frac{p_{n^{2} t}^{\omega}\left(n x_{1}, n y_{2}\right)}{p_{n^{2} t}^{\omega}\left(n x_{1}, n y_{1}\right)}\right| \leq \frac{C \delta^{-(d+\theta) / 2}}{\varepsilon_{1}} \cdot\left|y_{1}-y_{2}\right|^{\theta} \vee\left|\frac{b_{n}}{n}\right|^{\theta} .
$$

The conclusion follows by taking ε_{b} small enough so that

$$
\frac{C \delta^{-(d+\theta) / 2}}{\varepsilon_{1}} \cdot \varepsilon_{b}^{\theta}<\sqrt{1+\varepsilon}-1
$$

and then interchanging the roles of x and y in the argument above.
Proof of Theorem 3. Let $\varepsilon_{0}>0$, to be chosen later. We first show that for any fixed $|x|,|y| \leq K, \mathbb{P}$-a.s.,

$$
\begin{align*}
\frac{1}{\left(1+\varepsilon_{0}\right)^{4}} & \leq \liminf _{n \rightarrow \infty} \inf _{\delta \leq t \leq T} \frac{n^{d} p_{n^{2} t}^{\omega}(n x, n y)}{k_{t}(x, y)} \tag{1.9}\\
& \leq \limsup _{n \rightarrow \infty} \sup _{\delta \leq t \leq T} \frac{n^{d} p_{n^{2} t}^{\omega}(n x, n y)}{k_{t}(x, y)} \leq\left(1+\varepsilon_{0}\right)^{4} .
\end{align*}
$$

The proof is similar to that in Lemma 4.2 in [3]. First fix an ε_{b} so that the LHS in (1.8) in Lemma 5 is bounded by $1+\varepsilon_{0}$. For any path $\gamma \in D\left([0, \infty) ; \mathbb{R}^{d}\right)$, define the hitting time $\sigma(\gamma)=\inf \left\{t: \gamma_{t} \in B\left(x, \varepsilon_{b}\right)\right\}$. Then by the QFCLT for the VSRW $Y^{(n)}$ we get that \mathbb{P}-a.s.,

$$
\begin{aligned}
\lim _{n} & E_{0}^{\omega} \mathbf{1}\left\{Y_{\sigma\left(Y^{(n)}\right)+t}^{(n)} \in B\left(y, \varepsilon_{b}\right)\right\} \\
& =E_{0}\left(\mathbf{1}\left\{\sigma\left(W^{*}\right)<\infty\right\} \int_{z \in B\left(y, \varepsilon_{b}\right)} k_{t}\left(W_{\sigma\left(W^{*}\right)}^{*}, z\right) d z\right),
\end{aligned}
$$

where W^{*} is the limit of the VSRW $Y^{(n)}$. So, writing $\sigma=\sigma\left(Y^{(n)}\right)$, for all large n,

$$
\begin{aligned}
P_{\omega}^{0}\left(Y_{\sigma+t}^{(n)} \in B\left(y, \varepsilon_{b}\right) \mid Y_{\sigma}^{(n)}, \sigma<\infty\right) & =\sum_{z \in B\left(n y, n \varepsilon_{b}\right)} p_{n^{2} t}^{\omega}\left(n Y_{\sigma}^{(n)}, z\right) \\
& \geq\left(1+\varepsilon_{0}\right)^{-1}\left|B\left(n y, n \varepsilon_{b}\right)\right| \cdot p_{n^{2} t}^{\omega}\left(n Y_{\sigma}^{(n)}, n y\right) \\
& \geq\left(1+\varepsilon_{0}\right)^{-2}\left|B\left(n y, n \varepsilon_{b}\right)\right| \cdot p_{n^{2} t}^{\omega}(n x, n y)
\end{aligned}
$$

Note that $\left|B\left(n y, n \varepsilon_{b}\right)\right| \sim n^{d} \cdot \operatorname{Vol}\left(B_{\mathbb{R}}\left(y, \varepsilon_{b}\right)\right)$; using this and the analogous result for $k_{t}(x, y)$, we get that

$$
\limsup _{n} n^{d} p_{n^{2} t}^{\omega}(n x, n y) \cdot P_{\omega}^{0}\left(\sigma\left(Y^{(n)}\right)<\infty\right) \leq\left(1+\varepsilon_{0}\right)^{4} P_{0}\left(\sigma\left(W^{*}\right)<\infty\right) k_{t}(x, y)
$$

But by the QFCLT for the VSRW $Y^{(n)}$ again, $\lim _{n} P_{\omega}^{0}\left(\sigma\left(Y^{(n)}\right)<\infty\right)=$ $P_{0}\left(\sigma\left(W^{*}\right)<\infty\right)$, hence we get the desired upper bound. The lower bound in (1.9) can be proved similarly.

We now let x, y vary over $B_{\mathbb{R}}(0, K)$. Find a finite set $\left\{z_{1}, \ldots, z_{\ell}\right\}$ such that $B_{\mathbb{R}}(0, K)$ is covered by the balls $B_{\mathbb{R}}\left(z_{i}, \varepsilon_{b}\right)$. By the previous argument, \mathbb{P}-a.s., for all $i, j=1, \ldots, \ell, n^{d} p_{n^{2} t}^{\omega}\left(n z_{i}, n z_{j}\right) / k_{t}\left(z_{i}, z_{j}\right)$ is bounded above by $\left(1+\varepsilon_{0}\right)^{4}$
for all large n. Given $x, y \in B_{\mathbb{R}}(0, K)$, choose z_{i}, z_{j} so that $x \in B_{\mathbb{R}}\left(z_{i}, \varepsilon_{b}\right), y \in$ $B_{\mathbb{R}}\left(z_{j}, \varepsilon_{b}\right)$. Then using (1.8),

$$
\frac{n^{d} p_{n^{2} t}^{\omega}(n x, n y)}{k_{t}(x, y)}=\frac{n^{d} p_{n^{2} t}^{\omega}\left(n z_{i}, n z_{j}\right)}{k_{t}\left(z_{i}, z_{j}\right)} \cdot \frac{n^{d} p_{n^{2} t}^{\omega}(n x, n y)}{n^{d} p_{n^{2} t}^{\omega}\left(n z_{i}, n z_{j}\right)} \cdot \frac{k_{t}\left(z_{i}, z_{j}\right)}{k_{t}(x, y)}<\left(1+\varepsilon_{0}\right)^{6}
$$

for all large n. Taking $\left(1+\varepsilon_{0}\right)^{6}<1+\varepsilon$ gives the upper bound in (0.18), and the lower bound can be proved similarly.
1.2. Convergences after truncation. For any given $a>0$, we introduce the following truncation of μ_{x} :

$$
\begin{equation*}
\tilde{\mu}_{e}=\tilde{\mu}_{e}^{(n)}=\mu_{e} \cdot \mathbf{1}_{\left\{\mu_{e} \leq a n^{2}\right\}}, \quad \tilde{\mu}_{x}=\tilde{\mu}_{x}^{(n)}=\sum_{y \sim x} \tilde{\mu}_{x y} . \tag{1.10}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathbb{E} \tilde{\mu}_{x} \sim \log \left(a n^{2}\right), \quad \mathbb{E} \tilde{\mu}_{x}^{2} \leq C a n^{2} \tag{1.11}
\end{equation*}
$$

where C is a constant independent of a and n. Note that $\tilde{\mu}_{x}$ and $\widetilde{\mu}_{y}$ are independent if $|x-y|>1$.

Lemma 6. Let $K>0$ and $d \geq 3$.
(a) If $f: B_{\mathbb{R}}(0, K) \rightarrow \mathbb{R}$ is continuous, then \mathbb{P}-a.s.,

$$
\begin{equation*}
\frac{1}{n^{d} \log n} \sum_{|x| \leq K n} \widetilde{\mu}_{x} f(x / n) \rightarrow 2 \int_{B_{\mathbb{R}}(0, K)} f(x) d x \tag{1.12}
\end{equation*}
$$

(b) If $g:\left(B_{\mathbb{R}}(0, K)\right)^{2} \rightarrow \mathbb{R}$ is continuous, then \mathbb{P}-a.s.,

$$
\begin{equation*}
\frac{1}{n^{2 d}(\log n)^{2}} \sum_{|x|,|y| \leq K n} \widetilde{\mu}_{x} \widetilde{\mu}_{y} g(x / n, y / n) \rightarrow 4 \int_{\left(B_{\mathbb{R}}(0, K)\right)^{2}} g(x, y) d x d y \tag{1.13}
\end{equation*}
$$

Proof. In both cases we use a straightforward mean-variance calculation.
(a) Write I_{n} for the LHS of (1.12). Then as $\mathbb{E} \tilde{\mu}_{x} \sim \log \left(a n^{2}\right) \sim 2 \log n$,

$$
\begin{equation*}
\mathbb{E} I_{n}=\frac{\mathbb{E} \tilde{\mu}_{0}}{\log n} \sum_{|x| \leq K n} f(x / n) n^{-d} \rightarrow 2 \int_{|x| \leq K} f(x) d x \quad \text { as } n \rightarrow \infty \tag{1.14}
\end{equation*}
$$

If $|x-y| \leq 1$, then $\left|\operatorname{Cov}\left(\tilde{\mu}_{x}, \tilde{\mu}_{y}\right)\right| \leq \operatorname{Var}\left(\tilde{\mu}_{0}\right)$ by Cauchy-Schwarz. So

$$
\begin{aligned}
\operatorname{Var}_{\mathbb{P}}\left(I_{n}\right) & \leq \frac{c\|f\|_{\infty}^{2}}{n^{2 d}(\log n)^{2}} \sum_{|x| \leq K n} \operatorname{Var}\left(\tilde{\mu}_{0}\right) \\
& \leq \frac{C}{n^{d}(\log n)^{2}} a n^{2} \leq \frac{C^{\prime}}{n^{d-2}(\log n)^{2}} .
\end{aligned}
$$

So, for any $\varepsilon>0$ we deduce

$$
\mathbb{P}\left(\left|I_{n}-\mathbb{E} I_{n}\right|>\varepsilon\right) \leq \frac{\operatorname{Var}_{\mathbb{P}}\left(I_{n}\right)}{\varepsilon^{2}} \leq \frac{c(\varepsilon)}{n^{d-2}(\log n)^{2}}
$$

and so by Borel-Cantelli, we have that $\left|I_{n}-\mathbb{E} I_{n}\right|<\varepsilon$ for all large n.
(b) Let J_{n} be the left-hand side of (1.13). Write $B=B(0, K n)$ and

$$
\begin{aligned}
J_{n}^{\prime} & =\frac{1}{n^{2 d}(\log n)^{2}} \sum_{x, y \in B,|x-y| \leq 3} \tilde{\mu}_{x} \tilde{\mu}_{y} g(x / n, y / n), \\
J_{n}^{\prime \prime} & =\frac{1}{n^{2 d}(\log n)^{2}} \sum_{x, y \in B,|x-y|>3} \tilde{\mu}_{x} \tilde{\mu}_{y} g(x / n, y / n)
\end{aligned}
$$

Then since $\tilde{\mu}_{x} \tilde{\mu}_{y} \leq \tilde{\mu}_{x}^{2}+\tilde{\mu}_{y}^{2}$,

$$
\mathbb{E}\left|J_{n}^{\prime}\right| \leq \frac{c}{n^{2 d}(\log n)^{2}} \sum_{x \in B} \mathbb{E} \tilde{\mu}_{x}^{2}\|g\|_{\infty} \leq \frac{c\|g\|_{\infty}}{n^{d-2}(\log n)^{2}}
$$

As this sum converges, by Borel-Cantelli $J_{n}^{\prime} \rightarrow 0 \mathbb{P}$-a.s.
For $J_{n}^{\prime \prime}$ we have

$$
\mathbb{E} J_{n}^{\prime \prime}=\frac{\left(\mathbb{E} \tilde{\mu}_{x}\right)^{2}}{n^{2 d}(\log n)^{2}} \sum_{x, y \in B,|x-y|>3} g(x / n, y / n) \rightarrow 4 \int_{|x|,|y| \leq K} g(x, y) d x d y
$$

Furthermore,

$$
\begin{align*}
\operatorname{Var}_{\mathbb{P}}\left(J_{n}^{\prime \prime}\right) \leq & \frac{C}{n^{4 d}(\log n)^{4}} \tag{1.15}\\
& \times \sum_{x, y \in B,|x-y|>3}\left(\sum_{x^{\prime}, y^{\prime} \in B,\left|x^{\prime}-y^{\prime}\right|>3}\left|\operatorname{Cov}\left(\tilde{\mu}_{x} \widetilde{\mu}_{y}, \tilde{\mu}_{x^{\prime}} \widetilde{\mu}_{y^{\prime}}\right)\right|\right) .
\end{align*}
$$

If all of $x, y, x^{\prime}, y^{\prime}$ are at a distance greater than 1 apart in the sum in (1.15), then $\operatorname{Cov}\left(\tilde{\mu}_{x} \tilde{\mu}_{y}, \widetilde{\mu}_{x^{\prime}} \widetilde{\mu}_{y^{\prime}}\right)=0$. So, after relabelling, we only have to handle two cases: when $\left|x-x^{\prime}\right| \leq 1$ and $\left|y-y^{\prime}\right| \leq 1$, and when $\left|x-x^{\prime}\right| \leq 1$ and $\left|y-y^{\prime}\right|>1$. Write K_{n}^{\prime} and $K_{n}^{\prime \prime}$ for these two sums. Observe that in both cases, since $|x-y|>3$ and $\left|x^{\prime}-y^{\prime}\right|>3$, we have $\left|y^{\prime}-x\right|>1$ and $\left|y-x^{\prime}\right|>1$.

In the first case,

$$
\begin{equation*}
\left|\operatorname{Cov}\left(\tilde{\mu}_{x} \tilde{\mu}_{y}, \tilde{\mu}_{x^{\prime}} \tilde{\mu}_{y^{\prime}}\right)\right| \leq \mathbb{E} \tilde{\mu}_{x} \tilde{\mu}_{x^{\prime}} \cdot \mathbb{E} \tilde{\mu}_{y} \tilde{\mu}_{y^{\prime}} \leq c n^{4} \tag{1.16}
\end{equation*}
$$

and so

$$
K_{n}^{\prime} \leq \frac{c n^{2 d} n^{4}}{n^{4 d}(\log n)^{4}} \leq \frac{c}{n^{2 d-4}(\log n)^{4}}
$$

In the second case,

$$
\left|\operatorname{Cov}\left(\tilde{\mu}_{x} \tilde{\mu}_{y}, \tilde{\mu}_{x^{\prime}} \tilde{\mu}_{y^{\prime}}\right)\right| \leq \mathbb{E} \tilde{\mu}_{x} \tilde{\mu}_{x^{\prime}} \cdot \mathbb{E} \tilde{\mu}_{y} \tilde{\mu}_{y^{\prime}} \leq c n^{2}(\log n)^{2}
$$

and so as the sum in $K_{n}^{\prime \prime}$ contains $O\left(n^{3 d}\right)$ terms

$$
K_{n}^{\prime \prime} \leq \frac{c n^{3 d} n^{2}(\log n)^{2}}{n^{4 d}(\log n)^{4}} \leq \frac{c}{n^{d-2}(\log n)^{2}} .
$$

Hence $\sum_{n} \operatorname{Var}_{\mathbb{P}}\left(J_{n}^{\prime \prime}\right)<\infty$, proving (1.13).
Finally we state a simple lemma which can be proved by direct computations.

Lemma 7. For any $K>0$,
(a)

$$
\sum_{1 \leq|x| \leq K n}|x|^{2-d}=O\left(n^{2}\right)
$$

(b)

$$
\sum_{1 \leq|x| \leq K n}|x|^{4-2 d}= \begin{cases}O(n), & \text { when } d=3 \\ O(\log n), & \text { when } d=4 \\ O(1), & \text { when } d \geq 5\end{cases}
$$

2. Estimates involving Green's functions. For the usual simple random walk on $\mathbb{Z}^{d}, d \geq 3$, Green's function $g(x, x)$ is a positive constant for all x. In our case, the best available lower bound [see Lemma 4(e)] gives that \mathbb{P}-a.s., for all large n, and for all $|x| \leq K n, g^{\omega}(x, x) \geq C /(\log n)^{(d-2) / \eta}$. As this is not quite strong enough for the truncation arguments in the next section, we now derive some more precise bounds on sums of Green's functions in a ball.

Recall that E_{d} denotes the set of edges in \mathbb{Z}^{d}, and in Lemma $4(\mathrm{~g})$ we defined $b_{n}=c_{13}(\log n)^{1 / \eta}$. For $e=\left\{x_{e}, y_{e}\right\} \in E_{d}$, let $B(e, r)=B\left(x_{e}, r\right) \cap B\left(y_{e}, r\right)$. For $e=\left\{x_{e}, y_{e}\right\} \in E_{d}$ and $z \in \mathbb{Z}^{d}$, let

$$
\begin{align*}
& \gamma_{n}(e)=C_{\mathrm{eff}}\left[\left\{x_{e}, y_{e}\right\}, B\left(e, b_{n}\right)^{c}\right], \tag{2.1}\\
& \gamma_{n}(z)=C_{\mathrm{eff}}\left[z, B\left(z, b_{n}+1\right)^{c}\right], \tag{2.2}
\end{align*}
$$

where $C_{\text {eff }}[A, B]$ denotes the effective conductivity between the sets A and B (see (3.8) in [3] or [10], Section 9.4). Note that both $\gamma_{n}(e)$ and $\gamma_{n}(x)$ are decreasing in n, and $\gamma_{\infty}(e):=\lim _{n} \gamma_{n}(e)$ is the effective conductivity between e and infinity while $\gamma_{\infty}(x):=\lim _{n} \gamma_{n}(x)$ is equal to $1 / g^{\omega}(x, x)$. By [3], Lemma 6.2, for any $k \geq 1, \lim _{n} \mathbb{E} \gamma_{n}(e)^{k}<\infty$. Note further that μ_{e} and $\gamma_{n}(e)$ are independent, and also that $\gamma_{n}(e)$ and $\gamma_{n}\left(e^{\prime}\right)$ are independent if $\left|e-e^{\prime}\right| \geq 2 b_{n}+1$. When $d \geq 3$, by Lemma 4(e), $g^{\omega}(x, x)<C<\infty$, and hence

$$
\begin{equation*}
\gamma_{n}(e) \geq \gamma_{n}(x) \geq \gamma_{\infty}(x)=1 / g^{\omega}(x, x) \geq 1 / C>0 . \tag{2.3}
\end{equation*}
$$

Let a_{p} be large enough so that $\mathbb{P}\left(\mu_{e}>a_{p}\right)<p_{c}(d)$ where $p_{c}(d)$ is the critical probability for bond percolation in \mathbb{Z}^{d}. Let $\mathcal{C}(e)$ denote the cluster containing e
in the bond percolation process for which $\{e$ is open $\}=\left\{\mu_{e}>a_{p}\right\}$. Then we have (see [8], Theorems 6.75 and 5.4)

$$
\begin{align*}
\mathbb{P}(|\mathcal{C}(e)|>m) & \leq \exp \left(-c_{1} m\right), \tag{2.4}\\
\mathbb{P}(\operatorname{diam}(\mathcal{C}(e))>m) & \leq \exp \left(-c_{2} m\right), \quad \text { for all } m \geq 1
\end{align*}
$$

Let

$$
F_{n}(e)=\left\{\operatorname{diam}(\mathcal{C}(e)) \geq \frac{1}{2} b_{n}\right\}, \quad \gamma_{n}^{\prime}(e)=\gamma_{n}(e) \cdot \mathbf{1}_{F_{n}(e)^{c}} .
$$

LEMMA 8. (a) For any $K>0, \mathbb{P}$-a.s., for all sufficiently large $n, \gamma_{n}(e)=\gamma_{n}^{\prime}(e)$ for all $e \in B(0,2 K n)$.
(b) There exists $\theta>0$ and $\Gamma=\Gamma(\theta)<\infty$ such that for all n,

$$
\mathbb{E} e^{\theta \gamma_{n}^{\prime}(e)}<\Gamma
$$

(c) There exists $C=C(d)>0$ such that for any $K>0, \mathbb{P}$-a.s., for all large n,

$$
\inf _{|x| \leq K n} g^{\omega}(x, x) \geq C / \log n .
$$

Proof. (a) First note that

$$
\begin{equation*}
\mathbb{P}\left(\bigcup_{e \in B(0,2 K n)} F_{n}(e)\right) \leq c n^{d} \exp \left(-c_{2} b_{n} / 2\right)=c \exp \left(d \log n-c^{\prime}(\log n)^{1 / \eta}\right) \tag{2.5}
\end{equation*}
$$

Since $\eta<1$ the RHS in (2.5) is summable, so that, for all but finitely many n, $\gamma_{n}(e)=\gamma_{n}^{\prime}(e)$ for all $e \in B(0,2 K n)$.
(b) On $F_{n}(e)^{c}$ the cluster $\mathcal{C}(e)$ is contained in $B\left(e, b_{n}\right)$, and each bond from $\mathcal{C}(e)$ to $\mathcal{C}(e)^{c}$ has conductivity less than a_{p}. Since there are at most $2 d|\mathcal{C}(e)|$ such bonds, we deduce that $\gamma_{n}(e) \leq d a_{p}|\mathcal{C}(e)|$. So,

$$
\begin{equation*}
\mathbb{P}\left(\gamma_{n}^{\prime}(e)>\lambda\right) \leq \mathbb{P}\left(d a_{p}|\mathcal{C}(e)|>\lambda\right) \leq \exp (-c \lambda) \tag{2.6}
\end{equation*}
$$

(c) Using (2.6) it is enough to consider

$$
\mathbb{P}\left(\max _{e \in B(0, K n)} \gamma_{n}^{\prime}(e)>\lambda \log n\right) \leq c^{\prime} n^{d} e^{-c \lambda \log n}
$$

which is summable when λ is large enough.
For any $0<a<b \leq \infty$, define the sets

$$
\begin{equation*}
E_{n}(a, b)=\left\{e: a n^{2} \leq \mu_{e}<b n^{2}\right\} \tag{2.7}
\end{equation*}
$$

Let m_{n} be chosen later with $m_{n} \geq 3 b_{n}$. We tile \mathbb{Z}^{d} with cubes of the form $Q=$ $\left[0, m_{n}-1\right]^{d}+m_{n} \mathbb{Z}^{d}$ so that each cube contains m_{n}^{d} vertices. Let $z_{i}, 1 \leq i \leq d$, be the unit vectors in \mathbb{Z}^{d}, and given a cube Q in the tiling let

$$
E(Q)=\left\{\left\{x, x+z_{i}\right\}, x \in Q, 1 \leq i \leq d\right\}
$$

it is clear that $E(Q)$ gives a tiling of E_{d}, and that $|E(Q)|=d m_{n}^{d}$ for each Q. Let $K>0$ be fixed, and let \mathcal{Q}_{n} be the set of Q such that $Q \cap B(0, K n+1) \neq \varnothing$. We have $\left|\mathcal{Q}_{n}\right| \asymp\left(K n / m_{n}\right)^{d}$.

Lemma 9 (See [3], Lemma 6.3). Let $a, K, \delta>0$ be fixed.
(a) Suppose that $K n / \sqrt{d} \geq m_{n} \geq n^{\theta_{1}}$ for some $\theta_{1}>2 / d$. Then there exists $\lambda>0$ such that \mathbb{P}-a.s., for all but finitely many n,

$$
\begin{equation*}
\max _{Q \in \mathcal{Q}_{n}} \sum_{e \in E(Q) \cap E_{n}(a, \infty)} \gamma_{n}(e) \leq \lambda m_{n}^{d}\left(a n^{2}\right)^{-1} \mathbb{E} \gamma_{n}(e) \tag{2.8}
\end{equation*}
$$

(b) Let $\theta_{2}<1 / d$. Then \mathbb{P}-a.s., $B\left(0, n^{\theta_{2}}\right) \cap E_{n}(a, \infty)=\varnothing$ for all but finitely many n.

Proof. (a) By Lemma 8(a) it is enough to bound the sum (2.8) with $\gamma_{n}^{\prime}(e)$ instead of $\gamma_{n}(e)$. Let $Q \in \mathcal{Q}_{n}$. We divide $E(Q)$ into disjoint sets $(E(Q, j), j \in J)$ such that if e and e^{\prime} are distinct edges in $E(Q, j)$, then $\left|e-e^{\prime}\right| \geq 3 b_{n}-2$, each $|E(Q, j)|=\left(m_{n} / 3 b_{n}\right)^{d}:=N_{n}$, and $|J| \sim d\left(3 b_{n}\right)^{d}$.

Let $\eta_{e}=\mathbf{1}_{\left(\mu_{e}>a n^{2}\right)}, p_{n}=\mathbb{E} \eta_{e} \sim 1 /(2 d) \cdot 1 /\left(a n^{2}\right)$, and

$$
\xi_{j}=\sum_{e \in E(Q, j)} \gamma_{n}^{\prime}(e) \eta_{e}
$$

Then the r.v. $\left(\gamma_{n}^{\prime}(e), \eta_{e}, e \in E(Q, j)\right)$ are independent, and so if θ and Γ are as in Lemma 8,

$$
\mathbb{E} e^{\theta \xi_{j}} \leq\left(1+p_{n}(\Gamma-1)\right)^{N_{n}} \leq e^{N_{n} p_{n}(\Gamma-1)}
$$

Hence for any $\lambda>0$, writing $\mathbb{E} \xi_{j}=N_{n} p_{n} \mathbb{E} \gamma_{n}^{\prime}(e)$,

$$
\begin{aligned}
\mathbb{P}\left(\xi_{j}>\lambda \mathbb{E} \xi_{j}\right) & \leq \exp \left(-\lambda \theta N_{n} p_{n} \mathbb{E} \gamma_{n}^{\prime}(e)+N_{n} p_{n}(\Gamma-1)\right) \\
& =\exp \left(-N_{n} p_{n}\left(\lambda \theta \mathbb{E} \gamma_{n}^{\prime}(e)-\Gamma+1\right)\right) .
\end{aligned}
$$

By (2.3),

$$
\mathbb{E} \gamma_{n}^{\prime}(e) \geq 1 / C \cdot \mathbb{P}\left(F_{n}(e)^{c}\right) \rightarrow 1 / C
$$

hence there exists $\lambda>0$ such that for all n large, $\lambda \theta \mathbb{E} \gamma_{n}^{\prime}(e)-\Gamma+1 \geq 1$, and so

$$
\mathbb{P}\left(\xi_{j}>\lambda \mathbb{E} \xi_{j}\right) \leq e^{-N_{n} p_{n}}
$$

Thus

$$
\mathbb{P}\left(\sum_{j \in J} \xi_{j}>\lambda m_{n}^{d} p_{n} \mathbb{E} \gamma_{n}^{\prime}(e)\right) \leq d\left(3 b_{n}\right)^{d} e^{-N_{n} p_{n}}
$$

and so since $\left|\mathcal{Q}_{n}\right| \leq c n^{d}$ and $N_{n} p_{n} \geq n^{\varepsilon}$ for some $\varepsilon>0$, (2.8) follows by BorelCantelli.
(b) We have

$$
\mathbb{P}\left(B\left(0, n^{\theta_{2}}\right) \cap E_{n}(a, \infty) \neq \varnothing\right) \leq c n^{d \theta_{2}}\left(a n^{2}\right)^{-1} \leq c n^{d \theta_{2}-2}
$$

so again the result follows using Borel-Cantelli.

3. Proof of Theorem 2.

Lemma 10. Let $\omega \in \Omega$. If for each $t \geq 0$,

$$
\begin{equation*}
S_{t}^{(n)} \rightarrow 2 t \quad \text { in } P_{\omega}^{0} \text {-probability } \tag{3.1}
\end{equation*}
$$

then (0.12) holds.
Proof. Note that the LHS and RHS are both increasing processes, and the RHS is continuous and deterministic. The conclusion then follows from Theorem VI.3.37 in [9].

LEMMA 11. For each $\varepsilon>0$ and $T>0$, there exist $K>0$ and $a>0$ such that for \mathbb{P}-a.a. ω, for all $t \leq T$, the following two inequalities hold:

$$
\begin{equation*}
\limsup _{n} P_{\omega}^{0}\left(\frac{1}{n^{2} \log n} \sum_{|x| \geq K n} \int_{0}^{n^{2} t} \mu_{x} \cdot \mathbf{1}_{\left\{Y_{s}=x\right\}} d s>0\right) \leq \varepsilon \tag{3.2}
\end{equation*}
$$

(3.3) $\limsup _{n} P_{\omega}^{0}\left(\frac{1}{n^{2} \log n} \sum_{|x| \leq K n} \int_{0}^{n^{2} t} \mu_{x} \cdot \mathbf{1}_{\left\{\mu_{x} \geq a n^{2}\right\}} \mathbf{1}_{\left\{Y_{s}=x\right\}} d s>0\right) \leq \varepsilon$.

Proof. Write F_{K} for the event in (3.2). Then by Lemma 4(d),

$$
P_{\omega}^{0}\left(F_{K}\right) \leq P_{\omega}^{0}\left(\tau(0, K n)<n^{2} t\right) \leq c_{8} \exp \left(-c_{9} K^{2} / t\right)
$$

provided that $K n>U_{0}$. So, taking K sufficiently large, (3.2) holds for all sufficiently large n.

Choose $\theta_{1}=\left(2+\varepsilon_{1}\right) / d, \theta_{2}=\left(1-\varepsilon_{2}\right) /(d-2)$ where $\varepsilon_{1}>0, \varepsilon_{2}>2 / d$ (so that $\left.\theta_{2}<1 / d\right)$ and $\varepsilon_{1}+\varepsilon_{2}<1$. Let $m_{n}=n^{\theta_{1}}$, and \mathcal{Q}_{n} be as in Lemma 9. Let n be large enough so that (2.8) holds, and also that

$$
\begin{equation*}
B\left(0, n^{\theta_{2}}\right) \cap E_{n}(a, \infty)=\varnothing \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
P_{\omega}^{0}\left(Y \text { hits } E_{n}(a, \infty) \cap B(0, K n)\right) \leq \sum_{Q \in \mathcal{Q}_{n}} \sum_{x \in E_{n}(a, \infty) \cap Q} \frac{g^{\omega}(0, x)}{g^{\omega}(x, x)} \tag{3.5}
\end{equation*}
$$

For $x \in E_{n}(a, \infty)$, if e_{x} is an edge containing x, then by (2.3) $1 / g^{\omega}(x, x) \leq \gamma_{n}\left(e_{x}\right)$. By (3.4) and (1.3) we can bound $g^{\omega}(0, x)$ by $c|x|^{2-d}$.

Let \mathcal{Q}_{n}^{\prime} be the set of $Q \in \mathcal{Q}_{n}$ such that $|x| \geq m_{n} / 2$ for all $x \in Q$. Let first $Q \in \mathcal{Q}_{n} \backslash \mathcal{Q}_{n}^{\prime}$. Then by Lemma 9 and (3.4),

$$
\begin{aligned}
\sum_{x \in E_{n}(a, \infty) \cap Q} \frac{g^{\omega}(0, x)}{g^{\omega}(x, x)} & \leq \max _{x \in E_{n}(a, \infty) \cap Q} c|x|^{2-d} \sum_{x \in E_{n}(a, \infty) \cap Q} \gamma_{n}\left(e_{x}\right) \\
& \leq C n^{\theta_{2}(2-d)} \cdot \lambda m_{n}^{d}\left(a n^{2}\right)^{-1} \leq C^{\prime} n^{\varepsilon_{1}+\varepsilon_{2}-1} .
\end{aligned}
$$

So, since there are only 2^{d} cubes in $\mathcal{Q}_{n}-\mathcal{Q}_{n}^{\prime}$ and $\varepsilon_{1}+\varepsilon_{2}<1$ by the choices of ε_{1} and ε_{2},

$$
\begin{equation*}
\lim _{n} \sum_{Q \in \mathcal{Q}_{n}-\mathcal{Q}_{n}^{\prime}} \sum_{x \in E_{n}(a, \infty) \cap Q} \frac{g^{\omega}(0, x)}{g^{\omega}(x, x)}=0 . \tag{3.6}
\end{equation*}
$$

Now let $Q \in \mathcal{Q}_{n}^{\prime}$, and let x_{Q} be the point in Q closest to 0 . Then if $Q \in \mathcal{Q}_{n}^{\prime}$,

$$
\begin{align*}
\sum_{x \in E_{n}(a, \infty) \cap Q} \frac{g^{\omega}(0, x)}{g^{\omega}(x, x)} & \leq c \sum_{x \in E_{n}(a, \infty) \cap Q}|x|^{2-d} \gamma_{n}\left(e_{x}\right) \\
& \leq c\left|x_{Q}\right|^{2-d} \cdot \lambda m_{n}^{d}\left(a n^{2}\right)^{-1} \tag{3.7}\\
& \leq c^{\prime} \lambda a^{-1} n^{-2} \sum_{x \in Q}|x|^{2-d} .
\end{align*}
$$

So, summing over $Q \in \mathcal{Q}_{n}^{\prime}$,

$$
\begin{aligned}
P_{\omega}^{0}\left(Y \text { hits } E_{n}(a, \infty) \cap\left(\bigcup_{Q \in \mathcal{Q}_{n}^{\prime}} Q\right)\right) & \leq c \lambda a^{-1} n^{-2} \sum_{x \in B(0,(K+1) n)}(1 \vee|x|)^{2-d} \\
& \leq c^{\prime} \lambda(K+1)^{2} a^{-1}
\end{aligned}
$$

and so taking a large enough and noting (3.6), (3.3) follows.
By Lemma 11 to prove (0.12) it suffices to consider the convergence of

$$
\begin{align*}
\widetilde{S}_{t}^{(n)} & =\frac{1}{n^{2} \log n} \sum_{|x| \leq K n} \tilde{\mu}_{x} \cdot \int_{0}^{n^{2} t} \mathbf{1}_{\left\{Y_{s}=x\right\}} d s \\
& =\frac{1}{\log n} \sum_{|x| \leq K n} \widetilde{\mu}_{x} \cdot \int_{0}^{t} \mathbf{1}_{\left\{Y_{n^{2} s}=x\right\}} d s, \tag{3.8}
\end{align*}
$$

where $\tilde{\mu}_{x}$ is as in (1.10). Taking expectations with respect to P_{ω}^{0} we have

$$
\begin{align*}
E_{\omega}^{0} \widetilde{S}_{t}^{(n)} & =\frac{1}{n^{2} \log n} \sum_{|x| \leq K n} \tilde{\mu}_{x} \cdot \int_{0}^{n^{2} t} p_{s}^{\omega}(0, x) d s \tag{3.9}\\
& =\frac{1}{\log n} \sum_{|x| \leq K n} \widetilde{\mu}_{x} \cdot \int_{0}^{t} p_{n^{2} r}^{\omega}(0, x) d r
\end{align*}
$$

Lemma 12. For any $\varepsilon>0$, there exists $\delta>0$ such that, \mathbb{P}-a.s. for all sufficiently large n,

$$
\begin{equation*}
E_{\omega}^{0} \widetilde{S}_{\delta}^{(n)} \leq \varepsilon \tag{3.10}
\end{equation*}
$$

Proof. By Lemma $4(\mathrm{~g})$, we can assume n is large enough so that $\left\{\max _{|x| \leq K n} U_{x} \leq b_{n}\right\}$. Hence, by Lemma 4(b), if $|x| \vee \sqrt{t} \geq b_{n}$, then

$$
p_{t}^{\omega}(0, x) \leq \begin{cases}c_{4} t^{-d / 2} \exp \left(-c_{5}|x|^{2} / t\right), & \text { when } t \geq|x| \\ c_{4} \exp \left(-c_{5}|x|\right), & \text { when } t \leq|x|\end{cases}
$$

Hence, by decomposing according to whether $|x|<b_{n}$ or $|x| \geq b_{n}$, we obtain

$$
E_{\omega}^{0} \widetilde{S}_{\delta}^{(n)}=\frac{1}{n^{2} \log n} \sum_{|x| \leq K n} \tilde{\mu}_{x} \cdot \int_{0}^{n^{2} \delta} p_{s}^{\omega}(0, x) d s
$$

$$
\begin{equation*}
\leq \frac{1}{n^{2} \log n} \sum_{|x| \leq b_{n}} \tilde{\mu}_{x} \cdot \int_{0}^{n^{2} \delta} c(1 \vee s)^{-d / 2} d s \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
+\frac{1}{n^{2} \log n} \sum_{b_{n} \leq|x| \leq K n} \tilde{\mu}_{x} \int_{0}^{|x|} c_{4} e^{-c_{5}|x|} d s \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
+\frac{1}{n^{2} \log n} \sum_{b_{n} \leq|x| \leq K n} \tilde{\mu}_{x} \cdot \int_{|x|}^{n^{2} \delta} c_{4} s^{-d / 2} e^{-c_{5}|x|^{2} / s} d s \tag{3.13}
\end{equation*}
$$

Write $\xi_{n}^{(i)}, i=1,2,3$, for the terms in (3.11)-(3.13). Since the integral in (3.11) is bounded by $\int_{0}^{\infty} c(1 \vee s)^{-d / 2} d s<\infty$, we have

$$
\mathbb{E} \xi_{n}^{(1)} \leq c \frac{b_{n}^{d}}{n^{2} \log n} \mathbb{E} \tilde{\mu}_{x} \leq c n^{-2}(\log n)^{d / \eta}
$$

Similarly for (3.12) we have

$$
\mathbb{E} \xi^{(2)} \leq c n^{-2} \sum_{|x| \leq K n} c_{4}|x| e^{-c_{5}|x|} \leq c^{\prime} n^{-2}
$$

As these sums converge it follows from Borel-Cantelli that $\xi_{n}^{(i)} \leq \varepsilon / 3$ for all large n, for $i=1,2$.

It remains to control (3.13). First note that when $s \geq 1$,

$$
\begin{equation*}
\sum_{x \in \mathbb{Z}^{d}} s^{-d / 2} e^{-\kappa|x|^{2} / s} \leq C(\kappa) \tag{3.14}
\end{equation*}
$$

So, interchanging the order of the sum and integral in (3.13),

$$
\mathbb{E} \xi_{n}^{(3)} \leq \frac{C}{n^{2} \log n} \mathbb{E} \widetilde{\mu}_{0} \cdot n^{2} \delta \leq C^{\prime} \delta
$$

Setting $t=s /|x|^{2}$ we have

$$
\begin{equation*}
\int_{|x|}^{n^{2} \delta} c_{4} s^{-d / 2} e^{-c_{5}|x|^{2} / s} d s \leq C|x|^{2-d} \int_{0}^{\infty} t^{-d / 2} e^{-c_{5} / t} d t \leq C|x|^{2-d} \tag{3.15}
\end{equation*}
$$

Hence, applying Lemma 7 we get

$$
\operatorname{Var}_{\mathbb{P}}\left(\xi_{n}^{(3)}\right) \leq \frac{C}{n^{4}(\log n)^{2}} \cdot \sum_{b_{n} \leq|x| \leq K n} a n^{2}|x|^{4-2 d} \leq \frac{C}{n(\log n)^{2}}
$$

By Chebyshev's inequality and Borel-Cantelli we then get that for δ small enough, \mathbb{P}-a.s. for all sufficiently large $n, \xi_{n}^{(3)} \leq \varepsilon / 3$.

Proposition 13. Let

$$
\begin{equation*}
A_{1}(K, t, \delta)=\int_{|y| \leq K} \int_{\delta}^{t} k_{S}(x) d x d s \tag{3.16}
\end{equation*}
$$

When $d \geq 3$, for any $K>0,0<\delta<T<\infty$, and $t \in(\delta, T]$, \mathbb{P}-a.s.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{\omega}^{0}\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}\right)=2 A_{1}(K, t, \delta) \tag{3.17}
\end{equation*}
$$

Proof. By Lemma 6(a), it suffices to show that \mathbb{P}-a.s.,

$$
\frac{1}{\log n} \sum_{|x| \leq K n} \tilde{\mu}_{x} \cdot \int_{\delta}^{t}\left(p_{n^{2} s}^{\omega}(0, x)-n^{-d} k_{s}(x / n)\right) d s \rightarrow 0 .
$$

The LHS is bounded in absolute value by

$$
\frac{1}{n^{d} \log n} \sum_{|x| \leq K n} \tilde{\mu}_{x} \cdot T \sup _{x \in \mathbb{Z}^{d}} \sup _{s \geq \delta}\left|n^{d} p_{n^{2} s}^{\omega}(0, x)-k_{s}(x / n)\right| .
$$

This converges to $0 \mathbb{P}$-a.s. by Lemmas 6(a) and 4(h).
Proposition 14. When $d \geq 3$, for any $\varepsilon>0, K>0,0<\delta<T<\infty$, and $t \in(\delta, T], \mathbb{P}$-a.s.,

$$
\begin{align*}
& \limsup _{n} E_{\omega}^{0}\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}\right)^{2} \\
& \quad \leq \varepsilon+8(1+\varepsilon) \int_{|x|,|y| \leq K} \int_{\delta}^{t} k_{s}(x) \int_{0}^{t-s} k_{r}(x, y) d r d s d x d y . \tag{3.18}
\end{align*}
$$

Proof. Using the Markov property and the symmetry of Y,

$$
\begin{aligned}
& E_{\omega}^{0}\left(S_{t}^{(n)}-S_{\delta}^{(n)}\right)^{2} \\
& \quad=\frac{2}{(\log n)^{2}}\left(\sum_{|x|,|y| \leq K n} \tilde{\mu}_{x} \tilde{\mu}_{y} \cdot \int_{\delta}^{t} p_{n^{2} s}^{\omega}(0, x) \int_{0}^{t-s} p_{n^{2} r}^{\omega}(x, y) d r d s\right)
\end{aligned}
$$

We begin by proving that, given $\varepsilon>0$, there exists $\delta_{1}>0$ such that \mathbb{P}-a.s., for all large n,

$$
\begin{equation*}
\frac{2}{(\log n)^{2}} \sum_{|x|,|y| \leq K n} \tilde{\mu}_{x} \tilde{\mu}_{y} \cdot \int_{\delta}^{t} p_{n^{2} s}^{\omega}(0, x) \int_{0}^{\delta_{1}} p_{n^{2} r}^{\omega}(x, y) d r d s \leq \varepsilon \tag{3.19}
\end{equation*}
$$

By Lemma 4(a) we have $p_{n^{2} s}^{\omega}(0, x) \leq c n^{-d}$ for all $s \geq \delta$ and so the LHS of (3.19) is bounded by

$$
\begin{equation*}
\frac{C}{n^{d}(\log n)^{2}} \sum_{|x|,|y| \leq K n} \tilde{\mu}_{x} \tilde{\mu}_{y} \int_{0}^{\delta_{1}} p_{n^{2} r}^{\omega}(x, y) d r \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{C}{n^{d+2}(\log n)^{2}} \sum_{|x|,|y| \leq K n,|x-y|>1} \tilde{\mu}_{x} \tilde{\mu}_{y} \int_{0}^{n^{2} \delta_{1}} p_{r}^{\omega}(x, y) d r \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
+\frac{C}{n^{d+2}(\log n)^{2}} \sum_{|x|,|y| \leq K n,|x-y| \leq 1} \tilde{\mu}_{x} \tilde{\mu}_{y} \int_{0}^{n^{2} \delta_{1}} p_{r}^{\omega}(x, y) d r \tag{3.22}
\end{equation*}
$$

Write A_{n} and B_{n} for the terms in (3.21) and (3.22).
The first term can be handled in the same way as in Lemma 12. Let $B=$ $B(0, K n)$, and write $A_{n}=A_{n}^{(1)}+A_{n}^{(2)}+A_{n}^{(3)}$ where

$$
\begin{equation*}
A_{n}^{(1)}=\frac{C}{n^{d+2}(\log n)^{2}} \sum_{x, y \in B, 1<|x-y| \leq b_{n}} \tilde{\mu}_{x} \tilde{\mu}_{y} \int_{0}^{n^{2} \delta_{1}} p_{r}^{\omega}(x, y) d r, \tag{3.23}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}^{(2)}=\frac{C}{n^{d+2}(\log n)^{2}} \sum_{x, y \in B,|x-y| \geq b_{n}} \widetilde{\mu}_{x} \widetilde{\mu}_{y} \int_{0}^{|x-y|} p_{r}^{\omega}(x, y) d r \tag{3.24}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}^{(3)}=\frac{C}{n^{d+2}(\log n)^{2}} \sum_{x, y \in B,|x-y| \geq b_{n}} \tilde{\mu}_{x} \tilde{\mu}_{y} \int_{|x-y|}^{n^{2} \delta_{1}} p_{r}^{\omega}(x, y) d r \tag{3.25}
\end{equation*}
$$

For (3.23) we have

$$
\begin{aligned}
\mathbb{E} A_{n}^{(1)} & \leq \frac{C}{n^{d+2}(\log n)^{2}} \sum_{x, y \in B, 1<|x-y|<b_{n}} \mathbb{E}\left(\widetilde{\mu}_{x} \widetilde{\mu}_{y}\right) \int_{0}^{\infty} c_{4}(1 \vee s)^{-d / 2} d s \\
& \leq \frac{C}{n^{d+2}} K^{d} n^{d} b_{n}^{d} \\
& \leq c \frac{(\log n)^{d / \eta}}{n^{2}},
\end{aligned}
$$

and since this sum converges, we have $A_{n}^{(1)} \leq \varepsilon / 4$ for all large n, \mathbb{P}-a.s. The term $\mathbb{E} A_{n}^{(2)}$ is bounded in the same way as was the term $\xi_{n}^{(2)}$ in Lemma 12.

For (3.25),

$$
\begin{align*}
A_{n}^{(3)} \leq & \frac{C}{n^{d+2}(\log n)^{2}} \tag{3.26}\\
& \times \sum_{x, y \in B,|x-y|>b_{n}} \tilde{\mu}_{x} \tilde{\mu}_{y} \int_{|x-y|}^{n^{2} \delta_{1}} c_{4} s^{-d / 2} \exp \left(-c_{5}|x-y|^{2} / s\right) d s .
\end{align*}
$$

Using (3.14) we have

$$
\mathbb{E} A_{n}^{(3)} \leq \frac{C}{n^{d+2}(\log n)^{2}} \cdot n^{d}\left(\mathbb{E} \tilde{\mu}_{0}\right)^{2} \cdot n^{2} \delta_{1}=O\left(\delta_{1}\right) .
$$

We now bound $\operatorname{Var}_{\mathbb{P}}\left(A_{n}^{(3)}\right)$. By (3.15), the integral in (3.26) is bounded by $c \mid x-$ $\left.y\right|^{2-d}$, so

$$
\begin{aligned}
\operatorname{Var}_{\mathbb{P}}\left(A_{n}^{(3)}\right) \leq & \frac{C}{n^{2 d+4}(\log n)^{4}} \\
& \times \sum_{x_{1}, y_{1} \in B,\left|x_{1}-y_{1}\right|>b_{n}} \sum_{x_{2}, y_{2} \in B,\left|x_{2}-y_{2}\right|>b_{n}}\left|x_{1}-y_{1}\right|^{2-d}\left|x_{2}-y_{2}\right|^{2-d} \\
& \times\left|\operatorname{Cov}\left(\tilde{\mu}_{x_{1}} \tilde{\mu}_{y_{1}}, \tilde{\mu}_{x_{2}} \tilde{\mu}_{y_{2}}\right)\right| .
\end{aligned}
$$

We now bound this sum in the same way as was done for the variance in Lemma 6(b). Let

$$
\begin{aligned}
& \mathcal{C}_{1}=\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in B^{4}:\left|x_{i}-y_{i}\right|>b_{n}, i=1,2,\left|x_{1}-x_{2}\right| \leq 1,\left|y_{1}-y_{2}\right| \leq 1\right\}, \\
& \mathcal{C}_{2}=\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in B^{4}:\left|x_{i}-y_{i}\right|>b_{n}, i=1,2,\left|x_{1}-x_{2}\right| \leq 1,\left|y_{1}-y_{2}\right|>1\right\} .
\end{aligned}
$$

Note that if $\left|x_{1}-x_{2}\right| \leq 1$, then since $\left|x_{i}-y_{i}\right|>b_{n}$, none of the y_{i} can be within distance 1 of x_{j}. If $\left(x_{1}, \ldots, y_{2}\right) \in \mathcal{C}_{1}$, then $\left|\operatorname{Cov}\left(\tilde{\mu}_{x_{1}} \tilde{\mu}_{y_{1}}, \tilde{\mu}_{x_{2}} \tilde{\mu}_{y_{2}}\right)\right| \leq c n^{4}$, while if $\left(x_{1}, \ldots, y_{2}\right) \in \mathcal{C}_{2}$, then $\left|\operatorname{Cov}\left(\tilde{\mu}_{x_{1}} \tilde{\mu}_{y_{1}}, \tilde{\mu}_{x_{2}} \tilde{\mu}_{y_{2}}\right)\right| \leq c(\log n)^{2} n^{2}$. So,

$$
\begin{aligned}
& \frac{C}{n^{2 d+4}(\log n)^{4}} \sum_{\left(x_{1}, \ldots, y_{2}\right) \in \mathcal{C}_{1}}\left|x_{1}-y_{1}\right|^{2-d}\left|x_{2}-y_{2}\right|^{2-d} \cdot\left|\operatorname{Cov}\left(\tilde{\mu}_{x_{1}} \tilde{\mu}_{y_{1}}, \tilde{\mu}_{x_{2}} \tilde{\mu}_{y_{2}}\right)\right| \\
& \quad \leq \frac{C}{n^{2 d+4}(\log n)^{4}} \sum_{x_{1}, y_{1} \in B}\left(1 \vee\left|x_{1}-y_{1}\right|\right)^{4-2 d} c n^{4} \\
& \quad \leq \frac{C}{n^{2 d}(\log n)^{4}} n^{d} \max _{x_{1} \in B} \sum_{y_{1} \in B(x, 2 K n)}\left(1 \vee\left|x_{1}-y_{1}\right|\right)^{4-2 d} \\
& \quad \leq \frac{C n}{n^{d}(\log n)^{4}}
\end{aligned}
$$

where in the last inequality we used Lemma 7(b).
Also,

$$
\begin{aligned}
& \frac{C}{n^{2 d+4}(\log n)^{4}} \sum_{\left(x_{1}, \ldots, y_{2}\right) \in \mathcal{C}_{2}}\left|x_{1}-y_{1}\right|^{2-d}\left|x_{2}-y_{2}\right|^{2-d}\left|\operatorname{Cov}\left(\tilde{\mu}_{x_{1}} \tilde{\mu}_{y_{1}}, \tilde{\mu}_{x_{2}} \tilde{\mu}_{y_{2}}\right)\right| \\
& \quad \leq \frac{C}{n^{2 d+2}(\log n)^{2}} \sum_{\left(x_{1}, \ldots, y_{2}\right) \in \mathcal{C}_{2}}\left|x_{1}-y_{1}\right|^{2-d}\left|x_{2}-y_{2}\right|^{2-d} \\
& \quad \leq \frac{C}{n^{2 d+2}(\log n)^{2}} \sum_{x_{1} \in B} \sum_{y_{1}, y_{2} \in B(x, 2 K n)}\left(1 \vee\left|x_{1}-y_{1}\right|\right)^{2-d}\left(1 \vee\left|x_{1}-y_{2}\right|\right)^{2-d}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{C}{n^{d+2}(\log n)^{2}}\left(\sum_{y_{1} \in B(0,2 K n)}\left(1 \vee\left|y_{1}\right|\right)^{2-d}\right)^{2} \\
& \leq \frac{C n^{4}}{n^{d+2}(\log n)^{2}}=\frac{C}{n^{d-2}(\log n)^{2}} .
\end{aligned}
$$

Thus $\sum_{n} \operatorname{Var}_{\mathbb{P}}\left(A_{n}^{(3)}\right)<\infty$, and so if δ_{1} is small enough then by Chebyshev's inequality and Borel-Cantelli, \mathbb{P}-a.s. for all sufficiently large $n, A_{n}^{(3)} \leq \varepsilon / 4$.

To finish the proof of (3.19), it remains to bound the term (3.22). By Lemma 4(a), $\int_{0}^{n^{2} \delta_{1}} p_{r}^{\omega}(x, y) d r \leq C$. Therefore by Cauchy-Schwarz,

$$
\begin{aligned}
B_{n} & =\frac{C}{n^{d+2}(\log n)^{2}} \sum_{|x| \leq K n,|y-x| \leq 1} \tilde{\mu}_{x} \tilde{\mu}_{y} \int_{0}^{n^{2} \delta_{1}} p_{n^{2} r}^{\omega}(x, y) d r \\
& \leq \frac{C}{n^{d+2}(\log n)^{2}} \sum_{|x| \leq K n} \tilde{\mu}_{x}^{2} .
\end{aligned}
$$

Hence

$$
\mathbb{E} B_{n} \leq \frac{C}{n^{d+2}(\log n)^{2}} \cdot n^{d} \cdot n^{2} \rightarrow 0
$$

and since $\operatorname{Var}_{\mathbb{P}}\left(\tilde{\mu}_{x}^{2}\right) \leq c n^{6}$,

$$
\operatorname{Var}_{\mathbb{P}}\left(B_{n}\right) \leq \frac{C}{n^{2 d+4}(\log n)^{4}} \cdot n^{d} \cdot n^{6} \leq \frac{C}{n^{d-2}(\log n)^{4}}
$$

Since this bound is summable, (3.19) follows.
It remains to show that for any $\delta_{1}>0, \mathbb{P}$-a.s.,

$$
\begin{aligned}
& \underset{n}{\limsup } \frac{2}{(\log n)^{2}} \sum_{|x|,|y| \leq K n} \tilde{\mu}_{x} \tilde{\mu}_{y} \cdot \int_{\delta}^{t} p_{n^{2} s}^{\omega}(0, x) \int_{\delta_{1}}^{t-s} p_{n^{2} r}^{\omega}(x, y) d r d s \\
& \quad \leq 8(1+\varepsilon) \int_{|x|,|y| \leq K}\left(\int_{\delta}^{t} k_{s}(0, x) \int_{0}^{t-s} k_{r}(x, y) d r d s\right) d x d y
\end{aligned}
$$

This follows easily from Theorem 3 and Lemma 6.
Proof of Theorem 2. By Lemma 10, it suffices to show that for any $t>0$ and $0<\varepsilon<t / 2$, for \mathbb{P}-a.a. ω,

$$
\begin{equation*}
\lim _{n} P_{\omega}^{0}\left(\left|S_{t}^{(n)}-2 t\right| \geq \epsilon\right) \leq \epsilon \tag{3.27}
\end{equation*}
$$

Write

$$
\begin{align*}
S_{t}^{(n)}-2 t= & \left(S_{t}^{(n)}-\widetilde{S}_{t}^{(n)}\right)+\widetilde{S}_{\delta}^{(n)}+\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}-E_{\omega}^{0}\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}\right)\right) \\
& +\left(E_{\omega}^{0}\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}\right)-2 A_{1}(K, t, \delta)\right)+\left(2 A_{1}(K, t, \delta)-2 t\right) \tag{3.28}
\end{align*}
$$

By Proposition 13, \mathbb{P}-a.s., $\left(E_{\omega}^{0}\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}\right)-2 A_{1}(K, t, \delta)\right) \rightarrow 0$. Let $0<\varepsilon_{0}<$ $\varepsilon / 16$, to be chosen later. Choose K large enough so that the LHS in (3.2) is bounded by ε_{0}, and also

$$
\begin{equation*}
\sup _{0<\delta \leq t}\left|A_{1}(K, t, \delta)-(t-\delta)\right| \leq \varepsilon_{0}<\varepsilon / 16 \tag{3.29}
\end{equation*}
$$

Now choose $a>0$ large enough so that the LHS in (3.3) is also bounded by ε_{0}. Hence, for all large n,

$$
P_{\omega}^{0}\left(\left|S_{t}^{(n)}-\widetilde{S}_{t}^{(n)}\right|>0\right) \leq 2 \varepsilon_{0}<\varepsilon / 4
$$

Next choose $0<\delta<t / 2$ so that by Lemma 12 for all sufficiently large $n, E_{\omega}^{0} \widetilde{S}_{\delta}^{(n)}<$ $\varepsilon^{2} / 16$, and hence $P_{\omega}^{0}\left(\widetilde{S}_{\delta}^{(n)}>\varepsilon / 4\right) \leq \varepsilon / 4$. Furthermore, by Propositions 13 and 14 and (3.29),

$$
\begin{aligned}
\limsup _{n} \operatorname{Var}_{\mathbb{P}}\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}\right) & \leq \varepsilon_{0}+8\left(1+\varepsilon_{0}\right) \cdot(t-\delta)^{2} / 2-\left(2\left(t-\delta-\varepsilon_{0}\right)\right)^{2} \\
& \leq \varepsilon_{0}\left(1+4 t^{2}+4 t\right)
\end{aligned}
$$

hence by Chebyshev's inequality,

$$
\limsup _{n} P_{\omega}^{0}\left(\left|\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}-E_{\omega}^{0}\left(\widetilde{S}_{t}^{(n)}-\widetilde{S}_{\delta}^{(n)}\right)\right| \geq \varepsilon / 4\right) \leq 16\left(1+4 t^{2}+4 t\right) \cdot \varepsilon_{0} / \varepsilon^{2}
$$

Taking ε_{0} so small that $\varepsilon_{0}<\varepsilon / 16$ and $16\left(1+4 t^{2}+4 t\right) \cdot \varepsilon_{0} / \varepsilon^{2} \leq \varepsilon / 4$, we obtain (3.27).

REFERENCES

[1] Barlow, M. T. and Deuschel, J.-D. (2010). Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 234-276.
[2] Barlow, M. T. and Hambly, B. M. (2009). Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14 1-27. MR2471657
[3] Barlow, M. T. and ČERNÝ, J. (2009). Convergence to fractional kinetics for random walks associated with unbounded conductances. Preprint.
[4] Ben Arous, G. and ČErný, J. (2007). Scaling limit for trap models on \mathbb{Z}^{d}. Ann. Probab. 35 2356-2384. MR2353391
[5] Ben Arous, G. and ČERNŶ, J. (2008). The arcsine law as a universal aging scheme for trap models. Comm. Pure Appl. Math. 61 289-329. MR2376843
[6] Ben Arous, G., Černý, J. and Mountford, T. (2006). Aging in two-dimensional Bouchaud's model. Probab. Theory Related Fields 134 1-43. MR2221784
[7] Biskup, M. and Prescott, T. M. (2007). Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 1323-1348 (electronic). MR2354160
[8] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin. MR 1707339
[9] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin. MR1943877
[10] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. MR2466937
[11] Mathieu, P. (2008). Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 1025-1046. MR2384074

Department of Mathematics
University of British Columbia
Vancouver, British Columbia V6T 1Z2
Canada
E-MAIL: barlow@math.ubc.ca

DEPARTMENT OF ISOM
Hong Kong University of Science
and Technology
Clear Water Bay, Kowloon
Hong Kong
E-mail: xhzheng@ust.hk

[^0]: Received August 2009.
 ${ }^{1}$ Supported in part by NSERC (Canada) and the Peter Wall Institute for Advanced Studies. AMS 2000 subject classifications. Primary 60K37; secondary 60F17; tertiary 82C41.
 Key words and phrases. Random conductance model, heat kernel, invariance principle.

