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INTERACTING MARKOV CHAIN MONTE CARLO METHODS FOR
SOLVING NONLINEAR MEASURE-VALUED EQUATIONS1

BY PIERRE DEL MORAL AND ARNAUD DOUCET

INRIA and Université Bordeaux and University of British Columbia and
The Institute of Statistical Mathematics

We present a new class of interacting Markov chain Monte Carlo algo-
rithms for solving numerically discrete-time measure-valued equations. The
associated stochastic processes belong to the class of self-interacting Markov
chains. In contrast to traditional Markov chains, their time evolutions depend
on the occupation measure of their past values. This general methodology
allows us to provide a natural way to sample from a sequence of target prob-
ability measures of increasing complexity. We develop an original theoretical
analysis to analyze the behavior of these iterative algorithms which relies on
measure-valued processes and semigroup techniques. We establish a variety
of convergence results including exponential estimates and a uniform con-
vergence theorem with respect to the number of target distributions. We also
illustrate these algorithms in the context of Feynman–Kac distribution flows.

1. Introduction.

1.1. Nonlinear measure-valued processes. Let (S(l), S (l))l≥0 be a sequence
of measurable spaces. For every l ≥ 0 we denote by P(S(l)) the set of prob-
ability measures on S(l). Suppose we have a sequence of probability measures
π(l) ∈ P(S(l)) where π(0) is known and we have for l ≥ 1 the following nonlinear
measure-valued equations

π(l) = �l

(
π(l−1))(1.1)

for some mappings �l : P(S(l−1)) → P(S(l)). Except in some particular situations,
these measure-valued equations do not admit an analytic solution.

Being able to solve these equations numerically has numerous applications in
nonlinear filtering, global optimization, Bayesian statistics and physics as it would
allow us to approximate any sequence of fixed “target” probability distributions
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(π(l))l≥0. For example, in a nonlinear filtering framework π(l) corresponds to the
posterior distribution of the state of an unobserved dynamic model at time l given
the observations collected from time 0 to time l. In an optimization framework,
π(l) could correspond to a sequence of annealed versions of a distribution π that
we are interested in maximizing. In both cases, �l is a Feynman–Kac transforma-
tion [5].

In recent years, there has been considerable interest in the development of inter-
acting particle interpretations of measure-valued equations of the form (1.1) which
we briefly review here.

1.2. Interacting particle methods. The central idea of interacting particle
methods is to construct a Markov chain X(l) = (X

(l)
p )1≤p≤N taking values in

the product spaces (S(l))N so that the empirical measure π
(l)
N := 1

N

∑N
p=1 δ

X
(l)
p

approximates π(l) as N ↑ ∞. In the simpler version, we construct inductively
X(l) = (X

(l)
p )1≤p≤N by sampling N independent random variables with common

law �l(π
(l−1)
N ). The rationale behind this is that the resulting particle measure π

(l)
N

should be a good approximation of π(l) as long as π
(l−1)
N is a good approximation

of π(l−1). More formally, X(l) is an (S(l))N -valued Markov chain with elementary
transitions given by the following formula:

P
((

X
(l)
1 , . . . ,X

(l)
N

) ∈ dx|X(l−1)) =
N∏

p=1

�l

(
1

N

∑
1≤q≤N

δ
X

(l−1)
q

)
(dxp),(1.2)

where dx = d(x1, . . . , xN) = dx1 × · · · × dxN stands for an infinitesimal neigh-
borhood of a point in the product space (S(l))N .

For Feynman–Kac transformations, these interacting particle models have been
extensively studied and they are sometimes referred to as sequential Monte Carlo
methods, particle filters and population Monte Carlo methods; see [5, 8] for a
review of the literature. In this context, the convergence analysis of these particle
algorithms is now well understood. A variety of theoretical results are available,
including sharp propagations of chaos properties, fluctuations and large deviations
theorems, as well as uniform convergence results with respect to the level index l.

These interacting particle methods suffer from two serious limitations. First,
when the mapping �l is complex, it may be impossible to generate independent
draws from it. Second, it is typically impossible to determine beforehand the num-
ber of particles necessary to achieve a fixed precision for a given application and
users usually have to perform multiple runs for an increasing number of particles
until stabilization of the Monte Carlo estimates is observed. Markov chain Monte
Carlo (MCMC) methods appear as a natural way to solve these two problems [12].
However, standard MCMC methods do not apply in this context as we have a
sequence of target distributions defined on different spaces and the normalizing
constants of these distributions are typically unknown.
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1.3. Self-interacting Markov chains. We propose here a new class of interact-
ing MCMC methods (i-MCMC) to solve these nonlinear measure-valued equations
numerically. These i-MCMC methods can be described as adaptive and dynamic
simulation algorithms which take advantage of the information carried by the past
history to increase the quality of the next sequence of samples. Moreover, in con-
trast to interacting particle methods, these stochastic algorithms can increase the
precision and performance of the numerical approximations iteratively.

The origins of i-MCMC methods can be traced back to a pair of articles [6, 7]
presented by the first author in collaboration with Laurent Miclo. These studies
are concerned with biology-inspired self-interacting Markov chain (SIMC) mod-
els with applications to genetic type algorithms involving a competition between
a reinforcement mechanism and a potential function [6, 7]. These ideas have been
extended to the MCMC methodology in the joint articles of the authors with
Christophe Andrieu and Ajay Jasra [1], as well as in the more recent article of
the authors with Anthony Brockwell [4]. Related ideas have also appeared in com-
putational chemistry [10] and statistics [9].

In the present article, we design a new general class of i-MCMC methods.
Roughly speaking, these algorithms proceed as follows. At level l = 0 we run
an MCMC algorithm to obtain a chain X(0) = (X

(0)
n )n≥0 targeting π(0). Note that

here the “time” index n corresponds to the number of iterations of the i-MCMC
algorithm. We use the occupation measure of the chain X(0) at time n judiciously
to design a second MCMC algorithm to generate X(1) = (X

(1)
n )n≥0 at level 1 tar-

geting π(1) which is typically more complex than π(0). More precisely, the ele-
mentary transition X

(1)
n � X

(1)
n+1 of the chain X(1) at time n depends on the occu-

pation measure of (X
(0)
0 ,X

(0)
1 , . . . ,X

(0)
n ). Similarly we use the empirical measure

of X(l−1) at level l − 1 to “feed” an MCMC algorithm generating X(l) targeting
π(l) at level l. These i-MCMC samplers are SIMC in reference to the fact that the
complete Markov chain X

m

n := (X
(l)
n )0≤l≤m associated with a fixed series of m lev-

els evolves with elementary transitions X
m

n � X
m

n+1 that depend on the occupation
measure of the whole system X

m

p from time 0 up to time n.
From the pure mathematical point of view, the convergence analysis of SIMC is

essentially based on the study of the stability properties of sophisticated Markov
chains with elementary transitions depending in a nonlinear way on the occupa-
tion measure of the chains. Hence the theoretical analysis of SIMC is much more
involved than the one of traditional Markov chains. It also differs significantly
from interacting particle methods developed in [5]. Besides the introduction of
a new methodology, our main contribution is a refined theoretical analysis based
on measure-valued processes and semigroup methods to analyze their asymptotic
behavior as the time index n tends to infinity.

The rest of the paper is organized as follows:
The main notation used in this work are introduced in a brief preliminary Sec-

tion 1.4. The i-MCMC methodology is detailed formally in Section 1.5. The main
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results of the article are presented in Section 1.6. Several examples of i-MCMC
methods are provided in Section 2. This section also provides a discussion on how
to combine interacting particle methods with i-MCMC methods. Section 3 is con-
cerned with the asymptotic behavior of an abstract class of time inhomogeneous
Markov chains. In Section 3.2, we present a preliminary resolvent analysis to esti-
mate the regularity properties of Poisson operator and invariant measure type map-
pings. In Section 3.3, we apply these results to study the law of large numbers and
the concentration properties of time inhomogeneous Markov chains. In Section 4
we discuss the regularity properties of a sequence of time averaged semigroups
on distribution flow state spaces. The asymptotic analysis of i-MCMC methods
is discussed in Section 5. The strong law of large numbers is presented in Sec-
tion 5.2. We also provide an Lr -mean error bound for the occupation measures of
the i-MCMC algorithms at each level l. In Section 5.3, we discuss the long time
behavior of these stochastic models in terms of the exponential stability properties
of a time averaged type semigroup associated with the sequence of target mea-
sures. We prove a uniform convergence theorem with respect to the level index l.
The asymptotic analysis of the occupation measures associated with the complete
self-interacting model on a fixed series of levels is discussed in Section 6. The Lr -
mean error bounds and the concentration analysis are presented, respectively, in
Sections 6.1 and in 6.2. The final section, Section 7, is concerned with contraction
properties of time averaged Feynman–Kac distribution flows.

1.4. Notation and conventions. For the convenience of the reader we have col-
lected some of the main notation used in the article. We also recall some regularity
properties of integral operators used further in the article.

We denote, respectively, by M(E), M0(E), P(E) and B(E), the set of all finite
signed measures on some measurable space (E, E ), the convex subset of measures
with null mass, the set of all probability measures, and the Banach space of all
bounded and measurable functions f on E. We equip B(E) with the uniform norm
‖f ‖ = supx∈E|f (x)|. We also denote by B1(E) ⊂ B(E) the unit ball of functions
f ∈ B(E) with ‖f ‖ ≤ 1, and by Osc1(E), the convex set of E -measurable func-
tions f with oscillations less than one; that is,

osc(f ) = sup {|f (x) − f (y)|;x, y ∈ E} ≤ 1.

We let μ(f ) = ∫
μ(dx)f (x) be the Lebesgue integral of a function f ∈ B(E), with

respect to a measure μ ∈ M(E). We slightly abuse the notation and sometimes
denote by μ(A) = μ(1A) the measure of a measurable subset A ∈ E .

Let M(x,dy) be a kernel from a measurable space (E, E ) into a measurable
space (F, F ) of the bounded integral operator f 
→ M(f ) from B(F ) into B(E)

such that the functions

M(f )(x) =
∫
F

M(x, dy)f (y) ∈ R
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are E -measurable and bounded, for any f ∈ B(F ). Such a kernel also gener-
ates a dual operator μ 
→ μM from M(E) into M(F ) defined by (μM)(f ) :=
μ(M(f )).

We denote by ‖M‖ := supf ∈B1(F )‖M(f )‖ the norm of the operator f 
→ M(f )

and we equip the Banach space M(E) with the corresponding total variation norm
‖μ‖ = supf ∈B1(E)|μ(f )|. Using this slightly abusive notation, we have

‖M‖ := sup
x∈E

sup
f ∈B1(F )

|δxM(f )| = sup
x∈E

‖δxM‖,

where δx stands for the Dirac measure at the point x ∈ E. We recall that the norm
of any kernel M with null mass M(1) = 0 satisfies

‖M‖ = sup
f ∈B1(F )

‖M(f )‖ = 2 sup
f ∈Osc1(F )

‖M(f )‖.

When M has a constant mass, that is, M(1)(x) = M(1)(y) for any (x, y) ∈ E2,
the operator μ 
→ μM maps M0(E) into M0(F ). In this situation, we let β(M)

be the Dobrushin coefficient of a kernel M defined by the following formula:

β(M) := sup {osc(M(f ));f ∈ Osc1(F )}.
By construction, we have M(f )/β(M) ∈ Osc1(E) as soon as β(M) �= 0, so that

‖μM‖ = 2 sup
f ∈Osc1(F )

|μM(f )| ≤ β(M)2 sup
f ∈Osc1(E)

|μ(f )|

�⇒ ‖μM‖ ≤ β(M)‖μ‖.
Using the fact that ‖δx − δy‖ = 2 for x �= y and

β(M) = sup
f ∈Osc1(F )

sup
(x,y)∈E2

|(δxM − δyM)(f )| = sup
(x,y)∈E2

‖δxM − δyM‖
‖δx − δy‖

≤ sup
μ∈M0(E)

‖μM‖
‖μ‖

we prove that

β(M) = sup
μ∈M0(E)

‖μM‖
‖μ‖ = 1

2
sup

(x,y)∈E2
‖δxM − δyM‖

is also the norm of the kernel

μ ∈ M0(E) 
→ μM ∈ M0(F ).

That is, we have

β(M) = sup
μ∈M0(E)

(‖μM‖/‖μ‖).
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More generally, for every kernel K from a measurable space (E′, E ′) into an mea-
surable space (E, E ), with null mass K(1) = 0, we have

‖KM‖ = sup
x∈E′

‖(δxK)M‖ ≤ β(M) sup
x∈E′

‖(δxK)‖ �⇒ ‖KM‖ ≤ β(M)‖K‖.
Unless otherwise stated, we use the letter C to denote a universal constant whose

value may vary from line to line. Finally, we shall use the conventions
∑

∅ = 0 and∏
∅ = 1.

1.5. Interacting Markov chain Monte Carlo methods. We describe here the
i-MCMC methodology to numerically solve (1.1). We consider a Markov transi-
tion M(0) from S(0) into itself and a collection of Markov transitions M

(l)
μ from

S(l) into itself, indexed by the parameter l ≥ 0 and the set of probability measures
μ ∈ P(S(l−1)). We further assume that the invariant measure of each operator M

(l)
μ

is given by �l(μ); that is, we have

∀l ≥ 0,∀μ ∈ P
(
S(l−1)) �l(μ)M(l)

μ = �l(μ).

For l = 0, we use the convention �0(π
(−1)) = π(0) and M

(0)
μ = M(0). For

every l ≤ m, we denote by η(l) ∈ P(S(l)) the image measure of a measure η ∈
P(

∏
0≤l≤m S(l)) on the lth level space S(l). We also fix a sequence of probability

measures νk on S(k), with k ≥ 0.
We let X(0) := (X

(0)
n )n≥0 be a Markov chain on S(0) with initial distribution

ν0 and Markov transitions M(0). For every k ≥ 1, given a realization of the chain
X(k−1) := (X

(k−1)
n )n≥0, the kth level chain X

(k)
n is a Markov chain with initial dis-

tribution νk and with random Markov transitions M
(k)

η
(k−1)
n

depending on the current

occupation measures η
(k−1)
n of the chain at level (k − 1); that is, we have

P
(
X

(k)
n+1 ∈ dx|X(k−1),X(k)

n

) = M
(k)

η
(k−1)
n

(Xk
n, dx)(1.3)

with

η(k−1)
n := 1

n + 1

n∑
p=0

δ
X

(k−1)
p

.

The rationale behind this is that the kth level chain X
(k)
n behaves asymptotically as

a Markov chain with time homogeneous transitions M
(k)

π(k−1) as long as η
(k−1)
n is a

good approximation of π(k−1).
In the special case where M

(k)
μ (xk, ·) = �k(μ), the kth level chain (X

(k)
n )n≥1

is a collection of conditionally independent random variables with distributions
(�k(η

(k−1)
n−1 ))n≥1; that is, we have

P
((

X
(k)
1 , . . . ,X(k)

n

) ∈ dx|X(k−1)) =
n∏

p=1

�k

(
1

p

∑
0≤q<p

δ
X

(k−1)
q

)
(dxp),(1.4)
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where dx = d(x1, . . . , xn) = dx1 × · · · × dxn stands for an infinitesimal neighbor-
hood of a generic path sequence (x1, . . . , xn) ∈ (S(k))n.

We end this section with a SIMC interpretation of the stochastic algorithm dis-
cussed above. We consider the product space

Em := S(0) × · · · × S(m)

and we let (K
(m)
η )η∈P(Em) be the collection of Markov transitions from Em into

itself given by

∀x := (x0, . . . , xm) ∈ Em K(m)
η (x, dy) = ∏

0≤l≤m

M
(l)

η(l−1) (x
l, dyl),(1.5)

where dy := dy0 × · · · × dym stands for for an infinitesimal neighborhood of a
generic point y := (y0, . . . , ym) ∈ Em, and η(l) ∈ P(S(l)) stands for the image
measure of a measure η ∈ P(Em) on the lth level space S(l), with m ≥ l. In other
words, η(l) is the lth marginal of the measure η. In this notation, we can readily
check that

X
m

n := (
X(0)

n , . . . ,X(m)
n

)
is an Em-valued SIMC with elementary transitions defined by

P(X
m

n+1 ∈ dy|F X
m

n ) = K
(m)

η
[m]
n

(X
m

n , dy) with η[m]
n = 1

n + 1

n∑
p=0

δ
X

m
n
,(1.6)

where F X
m

n stands for the filtration generated by X
m

.

1.6. Statement of some results. We further assume that the mappings �l :
P(S(l−1)) → P(S(l)) satisfy the following regularity condition for any l ≥ 1 and
any pair of measures (μ, ν) ∈ P(S(l−1))2

∀l ≥ 0,∀f ∈ B
(
S(l))

(1.7)
|[�l(μ) − �l(ν)](f )| ≤

∫
|[μ − ν](g)|�l(f, dg)

for some kernel �l from B(S(l)) into B(S(l−1)), with∫
B(S(l−1))

�l(f, dg)‖g‖ ≤ 	l‖f ‖ and 	l < ∞.

We also suppose that there exist some integer nl ≥ 0 and some constant cl such
that we have∥∥M(l)

μ −M(l)
ν

∥∥ ≤ cl‖μ−ν‖ and bl(nl) := sup
μ∈P(S(l−1))

β
((

M(l)
μ

)nl
)
< 1.(1.8)
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This pair of abstract regularity conditions are rather standard. The first one (1.7)
is a natural Lipschitz property on the weakly continuous integral mappings

∀f ∈ B
(
S(l)) μ ∈ P

(
S(l−1)) 
→ �l(μ)(f ) ∈ R.

Roughly speaking, this weak Lipschitz property simply expresses the fact that
�l(μ)(f ) only depends on integrals of functions with respect to the reference
measure μ. This condition is clearly satisfied for linear Markov semigroups
�l(μ) = μKl associated with some Markov transition Kl . We shall discuss this
condition in the context of nonlinear Feynman–Kac type semigroups (2.1) in Sec-
tion 2.1.

In the special case where M
(l)
μ (xl, ·) = �l(μ), the second condition (1.8) is triv-

ially met for nl = 1 with bl(nl) = 0. In this particular situation, the first Lipschitz
property of the mapping �l(μ) takes the following form:

‖�l(μ) − �l(ν)‖ ≤ cl‖μ − ν‖.
For more general models, condition (1.8) expresses the fact that the Markov transi-
tions M

(l)
μ are strongly continuous and they satisfy Dobrushin’s mixing condition,

uniformly with respect to μ. We shall discuss this regularity condition in the con-
text of Metropolis–Hastings type algorithms (2.7) in Section 2.2.

Under the conditions (1.8), for every η ∈ P(Em), the invariant measure
ω

K
(m)
η

(η) ∈ P(Em) of K
(m)
η defined in (1.5) is given by the tensor product measure

ω
K

(m)
η

(η) = π(0) ⊗ �1
(
η(0)) ⊗ · · · ⊗ �m

(
η(m−1)).(1.9)

We observe that the tensor product measure

π [m] := π(0) ⊗ · · · ⊗ π(m)(1.10)

is a fixed point of the mapping ω
K

(m)
η

:η ∈ P(Em) → ω
K

(m)
η

(η) ∈ P(Em).

Using this notation, our main results are basically as follows.

THEOREM 1.1. For any r ≥ 1, m ≥ 1, and any function f ∈ B(Em) we have

sup
n≥1

√
nE

(∣∣η[m]
n (f ) − π [m](f )

∣∣r) < ∞.

Under some additional regularity conditions, we have the exponential inequality

∀t > 0 lim sup
n→∞

1

n
log P

(∣∣[η[m]
n − π [m]](f )

∣∣ > t
)
< − t2

2σ 2
m

for some finite constant σm < ∞ as well as the following uniform convergence
estimate:

sup
k≥0

sup
n≥1

nα/2
E
(∣∣η(k)

n (fk) − π(k)(fk)
∣∣r) < ∞

for some parameter α ∈ (0,1] and for any collection of functions (fk)k≥0 ∈∏
k≥0 B1(S

(k)).
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We end this introduction with a series of comments and open research questions.
First, the mean error bounds and the exponential estimates presented above sug-

gest the existence of Gaussian fluctuations of the occupation measures η[m]
n around

their limiting value π [m], with a fluctuation rate
√

n. We have recently studied these
fluctuations in [2, 3].

It might be surprising that the decays to equilibrium presented in Theorem 1.1
differ from the three types of decays exhibited in [6, 7]. To understand the main
differences between these classes of interacting processes, we recall that the de-
cay rate to equilibrium often depends on the contraction coefficient of the invari-
ant measure mapping associated with a given self-interacting model. In our con-
text, these mappings are not necessarily contractive. Nevertheless, we shall see in
Section 6 that the semigroup associated with these mappings becomes essentially
constant after a sufficiently large number of iterations. In this respect, the self-
interacting models discussed in the present article are more regular than the ones
analyzed in [6, 7].

The uniform convergence estimate with respect to the number of levels depends
on the stability properties of a time averaged semigroup associated with the map-
pings �l . The contraction properties of this new class of nonlinear semigroups are
studied in Section 7 in the context of Feynman–Kac models. We show that the sta-
bility properties of the reference Feynman–Kac semigroups can be transferred to
study the associated time averaged models. In more general situations this question
remains open.

2. Motivating applications.

2.1. Feynman–Kac models. The main example of mappings �l considered
here are the Feynman–Kac transformations given below:

∀l ≥ 0,∀(μ,f ) ∈ (
P
(
S(l)) × B

(
S(l+1)))

(2.1)
�l+1(μ)(f ) := μ(GlLl+1(f ))/μ(Gl),

where Gl is a positive potential function on S(l), and Ll+1 stands for a Markov
transition from S(l) into S(l+1). In this situation, the solution of the measure-
valued equation (1.1) is given by the normalized Feynman–Kac distribution flow
described below:

π(l)(f ) = γ (l)(f )/γ (l)(1) with γ (l)(f ) := E

(
f (Yl)

∏
0≤k<l

Gk(Yk)

)
,

where (Yl)l≥0 stands for a Markov chain taking values in the state spaces (S(l))l≥0,
with initial distribution π(0) and Markov transitions (Ll)l≥1. These probabilistic
models arise in a very wide variety of applications including nonlinear filtering and
rare event analysis as well the spectral analysis of Schroedinger type operators and
directed polymer analysis [5]. We also underline that the unnormalized measures
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γ (l) are expressed in terms of integrals on path spaces and we recall that γ (l) can
be expressed in terms of the sequence of measures (π(k))0≤k<l with the following
formulae:

γ (l)(f ) = π(l)(f )
∏

0≤k<l

π(k)(Gk).(2.2)

To check this assertion, we simply observe that

γ (l)(f ) = π(l)(f ) × γ (l)(1)

and we have the key multiplicative formula

γ (l)(1) = γ (l−1)(Gl−1) = π(l−1)(Gl−1) × γ (l−1)(1)
(2.3)

�⇒ γ (l)(1) = ∏
0≤k<l

π(k)(Gk).

Thus the i-MCMC methodology allows us to estimate the normalizing constants
γ (l)(1) by replacing the measures π(k) by their approximations in (2.3). These
models are quite flexible. For instance, the reference Markov chain may represent
the paths from the origin up to the current time l of an auxiliary chain Y ′

l taking
values in some state spaces E′

l with some Markov transitions (L̃l)l≥1 and potentials
(G̃l)l≥1; that is, we have

Yl := (Y ′
0, . . . , Y

′
l ) ∈ S(l) := (E′

0 × · · · × E′
l )(2.4)

and

Ll(yl−1, dyl) = δ(y′
0,...,y

′
l−1)

(d(y ′
0, . . . , y

′
l−1))L̃l(y

′
l−1, dy′

l),

(2.5)
Gl(yl) = G̃l(y

′
l ).

2.2. Interacting Markov chain Monte Carlo methods for Feynman–Kac models.
In the Feynman–Kac context and assuming we are working on path spaces (2.4),
we can propose the following two i-MCMC algorithms to approximate π(l). The
first one simply consists of sampling directly X

(k)
p = (X

′(0)
p ,X

′(1)
p , . . . ,X

′(k)
p ) from

the right-hand side product of the formula (1.4) which takes here the following
form:

�k

(
1

p

∑
0≤q<p

δ
X

(k−1)
q

)(
dx(k)

p

) = ∑
0≤q<p

Gk−1(X
(k−1)
q )∑

0≤m<p Gk−1(X
(k−1)
m )

Lk

(
X(k−1)

q , dx(k)
p

)
,

where dx
(k)
p = dx

′(0)
p × · · · × dx

′(k)
p . We see that X

(k)
p is sampled according to two

separate genetic type mechanisms. First, we randomly select one state X
(k−1)
q at

level (k − 1) with a probability proportional to its potential value Gk−1(X
(k−1)
q ).
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Second, we randomly evolve from this state according to the mutation transi-
tion Lk . This i-MCMC model can be interpreted as a spatial branching and inter-
acting process. In this interpretation, the kth chain tends to duplicate individuals
with large potential values, at the expense of individuals with low potential values.
The selected offspring randomly evolve from the state space S(k−1) to the state
space S(k) at the next level.

For the Feynman–Kac transformations (2.1), we proved in [5] that the condition
(1.8) ensuring convergence of the algorithm is satisfied with cl = β(L̃l)/εl−1(G)

as soon as the potential functions satisfy the following condition:

(G) For any l ≥ 0, the potential functions Gl are bounded above and bounded
away from zero, so that

εl(G) := inf
x,y

Gl(x)

Gl(y)
∈ (0,1).

We can also propose the following alternative i-MCMC algorithm to approxi-
mate π(l) which relies on using a transition kernel M

(l)
μ different from �l(μ). We

introduce the following kernel from S(l−1) into E′
l :

Rl((x
′
0, . . . , x

′
l−1), dx′

l ) = L̃l(x
′
l−1, dx′

l )G̃l−1(x
′
l−1).(2.6)

In this scenario, it is sensible to propose to use for M
(l)
μ in the i-MCMC algo-

rithm the following Markov kernel on the product space S(l) indexed by the set of
measures μ ∈ P(S(l−1))

M(l)
μ (x, dy) = (μ ⊗ Kl)(dy)

(
1 ∧ rl(x, y)

)
(2.7)

+
(

1 −
∫
S(l)

(
1 ∧ rl(x, z)

)
(μ ⊗ Kl)(dz)

)
δx(dy),

where Kl is a Markov transition from S(l−1) into E′
l and for every (u, v) and

(w, z) ∈ (S(l−1) × E′
l )

rl((u, v), (w, z)) := d(Kl(u, ·) ⊗ Rl(w, ·))
d(Rl(u, ·) ⊗ Kl(w, ·))(v, z),(2.8)

where we assume that

Kl(u, ·) ⊗ Rl(w, ·) � Rl(u, ·) ⊗ Kl(w, ·).
It can be checked that the kernel M

(l)
μ is nothing but a Metropolis–Hastings kernel

of proposal distribution μ ⊗ Kl and invariant distribution �l(μ).
We can also easily establish that for any measures (μ, ν) ∈ P(S(l−1))2∥∥M(l)

μ − M(l)
ν

∥∥ ≤ 2‖μ − ν‖



604 P. DEL MORAL AND A. DOUCET

so that the first condition on the left-hand side of (1.8) is satisfied. Under the addi-
tional assumption that for any (u, v) ∈ (S(l−1) × E′

l )

dPl(u, ·)
dKl(u, ·)(v) ≤ Cl

it follows from [11], Theorem 2.1, that

β
(
M(l)

μ

) ≤ (1 − C−1
l )

from which we conclude that the second condition on the right-hand side of (1.8)
is met with nl = 1 and bl(nl) = (1 − C−1

l ).

2.3. Interacting particle and Markov chain Monte Carlo methods. As men-
tioned in the Introduction, in contrast to interacting particle methods presented in
Section 1.2, we emphasize that the precision parameter n of i-MCMC models is
not fixed but increases at every time step. There exist several ways to combine an
interacting particle method with an i-MCMC method.

For instance, suppose we are given a realization of an interacting particle al-

gorithm X(l) = (X
(l)
p )1≤p≤N with a precision parameter N . One natural way to

initialize the i-MCMC model is to start with a collection of initial random states
X

(l)
0 sampled according to the N -particle approximation measures

νl = π
(l)
N := 1

N

N∑
i=1

δ
X

(l)
i

.

Another strategy is to use the N -particle approximation measures π
(l)
N in the evo-

lution of the i-MCMC model. In other words, we interpret the series of samples
X

(l)
i , 1 ≤ i ≤ N , as the first N iterations of the i-MCMC model at level l. More

formally, this strategy simply substitutes the current occupation measure η
(k−1)
n of

the chain at level (k − 1) in (1.3) by the occupation measure η
(N,k−1)
n of the whole

sequence of random variables at level (k − 1) defined by

η(N,k−1)
n = n + 1

N + n + 1
η(k−1)

n + N

N + n + 1
π

(k−1)
N .

The convergence analysis of these two natural combinations of an interacting
particle method and i-MCMC method can be conducted easily using the techniques
developed in this article.

3. Time inhomogeneous Markov chains.

3.1. Description of the models. We consider a collection of Markov transi-
tions Kη on some measurable space (E, E ) indexed by the set of probability mea-
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sures η ∈ P(F ) on some possibly different measurable space (F, F ). We further
assume that for any pair of measures (η,μ) ∈ P(F )2 and some integer n0 ≥ 0 we
have

‖Kη − Kμ‖ ≤ c‖η − μ‖ and b(n0) := sup
η∈P(E)

β(Kn0
η ) < 1.(3.1)

We associate with the collection of transitions Kη an E-valued inhomogeneous
random process Xn with elementary transitions defined by

P(Xn+1 ∈ dx|X0, . . . ,Xn) = Kμn(Xn, dx),

where μn is a sequence of possibly random distributions on F that only depends
on the random sequence (X0, . . . ,Xn). More precisely, μn is a measurable random
variable with respect to the σ -field generated by the random states Xp from the
origin p = 0, up to the current time horizon p = n. We further assume that the
variations of the flow μn are controlled by some sequence of random variables
ε(n) in the sense that

∀n ≥ 0 ‖μn+1 − μn‖ ≤ ε(n).

We let ε(n) be the mean variation of the distribution flow (μp)0≤p≤n; that is, we
have

ε(n) := 1

n + 1

n∑
p=0

ε(p).

For SIMC, we have F = E and the measure μn coincides with the occupation
measures of the chain up to the current time n. In this particular situation, we have

μn = ηn := 1

n + 1

n∑
p=0

δXp �⇒ ε(n) ≤ 2

n + 2
.(3.2)

This implies that

ε(n) ≤ 2

n + 1
log (n + 2).

Under assumption (3.1), every elementary transition Kμn(x, dy) admits an invari-
ant measure

ω(μn)Kμn = ω(μn) ∈ P(E).

For sufficiently small variations ε(n) of the distribution flow μn, we expect that
the occupation measures ηn have the same asymptotic behavior as the mean values
ωn(μ) of the instantaneous invariant measures ω(μp) from time p = 0 up to the
current time p = n. That is, for large values of the time horizon n, we have in some
sense

ηn � ωn(μ) := 1

n + 1

n∑
p=0

ω(μp).(3.3)
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3.2. A resolvent analysis. We recall that assumption (3.1) ensures that Kη has
a unique invariant measure for any η ∈ P(F )

ω(η)Kη = ω(η) ∈ P(E)

and the pair of sums given by

α(η) := ∑
n≥0

β(Kn
η ) ∈ [1,∞) and

∑
n≥0

[Kn
η − ω(η)](f )(3.4)

are absolutely convergent for any f ∈ B(E). The main simplification of these con-
ditions comes from the fact that the resolvent operator

Pη :f ∈ B(E) → Pη(f ) := ∑
n≥0

[Kn
η − ω(η)](f ) ∈ B(E)

is a well-defined solution of the Poisson equation{
(Kη − Id)Pη = (

ω(η) − Id
)
,

ω(η)Pη = 0.

The reader should not be misled by the notation Pη. In this context, Pη is not a
Markov transition kernel. We have used the letter P in reference to the solution of
the Poisson equation.

PROPOSITION 3.1. For any η ∈ P(F ), Pη is a bounded integral operator on
B(E) and we have

(‖Pη‖/2) ∨ β(Pη) ≤ α(η) ≤ n0

1 − β(K
n0
η )

.

PROOF. The fact that β(Pη) ≤ α(η) is readily deduced from the following
decomposition:

Pη(f )(x) − Pη(f )(y) := ∑
n≥0

[Kn
η (f )(x) − Kn

η (f )(y)].

Indeed, using this decomposition we find that osc(Pη(f )) ≤ ∑
n≥0 osc(Kn

η (f )).
Recalling that osc(Kn

η (f )) ≤ β(Kn
η )osc(f ), we conclude that

osc(Pη(f )) ≤
[∑
n≥0

β(Kn
η )

]
osc(f ) ⇒ β(Pη) ≤ ∑

n≥0

β(Kn
η ).

In much the same way, we use the fact that

Pη(f )(x) = ∑
n≥0

∫
[Kn

η (f )(x) − Kn
η (f )(y)]ω(η)(dy)

to check that

‖Pη(f )‖ ≤ ∑
n≥0

osc(Kn
η (f ))
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and

‖Pη(f )‖ ≤
[∑
n≥0

β(Kn
η )

]
osc(f ) ⇒ ‖Pη‖ ≤ 2

∑
n≥0

β(Kn
η ).

To prove that α(η) ≤ n0

1−β(K
n0
η )

, we use the decomposition

α(η) := ∑
n≥0

β(Kn
η ) = ∑

p≥1

pn0−1∑
n=(p−1)n0

β(Kn
η ) = ∑

p≥1

n0−1∑
r=0

β
(
K(p−1)n0+r

η

)
.

Since we have

β
(
K(p−1)n0+r

η

) ≤ β
(
K(p−1)n0

η

)
β(Kr

η) ≤ β(Kn0
η )(p−1)β(Kr

η) ≤ β(Kn0
η )(p−1)

we conclude that α(η) ≤ n0
∑

p≥0 β(K
n0
η )p = n0

1−β(K
n0
η )

. The end of the proof of

the proposition is now complete. �

PROPOSITION 3.2. For any pair of measures (η,μ) ∈ P(F )2, we have

‖ω(η) − ω(μ)‖ ≤ δn0(η,μ)‖η − μ‖(3.5)

and

‖Pμ − Pη‖ ≤ α(η)[2cα(μ) + δn0(η,μ)]‖η − μ‖
for some finite constant δn0(η,μ) such that

δn0(η,μ) ≤ cn0

1 − (β(K
n0
η ) ∧ β(K

n0
μ ))

.(3.6)

PROOF. The proof of the first assertion is based on the following decomposi-
tion:

ω(η) − ω(μ) = ω(η)(Kn0
η − Kn0

μ ) + [ω(η) − ω(μ)]Kn0
μ .

Using the fact that

‖[ω(η) − ω(μ)]Kn0
μ ‖ ≤ β(Kn0

μ )‖ω(η) − ω(μ)‖
we find that

‖ω(η) − ω(μ)‖ ≤ 1

1 − (β(K
n0
μ ) ∧ β(K

n0
η ))

‖ω(η)(Kn0
η − Kn0

μ )‖.(3.7)

On the other hand, we have

‖ω(η)(Kn0
η − Kn0

μ )‖ ≤ ‖Kn0
η − Kn0

μ ‖‖ω(η)‖ = ‖Kn0
η − Kn0

μ ‖.
Using the decomposition

Kn0
η − Kn0

μ =
n0−1∑
p=0

Kp
μ(Kη − Kμ)Kn0−(p+1)

η
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we find that

‖Kn0
η − Kn0

μ ‖ ≤
n0−1∑
p=0

∥∥Kp
μ(Kη − Kμ)Kn0−(p+1)

η

∥∥.
For any 0 ≤ p ≤ n0 we have∥∥Kp

μ(Kη − Kμ)Kn0−(p+1)
η

∥∥ ≤ ‖Kp
μ‖‖Kη − Kμ‖∥∥Kn0−(p+1)

η

∥∥
≤ ‖Kη − Kμ‖ ≤ c‖η − μ‖

from which we conclude that

‖Kn0
η − Kn0

μ ‖ ≤ cn0‖η − μ‖ �⇒ ‖ω(η)(Kn0
η − Kn0

μ )‖ ≤ cn0‖η − μ‖.
The proof of (3.5) is now a direct consequence of (3.7).

The proof of the second assertion is based on the following decomposition:

Pη − Pμ = Pμ(Kη − Kμ)Pη + [ω(μ) − ω(η)]Pη.

To check this formula, we first use the fact that KμPμ = PμKμ to prove that

Pμ(Kμ − Id) = (Kμ − Id)Pμ = (
ω(μ) − Id

)
.

This yields

Pμ(Kμ − Id)Pη = (
ω(μ) − Id

)
Pη.

Using the Poisson equation and using the fact that Pμ(1) = 0 we also have the
decomposition

Pμ(Kη − Id)Pη = Pμ

(
ω(η) − Id

) = −Pμ.

Combining these two formulae, we conclude that

Pμ(Kη − Kμ)Pη = [Pη − Pμ] − [ω(μ) − ω(η)]Pη.

It follows that

‖Pη − Pμ‖ ≤ ‖Pμ(Kη − Kμ)Pη‖ + ‖[ω(μ) − ω(η)]Pη‖.
The term on the right-hand side is easily estimated. Indeed, under our assumptions
we readily find that

‖[ω(μ) − ω(η)]Pη‖ ≤ β(Pη)‖ω(η) − ω(μ)‖
≤ α(η)‖ω(η) − ω(μ)‖ ≤ α(η)δn0(η,μ)‖η − μ‖.

On the other hand, we have

‖Pμ(Kη − Kμ)Pη‖ ≤ β(Pη)‖Pμ(Kη − Kμ)‖ ≤ β(Pη)‖Pμ‖‖Kη − Kμ‖
from which we conclude that

‖Pμ(Kη − Kμ)Pη‖ ≤ 2cα(μ)α(η)‖η − μ‖.
The end of the proof is now clear. �
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3.3. Lr -inequalities and concentration analysis. First, we examine some of
the consequences of the pair of regularity conditions presented in (3.1). The second
condition ensures that the functions α(η) and δn0(η,μ) introduced in (3.4) and
(3.6) are uniformly bounded; that is, we have

1 ≤ a(n0) := sup
η∈P(F )

α(η) ≤ n0

1 − b(n0)
(3.8)

and

d(n0) := sup
(η,μ)∈P(F )2

δn0(η,μ) ≤ cn0

1 − b(n0)
< ∞.(3.9)

We recall that ωn(μ) is defined in (3.3). We are now in a position to state and prove
the main result of this section.

THEOREM 3.3. For any n ≥ 0, f ∈ B1(E) and r ≥ 1 we have the estimate

E
(|[ηn − ωn(μ)](f )|r)1/r ≤ e(r)

(
n0

1 − b(n0)

)2[ 1√
n + 1

+ cE(ε(n)r)1/r

]
for some finite constant e(r) < ∞ whose value only depends on the parameter r .
In addition, for any δ ∈ (0,1) and any time horizon n ≥ 1, the probability that

|[ηn − ωn(μ)](f )|

≤ n0

1 − b(n0)

[√
2 log (2/δ)

n + 1
+ (1 + c)

(
4n0

1 − b(n0)

)[
ε(n) ∨ 1

n + 1

]]
is greater than (1 − δ) [where c is the constant introduced in (3.1)].

COROLLARY 3.4. For the SIMC associated with the occupation measure dis-
tribution flow (3.2), we have for any n ≥ 0, f ∈ B1(E) and any r ≥ 1

√
n + 1E

(|[ηn − ωn(μ)](f )|r)1/r ≤ e(r)(1 + c)

(
n0

1 − b(n0)

)2

for some finite constant e(r) < ∞ whose value only depends on the parameter r .
In addition, for any δ ∈ (0,1) and any time horizon n ≥ 1, the probability that

|[ηn − ωn(μ)](f )| ≤
(

2n0

1 − b(n0)

)2
√

2

n + 1

[√
log (2/δ) + 2(1 + c)

]
is greater than (1 − δ).

PROOF OF THEOREM 3.3. First, we examine some consequences of the regu-
larity conditions presented in (3.1) on the resolvent function Pη introduced in (3.4).
Using Propositions 3.1 and 3.2 we find the following uniform estimates:

sup
η∈P(F )

(
(‖Pη‖/2) ∨ β(Pη)

) ≤ n0

1 − b(n0)
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and

‖Pμ − Pη‖ ≤ 3c

(
n0

1 − b(n0)

)2

‖μ − η‖.(3.10)

In addition, using Proposition 3.2 again we find that the invariant measure mapping
ω is uniform Lipschitz in the sense that

‖ω(η) − ω(μ)‖ ≤ cn0

1 − b(n0)
‖η − μ‖.

For any n ≥ 0 and any function f ∈ B1(E), we set

In(f ) := (n + 1)[ηn − ωn(μ)](f ) =
n∑

p=0

[f (Xp) − ω(μp)(f )].

Using the Poisson equation, we have

[Id − ω(μp)] = (Id − Kμp)Pμp .

From this formula, we find the decomposition

[f (Xp) − ω(μp)(f )]
= Pμp(f )(Xp) − Kμp(Pμp(f ))(Xp)(3.11)

= [Pμp(f )(Xp) − Pμp(f )(Xp+1)] + �Mp+1(f )

with the increments

�Mp+1(f ) := [Pμp(f )(Xp+1) − Kμp(Pμp(f ))(Xp)]
of the martingale Mn+1(f ) defined by

Mn+1(f ) :=
n+1∑
p=1

�Mp(f ) =
n+1∑
p=1

[Pμp−1(f )(Xp) − Kμp−1(Pμp−1(f ))(Xp−1)].

For n = 0, we set M0(f ) = 0. The first term in the right-hand side of (3.11) can
also be rewritten in the following form:

Pμp(f )(Xp) − Pμp(f )(Xp+1)

= [Pμp(f )(Xp) − Pμp+1(f )(Xp+1)]
+ [Pμp+1(f )(Xp+1) − Pμp(f )(Xp+1)].

This yields the decomposition
n∑

p=0

[Pμp(f )(Xp) − Pμp(f )(Xp+1)]

= [Pμ0(f )(X0) − Pμn+1(f )(Xn+1)] + Ln+1(f )
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with the random sequence

Ln+1(f ) :=
n∑

p=0

[Pμp+1 − Pμp ](f )(Xp+1).

In summary, we have established the following decomposition:

In(f ) = Mn+1(f ) + Ln+1(f ) + [Pμ0(f )(X0) − Pμn+1(f )(Xn+1)].
We estimate each term separately. First, using (3.10) we prove that

|Pμ0(f )(X0) − Pμn+1(f )(Xn+1)| ≤ ‖Pμ0‖ + ‖Pμn+1‖ ≤ 4n0

1 − b(n0)
.

In much the same way, using (3.10) we obtain

‖Ln+1‖ ≤
n∑

p=0

‖Pμp+1 − Pμp‖ ≤ 3c

(
n0

1 − b(n0)

)2 n∑
p=0

‖μp+1 − μp‖

= 3c(n + 1)

(
n0

1 − b(n0)

)2

ε(n).

From these two estimates, we conclude that

|In(f )| ≤ |Mn+1(f )| + 3c(n + 1)

(
n0

1 − b(n0)

)2

ε(n) + 4n0

1 − b(n0)
.(3.12)

To estimate the martingale term, we recall that the unpredictable quadratic varia-
tion process [M(f ),M(f )]n of the martingale Mn(f ) is the cumulated sum of the
square of its increments from the origin up to the current time; that is, we have

[M(f ),M(f )]n :=
n∑

p=1

(�Mp(f ))2.

The main simplification of our regularity conditions comes from the fact that the
increments |�Mp(f )| are uniformly bounded. More precisely, we have the almost
sure estimates

|�Mp+1(f )| = |Pμp(f )(Xp+1) − Kμp(Pμp(f ))(Xp)|

=
∣∣∣∣∫ [Pμp(f )(Xp+1) − Pμp(f )(x)]Kμp(Xp, dx)

∣∣∣∣
≤

∫
|Pμp(f )(Xp+1) − Pμp(f )(x)|Kμp(Xp, dx)

from which we conclude that

|�Mp+1(f )| ≤ osc(Pμp(f )) ≤ β(Pμp) ≤ n0

1 − b(n0)
.
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By definition of the quadratic variation process [M(f ),M(f )]n, this implies that

[M(f ),M(f )]n ≤
(

n0

1 − b(n0)

)2

n.

The end of the proof is now a direct consequence of the Burkholder–Davis–Gundy
inequality for martingales. For any r ≥ 1, there exists some finite constant e(r)

whose value only depends on r , and such that for any n

E

(
max

1≤p≤n
|Mp(f )|r

)1/r ≤ e(r)E([M(f ),M(f )]r/2
n )1/r ≤ e(r)

n0

1 − b(n0)

√
n.

Combining this estimate with (3.12), we find that

E(|In(f )|r )1/r ≤ e(r)

(
n0

1 − b(n0)

)2[√
(n + 1) + c(n + 1)E(ε(n)r)1/r ]

with again some finite constant e(r) whose values may vary from line to line, but
only depends on r . Recalling the definition of In(f ), we conclude that

E
(|[ηn − ωn(μ)](f )|r)1/r ≤ e(r)

(
n0

1 − b(n0)

)2[ 1√
(n + 1)

+ cE(ε(n)r)1/r

]
.

This ends the proof of the first assertion. To prove the concentration estimates, we
use the fact that

|[ηn − ωn(μ)](f )| ≤ |Mn+1(f )|
n + 1

+ n0

1 − b(n0)

[
3cn0

1 − b(n0)
ε(n) + 4

n + 1

]
from which we deduce the rather crude upper bound

|[ηn − ωn(μ)](f )|
(3.13)

≤ |Mn+1(f )|
n + 1

+ (1 + c)

(
2n0

1 − b(n0)

)2[
ε(n) ∨ 1

n + 1

]
.

The Chernov–Hoeffding exponential inequality states that for every martingale Mn

with M0 = 0 and uniformly bounded increments supn|�Mn| ≤ a, we have

P(|Mn| ≥ tn) ≤ 2e−nt2/2a2
.

In our context, we have proved that supn|�Mn(f )| ≤ n0/(1 − b(n0)), from which
we conclude that

P

(
|[ηn − ωn(μ)](f )| > t + (1 + c)

(
2n0

1 − b(n0)

)2[
ε(n) ∨ 1

n + 1

])

≤ 2 exp
(
−(n + 1)

t2

2

(
1 − b(n0)

n0

)2)
.

We conclude the proof of the theorem by choosing t = n0
1−b(n0)

√
2 log (2/δ)

n+1 . �
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4. Distribution flows models. In this section, we have collected the definition
of a series of semigroups on distribution flow spaces. We also take the opportunity
to describe some of their regularity properties we shall use in the further develop-
ments of the article.

We equip the sets of distribution flows P(S(l))N with the uniform total variation
distance defined by

∀(η,μ) ∈ (
P
(
S(l))N)2 ‖η − μ‖ := sup

n≥0
‖ηn − μn‖.

We extend a given integral operator μ ∈ P(S(l)) 
→ μL ∈ P(S(l+1)) into a map-
ping

η = (ηn)n≥0 ∈ P
(
S(l))N 
→ ηL = (ηnL)n≥0 ∈ P

(
S(l+1))N.

Sometimes, we slightly abuse the notation and we denote by ν instead of (ν)n≥0
the constant distribution flow equal to a given measure ν ∈ P(S(l)).

4.1. Time averaged semigroups. We associate with the mappings �l intro-
duced in (1.1) the mappings

�(l) :η ∈ P
(
S(l−1))N 
→ �(l)(η) = (

�(l)
n (η)

)
n≥0 ∈ P

(
S(l))N

defined by the coordinate mappings

∀η ∈ P
(
S(l−1))N,∀n ≥ 0 �(l)

n (η) := �l(ηn).

We denote by

�(k,l) = �(k) ◦ �(k−1,l)

with 0 ≤ l ≤ k, the semigroup associated with the mappings �(l). We also consider
the time averaged transformations

�(l) :η ∈ P
(
S(l−1))N 
→ �(l)(η) = (

�n
(l)(η)

)
n≥0 ∈ P

(
S(l))N

defined by the coordinate mappings

∀η ∈ P
(
S(l−1))N,∀n ≥ 0 �n

(l)(η) := 1

n + 1

n∑
p=0

�(l)
p (η)

= 1

n + 1

n∑
p=0

�l(ηp) ∈ P
(
S(l)).

For l = 0, we use the convention �0(ηp) = π(0) for any 0 ≤ p ≤ n, so that

with some abusive but obvious notation �
(0)

(η) = π(0) represents the constant
sequence (π(0))n≥0 such that π

(0)
n = π(0).
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We also denote �(k,l) : P(S(l−1))N → P(S(k))N with 0 ≤ l ≤ k, the semigroup
associated with the mappings �(l) and defined by

�(k,l) := �(k) ◦ �
(k−1) ◦ · · · ◦ �(l).

We use the convention �(k,l) = Id, the identity operator, for l > k.

4.2. Integral operators. We associate with the kernel �k from B(S(k)) into
B(S(k−1)) introduced in (1.7) the kernel �

(k)
from (N × B(S(k))) into the set (N ×

B(S(k−1))) defined by

�(k)((n, f ), d(p,g)) := �(n,dp) × �k(f, dg)
(4.1)

with �(n,dp) := 1

n + 1

n∑
q=0

δq(dp).

The semigroup �(l2,l1) (0 ≤ l1 ≤ l2) associated with the integral operators �(l) is
defined by

�(l2,l1) := �(l2)�
(l2−1) · · ·�(l1).

For l1 = l2 = 0, we use the convention �(0,0) = �(0) = 0 for the null measure on
(N × B(S(0))). Also observe that

�(l2,l1) = �l2−l1+1 × �l2,l1,

where the semigroups �l1 and �l2,l1 , 0 ≤ l1 ≤ l2 associated with the pair of integral
operators � and �l are

�l1 = ��l1−1 = �l1−1� and �l2,l1 := �l2�l2−1 · · ·�l1 .

We use the convention �0 = Id.
We end this section with a technical lemma relating the regularity properties

(1.7) of the mappings �k to the regularity properties of the semigroups �(k,l).

LEMMA 4.1. For any 0 ≤ l1 ≤ l2, n ≥ 0, any flow of measures η,μ ∈
P(S(l1−1))N and any function f ∈ B(S(l2)) we have∣∣[�(l2,l1)

n (η) − �(l2,l1)
n (μ)

]
(f )

∣∣
≤

∫
(N×B(S(l1−1)))

|[ηp − μp](g)|�(l2,l1)((n, f ), d(p,g)).

PROOF. Notice that we have �(l,l) = �(l). We also observe that �(l2,l1) is a
kernel from (N × B(S(l2))) into (N × Bn(S

(l1−1))). We prove the lemma by induc-
tion on the parameter k = l2 − l1. The result is clearly true for k = 0. Indeed, by
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(1.7) we find that for any l ≥ 0

∣∣[�(l)
n (η) − �(l)

n (μ)
]
(f )

∣∣ ≤ 1

n + 1

n∑
p=0

|[�l(ηp) − �l(μp)](f )|

≤ 1

n + 1

n∑
p=0

∫
B(S(l−1))

|[ηp − μp](g)|�(f, dg).

Rewritten in terms of �(l), we have proved that∣∣[�(l)
n (η) − �(l)

n (μ)
]
(f )

∣∣ ≤ ∫
(N×B(S(l−1)))

|[ηp − μp](g)|�(l)((n, f ), d(p,g)).

This ends the proof of the result for k = 0. Now, suppose we have proved that∣∣[�(l2,l1)
p (η) − �(l2,l1)

p (μ)
]
(g)

∣∣ ≤ ∫
|[ηq − μq](h)|�(l2,l1)((p, g), d(q,h))

for any pair of integers l1 < l2 with l2 − l1 = k for some k ≥ 1. In this case, for any
l < k and any function f ∈ B(S(l+1)), we have∣∣[�(l+1,l−k)

n (η) − �(l+1,l−k)
n (μ)

]
(f )

∣∣
= ∣∣[�(l+1)

n

(
�(l,l−k)(η)

) − �(l+1)
n

(
�(l,l−k)(μ)

)]
(f )

∣∣
and therefore∣∣[�(l+1,l−k)

n (η) − �(l+1,l−k)
n (μ)

]
(f )

∣∣
≤

∫ ∣∣[�(l,l−k)
p (η) − �(l,l−k)

p (μ)
]
(g)

∣∣�(l+1)((n, f ), d(p,g)).

Under our induction hypothesis, this implies that∣∣[�(l+1,l−k)
n (η) − �(l+1,l−k)

n (μ)
]
(f )

∣∣
≤

∫
|[ηq − μq](h)|

∫
�(l+1)((n, f ), d(p,g))�(l,l−k)((p, g), d(q,h))

=
∫

|[ηq − μq](h)|�(l+1,l−k)((n, f ), d(q,h)).

Letting l1 = (l − k) and l2 = (l + 1), we have proved that for any l1 < l2 with
l2 − l1 = (k + 1)∣∣[�(l2,l1)

n (η) − �(l2,l1)
n (μ)

]
(f )

∣∣ ≤ ∫
|[ηp − μp](g)|�(l2,l1)((n, f ), d(p,g)).

This ends the proof of the lemma. �
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4.3. Path space semigroups. To simplify the presentation, we fix a time hori-
zon m ≥ 1 and write ω instead of ω

K
(m)
η

, the invariant measure mapping defined

in (1.9). We also write E instead of Em.
We extend the mapping ω on P(E) to P(E)N by setting

ω :η = (ηn)n≥0 ∈ P(E)N 
→ ω(η) = (ωn(η))n≥0 ∈ P(E)N

with the coordinate mappings ωn defined by

ωn(η) := ω(ηn) = π(0) ⊗ �1
(
η(0)

n

) ⊗ · · · ⊗ �m

(
η(m−1)

n

)
.

For every l ≤ m, we recall that η
(l)
n stands for the image measure on S(l) of a given

measure ηn ∈ P(Em). We also consider the mappings

ω :η ∈ P(E)N 
→ ω(η) = (ωn(η))n≥0 ∈ P(E)N

defined by the coordinate mappings

∀η = (ηn)n≥0 ∈ P(E)N,∀n ≥ 0

ωn(η) := 1

n + 1

n∑
p=0

ωp(η) = 1

n + 1

n∑
p=0

ω(ηp).

LEMMA 4.2. For any 1 ≤ k ≤ m and any flow of measures η ∈ P(E)N, we
have

ωk(η) = π [k−1] ⊗
m−k⊗
i=0

�(i+k,i+1)(η(i)).
For k = m + 1, we have

∀η ∈ P(E)N ωm+1(η) = π [m].

PROOF. We use a simple induction on the parameter k. The result is clearly
true for k = 1. Suppose we have proved the result at some rank k. In this case we
have

ωk(ω(η)) = π [k−1] ⊗ �k,1
(
ω(η)(0)) ⊗

m−k⊗
i=1

�i+k,i+1
(
ω(η)(i)

)

= π [k−1] ⊗ π(k) ⊗
m−k⊗
i=1

�i+k,i

(
η(i−1))

= π [k] ⊗
m−(k+1)⊗

i=0

�i+(k+1),i+1
(
η(i)).

This ends the proof of the lemma. �
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LEMMA 4.3. For any 1 ≤ k ≤ m and any η = (ηn)n≥0 ∈ P(E)N, we have

ωk
n(η) = 1

n + 1

n∑
p=0

[
π [k−1] ⊗

m−k⊗
i=0

�(i+k)
p

(
�

(i+(k−1),i+1)(
η(i)))].

For k = m + 1, we have

∀η ∈ P(E)N ωm+1(η) = π [m].

PROOF. We use a simple induction on the parameter k. The result is clearly
true for k = 1. Indeed, we have in this case

ωn(η) = 1

n + 1

n∑
p=0

[
π [k−1] ⊗

m−1⊗
i=0

�(i+1)
p

(
η(i))].

We also observe that

ωn(η)(i) = 1

n + 1

n∑
p=0

�(i)
p

(
η(i−1)) = �n

(i)(η(i−1)) ⇒ ω(η)(i) = �
(i)(

η(i−1)).
Suppose we have proved the result at some rank k. In this case, we have

ωk(ω(η)) = 1

n + 1

n∑
p=0

[
π [k] ⊗

m−k⊗
i=1

�(i+k)
p

(
�(i+(k−1),i)(η(i−1)))]

from which we conclude that

ωk+1(η) = 1

n + 1

n∑
p=0

[
π [k] ⊗

m−(k+1)⊗
i=0

�(i+(k+1))
p

(
�(i+k,i+1)(η(i)))].

This ends the proof of the lemma. �

5. Asymptotic analysis.

5.1. Introduction. This section is concerned with the asymptotic behavior of
i-MCMC models as the time index n tends to infinity.

The strong law of large numbers is discussed in Section 5.2. We present nonas-
ymptotic Lr -inequalities that allow us to quantify the convergence of the occupa-

tion measures η
(k)
n = 1

n+1
∑n

p=0 δ
X

(k)
p

of i-MCMC models toward the solution π(k)

of the measure-valued equation (1.1).
Section 5.3 is concerned with uniform convergence results with respect to the

level index k. We examine this important question in terms of the stability proper-
ties of the time averaged semigroups introduced in Section 4.1. We present nonas-
ymptotic Lr -inequalities for a series of i-MCMC models that do not depend on
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the number of levels. These estimates are probably the most important in prac-
tice since they allow us to quantify the running time of a i-MCMC to achieve a
given precision independently of the time horizon of the limiting measure-valued
equation (1.1).

Our approach is based on an original combination of nonlinear semigroup tech-
niques with the asymptotic analysis of time inhomogeneous Markov chains de-
veloped in Section 3. The following technical lemma presents a more or less well-
known generalized Minkowski integral inequality which will be used in our proofs.

LEMMA 5.1 (Generalized Minkowski integral inequality). For any pair of
bounded positive measures μ1 and μ2 on some measurable spaces (E1, E1) and
(E2, E2), any bounded measurable function ϕ on the product space (E1 ×E2) any
p ≥ 1, we have [∫

E1

μ1(dx1)

∣∣∣∣∫
E2

ϕ(x1, x2)μ2(dx2)

∣∣∣∣p]1/p

≤
∫
E2

(∫
E1

|ϕ(x1, x2)|pμ1(dx1)

)1/p

μ2(dx2).

PROOF. Without loss of generality, we suppose that ϕ is a nonnegative func-
tion. For p = 1, the lemma is a direct consequence of Fubini’s theorem. Let us
assume that p > 1, and let p′ be such that 1

p′ + 1
p

= 1. First, we notice that the
functions

ϕ1(x1) :=
∫
E2

ϕ(x1, x2)μ2(dx2) and φp(x2) :=
(∫

E1

|ϕ(x1, x2)|pμ1(dx1)

)1/p

are measurable for every p ≥ 1. In this notation, we need to prove that μ1(ϕ
p
1 )1/p ≤

μ2(φp). It is also convenient to consider the function

ψ(x1, x2) := ϕ(x1, x2)/φp(x2)
1/p′.

We use the convention ψ(x1, x2) = 0, for every x1 ∈ E1 as long as φp(x2) = 0. We
observe that(∫

E1

ψ(x1, x2)
pμ1(dx1)

)1/p

= φp(x2)/φp(x2)
1/p′ = φp(x2)

1/p.

By construction, we have

ϕ1(x1) =
∫
E2

ψ(x1, x2)φp(x2)
1/p′

μ2(dx2)

≤
[∫

E2

ψ(x1, x2)
pμ2(dx2)

]1/p

× μ2(φp)1/p′
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from which we conclude that

μ1(ϕ
p
1 ) ≤ μ2(φp)p/p′ ×

[∫
E2

ψ(x1, x2)
pμ1(dx1)μ2(dx2)

]
= μ2(φp)p/p′ × μ2(φp) = μ2(φp)p.

The end of the proof is now clear. �

5.2. Strong law of large numbers. This section is mainly concerned with the
proof of the following Lr -inequalities for the occupation measure of an i-MCMC
model at a given level.

THEOREM 5.2. Under the regularity conditions (1.7) and (1.8), we have for
any k ≥ 0, any function f ∈ B1(S

(k)) and any n ≥ 0 and r ≥ 1√
(n + 1)E

(∣∣[η(k)
n − π(k)](f )

∣∣r)1/r

(5.1)

≤ e(r)

k∑
l=0

(1 + cl)

(
nl

1 − bl(nl)

)2 ∏
l+1≤i≤k

2	i.

PROOF. We prove the theorem by induction on the parameter k. First, we ob-
serve that the estimate (5.1) is true for k = 0. Indeed, by Corollary 3.4 we have
that √

(n + 1)E
(∣∣[η(0)

n − π(0)](f )
∣∣r)1/r ≤ e(r)(1 + c0)

(
n0

1 − b0(n0)

)2

for some finite constant e(r) < ∞ whose value only depends on the parameter r .
We further suppose that the estimate (5.1) is true at rank (k − 1). To prove that it
is also true at rank k, we use the decomposition[

η(k)
n − π(k)] = [

η(k)
n − �(k)

n

(
η(k−1))] + [

�(k)
n

(
η(k−1)) − �(k)

n

(
π(k−1))].(5.2)

For every k ≥ 0, given a realization of the chain X(k−1) := (X
(k−1)
p )p≥0 the kth

level chain X
(k)
n behaves as a Markov chain with random Markov transitions

M
(k)

η
(k−1)
n

dependent on the current occupation measure of the chain at level (k − 1).

Therefore, using Corollary 3.4 again we notice that√
(n + 1)E

(∣∣[η(k)
n − �(k)

n

(
η(k−1))](f )

∣∣r)1/r ≤ e(r)(1 + ck)

(
nk

1 − bk(nk)

)2

for some finite constant e(r) < ∞ whose values only depends on the parameter r .
Using the decomposition (5.2) and Lemma 4.1, we obtain∣∣[η(k)

n − π(k)](f )
∣∣

≤ ∣∣[η(k)
n − �(k)

n

(
η(k−1))](f )

∣∣
+

∫ ∣∣[η(k−1)
p − π(k−1)](g)

∣∣�(k)((n, f ), d(p,g)).
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For every function f ∈ B1(S
(l)), and any n ≥ 0, k ≥ 0, r ≥ 1, we set

J (k)
n (f ) := √

n + 1E
(∣∣[η(k)

n − π(k)](f )
∣∣r)1/r and j (k) := sup

n≥1
sup

f : ‖f ‖≤1
J (k)

n (f ).

By the generalized Minkowski integral inequality presented in Lemma 5.1, we find
that

J (k)
n (f ) ≤ e(r)(1 + ck)

(
nk

1 − bl(nk)

)2

+ √
n + 1

∫
J (k−1)

p (g)
1√

p + 1
�(k)((n, f ), d(p,g)).

Since we have∫
N

1√
q + 1

�(n,dq) = 1

n + 1

n∑
q=0

1√
q + 1

≤ 2√
n + 1

(5.3)

we conclude that

J (k)
n (f ) ≤ e(r)(1 + ck)

(
nk

1 − bl(nk)

)2

+ 2j (k−1) sup
f

∫
‖g‖�k(f, dg)

and therefore

j (k) ≤ e(r)(1 + ck)

(
nk

1 − bk(nk)

)2

+ j (k−1)2	k.

Under the induction hypothesis, we have

j (k−1)2	k ≤ e(r)

k−1∑
l=0

(1 + cl)

(
nl

1 − bl(nl)

)2 ∏
l+1≤i≤k

2	i

and therefore

j (k) ≤ e(r)

[
(1 + ck)

(
nk

1 − bk(nk)

)2

+
k−1∑
l=0

(1 + cl)

(
nl

1 − bl(nl)

)2 ∏
l+1≤i≤k

2	i

]

=
k∑

l=0

(1 + cl)

(
nl

1 − bl(nl)

)2 ∏
l+1≤i≤k

2	i.

This ends the proof of the theorem. �
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5.3. A uniform convergence theorem. This section focuses on the behavior
of an i-MCMC model associated with a large number of levels. We establish an
uniform convergence theorem under the assumption that the time averaged semi-
group �(k,l) introduced in Section 4.1 is exponentially stable; that is, there exist
some positive constants λ1, λ2 > 0 and an integer k0 such that for every l ≥ 0,
η,μ ∈ P(S(l))N and any k ≥ k0 we have∥∥�(l+k,l+1)(η) − �(l+k,l+1)(μ)

∥∥ ≤ λ1e
−λ2k.(5.4)

We also assume that the parameters (bk, ck, nk,	k) are chosen so that

A = sup
k≥0

[
(1 + ck)

(
nk

1 − bk(nk)

)2]
< ∞ and B := 2 sup

k≥1
	k < ∞.(5.5)

For the Feynman–Kac transformations (2.1), we give in Section 7 sufficient condi-
tions on Gl and Ll+1 ensuring (5.4) is satisfied. If (5.4) and (5.5) are both satisfied,
we have the following uniform convergence result:

THEOREM 5.3. If B = 1, then we have for any r ≥ 1, any parameter n such
that (n + 1) ≥ e2λ2(k0+1), and for any (fl)l≥0 ∈ ∏

l≥0 Osc1(S
(l))

sup
l≥0

E
(∣∣[η(l)

n − π(l)](fl)
∣∣r)1/r ≤ e(r)√

n + 1

(
A

(
1 + log (n + 1)

2λ2

)
+ λ1e

λ2

)
.

If B > 1, then we have for any r ≥ 1, any n such that (n + 1) ≥ e2(λ2+logB)(k0+1),
and for any (fl)l≥0 ∈ ∏

l≥0 Osc1(S
(l)).

sup
l≥0

E
(∣∣[η(l)

n − π(l)](fl)
∣∣r)1/r ≤ e(r)

[
AB

B − 1
+ λ1

]
eλ2

(n + 1)α/2

with α := λ2
(λ2+logB)

.

PROOF. First, we notice that we have the following estimate from (5.1) and
(5.5) for any k ≥ 0:√

(n + 1)E
(∣∣[η(k)

n − π(k)](fk)
∣∣r)1/r ≤ e(r)A

Bk+1 − 1

B − 1
.(5.6)

For B = 1, we use the convention Bk−1
B−1 = k.

We have the following decomposition:

η(l+k)
n − π(l+k) = [

η(l+k)
n − �(l+k,l+1)n

(
η(l))]

+ [
�(l+k,l+1)

n

(
η(l)) − �n

(l+k,l+1)(π(l))]
(5.7)

=
l+k∑

i=l+1

[
�(l+k,i+1)

n

(
η(i)) − �n

(l+k,i+1)(�(i)(η(i−1)))]
+ [

�(l+k,l+1)
n

(
η(l)) − �(l+k,l+1)

n

(
π(l))].
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Recall that we use the convention �(l1,l2) = Id for l1 < l2, so that

i = l + k �⇒ �(l+k,i+1)
n

(
η(i)) = �(l+k,l+k+2)

n

(
η(l+k)) = η(l+k)

n .

Using Lemma 4.1, we find that∣∣[�(l2,l1+1)
n

(
η(l1)

) − �n
(l2,l1)

(
�(l1)

(
η(l1−1)))](fl2)

∣∣
≤

∫ ∣∣[η(l1)
p − �(l1)

p

(
η(l1−1))](g)

∣∣�(l2,l1+1)((n, fl2), d(p,g)).

By the generalized Minkowski integral inequality, this implies that

E
(∣∣[�(l2,l1+1)

n

(
η(l1)

) − �(l2,l1+1)
n

(
�(l1)

(
η(l1−1)))](fl2)

∣∣r)1/r

≤
∫

E
(∣∣[η(l1)

p − �(l1)
p

(
η(l1−1))](g)

∣∣r)1/r
�(l2,l1+1)((n, fl2), d(p,g)).

Using Corollary 3.4, we find that

E
(∣∣[�(l2,l1+1)

n

(
η(l1)

) − �(l2,l1+1)
n

(
�(l1)

(
η(l1−1)))](fl2)

∣∣r)1/r

≤ e(r)(1 + cl1)

(
nl1

1 − bl1(nl1)

)2

×
∫
{0,...,n}

1√
(p + 1)

�(l2−l1)(n, dp) ×
∫

‖g‖�l2,l1+1(fl2, dg).

By (5.3) and∫
�k,l(fl2, dg)‖g‖ ≤ 	k,l‖fl2‖ with 	k,l ≤ ∏

l≤i≤k

	i ≤ Bk−l+1 < ∞,

we conclude that√
(n + 1)E

(∣∣[�(l2,l1+1)
n

(
η(l1)

) − �(l2,l1+1)
n

(
�(l1)

(
η(l1−1)))](fl2)

∣∣r)1/r

(5.8)
≤ e(r)ABl2−l1‖fl2‖.

Using the decomposition (5.7), we prove that for every fl+k ∈ B1(S
(l+k)) and any

k ≥ k0

sup
l≥0

E
(∣∣[η(l+k)

n − π(l+k)](fl+k)
∣∣r)1/r ≤ e(r)

A√
n + 1

Bk − 1

B − 1
+ λ1e

−λ2k.

Finally, by (5.6), we conclude that for every k ≥ k0

sup
l≥0

E
(∣∣[η(l)

n − π(l)](fl)
∣∣r)1/r ≤ e(r)

A√
n + 1

Bk+1 − 1

B − 1
+ λ1e

−λ2k.

For B = 1, we have

sup
l≥0

E
(∣∣[η(l)

n − π(l)](fl)
∣∣r)1/r ≤ e(r)A

(k + 1)√
n + 1

+ λ1e
−λ2k.
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In this situation, we choose the parameters k,n such that

k = k(n) :=
⌊

log (n + 1)

2λ2

⌋
≥ k0.

Notice that k(n) is the largest integer k satisfying

k ≤ log (n + 1)

2λ2
⇔

(
1√

n + 1
≤ e−λ2k

)
.

Since (k(n) + 1) ≥ log (n+1)
2λ2

, we have

e−λ2k(n) ≤ eλ2e−λ2(log (n+1))/(2λ2) = eλ2√
n + 1

from which we conclude that

A
(k(n) + 1)√

n + 1
+ λ1e

−λ2k(n) ≤ 1√
n + 1

(
A

(
1 + log (n + 1)

2λ2

)
+ λ1e

λ2

)
.

For B > 1, we choose the parameters k,n such that

k = k(n) :=
⌊

log (n + 1)

2(λ2 + logB)

⌋
≥ k0.

Notice that k(n) is the largest integer k such that

k ≤ log (n + 1)

2(λ2 + logB)
⇔

(
Bk

√
n + 1

≤ e−λ2k

)
.

Since (k(n) + 1) ≥ log (n+1)
2(λ2+logB)

, we have

Bk(n)

√
n + 1

≤ e−λ2k(n) ≤ eλ2e−λ2(log (n+1))/(2(λ2+logB)) = eλ2

(n + 1)α/2

with α := λ2
(λ2+logB)

, from which we conclude that

A√
n + 1

Bk(n)+1 − 1

B − 1
+ λ1e

−λ2k(n) ≤
[

AB

B − 1
+ λ1

]
eλ2

(n + 1)α/2 − AB

B − 1

1√
n + 1

.

This ends the proof of the theorem. �

6. Path space models. In the previous section, we have established Lr -mean
error bounds and exponential estimates quantifying the convergence of the occupa-
tion measures η

(k)
n toward the solutions π

(k)
n of the measure-valued equation (1.1).

We show here that it is also possible to establish such results to quantify the con-
vergence of the path-space occupation measures η[m]

n introduced in (1.6) toward
the tensor product measure π(m) defined in (1.10).
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6.1. Lr -mean error bounds. Our main result is the following theorem:

THEOREM 6.1. For every f ∈ B(Em), we have

sup
n≥1

√
nE

(∣∣[η[m]
n − π(m)](f )

∣∣r)1/r
< ∞.

PROOF. To simplify the presentation, we fix a time horizon m ≥ 1 and write
ω instead of ω

K
(m)
η

, the invariant measure mapping defined in (1.9). We also write

E instead of Em, and ηn instead of η[m]
n . In this notation, (η(l)) represents the se-

quence of occupation measures η
(l)
n := 1

n+1
∑n

p=0 δ
X

(l)
p

∈ P(S(l)) of the i-MCMC

model on the lth level space S(l).
Using the fact that ωm+1(η) = π [m], we obtain the following decomposition for

any η ∈ P(E)N

η − π [m] =
m∑

k=0

[
ωk(η) − ωk+1(η)

]
.(6.1)

In the above-displayed formula, π [m] = (π [m]
n )n∈N ∈ P(E)N stands for the con-

stant sequence of measures π [m]
n = π [m], for any n ∈ N.

Using Proposition 4.3, the kth iterate ωk of the mapping ω can be rewritten for
any η ∈ P(E)N in the following form:

ωk
n(η) = 1

n + 1

n∑
p=0

[
π [k−1] ⊗ �(k,m)

p

((
η(l))

0≤l≤m

)]
.

Here the mappings

�(k,m) :μ ∈ ∏
0≤i≤m

P
(
S(i))N 
→ �(k,m)(μ) = (

�(k,m)
n (μ)

)
n≥0 ∈

(
m⊗

i=k

P
(
S(i)))N

are defined for any n ≥ 0 by

�(k,m)
n (μ) :=

m−k⊗
i=0

�(k,m),(i)
n (μ) ∈

m−k⊗
i=0

P
(
S(i+k))

with for any (μ(l))0≤l≤m ∈ ∏
0≤i≤m P(S(i))N and any 0 ≤ i ≤ m − k

�(k,m),(i)
n

((
μ(l))

l

) := �i+k

(
�(i+(k−1),i+1)

n

(
μ(i))) ∈ P

(
S(i+k)).

We emphasize that �
(k,m)
n (μ) only depends on the flow of measures (μ(l))0≤l≤m−k ,
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and

ωk+1
n (η)

= 1

n + 1

n∑
p=0

[
π [k] ⊗ �(k+1,m)

p

((
η(l))

l

)]

= 1

n + 1

n∑
p=0

[
π [k−1] ⊗ π(k) ⊗

m−(k+1)⊗
i=0

�i+k+1
(
�(i+k,i+2)

p

(
�(i+1)(η(i))))]

= 1

n + 1

n∑
p=0

[
π [k−1] ⊗

m−k⊗
i=0

�i+k

(
�(i+(k−1),i+1)

p

(
�(i)(η(i−1))))]

with the convention �(0)(η(−1))) = π(0), for i = 0. This implies that for any 0 ≤
k ≤ m

ωk+1
n (η) = 1

n + 1

n∑
p=0

[
π [k−1] ⊗ �(k,m)

p

((
�(l)(η(l−1)))

l

)]
and therefore

ωk
n(η) − ωk+1

n (η)

= 1

n + 1

n∑
p=0

[
π [k−1] ⊗ {

�(k,m)
p

((
η(l))

l

) − �(k,m)
p

((
�(l)(η(l−1)))

l

)}]
.(6.2)

Moving one step further, we introduce the decomposition

�(k,m)(μ) − �(k,m)(ν)

=
m−k∑
j=0

{(j−1⊗
i=0

�(k,m),(i)(ν)

)
(6.3)

⊗ [
�(k,m),(j)(μ) − �(k,m),(j)(ν)

]
⊗

(
m−k⊗

i=j+1

�(k,m),(i)(μ)

)}

for any μ = (μ(l))0≤l≤m and ν = (ν(l))0≤l≤m ∈ ∏
0≤i≤m P(S(i))N, with the flow of

signed measures

�(k,m),(j)
n (μ) − �(k,m),(j)

n (ν)

= [
�j+k

(
�(j+(k−1),j+1)

n

(
μ(j))) − �j+k

(
�(j+(k−1),j+1)

n

(
ν(j)))].
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For every f ∈ B(S(j+k)), we find that∣∣[�(k,m),(j)
n (μ) − �(k,m),(j)

n (ν)
]
(f )

∣∣
≤

∫ ∣∣[(�(j+(k−1),j+1)
n

(
μ(j)))(6.4)

− (
�(j+(k−1),j+1)

n

(
ν(j)))](g)

∣∣�j+k(f, dg).

We let F m,j
n be the sigma field given by

F m,j
n = σ

(
X(l)

p : 0 ≤ p ≤ n,0 ≤ l ≤ m, l �= j
)
.

Combining the generalized Minkowski integral inequality presented in Lemma 5.1
with the inequality (5.8), we prove that

E
(∣∣[�(k,m),(j)

n

((
η(l))

l

) − �(k,m),(j)
n

((
�(l)(η(l−1)))

l

)]
(f )

∣∣r |F m,j
n

)1/r

≤
∫

E
(∣∣[(�(j+(k−1),j+1)

n

(
η(j)))

− (
�(j+(k−1),j+1)

n

(
�(j)(η(j−1))))](g)

∣∣r |F m,j
n

)1/r × �j+k(f, dg)

≤ e(r)√
n + 1

ABk‖f ‖.

Notice that the decomposition (6.3) can be rewritten for any f ∈ B(
∏m

l=k S(l)) in
the following form:[

�(k,m)
n (μ) − �(k,m)

n (ν)
]
(f )

(6.5)

=
m−k∑
j=0

[
�(k,m),(j)

n (μ) − �(k,m),(j)
n (ν)

](
R(k,m),(j)

n (μ, ν)(f )
)

with the integral operators R
(k,m),(j)
n (μ, ν) : B(

∏m
l=k S(l)) 
→ B(S(j+k)) given be-

low

R(k,m),(j)
n (μ, ν)(f )(xk+j )

=
∫

f
(
xk, . . . , xk+(j−1), xk+j , xk+j+1, . . . , xm

)
×

(j−1∏
i=0

�(k,m),(i)
n (ν)

)
(dxi+k) ×

(
m−k∏

i=j+1

�(k,m),(i)
n (μ)(dxi+k)

)
.

Using the fact that the pair of measures

j−1⊗
i=0

�(k,m),(i)
n

((
�

(l)(
η(l−1)))

l

)
and

m−k⊗
i=j+1

�(k,m),(i)
n

((
η(l))

l

)
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only depend on the distribution flow (�(i)(η(i−1)))0≤i≤j−1 and (η(i))j+1≤i≤m−k ,
we find that the random functions

f (k,m),(j)
n := R(k,m),(j)

n

((
η(l))

l ,
(
�(l)(η(l−1)))

l

)
(f ) ∈ B

(
S(j+k))

do not depend on the distribution flows η(j) and η(j−1). This shows that f
(k,m),(j)
n

are measurable with respect to F m,j
n . From previous calculations (and again using

the generalized Minkowski integral inequality presented in Lemma 5.1) we find
that

E
(∣∣[�(k,m),(j)

n

((
η(l))

l

) − �(k,m),(j)
n

((
�(l)(η(l−1)))

l

)](
f (k,m),(j)

n

)∣∣r |F m,j
n

)1/r

≤
∫

�j+k

(
f (k,m),(j)

n , dg
)

× E
(∣∣[(�(j+(k−1),j+1)

n

(
η(j)))

− (
�(j+(k−1),j+1)

n

(
�(j)(η(j−1))))](g)

∣∣r |F m,j
n

)1/r

≤ e(r)√
n + 1

ABk‖f ‖.

We conclude that for any f ∈ B(
∏

k≤j≤m S(j))

E
(∣∣[�(k,m)

n

((
η(l))

l

) − �(k,m)
n

((
�(l)(η(l−1)))

l

)]
(f )

∣∣r)1/r

≤ (m − k + 1)
e(r)√
n + 1

ABk‖f ‖.
Using (6.5), it is now easily checked that for every f ∈ B(E)

E
(|[ωk

n(η) − ωk+1
n (η)](f )|r)1/r ≤ (m − k + 1)

e(r)√
n + 1

ABk‖f ‖.
Finally, by (6.1) we conclude that

E
(∣∣[ηn − π [m]](f )

∣∣r)1/r ≤ e(r)√
n + 1

A‖f ‖
m∑

k=0

(m − k + 1)Bk.

This ends the proof of the theorem. �

6.2. Concentration analysis. This section is mainly concerned with exponen-
tial bounds for the deviations of the occupation measures η[m]

n around the limiting
tensor product measure π [m]. We restrict our attention to models satisfying the
Lipschitz type condition (1.7) for some kernel �k with uniformly finite support

sup
f ∈B(S(k))

Card(Supp(�k(f, ·))) < ∞.

To simplify the presentation, we fix a parameter m ≥ 1, and sometimes we write
ηn instead of η[m]

n . We shall also use the letters ci , i ≥ 1 to denote some finite
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constants whose values may vary from line to line but do not depend on the time
parameter n.

The main result of this section is the following concentration theorem:

THEOREM 6.2. There exists a finite constant σm < ∞ such that for any f ∈
B1(Em) and t > 0

lim sup
n→∞

1

n
log P

(∣∣[η[m]
n − π [m]](f )

∣∣ > t
)
< − t2

2σ 2
m

.

The proof of this theorem is based on two technical lemmas.

LEMMA 6.3. We let M = (Mn)n≥1 be a random process such that the follow-
ing exponential inequality is satisfied for some positive constants a, b > 0 and for
any t ≥ 0 and n ≥ 1

P
(|Mn| ≥ t

√
n
) ≤ ae−bt2

.

We consider the collection of random processes M(k) = (M
(k)
n )n≥1 defined for any

n ≥ 0 and k ≥ 0 by the following formula:

M
(k)
n+1 := (n + 1)

∫
�k(n, dp)

1

p + 1
Mp+1,

where �k is the semigroup associated to the operator � defined in (4.1). For every
k ≥ 0, n ≥ 1, and t ≥ 0 we have the exponential inequalities:

P
(∣∣M(k)

n

∣∣ ≥ t
√

n
) ≤ anke−bt2/22k

.

PROOF. We prove the lemma by induction on the parameter k. For k = 0, we
have M

(0)
n+1 := Mn+1 so that the exponential estimate holds true with a(0) = a and

b(0) = b. Suppose we have proved the result at rank k. Using the fact that

M
(k+1)

n+1 = (n + 1)

∫
�k+1(n, dp)

1

p + 1
Mp+1

= (n + 1)

∫
�(n,dp)

1

p + 1

(
(p + 1)

∫
�k(p, dq)

1

q + 1
Mq+1

)
we prove the recursion formula

M
(k+1)
n+1 = (n + 1)

∫
�(n,dp)

1

p + 1
M

(k)
p+1.

On the other hand, we have

1

2

M
(k+1)
n+1√
n + 1

= 1

2

√
n + 1

∫
�(n,dp)

1√
p + 1

M
(k)
p+1√

p + 1
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and

1

2

√
n + 1

∫
�(n,dp)

1√
p + 1

= 1

2
√

n + 1

n∑
p=0

1√
p + 1

≤ 1

2
√

n + 1

n∑
p=0

∫ p+1

p

1√
t
dt = 1.

Under the induction hypothesis, we have for any 0 ≤ p ≤ n

P
(∣∣M(k)

p+1

∣∣ ≥ t
√

p + 1
) ≤ a(n + 1)ke−bt2/22k

.

This implies that

P

(
1

2

M
(k+1)
n+1√
n + 1

> t

)
≤ P

(∃0 ≤ p ≤ n :M(k)
p+1 > t

√
p + 1

)
≤ a(n + 1)(n + 1)ke−bt2/22k

from which we conclude that

P
(
M

(k+1)
n+1 > t

√
n + 1

) ≤ a(n + 1)k+1e−bt2/22(k+1)

.

This ends the proof of the lemma. �

LEMMA 6.4. For every l1 < l2, there exists some nonincreasing function

N : t ∈ [0,∞) 
→ N(t) ∈ [0,∞)

such that for every n ≥ N(t) and any function f ∈ B1(S
(l2)) we have

P
(√

n + 1
∣∣[�(l2,l1+1)

n

(
η(l1)

) − �(l2,l1)
n

(
�(l1)

(
η(l1−1)))](f )

∣∣ > t
)

≤ (
c1(n + 1)

)(l2−l1) exp (−c2t
2/c

l2−l1
3 ).

Before getting into the details of the proof of this lemma, it is interesting to
mention a direct consequence of the above exponential estimates. First, we observe
that N(t

√
n + 1) ≤ N(t) so that for any t > 0 and n ≥ N(t) we have

P
(∣∣[�(l2,l1+1)

n

(
η(l1)

) − �(l2,l1)
n

(
�(l1)

(
η(l1−1)))](f )

∣∣ > t
)

≤ (
c1(n + 1)

)(l2−l1) exp
(−c2(n + 1)t2/c

l2−l1
3

)
.

Using the decomposition

η(k)
n − π(k) =

k∑
l=0

[
�(k,l+1)

n

(
η(l)) − �(k,l+1)

n

(
�(l)(η(l−1)))]
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we prove the following inclusion of events:{∣∣[η(k)
n − π(k)](f )

∣∣ > t
}

⊂ {∃0 ≤ l ≤ k :
∣∣[�(k,l+1)

n

(
η(l)) − �n

(k,l+1)(�(l)(η(l−1)))](f )
∣∣ > t/(k + 1)

}
.

By Lemma 6.4 we can find a sufficiently large integer N(t) that may depend on
the parameter k and such that for every n ≥ N(t)

P
(∣∣[η(k)

n − π(k)](f )
∣∣ > t

)
≤ ∑

0≤l≤k

P

(∣∣[�(k,l+1)
n

(
η(l)) − �(k,l)

n

(
�(l)(η(l−1)))](f )

∣∣ > t

k + 1

)

≤ (k + 1)
(
c1(n + 1)

)k
e−(n+1)t2c2/((k+1)2ck

3).

This clearly implies the existence of some finite constant σk < ∞ such that

lim sup
n→∞

1

n
log P

(∣∣[η(k)
n − π(k)](f )

∣∣ > t
)
< − t2

2σ 2
k

.

PROOF OF LEMMA 6.4. Using Lemma 4.1, we find that∣∣[�(l2,l1+1)
n

(
η(l1)

) − �(l2,l1)
n

(
�(l1)

(
η(l1−1)))](f )

∣∣
≤

∫ ∣∣[η(l1)
p − �(l1)

p

(
η(l1−1))](g)

∣∣�(l2,l1+1)((n, f ), d(p,g)).

Arguing as in (3.13), we find that for any g ∈ B(S(l1)), we have

∣∣[η(l1)
p − �(l1)

p

(
η(l1−1))](g)

∣∣ ≤ |M(l1)
p+1(g)|
p + 1

+ c1
log (p + 2)

p + 2
‖g‖(6.6)

with a sub-Gaussian process M
(l1)
n (g) satisfying the following exponential inequal-

ity for any t > 0 and any time parameter n ≥ 1:

P
(∣∣M(l1)

n (g)
∣∣ ≥ t

√
n
) ≤ 2 exp (−c2t

2/‖g‖2).

We notice that

1

n + 2

n∑
p=0

(log (p + 2))k

p + 2
≤ (log (n + 2))k

n + 2

n∑
p=0

1

p + 2

≤ (log (n + 2))k

n + 2

n∑
p=0

∫ p+2

p+1

1

t
dt

= (log (n + 2))k+1

n + 2
.
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This implies that ∫
�(n,dp)

log (p + 2)

p + 2
≤ 2

(log (n + 2))2

n + 2
.

More generally for any k ≥ 0, we have that∫
�k(n, dp)

log (p + 2)

p + 2
≤ 2k (log (n + 2))k+1

n + 2

from which we prove that∫ log (p + 2)

p + 2
‖g‖�(l2,l1+1)((n, f ), d(p,g))

≤ 2(l2−l1)
(log (n + 2))(l2−l1)+1

n + 2

∫
‖g‖�l2,l1+1(f, dg)

(6.7)

≤ 2(l2−l1)
(log (n + 2))(l2−l1)+1

n + 2

( ∏
l1<i≤l2

	i

)

≤ c
(l2−l1)
3

(log (n + 2))(l2−l1)+1

n + 2
.

For any g ∈ B(S(l1)) we set

M(l1,l2)
n+1 (g) :=

∫
�(l2−l1)(n, dp)

|M(l1)
p+1(g)|
p + 1

.

Using Lemma 6.3, we prove that

P
(

M(l1,l2)
n+1 (g) > t

) ≤ 2(n + 1)(l2−l1) exp
(−c2(n + 1)t2/

[
22(l2−l1)‖g‖2]).

We observe that∫ 1

p + 1

∣∣M(l1)
p+1(g)

∣∣�(l2,l1+1)((n, f ), d(p,g)) =
∫

M(l1,l2)
n+1 (g)�l2,l1+1(f, dg).

In addition, using (6.6) and (6.7) we find that∣∣[�(l2,l1+1)
n

(
η(l1)

) − �n
(l2,l1)

(
�(l1)

(
η(l1−1)))](f )

∣∣
(6.8)

≤
∫

M(l1,l2)
n+1 (g)�l2,l1+1(f, dg) + εl1,l2(n)

with

εl1,l2(n) := c1c
(l2−l1)
3

(log (n + 2))(l2−l1)+1

n + 2
.
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Using the inclusion of events{∫
M(l1,l2)

n+1 (g)�l2,l1+1(f, dg) > t

}
⊂ {∃g ∈ Supp(�l2,l1+1(f, ·)) such that M(l1,l2)

n+1 (g) > t‖g‖/(	l2,l1+1)
}

we find that

P

(∫
M(l1,l2)

n+1 (g)�l2,l1+1(f, dg) > t

)
≤ Sl2,l1+1(f )P

(
M(l1,l2)

n+1 (g) > t‖g‖/(	l2,l1+1)
)
.

Finally, under our assumptions we have

Sl2,l1+1(f ) = Card(Supp(�l2,l1+1(f, ·)))
≤ ∏

l1+1≤k≤l2

sup
f ∈B(S(k))

Card(Supp(�k(f, ·))) ≤ c
(l2−l1)
4

from which we check that

P

(∫
M(l1,l2)

n+1 (g)�l2,l1+1(f, dg) > t

)
≤ (

c5(n + 1)
)(l2−l1) exp

(−c6(n + 1)t2/c
(l2−l1)
7

)
.

Using (6.8), we conclude that

P
(∣∣[�(l2,l1+1)

n

(
η(l1)

) − �(l2,l1)
n

(
�(l1)

(
η(l1−1)))](f )

∣∣ > t + εl1,l2(n)
)

≤ (
c5(n + 1)

)(l2−l1) exp
(−c6(n + 1)t2/c

(l2−l1)
7

)
.

To take the final step, we observe that

P
(√

n + 1
∣∣[�(l2,l1+1)

n

(
η(l1)

) − �(l2,l1)
n

(
�(l1)

(
η(l1−1)))](f )

∣∣ > t + √
n + 1εl1,l2(n)

)
≤ P

(∣∣[�(l2,l1+1)
n

(
η(l1)

) − �(l2,l1)
n

(
�(l1)

(
η(l1−1)))](f )

∣∣
>

t√
n + 1

+ εl1,l2(n)

)
.

We also notice that for any t > 0 we can find some nonincreasing function N(t)

such that

∀n ≥ N(t)
√

n + 1εl1,l2(n) < t.

This implies that for any n ≥ N(t) we have

P
(√

n + 1
∣∣[�(l2,l1+1)

n

(
η(l1)

) − �(l2,l1)
n

(
�(l1)

(
η(l1−1)))](f )

∣∣ > 2t
)

≤ (
c5(n + 1)

)(l2−l1) exp
(−c6t

2/c
(l2−l1)
7

)
.
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The end of the proof is now straightforward. �

We are now in position to prove Theorem 6.2.

PROOF OF THEOREM 6.2. We use the same notation as we used in the proof
of Theorem 6.1. Using (6.4) we find that∣∣[�(k,m),(j)

n (μ) − �(k,m),(j)
n (ν)

]
(f )

∣∣ > t

�⇒ ∃g ∈ Supp(�j+k(f, ·)) :
∣∣[(�(j+(k−1),j+1)

n

(
μ(j)))

− (
�(j+(k−1),j+1)

n

(
ν(j)))](g)

∣∣ > t‖g‖/	j+k.

Therefore, using Lemma 6.4 we can find a nonincreasing function N(t) (that may
depend on the parameter k), such that for every n ≥ N(t) and any f ∈ B1(S

(j+k))

we have

P
(√

n + 1
∣∣[�(k,m),(j)

n (μ) − �(k,m),(j)
n (ν)

]
(f )

∣∣ > t
)

≤ (
c1(n + 1)

)(k−1) exp
(−c2t

2/c
(k−1)
3

)
.

In much the same way, by the decomposition (6.5) we find the following assertion:∣∣[�(k,m)
n (μ) − �(k,m)

n (ν)
]
(f )

∣∣ > t

�⇒ ∃0 ≤ j ≤ (m − k) :
∣∣[�(k,m),(j)

n (μ) − �(k,m),(j)
n (ν)

]
× (

R(k,m),(j)
n (μ, ν)(f )

)∣∣ > t/(m − k + 1).

Since R
(k,m),(j)
n (μ, ν) maps B1(

∏m
l=k S(l)) into B1(S

(j+k)) we have for every pa-
rameter n ≥ N(t)

P
(√

n + 1
∣∣[�(k,m)

n

((
η(l))

l

) − �(k,m)
n

((
�(l)(η(l−1)))

l

)]
(f )

∣∣ > t
)

≤ (m − k + 1)
(
c1(n + 1)

)k−1 exp
(−c2t

2/
(
(m − k + 1)2ck−1

3

))
.

In summary, we have proved that there exists some nonincreasing function N(t)

that may depend on the parameter m such that for any 0 ≤ k ≤ m, any f ∈ B1(E),
and any n ≥ N(t) we have

P
(√

n + 1
∣∣[π [k−1] ⊗ {

�(k,m)
n

((
η(l))

l

) − �(k,m)
n

((
�(l)(η(l−1)))

l

)}]
(f )

∣∣ > t
)

≤ (
c4(n + 1)

)m exp(−c5t
2/cm

6 ).

Let (Un)n≥1 be a collection of [0,1]-valued random variables such that for any t

there exists some nonincreasing function N(t), so that for n ≥ N(t)

P
(√

nUn ≥ t
) ≤ anαe−t2b
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for some integer α ≥ 1 and some pair of positive constants (a, b). In this situation,
we can find a nonincreasing function N ′(t) and a pair of positive constants (a′, b′)
such that

∀n ≥ N ′(t)P
(

n∑
p=1

Up >
√

nt

)
≤ a′nα+1e−t2b′

.

To prove this claim, we simply use the fact that for any n ≥ N(t) we have

1√
n

n∑
p=1

Up ≤ N(t)√
n

+ 1√
n

n∑
p=N(t)

1√
p

(√
pUp

)
and

1

2
√

n

n∑
p=1

1√
p

≤ 1.

This yields that for any n ≥ N(t)

P

(
1√
n

n∑
p=1

Up > t + N(t)√
n

)
≤

n∑
p=N(t)

P
(√

pUp > t/2
)
.

We let N ′(t) be the smallest integer n such that N(t)/
√

n ≤ t . Recalling that N(t)

is a nondecreasing function, we find that for any s ≥ t

N(t)/
√

n ≤ t �⇒ N(s)/
√

n ≤ N(t)/
√

n ≤ t ≤ s �⇒ N(s)/
√

n ≤ s.

This implies that N ′(s) ≤ N ′(t). Thus, we have constructed a nonincreasing func-
tion N ′(t) such that for any n ≥ N ′(t)

P

(
1√
n

n∑
p=1

Up > 2t

)
≤ anα+1e−t2b/4.

This ends the proof of the assertion with (a′, b′) = (a, b/24). Applying this prop-
erty to the decomposition (6.2), we can find a nonincreasing function N(t) such
that for any n ≥ N(t) and any 0 ≤ k ≤ m

P
(√

n + 1|[ωk
n(η) − ωk+1

n (η)](f )| > t
) ≤ (

c7(n + 1)
)m+1 exp(−c8t

2/cm
9 ).

The end of the proof of the theorem is now a direct consequence of the decompo-
sition (6.1). �

7. Feynman–Kac semigroups. In Section 5.3, we established a uniform con-
vergence theorem under the assumption that the time averaged semigroup �(k,l)

introduced in Section 4.1 is exponentially stable; that is, it satisfies (5.4). In this
section, we study the mappings �(k,l) associated with the Feynman–Kac transfor-
mations discussed in (7.2). We provide necessary conditions ensuring that (5.4) is
satisfied in this case.
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7.1. Description of the models. To precisely describe these mappings we need
a few definitions.

DEFINITION 7.1. We denote by �G
l the Boltzman–Gibbs transformation as-

sociated with a positive potential function G on S(l), and defined for any f ∈
B(S(l)) by the following formula:

�G
l (ηp)(f ) = ηp(Gf )/ηp(G).

We let Ql be the integral operator from B(S(l)) into B(S(l−1)) given by

∀f ∈ B
(
S(l)) Ql(f ) := Gl−1 × Ll(f ) ∈ B

(
S(l−1)).(7.1)

By definition of the mappings �l given in (2.1), it is easy to check that

�(l)(η) = �(l),Ql(1)(η)Ll

(7.2)

with ∀n ≥ 0�
(l),Ql(1)
n (η) = 1

n + 1

n∑
p=0

�
Ql(1)
l (ηp).

DEFINITION 7.2. We let �(k,l) be the semigroup associated with the Feyn-
man–Kac transformations �l discussed in (7.2), and we denote by

Ql,k = QlQl+1 · · ·Qk

the semigroup associated with the integral operator Ql introduced in (7.1).

PROPOSITION 7.3. For any l ≤ k we have that

�(k,l)(η) = �(k,l)(η)Pl,k with Pl,k(f ) = Ql,k(f )

Ql,k(1)
,(7.3)

and the mapping �(k,l) from P(S(l−1))N into itself given below:

�(k,l) = �(l),Hl,k ◦ �(k−1,l)

= �(l),Hl,k ◦ �(l),Hl,k−1 ◦ · · · ◦ �(l),Hl,l with Hl,k := Ql,k(1)

Ql,k−1(1)
.

For l = k, we use the conventions �(k−1,l) = �(l−1,l) = Id and Ql,k−1(1) =
Ql,l−1(1) = 1, so that Hl,l = Ql,l(1) = Ql(1) and �(l,l) = �(l),Ql(1).

PROOF. We prove the proposition by induction on the parameter m = (k − l).
For k = l, we clearly have

Pl,l(f ) = Ql(f )

Ql(1)
= Ll(f )
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and

�(l,l) = �(l),Ql(1) �⇒ �(l)(η) = �(l,l)(η)Pl,l .

Suppose we have proved formula (7.3) for some m = (k − l) ≥ 0. To check the
result at level m + 1 = (k − l) + 1 = ((k + 1) − l), we first observe that

�(k+1)(�(k,l)(η)
) = �(k+1),Qk+1(1)(�(k,l)(η)

)
Pk+1,k+1.

For any μ ∈ P(S(k)), we also have that

�
(k+1),Qk+1(1)
n (μ)(Pk+1(f )) = 1

n + 1

n∑
p=0

μp(Qk+1(f ))

μp(Qk+1(1))

so that

�
(k+1),Qk+1(1)
n

(
�(k,l)(η)

)
Pk+1,k+1 = 1

n + 1

n∑
p=0

�
(k,l)
p (η)(Qk+1(f ))

�
(k,l)
p (η)(Qk+1(1))

.

Using the induction hypothesis, we find that

�(k,l)
p (η)(Qk+1(f )) = �(k,l)(η)[Pl,k(Qk+1(f ))].

We also have

Pl,k(Qk+1(f )) = Ql,k+1(1)

Ql,k(1)
Pl,k+1(f ) = Hl,k+1Pl,k+1(f )

from which we prove that

�(k,l)(η)[Pl,k(Qk+1(f ))] = �(k,l)(η)[Hl,k+1Pl,k+1(f )].
This clearly yields that

�
(k,l)
p (η)(Qk+1(f ))

�
(k,l)
p (η)(Qk+1(1))

= �
(k,l)
p (η)[Hl,k+1Pl,k+1(f )]

�
(k,l)
p (η)[Hl,k+1]

= �
Hl,k+1
l

(
�(k,l)

p (η)
)
Pl,k+1(f )

and therefore

�
(k+1),Qk+1(1)
n

(
�(k,l)(η)

)
Pk+1,k+1 = 1

n + 1

n∑
p=0

�
Hl,k+1
l

(
�(k,l)

p (η)
)
Pl,k+1(f )

= �
(l),Hl,k+1
n

(
�(k,l)(η)

)
Pl,k+1(f ).

In summary, we have proved that

�(k+1,l)(η) = �(k+1,l)(η)Pl,k+1(f )

with �(k+1,l)(η) = �
(l),Hl,k+1
n

(
�(k,l)(η)

)
.

This ends the proof of the proposition. �
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7.2. Contraction inequalities.

PROPOSITION 7.4. For any l ≤ k we have

β(Pl,k) = 1

2
sup
η,μ

∥∥�(k,l)(η) − �(k,l)(μ)
∥∥.

PROOF. Using Proposition 7.3, we find that∥∥�(k,l)(η) − �(k,l)(μ)
∥∥ = ∥∥[�(k,l)(η) − �(k,l)(μ)

]
Pl,k

∥∥
≤ β(Pl,k)

∥∥�(k,l)(η) − �(k,l)(μ)
∥∥.

This implies that

sup
η,μ

∥∥�(k,l)(η) − �(k,l)(μ)
∥∥ ≤ 2β(Pl,k).

On the other hand, if we chose the constant Dirac distribution flows η = (ηn)n≥0
and μ = (μn)n≥0 given by

∀n ≥ 0 ηn = δx and μn = δy

for some x, y ∈ S(l−1), we also have that

�(k,l)(δx) − �(k,l)(δy) = δxPl,k − δyPl,k.

This implies that

sup
η,μ

∥∥�(k,l)(η) − �(k,l)(μ)
∥∥ ≥ sup

x,y
‖δxPl,k − δyPl,k‖ = 2β(Pl,k).

This ends the proof of the proposition. �

Our next objective is to estimate the contraction coefficient β(Pl,k) in terms of
the mixing type properties of the semigroup Ll,k = LlLl−1 · · ·Lk associated with
the Markov operators Ll . We introduce the following regularity conditions.

(L)m There exists an integer m ≥ 1 and a sequence (εl(L))l≥0 ∈ (0,1)N such
that

∀l ≥ 0,∀(x, y) ∈ (
S(l−1))2

Ll+1,l+m(x, ·) ≥ εl(L)Ll+1,l+m(y, ·).

It is well known that the above condition is satisfied for any aperiodic and irre-
ducible Markov chain on a finite space. Loosely speaking, for noncompact spaces
this condition is related to the tails of the transition distributions on the boundaries
of the state space. For instance, let us assume that S(l) = R and Ll is the bi-Laplace
transition given by

Ll(x, dy) = c(l)

2
e−c(l)|y−Al(x)| dy
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for some c(l) > 0 and some drift function An with bounded oscillations osc(Al) <

∞. In this case, it is readily checked that condition (L)m holds true for m = 1 with
the parameter

εl−1(L) = exp (−c(l)osc(Al)).

Under the condition (G) presented on page 11 and the mixing condition (L)m
stated above, we proved in [5] (see Corollary 4.3.3 on page 141) that we have for
any k ≥ m ≥ 1, and l ≥ 1

β(Pl+1,l+k) ≤
�k/m�−1∏

i=0

(
1 − ε

(m)
l+im

)
with ε

(m)
l := ε2

l (L)
∏

l+1≤k<l+m

εk(G).

Several contraction inequalities can be deduced from these estimates, we refer to
Chapter 4 of the book [5]. To give a flavor of these results, we further assume that
(M)m is satisfied with m = 1 and ε(L) = infl εl(L) > 0. In this case, we can check
that

β(Pl+1,l+k) ≤ (
1 − ε(L)2)k.
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article.

REFERENCES

[1] ANDRIEU, C., JASRA, A., DOUCET, A. and DEL MORAL, P. (2007). Non-linear Markov chain
Monte Carlo via self-interacting approximations. Technical report, Dept. Mathematics,
Bristol Univ.

[2] BERCU, B., DEL MORAL, P. and DOUCET, A. (2009). A functional central limit theorem
for a class of interacting Markov chain Monte Carlo methods. Electron. J. Probab. 73
2130–2155.

[3] BERCU, B., DEL MORAL, P. and DOUCET, A. (2008). Fluctuations of interacting Markov
chain Monte Carlo models. Technical Report INRIA 6438.

[4] BROCKWELL, A., DEL MORAL, P. and DOUCET, A. (2010). Sequentially interacting Markov
chain Monte Carlo. Ann. Statist. To appear.

[5] DEL MORAL, P. (2004). Feynman–Kac Formulae: Genealogical and Interacting Particle Sys-
tems With Applications. Springer, New York. MR2044973

[6] DEL MORAL, P. and MICLO, L. (2006). Self-interacting Markov chains. Stoch. Anal. Appl. 24
615–660. MR2220075

[7] DEL MORAL, P. and MICLO, L. (2003). On convergence of chains with time empirical self-
interactions. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 325–346. MR2052266

[8] DOUCET, A., DE FREITAS, N. and GORDON, N., eds. (2001). Sequential Monte Carlo Meth-
ods in Practice. Springer, New York. MR1847783

[9] KOU, S. C., ZHOU, Q. and WONG, W. H. (2006). Equi-energy sampler with applications in
statistical inference and statistical mechanics. Ann. Statist. 34 1581–1652. MR2283711

[10] LYMAN, E. and ZUCKERMAN, D. M. (2006). Resolution exchange simulation with incremen-
tal coarsening. J. Chem. Theory Comp. 2 656–666.

http://www.ams.org/mathscinet-getitem?mr=2044973
http://www.ams.org/mathscinet-getitem?mr=2220075
http://www.ams.org/mathscinet-getitem?mr=2052266
http://www.ams.org/mathscinet-getitem?mr=1847783
http://www.ams.org/mathscinet-getitem?mr=2283711


INTERACTING MARKOV CHAIN MONTE CARLO METHODS 639

[11] MENGERSEN, K. L. and TWEEDIE, R. L. (1996). Rates of convergence of the Hastings and
Metropolis algorithms. Ann. Statist. 24 101–121. MR1389882

[12] ROBERT, C. P. and CASELLA, G. (2004). Monte Carlo Statistical Methods, 2nd ed. Springer,
New York. MR2080278

CENTRE INRIA BORDEAUX ET SUD-OUEST

AND INSTITUT DE MATHÉMATIQUES DE BORDEAUX

UNIVERSITÉ BORDEAUX

351 COURS DE LA LIBÉRATION

33405 TALENCE CEDEX

FRANCE

E-MAIL: Pierre.Del-Moral@inria.fr

DEPARTMENT OF STATISTICS

AND DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF BRITISH COLUMBIA

333-6356 AGRICULTURAL ROAD

VANCOUVER, BC, V6T 1Z2
CANADA

AND

THE INSTITUTE OF STATISTICAL MATHEMATICS

4-6-7 MINAMI-AZABU

MINATO-KU, TOKYO 106-8569
JAPAN

E-MAIL: Arnaud@stat.ubc.ca

http://www.ams.org/mathscinet-getitem?mr=1389882
http://www.ams.org/mathscinet-getitem?mr=2080278
mailto:Pierre.Del-Moral@inria.fr
mailto:Arnaud@stat.ubc.ca

	Introduction
	Nonlinear measure-valued processes
	Interacting particle methods
	Self-interacting Markov chains
	Notation and conventions
	Interacting Markov chain Monte Carlo methods
	Statement of some results

	Motivating applications
	Feynman-Kac models
	Interacting Markov chain Monte Carlo methods for Feynman-Kac models
	Interacting particle and Markov chain Monte Carlo methods

	Time inhomogeneous Markov chains
	Description of the models
	A resolvent analysis
	Lr-inequalities and concentration analysis

	Distribution flows models
	Time averaged semigroups
	Integral operators
	Path space semigroups

	Asymptotic analysis
	Introduction
	Strong law of large numbers
	A uniform convergence theorem

	Path space models
	Lr-mean error bounds
	Concentration analysis

	Feynman-Kac semigroups
	Description of the models
	Contraction inequalities

	Acknowledgments
	References
	Author's Addresses

