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THE RANDOM CONDUCTANCE MODEL WITH CAUCHY TAILS1

BY MARTIN T. BARLOW AND XINGHUA ZHENG

University of British Columbia and
Hong Kong University of Science and Technology

We consider a random walk in an i.i.d. Cauchy-tailed conductances en-
vironment. We obtain a quenched functional CLT for the suitably rescaled
random walk, and, as a key step in the arguments, we improve the local limit
theorem for pω

n2t
(0, y) in [Ann. Probab. (2009). To appear], Theorem 5.14, to

a result which gives uniform convergence for pω
n2t

(x, y) for all x, y in a ball.

0. Introduction. In this paper we will establish the convergence to Brownian
motion of a random walk in a symmetric random environment in a critical case
that has not been covered by the papers [1, 3]. We begin by recalling the “random
conductance model” (RCM). We consider the Euclidean lattice Z

d with d ≥ 2. Let
Ed be the set of nonoriented nearest neighbour bonds, and, writing e = {x, y} ∈
Ed , let (μe, e ∈ Ed) be nonnegative i.i.d. r.v. on [1,∞) defined on a probability
space (�,P). We write μxy = μ{x,y} = μyx ; let μxy = 0 if x �∼ y, and set μx =∑

y μxy .
We consider two continuous time random walks on Z

d which jump from x to
y ∼ x with probability μxy/μx . These are called in [1] the constant speed random
walk (CSRW) and variable speed random walk (VSRW), and have generators

LC(ω)f (x) = μx(ω)−1
∑
y

μxy(ω)
(
f (y) − f (x)

)
,(0.1)

LV (ω)f (x) = ∑
y

μxy(ω)
(
f (y) − f (x)

)
.(0.2)

We write X for the CSRW and Y for the VSRW. Thus X jumps out of a state x

at rate 1 while Y jumps out at rate μx . We will abuse notation slightly by writing
P x

ω for the laws of both X and Y started at x ∈ Z
d in the random environment

[μe(ω)]. Since the generators of these processes differ by a multiple, X and Y are
time changes of each other. More explicitly, as in [3], define the clock process

St =
∫ t

0
μYs ds,(0.3)
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and let At be its inverse. Then the CSRW can be defined by

Xt = YAt , t ≥ 0.(0.4)

In the case when μe ∈ [0,1], and P(μe > 0) > pc(d), the critical probability
for bond percolation in Z

d , the papers [7, 11] prove that both X and Y satisfy a
quenched functional central limit theorem (QFCLT), and that the limiting process
is nondegenerate. The paper [1] studies the case when μe ∈ [1,∞), and proves
that for P-a.a. ω the rescaled VSRW, defined by

Y
(n)
t = n−1Yn2t , t ≥ 0,(0.5)

converges to (σV Wt, t ≥ 0) where W is a standard Brownian motion, and σV > 0.
It is also proved there that St/t → Eμ0 ∈ [1,∞]. It follows from (0.4) that the
CSRW with the standard rescaling,

X
(n,1)
t = n−1Xn2t , t ≥ 0,

converges to σCW where

σC =
{

σV /
√

2dEμe, if Eμe < ∞,
0, if Eμe = ∞.

If Eμe = ∞ it is natural to ask if a different rescaling of X will give a nontrivial
limit. In the case when d ≥ 3, μe ∈ [1,∞) and there exists α ∈ (0,1) such that

P(μe > u) ∼ c

uα
as u → ∞,(0.6)

then [3] proves that the process

X
(n,α)
t = n−1Xn2/αt , t ≥ 0,

converges to the “fractional kinetic motion” with index α. (For details of this
process, and its connection with aging see [4–6].) These papers leave open the
case when α = 1. In this paper we assume that (μe) satisfies (0.6) with α = 1; for
simplicity we take c = 1/(2d), so that μe satisfies

P(μe ≥ 1) = 1,(0.7)

P(μe ≥ u) ∼ 1

2du
as u → ∞.(0.8)

We define the process

X
(n)
t = n−1Xn2(logn)t , t ≥ 0.(0.9)

Our main theorem follows:

THEOREM 1. Let d ≥ 3, and assume that μe satisfies (0.7) and (0.8). Then for
P-a.a. ω, (X(n),P 0

ω) converges in D([0,∞);R
d) to σ1W where σ1 = σV /

√
2 > 0,

and W is a standard d-dimensional Brownian motion.
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As in [3] we prove this theorem by using (0.4) and proving convergence of a
rescaled clock process. Let

S
(n)
t = 1

n2 logn

∫ n2t

0
μYs ds;(0.10)

then it is easy to check that if A(n) is the inverse of S(n), then

X
(n)
t = Y

(n)

A
(n)
t

, t ≥ 0.(0.11)

It follows that to prove Theorem 1 it is enough to prove.

THEOREM 2. Let d ≥ 3, and assume that μe satisfies (0.7) and (0.8). For
P-a.a. ω, under the law P 0

ω ,(
S

(n)
t , t ≥ 0

) ⇒ (2t, t ≥ 0) on C([0,∞);R).(0.12)

REMARK 1. For λ ∈ [1,∞), let S
(λ)
t = 1

λ2 logλ

∫ λ2t
0 μYs ds. Then if n ≤ λ ≤

(n + 1),

n2 logn

(n + 1)2 log(n + 1)
· S(n)

t ≤ S
(λ)
t ≤ (n + 1)2 log(n + 1)

n2 logn
· S(n+1)

t .

It follows that the convergence (0.12) holds for (S
(λ)
t , t ≥ 0)λ≥1, and hence Theo-

rem 1 extends to (X
(λ)
t )λ≥1 := (λ−1Xλ2(logλ)t )λ≥1.

As in [3], the result is proved by estimating the growth of the clock process
St , 0 ≤ t ≤ n2T . Since the limit of the processes S(n) is deterministic, overall this
case is much easier than when α ∈ (0,1): after suitable truncation it is enough
to use a mean–variance calculation. There is, however, one respect in which this
case is more delicate than when α < 1. When α < 1 it turns out that the main
contribution to Sn2T is from visits by Y to x such that εn2/α ≤ μx ≤ ε−1n2/α

(see Sections 5 and 7 of [3]). When α = 1 one finds that each set of edges of
the form Ei = {e : 2i−1n ≤ μe < 2in}, i = 1, . . . , logn, has a roughly comparable
contribution to Sn2T , so a much greater range of values of μe need to be considered.

To motivate the proof, consider the classical case of a sum of i.i.d. r.v. ξi , with
P(ξi > t) ∼ t−1. We have that if

U
(n)
t = (n logn)−1

[nt]∑
i=1

ξi,(0.13)

then sup0≤t≤T |U(n)
t − t | → 0 in probability. Let ai = i(log i)β where β ∈ (1,2),

and ξ ′
i = ξi1(ξi>ai). Then

∑
P(ξi �= ξ ′

i ) converges, so it is enough to consider the
convergence of

V
(n)
t = (n logn)−1

[nt]∑
i=1

ξ ′
i .(0.14)
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A straightforward argument calculating the mean and variance of

M
(n)
t = (n logn)−1

[nt]∑
i=1

(ξ ′
i − Eξ ′

i )(0.15)

then gives convergence of U(n). [Note that one does not have a.s. convergence,
since P(max2n−1≤i≤2n ξi > 2n log 2n) ∼ c/n.]

The equivalent arguments in our case rely on good control of the process Y .
Define the heat kernel and Green’s functions for Y by

pω
t (x, y) = P x

ω(Yt = y), gω(x, y) =
∫ ∞

0
pω

t (x, y) dt.(0.16)

We extend these functions from Z
d × Z

d to R
d × R

d by linear interpolation on
each cube in R

d with vertices in Z
d . Let W be a standard Brownian motion on R

d ,
and let W ∗

t = σV Wt , so that W ∗ is the weak limit of the processes Y (n). Let

kt (x) = (2πσ 2
V )−d/2 exp(−|x|2/2σ 2

V )(0.17)

be the density of the W ∗.
A key element of the arguments is the following strengthening of the local limit

theorem for pω
n2t

(0, y) in [1], Theorem 5.14, to a result which gives uniform con-
vergence for pω

n2t
(x, y) for all x, y in a ball.

THEOREM 3. Let d ≥ 2, and assume μe satisfies (0.7). For any ε > 0, 0 < δ <

T < ∞ and K > 0, we have the following P-almost sure uniform convergence:

1

1 + ε
< lim inf

n→∞ inf
δ≤t≤T

inf|x|,|y|≤K

ndpω
n2t

(nx,ny)

kt (x, y)
(0.18)

≤ lim sup
n→∞

sup
δ≤t≤T

sup
|x|,|y|≤K

ndpω
n2t

(nx,ny)

kt (x, y)
< 1 + ε.

This result is proved in Section 1.1.

NOTATION. We write

B(x, r) = {y ∈ Z
d : |x − y| ≤ r} and BR(x, r) = {y ∈ R

d : |x − y| ≤ r}.
If e = {xe, ye} ∈ Ed , we write e ∈ B(x, r) if {xe, ye} ⊂ B(x, r). We will follow the
custom of writing f ∼ g to mean that the ratio f/g converges to 1, and f � g to
mean that the ratio f/g remains bounded away from 0 and ∞. For any a, b ∈ R,
a ∧ b := min(a, b), and a ∨ b := max(a, b). Throughout the paper, c,C,C1,C

′, et
cetera, denote generic constants whose values may change from line to line.
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REMARK 2. One can also consider the more general case when the tail of μe

satisfies

P(μe ≥ u) ∼ c
(logu)ρ

u
as u → ∞,

where ρ ≥ −1 (so that Eμe = ∞). Define for t ≥ 0

X
(n)
t =

{
n−1Xn2(logn)1+ρt , when ρ > −1,
n−1Xn2(log logn)t , when ρ = −1.

Then using the same strategy as in this article one can show that for P-a.a. ω,
(X(n),P 0

ω) converges to a (multiple of a) Brownian motion.

1. Preliminaries.

1.1. Heat kernel: Proof of Theorem 3. We collect some known estimates for
pω

t (x, y) and gω(x, y) which will be used in our arguments.

LEMMA 4. Let η ∈ (0,1). There exist random variables Ux (x ∈ Z
d) and con-

stants ci such that

P(Ux ≥ n) ≤ c1 exp(−c2n
η), for all n ≥ 1.

(a) [1], Theorem 1.2(a). There exists c3 > 0 such that for all x, y and t ,

pω
t (x, y) ≤ c3t

−d/2.

(b) [1], Theorem 1.2(b). If |x − y| ∨ √
t ≥ Ux , then

pω
t (x, y)

(1.1)

≤
{

c4t
−d/2 exp(−c5|x − y|2/t), when t ≥ |x − y|,

c4 exp
(−c5|x − y|(1 ∨ log(|x − y|/t)

))
, when t ≤ |x − y|.

(c) [1], Theorem 1.2(c). If t ≥ U2
x ∨ |x − y|1+η, then

pω
t (x, y) ≥ c6t

−d/2 exp(−c7|x − y|2/t).

(d) Let τ(x,R) = inf{t ≥ 0 : |Yt − x| > R}. If R ≥ Ux , then

P x
ω

(
τ(x,R) ≤ t

) ≤ c8 exp(−c9R
2/t).

(e) [3], Lemma 3.4. When d ≥ 3,

c10U
2−d
x ≤ gω(x, x) ≤ c11.(1.2)

(f) [3], Proposition 3.2(b). When d ≥ 3, if |x| ≥ U0, then

gω(0, x) ≤ c12

|x|d−2 .(1.3)
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(g) [3], Lemma 3.3. There exists c13 > 0 such that for each K > 0, if

bn = c13(logn)1/η,(1.4)

then with P-probability no less than 1 − c14K
dn−2 the following holds:

max|x|≤Kn
Ux ≤ bn.(1.5)

In particular, (1.5) holds for all n large enough P-a.s.
(h) [1], Theorem 5.14. For any δ > 0, P-a.s.,

lim
n→∞ sup

x∈Zd

sup
t≥δ

|ndpω
n2t

(0, x) − kt (x/n)| = 0.(1.6)

(i) There exists θ > 0 such that for x, y, y′ ∈ Z
d ,

nd |pω
n2t

(x, y) − pω
n2t

(x, y′)| ≤ c15t
−(d+θ)/2 ·

( |y − y′| ∨ Uy

n

)θ

.(1.7)

PROOF. (d) The tail bound on τ(x,R) in (d) follows from Proposition 2.18
and Theorem 4.3 of [1]. (i) This follows from [1], Theorem 3.7 and [2], Proposi-
tion 3.2. �

We begin by improving the local limit theorem in (1.6).

LEMMA 5. For any ε > 0, K > 0 and 0 < δ < T < ∞, there exists εb > 0
such that P-a.s., for all but finitely many n,

sup
δ≤t≤T

sup
{
pω

n2t
(nx1, ny1)

pω
n2t

(nx2, ny2)
: |xi |, |yi | ≤ K, |x1 − x2| ≤ εb, |y1 − y2| ≤ εb

}
(1.8)

< 1 + ε.

PROOF. By Lemma 4(g), we can assume that the event {max|x|≤Kn Ux ≤ bn}
holds. So, by Lemma 4(i) we get that for all t ≥ δ,

nd |pω
n2t

(nx1, ny1) − pω
n2t

(nx1, ny2)| ≤ Cδ−(d+θ)/2 · |y1 − y2|θ ∨
∣∣∣∣bn

n

∣∣∣∣θ .
On the other hand, by Lemma 4(c), there exists ε1 > 0 such that for all n large
such that n2δ ≥ b2

n ∨ n1+η(2K)1+η, all δ ≤ t ≤ T and |x1|, |y1| ≤ K ,

ndpω
n2t

(nx1, ny1) ≥ ε1.

Hence ∣∣∣∣1 − pω
n2t

(nx1, ny2)

pω
n2t

(nx1, ny1)

∣∣∣∣ ≤ Cδ−(d+θ)/2

ε1
· |y1 − y2|θ ∨

∣∣∣∣bn

n

∣∣∣∣θ .
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The conclusion follows by taking εb small enough so that

Cδ−(d+θ)/2

ε1
· εθ

b <
√

1 + ε − 1,

and then interchanging the roles of x and y in the argument above. �

PROOF OF THEOREM 3. Let ε0 > 0, to be chosen later. We first show that for
any fixed |x|, |y| ≤ K , P-a.s.,

1

(1 + ε0)4 ≤ lim inf
n→∞ inf

δ≤t≤T

ndpω
n2t

(nx,ny)

kt (x, y)
(1.9)

≤ lim sup
n→∞

sup
δ≤t≤T

ndpω
n2t

(nx,ny)

kt (x, y)
≤ (1 + ε0)

4.

The proof is similar to that in Lemma 4.2 in [3]. First fix an εb so that the LHS in
(1.8) in Lemma 5 is bounded by 1 + ε0. For any path γ ∈ D([0,∞);R

d), define
the hitting time σ(γ ) = inf{t :γt ∈ B(x, εb)}. Then by the QFCLT for the VSRW
Y (n) we get that P-a.s.,

lim
n

Eω
0 1

{
Y

(n)

σ(Y (n))+t
∈ B(y, εb)

}
= E0

(
1{σ(W ∗) < ∞}

∫
z∈B(y,εb)

kt

(
W ∗

σ(W ∗), z
)
dz

)
,

where W ∗ is the limit of the VSRW Y (n). So, writing σ = σ(Y (n)), for all large n,

P 0
ω

(
Y

(n)
σ+t ∈ B(y, εb)|Y (n)

σ , σ < ∞) = ∑
z∈B(ny,nεb)

pω
n2t

(
nY (n)

σ , z
)

≥ (1 + ε0)
−1|B(ny,nεb)| · pω

n2t

(
nY (n)

σ , ny
)

≥ (1 + ε0)
−2|B(ny,nεb)| · pω

n2t
(nx,ny).

Note that |B(ny,nεb)| ∼ nd · Vol(BR(y, εb)); using this and the analogous result
for kt (x, y), we get that

lim sup
n

ndpω
n2t

(nx,ny) · P 0
ω

(
σ

(
Y (n)) < ∞) ≤ (1 + ε0)

4P0
(
σ(W ∗) < ∞)

kt (x, y).

But by the QFCLT for the VSRW Y (n) again, limn P 0
ω(σ (Y (n)) < ∞) =

P0(σ (W ∗) < ∞), hence we get the desired upper bound. The lower bound in
(1.9) can be proved similarly.

We now let x, y vary over BR(0,K). Find a finite set {z1, . . . , z�} such that
BR(0,K) is covered by the balls BR(zi, εb). By the previous argument, P-a.s.,
for all i, j = 1, . . . , �, ndpω

n2t
(nzi, nzj )/kt (zi, zj ) is bounded above by (1 + ε0)

4
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for all large n. Given x, y ∈ BR(0,K), choose zi, zj so that x ∈ BR(zi, εb), y ∈
BR(zj , εb). Then using (1.8),

ndpω
n2t

(nx,ny)

kt (x, y)
= ndpω

n2t
(nzi, nzj )

kt (zi, zj )
· ndpω

n2t
(nx,ny)

ndpω
n2t

(nzi, nzj )
· kt (zi, zj )

kt (x, y)
< (1 + ε0)

6

for all large n. Taking (1 + ε0)
6 < 1 + ε gives the upper bound in (0.18), and the

lower bound can be proved similarly. �

1.2. Convergences after truncation. For any given a > 0, we introduce the
following truncation of μx :

μ̃e = μ̃(n)
e = μe · 1{μe≤an2}, μ̃x = μ̃(n)

x = ∑
y∼x

μ̃xy.(1.10)

Then we have

Eμ̃x ∼ log(an2), Eμ̃2
x ≤ Can2,(1.11)

where C is a constant independent of a and n. Note that μ̃x and μ̃y are independent
if |x − y| > 1.

LEMMA 6. Let K > 0 and d ≥ 3.

(a) If f :BR(0,K) → R is continuous, then P-a.s.,

1

nd logn

∑
|x|≤Kn

μ̃xf (x/n) → 2
∫
BR(0,K)

f (x) dx.(1.12)

(b) If g : (BR(0,K))2 → R is continuous, then P-a.s.,

1

n2d(logn)2

∑
|x|,|y|≤Kn

μ̃xμ̃yg(x/n, y/n) → 4
∫
(BR(0,K))2

g(x, y) dx dy.(1.13)

PROOF. In both cases we use a straightforward mean–variance calculation.
(a) Write In for the LHS of (1.12). Then as Eμ̃x ∼ log(an2) ∼ 2 logn,

EIn = Eμ̃0

logn

∑
|x|≤Kn

f (x/n)n−d → 2
∫
|x|≤K

f (x)dx as n → ∞.(1.14)

If |x − y| ≤ 1, then |Cov(μ̃x, μ̃y)| ≤ Var(μ̃0) by Cauchy–Schwarz. So

VarP(In) ≤ c‖f ‖2∞
n2d(logn)2

∑
|x|≤Kn

Var(μ̃0)

≤ C

nd(logn)2 an2 ≤ C′

nd−2(logn)2 .
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So, for any ε > 0 we deduce

P(|In − EIn| > ε) ≤ VarP(In)

ε2 ≤ c(ε)

nd−2(logn)2 ,

and so by Borel–Cantelli, we have that |In − EIn| < ε for all large n.
(b) Let Jn be the left-hand side of (1.13). Write B = B(0,Kn) and

J ′
n = 1

n2d(logn)2

∑
x,y∈B,|x−y|≤3

μ̃xμ̃yg(x/n, y/n),

J ′′
n = 1

n2d(logn)2

∑
x,y∈B,|x−y|>3

μ̃xμ̃yg(x/n, y/n).

Then since μ̃xμ̃y ≤ μ̃2
x + μ̃2

y ,

E|J ′
n| ≤

c

n2d(logn)2

∑
x∈B

Eμ̃2
x‖g‖∞ ≤ c‖g‖∞

nd−2(logn)2 .

As this sum converges, by Borel–Cantelli J ′
n → 0 P-a.s.

For J ′′
n we have

EJ ′′
n = (Eμ̃x)

2

n2d(logn)2

∑
x,y∈B,|x−y|>3

g(x/n, y/n) → 4
∫
|x|,|y|≤K

g(x, y) dx dy.

Furthermore,

VarP(J ′′
n ) ≤ C

n4d(logn)4

(1.15)

× ∑
x,y∈B,|x−y|>3

( ∑
x′,y′∈B,|x′−y′|>3

|Cov(μ̃xμ̃y, μ̃x′μ̃y′)|
)
.

If all of x, y, x′, y′ are at a distance greater than 1 apart in the sum in (1.15), then
Cov(μ̃xμ̃y, μ̃x′μ̃y′) = 0. So, after relabelling, we only have to handle two cases:
when |x − x′| ≤ 1 and |y − y′| ≤ 1, and when |x − x′| ≤ 1 and |y − y′| > 1. Write
K ′

n and K ′′
n for these two sums. Observe that in both cases, since |x − y| > 3 and

|x′ − y′| > 3, we have |y′ − x| > 1 and |y − x′| > 1.
In the first case,

|Cov(μ̃xμ̃y, μ̃x′μ̃y′)| ≤ Eμ̃xμ̃x′ · Eμ̃yμ̃y′ ≤ cn4,(1.16)

and so

K ′
n ≤ cn2dn4

n4d(logn)4 ≤ c

n2d−4(logn)4 .

In the second case,

|Cov(μ̃xμ̃y, μ̃x′μ̃y′)| ≤ Eμ̃xμ̃x′ · Eμ̃yμ̃y′ ≤ cn2(logn)2,
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and so as the sum in K ′′
n contains O(n3d) terms

K ′′
n ≤ cn3dn2(logn)2

n4d(logn)4 ≤ c

nd−2(logn)2 .

Hence
∑

n VarP(J ′′
n ) < ∞, proving (1.13). �

Finally we state a simple lemma which can be proved by direct computations.

LEMMA 7. For any K > 0,

(a) ∑
1≤|x|≤Kn

|x|2−d = O(n2).

(b)

∑
1≤|x|≤Kn

|x|4−2d =
⎧⎨⎩

O(n), when d = 3,
O(logn), when d = 4,
O(1), when d ≥ 5.

2. Estimates involving Green’s functions. For the usual simple random walk
on Z

d , d ≥ 3, Green’s function g(x, x) is a positive constant for all x. In our case,
the best available lower bound [see Lemma 4(e)] gives that P-a.s., for all large
n, and for all |x| ≤ Kn, gω(x, x) ≥ C/(logn)(d−2)/η. As this is not quite strong
enough for the truncation arguments in the next section, we now derive some more
precise bounds on sums of Green’s functions in a ball.

Recall that Ed denotes the set of edges in Z
d , and in Lemma 4(g) we defined

bn = c13(logn)1/η. For e = {xe, ye} ∈ Ed , let B(e, r) = B(xe, r) ∩ B(ye, r). For
e = {xe, ye} ∈ Ed and z ∈ Z

d , let

γn(e) = Ceff[{xe, ye},B(e, bn)
c],(2.1)

γn(z) = Ceff[z,B(z, bn + 1)c],(2.2)

where Ceff[A,B] denotes the effective conductivity between the sets A and B (see
(3.8) in [3] or [10], Section 9.4). Note that both γn(e) and γn(x) are decreasing
in n, and γ∞(e) := limn γn(e) is the effective conductivity between e and infinity
while γ∞(x) := limn γn(x) is equal to 1/gω(x, x). By [3], Lemma 6.2, for any
k ≥ 1, limn Eγn(e)

k < ∞. Note further that μe and γn(e) are independent, and
also that γn(e) and γn(e

′) are independent if |e − e′| ≥ 2bn + 1. When d ≥ 3, by
Lemma 4(e), gω(x, x) < C < ∞, and hence

γn(e) ≥ γn(x) ≥ γ∞(x) = 1/gω(x, x) ≥ 1/C > 0.(2.3)

Let ap be large enough so that P(μe > ap) < pc(d) where pc(d) is the critical
probability for bond percolation in Z

d . Let C(e) denote the cluster containing e



RCM WITH CAUCHY TAILS 879

in the bond percolation process for which {e is open} = {μe > ap}. Then we have
(see [8], Theorems 6.75 and 5.4)

P(|C(e)| > m) ≤ exp(−c1m),
(2.4)

P
(
diam(C(e)) > m

) ≤ exp(−c2m), for all m ≥ 1

Let

Fn(e) = {
diam(C(e)) ≥ 1

2bn

}
, γ ′

n(e) = γn(e) · 1Fn(e)c .

LEMMA 8. (a) For any K > 0, P-a.s., for all sufficiently large n, γn(e) = γ ′
n(e)

for all e ∈ B(0,2Kn).

(b) There exists θ > 0 and � = �(θ) < ∞ such that for all n,

Eeθγ ′
n(e) < �.

(c) There exists C = C(d) > 0 such that for any K > 0, P-a.s., for all large n,

inf|x|≤Kn
gω(x, x) ≥ C/ logn.

PROOF. (a) First note that

P

( ⋃
e∈B(0,2Kn)

Fn(e)

)
≤ cnd exp(−c2bn/2) = c exp

(
d logn − c′(logn)1/η)

.(2.5)

Since η < 1 the RHS in (2.5) is summable, so that, for all but finitely many n,
γn(e) = γ ′

n(e) for all e ∈ B(0,2Kn).
(b) On Fn(e)

c the cluster C(e) is contained in B(e, bn), and each bond from
C(e) to C(e)c has conductivity less than ap . Since there are at most 2d|C(e)| such
bonds, we deduce that γn(e) ≤ dap|C(e)|. So,

P
(
γ ′
n(e) > λ

) ≤ P
(
dap|C(e)| > λ

) ≤ exp(−cλ).(2.6)

(c) Using (2.6) it is enough to consider

P

(
max

e∈B(0,Kn)
γ ′
n(e) > λ logn

)
≤ c′nde−cλ logn

which is summable when λ is large enough. �

For any 0 < a < b ≤ ∞, define the sets

En(a, b) = {e :an2 ≤ μe < bn2}.(2.7)

Let mn be chosen later with mn ≥ 3bn. We tile Z
d with cubes of the form Q =

[0,mn − 1]d + mnZ
d so that each cube contains md

n vertices. Let zi , 1 ≤ i ≤ d , be
the unit vectors in Z

d , and given a cube Q in the tiling let

E(Q) = {{x, x + zi}, x ∈ Q,1 ≤ i ≤ d
};
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it is clear that E(Q) gives a tiling of Ed , and that |E(Q)| = dmd
n for each Q. Let

K > 0 be fixed, and let Qn be the set of Q such that Q ∩ B(0,Kn + 1) �= ∅. We
have |Qn| � (Kn/mn)

d .

LEMMA 9 (See [3], Lemma 6.3). Let a,K, δ > 0 be fixed.

(a) Suppose that Kn/
√

d ≥ mn ≥ nθ1 for some θ1 > 2/d . Then there exists
λ > 0 such that P-a.s., for all but finitely many n,

max
Q∈Qn

∑
e∈E(Q)∩En(a,∞)

γn(e) ≤ λmd
n(an2)−1

Eγn(e).(2.8)

(b) Let θ2 < 1/d . Then P-a.s., B(0, nθ2) ∩ En(a,∞) = ∅ for all but finitely
many n.

PROOF. (a) By Lemma 8(a) it is enough to bound the sum (2.8) with γ ′
n(e)

instead of γn(e). Let Q ∈ Qn. We divide E(Q) into disjoint sets (E(Q, j), j ∈ J )

such that if e and e′ are distinct edges in E(Q,j), then |e − e′| ≥ 3bn − 2, each
|E(Q,j)| = (mn/3bn)

d := Nn, and |J | ∼ d(3bn)
d .

Let ηe = 1(μe>an2), pn = Eηe ∼ 1/(2d) · 1/(an2), and

ξj = ∑
e∈E(Q,j)

γ ′
n(e)ηe.

Then the r.v. (γ ′
n(e), ηe, e ∈ E(Q,j)) are independent, and so if θ and � are as in

Lemma 8,

Eeθξj ≤ (
1 + pn(� − 1)

)Nn ≤ eNnpn(�−1).

Hence for any λ > 0, writing Eξj = NnpnEγ ′
n(e),

P(ξj > λEξj ) ≤ exp
(−λθNnpnEγ ′

n(e) + Nnpn(� − 1)
)

= exp
(−Nnpn

(
λθEγ ′

n(e) − � + 1
))

.

By (2.3),

Eγ ′
n(e) ≥ 1/C · P(Fn(e)

c) → 1/C,

hence there exists λ > 0 such that for all n large, λθEγ ′
n(e) − � + 1 ≥ 1, and so

P(ξj > λEξj ) ≤ e−Nnpn.

Thus

P

(∑
j∈J

ξj > λmd
npnEγ ′

n(e)

)
≤ d(3bn)

de−Nnpn,

and so since |Qn| ≤ cnd and Nnpn ≥ nε for some ε > 0, (2.8) follows by Borel–
Cantelli.

(b) We have

P
(
B(0, nθ2) ∩ En(a,∞) �= ∅

) ≤ cndθ2(an2)−1 ≤ cndθ2−2;
so again the result follows using Borel–Cantelli. �
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3. Proof of Theorem 2.

LEMMA 10. Let ω ∈ �. If for each t ≥ 0,

S
(n)
t → 2t in P 0

ω-probability,(3.1)

then (0.12) holds.

PROOF. Note that the LHS and RHS are both increasing processes, and the
RHS is continuous and deterministic. The conclusion then follows from Theo-
rem VI.3.37 in [9]. �

LEMMA 11. For each ε > 0 and T > 0, there exist K > 0 and a > 0 such that
for P-a.a. ω, for all t ≤ T , the following two inequalities hold:

lim sup
n

P 0
ω

(
1

n2 logn

∑
|x|≥Kn

∫ n2t

0
μx · 1{Ys=x} ds > 0

)
≤ ε;(3.2)

lim sup
n

P 0
ω

(
1

n2 logn

∑
|x|≤Kn

∫ n2t

0
μx · 1{μx≥an2}1{Ys=x} ds > 0

)
≤ ε.(3.3)

PROOF. Write FK for the event in (3.2). Then by Lemma 4(d),

P 0
ω(FK) ≤ P 0

ω

(
τ(0,Kn) < n2t

) ≤ c8 exp(−c9K
2/t),

provided that Kn > U0. So, taking K sufficiently large, (3.2) holds for all suffi-
ciently large n.

Choose θ1 = (2 + ε1)/d , θ2 = (1 − ε2)/(d − 2) where ε1 > 0, ε2 > 2/d (so that
θ2 < 1/d) and ε1 + ε2 < 1. Let mn = nθ1 , and Qn be as in Lemma 9. Let n be large
enough so that (2.8) holds, and also that

B(0, nθ2) ∩ En(a,∞) = ∅.(3.4)

Then

P 0
ω

(
Y hits En(a,∞) ∩ B(0,Kn)

) ≤ ∑
Q∈Qn

∑
x∈En(a,∞)∩Q

gω(0, x)

gω(x, x)
.(3.5)

For x ∈ En(a,∞), if ex is an edge containing x, then by (2.3) 1/gω(x, x) ≤ γn(ex).
By (3.4) and (1.3) we can bound gω(0, x) by c|x|2−d .

Let Q′
n be the set of Q ∈ Qn such that |x| ≥ mn/2 for all x ∈ Q. Let first

Q ∈ Qn\Q′
n. Then by Lemma 9 and (3.4),∑

x∈En(a,∞)∩Q

gω(0, x)

gω(x, x)
≤ max

x∈En(a,∞)∩Q
c|x|2−d

∑
x∈En(a,∞)∩Q

γn(ex)

≤ Cnθ2(2−d) · λmd
n(an2)−1 ≤ C′nε1+ε2−1.
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So, since there are only 2d cubes in Qn − Q′
n and ε1 + ε2 < 1 by the choices of ε1

and ε2,

lim
n

∑
Q∈Qn−Q′

n

∑
x∈En(a,∞)∩Q

gω(0, x)

gω(x, x)
= 0.(3.6)

Now let Q ∈ Q′
n, and let xQ be the point in Q closest to 0. Then if Q ∈ Q′

n,∑
x∈En(a,∞)∩Q

gω(0, x)

gω(x, x)
≤ c

∑
x∈En(a,∞)∩Q

|x|2−dγn(ex)

≤ c|xQ|2−d · λmd
n(an2)−1(3.7)

≤ c′λa−1n−2
∑
x∈Q

|x|2−d .

So, summing over Q ∈ Q′
n,

P 0
ω

(
Y hits En(a,∞) ∩

( ⋃
Q∈Q′

n

Q

))
≤ cλa−1n−2

∑
x∈B(0,(K+1)n)

(1 ∨ |x|)2−d

≤ c′λ(K + 1)2a−1,

and so taking a large enough and noting (3.6), (3.3) follows. �

By Lemma 11 to prove (0.12) it suffices to consider the convergence of

S̃
(n)
t = 1

n2 logn

∑
|x|≤Kn

μ̃x ·
∫ n2t

0
1{Ys=x} ds

(3.8)

= 1

logn

∑
|x|≤Kn

μ̃x ·
∫ t

0
1{Y

n2s
=x} ds,

where μ̃x is as in (1.10). Taking expectations with respect to P 0
ω we have

E0
ωS̃

(n)
t = 1

n2 logn

∑
|x|≤Kn

μ̃x ·
∫ n2t

0
pω

s (0, x) ds

(3.9)

= 1

logn

∑
|x|≤Kn

μ̃x ·
∫ t

0
pω

n2r
(0, x) dr.

LEMMA 12. For any ε > 0, there exists δ > 0 such that, P-a.s. for all suffi-
ciently large n,

E0
ωS̃

(n)
δ ≤ ε.(3.10)
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PROOF. By Lemma 4(g), we can assume n is large enough so that
{max|x|≤Kn Ux ≤ bn}. Hence, by Lemma 4(b), if |x| ∨ √

t ≥ bn, then

pω
t (0, x) ≤

{
c4t

−d/2 exp(−c5|x|2/t), when t ≥ |x|,
c4 exp(−c5|x|), when t ≤ |x|.

Hence, by decomposing according to whether |x| < bn or |x| ≥ bn, we obtain

E0
ωS̃

(n)
δ = 1

n2 logn

∑
|x|≤Kn

μ̃x ·
∫ n2δ

0
pω

s (0, x) ds

≤ 1

n2 logn

∑
|x|≤bn

μ̃x ·
∫ n2δ

0
c(1 ∨ s)−d/2 ds(3.11)

+ 1

n2 logn

∑
bn≤|x|≤Kn

μ̃x

∫ |x|
0

c4e
−c5|x| ds(3.12)

+ 1

n2 logn

∑
bn≤|x|≤Kn

μ̃x ·
∫ n2δ

|x|
c4s

−d/2e−c5|x|2/s ds.(3.13)

Write ξ
(i)
n , i = 1,2,3, for the terms in (3.11)–(3.13). Since the integral in (3.11) is

bounded by
∫ ∞

0 c(1 ∨ s)−d/2 ds < ∞, we have

Eξ (1)
n ≤ c

bd
n

n2 logn
Eμ̃x ≤ cn−2(logn)d/η.

Similarly for (3.12) we have

Eξ (2) ≤ cn−2
∑

|x|≤Kn

c4|x|e−c5|x| ≤ c′n−2.

As these sums converge it follows from Borel–Cantelli that ξ
(i)
n ≤ ε/3 for all

large n, for i = 1,2.
It remains to control (3.13). First note that when s ≥ 1,∑

x∈Zd

s−d/2e−κ|x|2/s ≤ C(κ).(3.14)

So, interchanging the order of the sum and integral in (3.13),

Eξ (3)
n ≤ C

n2 logn
Eμ̃0 · n2δ ≤ C′δ.

Setting t = s/|x|2 we have∫ n2δ

|x|
c4s

−d/2e−c5|x|2/s ds ≤ C|x|2−d
∫ ∞

0
t−d/2e−c5/t dt ≤ C|x|2−d .(3.15)
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Hence, applying Lemma 7 we get

VarP
(
ξ (3)
n

) ≤ C

n4(logn)2 · ∑
bn≤|x|≤Kn

an2|x|4−2d ≤ C

n(logn)2 .

By Chebyshev’s inequality and Borel–Cantelli we then get that for δ small enough,
P-a.s. for all sufficiently large n, ξ

(3)
n ≤ ε/3. �

PROPOSITION 13. Let

A1(K, t, δ) =
∫
|y|≤K

∫ t

δ
ks(x) dx ds.(3.16)

When d ≥ 3, for any K > 0, 0 < δ < T < ∞, and t ∈ (δ, T ], P-a.s.,

lim
n→∞E0

ω

(
S̃

(n)
t − S̃

(n)
δ

) = 2A1(K, t, δ).(3.17)

PROOF. By Lemma 6(a), it suffices to show that P-a.s.,

1

logn

∑
|x|≤Kn

μ̃x ·
∫ t

δ

(
pω

n2s
(0, x) − n−dks(x/n)

)
ds → 0.

The LHS is bounded in absolute value by

1

nd logn

∑
|x|≤Kn

μ̃x · T sup
x∈Zd

sup
s≥δ

|ndpω
n2s

(0, x) − ks(x/n)|.

This converges to 0 P-a.s. by Lemmas 6(a) and 4(h). �

PROPOSITION 14. When d ≥ 3, for any ε > 0, K > 0, 0 < δ < T < ∞, and
t ∈ (δ, T ], P-a.s.,

lim sup
n

E0
ω

(
S̃

(n)
t − S̃

(n)
δ

)2

(3.18)

≤ ε + 8(1 + ε)

∫
|x|,|y|≤K

∫ t

δ
ks(x)

∫ t−s

0
kr(x, y) dr ds dx dy.

PROOF. Using the Markov property and the symmetry of Y ,

E0
ω

(
S

(n)
t − S

(n)
δ

)2

= 2

(logn)2

( ∑
|x|,|y|≤Kn

μ̃xμ̃y ·
∫ t

δ
pω

n2s
(0, x)

∫ t−s

0
pω

n2r
(x, y) dr ds

)
.

We begin by proving that, given ε > 0, there exists δ1 > 0 such that P-a.s., for
all large n,

2

(logn)2

∑
|x|,|y|≤Kn

μ̃xμ̃y ·
∫ t

δ
pω

n2s
(0, x)

∫ δ1

0
pω

n2r
(x, y) dr ds ≤ ε.(3.19)
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By Lemma 4(a) we have pω
n2s

(0, x) ≤ cn−d for all s ≥ δ and so the LHS of
(3.19) is bounded by

C

nd(logn)2

∑
|x|,|y|≤Kn

μ̃xμ̃y

∫ δ1

0
pω

n2r
(x, y) dr(3.20)

= C

nd+2(logn)2

∑
|x|,|y|≤Kn,|x−y|>1

μ̃xμ̃y

∫ n2δ1

0
pω

r (x, y) dr(3.21)

+ C

nd+2(logn)2

∑
|x|,|y|≤Kn,|x−y|≤1

μ̃xμ̃y

∫ n2δ1

0
pω

r (x, y) dr.(3.22)

Write An and Bn for the terms in (3.21) and (3.22).
The first term can be handled in the same way as in Lemma 12. Let B =

B(0,Kn), and write An = A
(1)
n + A

(2)
n + A

(3)
n where

A(1)
n = C

nd+2(logn)2

∑
x,y∈B,1<|x−y|≤bn

μ̃xμ̃y

∫ n2δ1

0
pω

r (x, y) dr,(3.23)

A(2)
n = C

nd+2(logn)2

∑
x,y∈B,|x−y|≥bn

μ̃xμ̃y

∫ |x−y|
0

pω
r (x, y) dr,(3.24)

A(3)
n = C

nd+2(logn)2

∑
x,y∈B,|x−y|≥bn

μ̃xμ̃y

∫ n2δ1

|x−y|
pω

r (x, y) dr.(3.25)

For (3.23) we have

EA(1)
n ≤ C

nd+2(logn)2

∑
x,y∈B,1<|x−y|<bn

E(μ̃xμ̃y)

∫ ∞
0

c4(1 ∨ s)−d/2 ds

≤ C

nd+2 Kdndbd
n

≤ c
(logn)d/η

n2 ,

and since this sum converges, we have A
(1)
n ≤ ε/4 for all large n, P-a.s. The term

EA
(2)
n is bounded in the same way as was the term ξ

(2)
n in Lemma 12.

For (3.25),

A(3)
n ≤ C

nd+2(logn)2

(3.26)

× ∑
x,y∈B,|x−y|>bn

μ̃xμ̃y

∫ n2δ1

|x−y|
c4s

−d/2 exp(−c5|x − y|2/s) ds.
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Using (3.14) we have

EA(3)
n ≤ C

nd+2(logn)2 · nd(Eμ̃0)
2 · n2δ1 = O(δ1).

We now bound VarP(A
(3)
n ). By (3.15), the integral in (3.26) is bounded by c|x −

y|2−d , so

VarP
(
A(3)

n

) ≤ C

n2d+4(logn)4

× ∑
x1,y1∈B,|x1−y1|>bn

∑
x2,y2∈B,|x2−y2|>bn

|x1 − y1|2−d |x2 − y2|2−d

× |Cov(μ̃x1μ̃y1, μ̃x2μ̃y2)|.
We now bound this sum in the same way as was done for the variance in
Lemma 6(b). Let

C1 = {(x1, x2, y1, y2) ∈ B4 : |xi − yi | > bn, i = 1,2, |x1 − x2| ≤ 1, |y1 − y2| ≤ 1},
C2 = {(x1, x2, y1, y2) ∈ B4 : |xi − yi | > bn, i = 1,2, |x1 − x2| ≤ 1, |y1 − y2| > 1}.
Note that if |x1 − x2| ≤ 1, then since |xi − yi | > bn, none of the yi can be within
distance 1 of xj . If (x1, . . . , y2) ∈ C1, then |Cov(μ̃x1μ̃y1, μ̃x2μ̃y2)| ≤ cn4, while if
(x1, . . . , y2) ∈ C2, then |Cov(μ̃x1μ̃y1, μ̃x2μ̃y2)| ≤ c(logn)2n2. So,

C

n2d+4(logn)4

∑
(x1,...,y2)∈C1

|x1 − y1|2−d |x2 − y2|2−d · |Cov(μ̃x1μ̃y1, μ̃x2μ̃y2)|

≤ C

n2d+4(logn)4

∑
x1,y1∈B

(1 ∨ |x1 − y1|)4−2dcn4

≤ C

n2d(logn)4 nd max
x1∈B

∑
y1∈B(x,2Kn)

(1 ∨ |x1 − y1|)4−2d

≤ Cn

nd(logn)4 ,

where in the last inequality we used Lemma 7(b).
Also,

C

n2d+4(logn)4

∑
(x1,...,y2)∈C2

|x1 − y1|2−d |x2 − y2|2−d |Cov(μ̃x1μ̃y1, μ̃x2μ̃y2)|

≤ C

n2d+2(logn)2

∑
(x1,...,y2)∈C2

|x1 − y1|2−d |x2 − y2|2−d

≤ C

n2d+2(logn)2

∑
x1∈B

∑
y1,y2∈B(x,2Kn)

(1 ∨ |x1 − y1|)2−d(1 ∨ |x1 − y2|)2−d
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≤ C

nd+2(logn)2

( ∑
y1∈B(0,2Kn)

(1 ∨ |y1|)2−d

)2

≤ Cn4

nd+2(logn)2 = C

nd−2(logn)2 .

Thus
∑

n VarP(A
(3)
n ) < ∞, and so if δ1 is small enough then by Chebyshev’s in-

equality and Borel–Cantelli, P-a.s. for all sufficiently large n, A
(3)
n ≤ ε/4.

To finish the proof of (3.19), it remains to bound the term (3.22). By

Lemma 4(a),
∫ n2δ1

0 pω
r (x, y) dr ≤ C. Therefore by Cauchy–Schwarz,

Bn = C

nd+2(logn)2

∑
|x|≤Kn,|y−x|≤1

μ̃xμ̃y

∫ n2δ1

0
pω

n2r
(x, y) dr

≤ C

nd+2(logn)2

∑
|x|≤Kn

μ̃2
x.

Hence

EBn ≤ C

nd+2(logn)2 · nd · n2 → 0,

and since VarP(μ̃2
x) ≤ cn6,

VarP(Bn) ≤ C

n2d+4(logn)4 · nd · n6 ≤ C

nd−2(logn)4 .

Since this bound is summable, (3.19) follows.
It remains to show that for any δ1 > 0, P-a.s.,

lim sup
n

2

(logn)2

∑
|x|,|y|≤Kn

μ̃xμ̃y ·
∫ t

δ
pω

n2s
(0, x)

∫ t−s

δ1

pω
n2r

(x, y) dr ds

≤ 8(1 + ε)

∫
|x|,|y|≤K

(∫ t

δ
ks(0, x)

∫ t−s

0
kr(x, y) dr ds

)
dx dy.

This follows easily from Theorem 3 and Lemma 6. �

PROOF OF THEOREM 2. By Lemma 10, it suffices to show that for any t > 0
and 0 < ε < t/2, for P-a.a. ω,

lim
n

P 0
ω

(∣∣S(n)
t − 2t

∣∣ ≥ ε
) ≤ ε.(3.27)

Write

S
(n)
t − 2t = (

S
(n)
t − S̃

(n)
t

) + S̃
(n)
δ + (

S̃
(n)
t − S̃

(n)
δ − E0

ω

(
S̃

(n)
t − S̃

(n)
δ

))
(3.28)

+ (
E0

ω

(
S̃

(n)
t − S̃

(n)
δ

) − 2A1(K, t, δ)
) + (

2A1(K, t, δ) − 2t
)
.
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By Proposition 13, P-a.s., (E0
ω(S̃

(n)
t − S̃

(n)
δ ) − 2A1(K, t, δ)) → 0. Let 0 < ε0 <

ε/16, to be chosen later. Choose K large enough so that the LHS in (3.2) is
bounded by ε0, and also

sup
0<δ≤t

|A1(K, t, δ) − (t − δ)| ≤ ε0 < ε/16.(3.29)

Now choose a > 0 large enough so that the LHS in (3.3) is also bounded by ε0.
Hence, for all large n,

P 0
ω

(∣∣S(n)
t − S̃

(n)
t

∣∣ > 0
) ≤ 2ε0 < ε/4.

Next choose 0 < δ < t/2 so that by Lemma 12 for all sufficiently large n, E0
ωS̃

(n)
δ <

ε2/16, and hence P 0
ω(S̃

(n)
δ > ε/4) ≤ ε/4. Furthermore, by Propositions 13 and 14

and (3.29),

lim sup
n

VarP
(
S̃

(n)
t − S̃

(n)
δ

) ≤ ε0 + 8(1 + ε0) · (t − δ)2/2 − (
2(t − δ − ε0)

)2

≤ ε0(1 + 4t2 + 4t);
hence by Chebyshev’s inequality,

lim sup
n

P 0
ω

(∣∣S̃(n)
t − S̃

(n)
δ − E0

ω

(
S̃

(n)
t − S̃

(n)
δ

)∣∣ ≥ ε/4
) ≤ 16(1 + 4t2 + 4t) · ε0/ε

2.

Taking ε0 so small that ε0 < ε/16 and 16(1 + 4t2 + 4t) · ε0/ε
2 ≤ ε/4, we obtain

(3.27). �
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