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A BIRTHDAY PARADOX FOR MARKOV CHAINS WITH AN
OPTIMAL BOUND FOR COLLISION IN THE POLLARD

RHO ALGORITHM FOR DISCRETE LOGARITHM
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Yonsei University, University of Massachusetts Lowell, Microsoft Research and
Georgia Institute of Technology

We show a Birthday Paradox for self-intersections of Markov chains with
uniform stationary distribution. As an application, we analyze Pollard’s Rho
algorithm for finding the discrete logarithm in a cyclic group G and find that if
the partition in the algorithm is given by a random oracle, then with high prob-
ability a collision occurs in �(

√|G|) steps. Moreover, for the parallelized dis-
tinguished points algorithm on J processors we find that �(

√|G|/J ) steps
suffices. These are the first proofs of the correct order bounds which do not
assume that every step of the algorithm produces an i.i.d. sample from G.

1. Introduction. The Birthday Paradox states that if C
√

N items are sam-
pled uniformly at random with replacement from a set of N items, then, for
large C with high probability, some items will be chosen twice. This can be in-
terpreted as a statement that with high probability, a Markov chain on the com-
plete graph KN with transitions P(i, j) = 1/N will intersect its past in C

√
N

steps; we refer to such a self-intersection as a collision and say the “collision time”
is O(

√
N). Miller and Venkatesan generalized this in [8] by showing that for a

general Markov chain, the collision time is bounded by O(
√

NTs(1/2)) where
Ts(ε) = min{n :∀u, v ∈ V,P n(u, v) ≥ (1 − ε)π(v)} measures the time required
for the n-step distribution to assign every state a suitable multiple of its stationary
probability. Kim, Montenegro and Tetali [6] further improved the bound on col-
lision time to O(

√
NTs(1/2)). In contrast, while this shows the average path to

be quickly self-intersecting, Pak [11] has shown that undirected regular graphs of
large degree have a nonintersecting path of length N/(32Ts(1/2)).

The motivation of [6, 8] was to study the collision time for a Markov chain in-
volved in Pollard’s Rho algorithm for finding the discrete logarithm on a cyclic
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group G of prime order N = |G| �= 2. For this walk, Ts(1/2) = �(logN), and
so the results of [6, 8] are insufficient to show the widely believed �(

√
N) col-

lision time for this walk. In this paper we improve upon these bounds and show
that if a finite ergodic Markov chain has uniform stationary distribution over N

states, then O(
√

N) steps suffice for a collision to occur as long as the relative-
pointwise distance (L∞ of the densities of the current and the stationary distribu-
tion) drops steadily early in the random walk; it turns out that the precise mixing
time is largely, although not entirely, unimportant. See Theorem 3.2 for a precise
statement. This is then applied to the Rho walk to give the first proof of colli-
sion in �(

√
N) steps, matching Shoup’s lower bound [16] on time required for

any probabilistic generic algorithm to solve this problem, and to van Oorschot and
Wiener’s [19] parallel version of the algorithm on J processors to prove collision
in �(

√
N/J) steps.

We note here that it is also well known (see, e.g., [1], Section 4.1) that a random
walk of length L contains roughly Lλ samples from the stationary measure (of
the Markov chain) where λ is the spectral gap of the chain. This yields another
estimate on collision time for a Markov chain which is also of a multiplicative
nature (namely,

√
N times a function of the mixing time) as in [6, 8]. A main point

of the present work is to establish sufficient criteria under which the collision time
has an additive bound: C

√
N plus an estimate on the mixing time. While the Rho

algorithm provided the main motivation for the present work, we find the more
general Birthday Paradox result to be of independent interest, and, as such, expect
to have other applications in the future.

A bit of detail about the Pollard Rho algorithm is in order. The classical dis-
crete logarithm problem on a cyclic group deals with computing the exponents,
given the generator of the group; more precisely, given a generator g of a cyclic
group G and an element h = gx , one would like to compute x efficiently. Due to
its presumed computational difficulty, the problem figures prominently in various
cryptosystems, including the Diffie–Hellman key exchange, El Gamal system and
elliptic curve cryptosystems. About 30 years ago, J. M. Pollard suggested algo-
rithms to help solve both factoring large integers [13] and the discrete logarithm
problem [14]. While the algorithms are of much interest in computational number
theory and cryptography, there has been little work on rigorous analysis. We refer
the reader to [8] and other existing literature (e.g., [3, 18]) for further cryptographic
and number-theoretical motivation for the discrete logarithm problem.

A standard variant of the classical Pollard Rho algorithm for finding discrete
logarithms can be described using a Markov chain on a cyclic group G. While
there has been no rigorous proof of rapid mixing of this Markov chain of or-
der O(logc |G|) until recently, Miller and Venkatesan [8] gave a proof of mix-
ing of order O(log3 |G|) steps and collision time of O(

√|G| log3 |G|), and Kim,
Montenegro and Tetali [6] showed mixing of order O(log |G| log log |G|) and col-
lision time of O(

√|G| log |G| log log |G|). In this paper we give the first proof
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of the correct �(
√|G|) collision time. By recent results of Miller and Venkate-

san [9] this collision will be nondegenerate and will solve the discrete logarithm
problem with probability 1 − o(1) for almost every prime order |G|, if the start
point of the algorithm is chosen at random or if there is no collision in the first
O(log |G| log log |G|) steps.

The paper proceeds as follows. Section 2 contains some preliminaries, primar-
ily an introduction to the Pollard Rho algorithm and a simple multiplicative bound
on the collision time in terms of the mixing time. The more general Birthday Para-
dox for Markov chains with uniform stationary distribution is shown in Section 3.
In Section 4 we bound the appropriate constants for the Rho walk and show the
optimal collision time. We finish in Section 5 by proving similar results for the
distinguished points method of parallelizing the algorithm.

2. Preliminaries. Our intent in generalizing the Birthday Paradox was to
bound the collision time of the Pollard Rho algorithm for discrete logarithm. As
such, we briefly introduce the algorithm here. Throughout the analysis in the fol-
lowing sections, we assume that the size N = |G| of the cyclic group on which the
random walk is performed is odd. Indeed there is a standard reduction (see [15] for
a very readable account and [12] for a classical reference) justifying the fact that it
suffices to study the discrete logarithm problem on cyclic groups of prime order.

Suppose g is a generator of G, that is, G = {gi}N−1
i=0 . Given h ∈ G, the discrete

logarithm problem asks us to find x such that gx = h. Pollard suggested an al-
gorithm on Z×

N based on a random walk and the Birthday Paradox. A common
extension of his idea to groups of prime order is to start with a partition of G into
sets S1, S2, S3 of roughly equal sizes, and define an iterating function F :G → G

by F(y) = gy if y ∈ S1, F(y) = hy = gxy if y ∈ S2 and F(y) = y2 if y ∈ S3. Then
consider the walk yi+1 = F(yi). If this walk passes through the same state twice,
say ga+xb = gα+xβ , then ga−α = gx(β−b), and so a − α ≡ x(β − b)modN and
x ≡ (a − α)(β − b)−1 modN which determines x as long as (β − b,N) = 1 (the
nondegenerate case). Hence, if we define a collision to be the event that the walk
passes over the same group element twice, then the first time there is a collision it
might be possible to determine the discrete logarithm.

To estimate the running time until a collision, one heuristic is to treat F as if it
outputs uniformly random group elements. By the Birthday Paradox, if O(

√|G|)
group elements are chosen uniformly at random, then there is a high probability
that two of these are the same. Teske [17] has given experimental evidence that
the time until a collision is slower than what would be expected by an independent
uniform random process. We analyze instead the actual Markov chain in which
it is assumed only that each y ∈ G is assigned independently and at random to
a partition S1, S2 or S3. In this case, although the iterating function F described
earlier is deterministic, because the partition of G was randomly chosen, then the
walk is equivalent to a Markov chain (i.e., a random walk), at least until the walk
visits a previously visited state and a collision occurs. The problem is then one of



498 KIM, MONTENEGRO, PERES AND TETALI

considering a walk on the exponent of g, that is, a walk P on the cycle ZN with
transitions P(u,u + 1) = P(u,u + x) = P(u,2u) = 1/3.

REMARK 2.1. By assuming each y ∈ G is assigned independently and at ran-
dom to a partition, we have eliminated one of the key features of the Pollard Rho
algorithm, space efficiency. However, if the partitions are given by a hash function,
f : (G,N) → {1,2,3}, which is sufficiently pseudo-random, then we might expect
behavior similar to the model with random partitions.

REMARK 2.2. While we are studying the time until a collision occurs, there
is no guarantee that the first collision will be nondegenerate. If the first collision
is degenerate then so will be all collisions as the algorithm becomes deterministic
after the first collision.

As mentioned in the introduction, we first recall a simple multiplicative bound
on collision time from [6]. The following proposition relates Ts(1/2) to the time
until a collision occurs for any Markov chain P with uniform distribution on G as
the stationary distribution.

PROPOSITION 2.3. With the above definitions, a collision occurs after

Ts(1/2) + 2
√

2c|G|Ts(1/2)

steps with probability at least 1 − e−c, for any c > 0.

PROOF. Let S denote the first 
√2c|G|Ts(1/2)� states visited by the walk. If
two of these states are the same then a collision has occurred, so assume all states
are distinct. Even if we only check for collisions every Ts(1/2) steps, the chance
that no collision occurs in the next tTs(1/2) steps (so consider t semi-random
states) is then at most(

1 − 1

2

|S|
|G|

)t

≤
(

1 −
√

cTs(1/2)

2|G|
)t

≤ exp
(
−t

√
cTs(1/2)

2|G|
)
.

When t = 

√

2c|G|
Ts(1/2)

�, this is at most e−c, as desired, and so at most

⌈√
2c|G|Ts(1/2)

⌉ − 1 +
⌈√

2c|G|
Ts(1/2)

⌉
Ts(1/2)

steps are required for a collision to occur with probability at least 1 − e−c. �

Obtaining a more refined additive bound on collision time will be the focus of
the next section. While the proof can be seen as another application of the well-
known second moment method, it turns out that bounding the second moment of
the number of collisions before the mixing time is somewhat subtle. To handle this,
we use an idea from [7], who in turn credit their approach to [5].
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3. Collision time. Consider a finite ergodic Markov chain P with uniform
stationary distribution U (i.e., doubly stochastic), state space � of cardinality N =
|�|, and let X0,X1, . . . denote a particular instance of the walk. In this section we
determine the number of steps of the walk required to have a high probability that
a “collision” has occurred, that is, a self-intersection Xi = Xj for some i �= j .

A key notion when studying Markov chains is the mixing time, or the time
required until the probability of being at each state is suitably close to its stationary
probability.

DEFINITION 3.1. The mixing time τ(ε) of a Markov chain P with stationary
distribution U is given by

τ(ε) = min{T :∀u, v ∈ �, (1 − ε)U(v) ≤ P T (u, v) ≤ (1 + ε)U(v)}.
Now some notation.
Fix some T ≥ 0 and integer β > 0. Let the indicator function 1{Xi=Xj } equal

one if Xi = Xj , and zero otherwise. Define

S =
β
√

N∑
i=0

β
√

N+2T∑
j=i+2T

1{Xi=Xj }

to be the number of times the walk intersects itself in β
√

N + 2T steps where i

and j are at least 2T steps apart. Also, for u, v ∈ �, let

GT (u, v) =
T∑

i=0

P i(u, v)

be the expected number of times a walk beginning at u hits state v in T steps.
Finally, let

AT = max
u

∑
v

G2
T (u, v) and A∗

T = max
u

∑
v

G2
T (v,u).

To see the connection between these and the collision time, observe that

∑
v

G2
T (u, v) = ∑

v

(
T∑

i=0

T∑
j=0

P i(u, v)P j (u, v)

)

=
T∑

i=0

T∑
j=0

∑
v

P i(u, v)P j (u, v)

=
T∑

i=0

T∑
j=0

Pr(Xi = Yj )

=
T∑

i=0

T∑
j=0

E
(
1{Xi=Yj }

) = E

T∑
i,j=0

1{Xi=Yj },
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where {Xi}, {Yj } are i.i.d. copies of the chain, both having started at u at time 0,
and E denotes expectation. Hence AT is the maximal expected number of colli-
sions of two T -step i.i.d. walks of P starting at the same state u. Likewise, A∗

T is
the same for the reversal P ∗ where P ∗(u, v) = P(v,u) (recall that the stationary
distribution was assumed to be uniform).

The main result of this section is the following.

THEOREM 3.2 (Birthday Paradox for Markov chains). Consider a finite er-
godic Markov chain with uniform stationary distribution on a state space of size N .
Let T be such that m

N
≤ P T (u, v) ≤ M

N
for some m ≤ 1 ≤ M and every pair of

states u, v. After

4c

(
M

m

)2(√
2N

M
max{AT ,A∗

T } + T

)

steps a collision occurs with a probability of at least 1 − e−c, for any c ≥ 0.

At the end of this section a slight strengthening of Theorem 3.2 is shown at the
cost of a somewhat less intuitive bound.

In Example 3.5, near the end of this section, we present an example to illus-
trate the need for the pre-mixing term AT in Theorem 3.2. In contrast, very re-
cently Nazarov and Peres [10] proved a general bound for the birthday problem
on any reversible Markov chain on N states: Suppose that the ratio of the station-
ary measures of any two states is at most A. Then they show that for any starting
state, the expected time until the chain visits a previously visited state is at most
C

√
N + log(A) for some universal constant C. In particular, this implies an ex-

pected collision time of O(
√

N) for the simple random walk on an undirected
graph on N vertices, and so the pre-mixing term is not necessary when consider-
ing reversible walks.

Observe that if AT ,A∗
T ,m,M = �(1) and T = O(

√
N), then the collision time

is O(
√

N) as in the standard Birthday Paradox. By Lemma 3.3, for this to occur
it suffices that P T be sufficiently close to uniform after T = o(

√
N) steps and that

P j (u, v) = o(T −2) + dj for all u, v, for j ≤ T and some d < 1. More generally,
to upper bound AT and A∗

T it suffices to show that the maximum probability of
being at a vertex decreases quickly.

LEMMA 3.3. If a finite ergodic Markov chain has uniform stationary distrib-
ution, then

AT ,A∗
T ≤ 2

T∑
j=0

(j + 1)max
u,v

P j (u, v).
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PROOF. If u is such that equality occurs in the definition of AT , then

AT = ∑
v

G2
T (u, v) =

T∑
i=0

T∑
j=0

∑
v

P i(u, v)P j (u, v)

≤ 2
T∑

j=0

j∑
i=0

max
y

P j (u, y)
∑
v

P i(u, v)

≤ 2
T∑

j=0

(j + 1)max
y

P j (u, y).

The quantity A∗
T plays the role of AT for the reversed chain, and so the

same bound holds for A∗
T but with maxu,v(P

∗)j (u, v) = maxu,v P j (v, u) =
maxu,v P j (u, v). �

In particular, suppose P j (u, v) ≤ c + dj for every u, v ∈ � and some c, d ∈
[0,1). The sum

T∑
j=0

(j + 1)(c + dj ) = c
(T + 1)(T + 2)

2
+ 1 − dT +1 − (T + 1)dT +1(1 − d)

(1 − d)2

≤ (
1 + o(1)

)cT 2

2
+ 1

(1 − d)2 ,

and so if P j (u, v) ≤ o(T −2) + dj for every u, v ∈ �, then AT ,A∗
T = 2+o(1)

(1−d)2 .
The proof of Theorem 3.2 relies largely on the following inequality which shows

that the expected number of self-intersections is large with low variance:

LEMMA 3.4. Under the conditions of Theorem 3.2,

E[S] ≥ m

N

(
β
√

N + 2
2

)
,

E[S2] ≤ M2

N2

(
β
√

N + 2
2

)2 (
1 + 8 max{AT ,A∗

T }
Mβ2

)
.

PROOF OF THEOREM 3.2. Recall the standard second moment bound: using
Cauchy–Schwarz, we have that

E[S] = E
[
S1{S>0}

] ≤ E[S2]1/2E
[
1{S>0}

]1/2
,

and hence Pr[S > 0] ≥ E[S]2/E[S2]. If β = 2
√

2 max{AT ,A∗
T }/M , then by

Lemma 3.4,

Pr[S > 0] ≥ m2/M2

1 + (8 max{AT ,A∗
T })/(Mβ2)

≥ m2

2M2
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independent of the starting point. If no collision occurs in β
√

N + 2T steps then
S = 0 as well, and so Pr[no collision] ≤ Pr[S = 0] ≤ 1 − m2/2M2. Hence, in
k(β

√
N + 2T ) steps,

Pr[no collision] ≤ (1 − m2/2M2)k ≤ e−km2/2M2
.(3.1)

Taking k = 2cM2/m2 completes the proof. �

PROOF OF LEMMA 3.4. We will repeatedly use the relation that there are(β√
N+2
2

)
choices for i, j appearing in the summation for S, that is, 0 ≤ i and i +

2T ≤ j ≤ β
√

N + 2T .
Now to the proof. The expectation E[S] satisfies

E[S] = E

β
√

N∑
i=0

β
√

N+2T∑
j=i+2T

1{Xi=Xj }

(3.2)

=
β
√

N∑
i=0

β
√

N+2T∑
j=i+2T

E
[
1{Xi=Xj }

] ≥
(

β
√

N + 2
2

)
m

N

because if j ≥ i + T , then

Pr(Xj = Xi) = ∑
u

Pr(Xi = u)P j−i (u, u) ≥ ∑
u

Pr(Xi = u)
m

N
= m

N
.(3.3)

Similarly, Pr(Xj = Xi) ≤ M
N

when j ≥ i + T .
Now for E[S2]. Note that

E[S2] = E

(β
√

N∑
i=0

β
√

N+2T∑
j=i+2T

1{Xi=Xj }
)(β

√
N∑

k=0

β
√

N+2T∑
l=k+2T

1{Xk=Xl}
)

=
β
√

N∑
i=0

β
√

N∑
k=0

β
√

N+2T∑
j=i+2T

β
√

N+2T∑
l=k+2T

Prob(Xi = Xj,Xk = Xl).

To evaluate this quadruple sum we break it into 3 cases.

CASE 1. Suppose |j − l| ≥ T . Without loss, assume l ≥ j so that, in particular,
l ≥ max{i, j, k} + T . Then

Prob(Xi = Xj,Xk = Xl)

= Prob(Xi = Xj)Prob(Xl = Xk | Xi = Xj)
(3.4)

≤ Prob(Xi = Xj)max
u,v

Prob
(
Xl = v | Xmax{i,j,k} = u

)

≤ Prob(Xi = Xj)
M

N
≤

(
M

N

)2

.
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The first inequality holds because {Xt } is a Markov chain and so given Xi,Xj ,Xk

the walk at any time t ≥ max{i, j, k} depends only on the state Xmax{i,j,k}.

CASE 2. Suppose |i − k| ≥ T and |j − l| < T . Without loss, assume i ≤ k. If
j ≤ l, then

Prob(Xi = Xj,Xk = Xl)

= ∑
u,v

Prob(Xi = u)P k−i(u, v)P j−k(v, u)P l−j (u, v)(3.5)

≤ ∑
u

Prob(Xi = u)
M

N

M

N

∑
v

P l−j (u, v) =
(

M

N

)2

because k ≥ i +T , j ≥ k +T and
∑

v P t (u, v) = 1 for any t because P and hence
also P t are stochastic matrices. If, instead, l < j then essentially the same argu-
ment works, but with

∑
v P t (v, u) = 1 because P and hence also P t are doubly-

stochastic.

CASE 3. Finally, consider those terms with |j − l| < T and |i − k| < T . With-
out loss, assume i ≤ k. If l ≤ j , then

Prob(Xi = Xj,Xk = Xl)

= ∑
u,v

Prob(Xi = u)P k−i(u, v)P l−k(v, v)P j−l(v, u)(3.6)

≤ ∑
u

Prob(Xi = u)
∑
v

P k−i(u, v)
M

N
P j−l(v, u).

The sum over elements with i ≤ k < i + T and l ≤ j < l + T is upper bounded
as follows:

β
√

N∑
i=0

i+T∑
k=i

β
√

N+2T∑
l=k+2T

l+T∑
j=l

Prob(Xi = Xj,Xk = Xl)

≤ M

N

β
√

N∑
i=0

β
√

N+2T∑
l=i+2T

max
u

∑
v

∑
k∈[i,i+T )

P k−i(u, v)
∑

j∈[l,l+T )

P j−l(v, u)

≤ M

N

β
√

N∑
i=0

β
√

N+2T∑
l=i+2T

max
u

∑
v

GT (u, v)GT (v,u)(3.7)

≤ M

N

β
√

N∑
i=0

β
√

N+2T∑
l=i+2T

max
u

√∑
v

G2
T (u, v)

∑
v

G2
T (v,u)

≤ M

N

(
β
√

N + 2
2

)√
AT A∗

T .



504 KIM, MONTENEGRO, PERES AND TETALI

The case when j < l gives the same bound but with the observation that j ≥
k + T and with AT instead of

√
AT A∗

T .
Putting together these various cases we get that

E[S2] ≤
(

β
√

N + 2
2

)2 (
M

N

)2

+ 2
(

β
√

N + 2
2

)
M

N
AT

+ 2
(

β
√

N + 2
2

)
M

N

√
AT A∗

T .

The
(β√

N+2
2

)2
term is the total number of values of i, j, k, l appearing in the sum

for E[S2], and hence also an upper bound on the number of values in Cases 1 and 2.

Along with the relation
(β√

N+2
2

) ≥ β2N
2 this simplifies to complete the proof. �

As promised earlier, we now present an example that illustrates the need for the
pre-mixing term AT in Theorem 3.2.

EXAMPLE 3.5. Consider the random walk on ZN which transitions from u →
u + 1 with probability 1 − 1/

√
N , and with probability 1/

√
N transitions u → v

for a uniformly random choice of v.
Heuristically the walk proceeds as u → u+1 for ≈ √

N steps, then randomizes,
and then proceeds as u → u + 1 for another

√
N steps. This effectively splits the

state space into
√

N blocks of size about
√

N each, so by the standard Birthday
Paradox it should require about

√
N1/2 of these randomizations before a collision

will occur, in short, about N3/4 steps in total.
To see the need for the pre-mixing term, observe that Ts ≈ √

N log 2 while
if T = T∞ ≈ √

N log(2(N − 1)), then we may take m = 1/2 and M = 3/2 in
Theorem 3.2. So, whether Ts or T∞ are considered, it will be insufficient to take
O(T + √

N) steps. However, the number AT of collisions between two indepen-
dent copies of this walk is about

√
N since once a randomization step occurs then

the two independent walks are unlikely to collide anytime soon. Our collision time
bound says that O(N3/4) steps will suffice which is the correct bound.

A proper analysis shows that 1−o(1)√
2

N3/4 steps are necessary to have a collision

with a probability of 1/2. Conversely, when T = √
N log2 N then m = 1 − o(1),

M = 1 + o(1) and AT ,A∗
T ≤ 1+o(1)

2

√
N , so by equation (3.1), (2 + o(1))N3/4

steps are sufficient to have a collision with a probability of at least 1/2. Our upper
bound is thus off by at most a factor of 2

√
2 ≈ 2.8.

We finish the section with a slight sharpening of Theorem 3.2. This will be
used to improve the lead constant in our upcoming bound on collision time for the
Pollard Rho walk.



A BIRTHDAY PARADOX FOR POLLARD RHO 505

THEOREM 3.6 (Improved Birthday Paradox). Consider a finite ergodic
Markov chain with uniform stationary distribution on a state space of size N .
Let T be such that m

N
≤ P T (u, v) ≤ M

N
for some m ≤ 1 ≤ M and every pair of

states u, v. After

2c

(√√√√√
(

1 +
2T∑
j=1

3j max
u,v

P j (u, v)

)
N

M
+ T

)

steps a collision occurs with a probability of at least 1 − (1 − m2

2M2 )c, independent
of the starting state.

PROOF. We give only the steps that differ from before.
First, in equation (3.7), note that the triple sum after maxu can be re-written as

∑
α∈[0,T )

∑
β∈[0,T )

∑
v

P α(u, v)P β(v,u) ≤
2(T −1)∑
γ=0

(γ + 1)P γ (u,u).

The original quadruple sum then reduces to

M

N

(
β
√

N + 2
2

)
max

u

2(T −1)∑
γ=0

(γ + 1)P γ (u,u).

For the case when i < k and j < l proceed similarly, then reduce, as in
Lemma 3.3, to obtain the upper bound,

M

N

(
β
√

N + 2
2

) T −1∑
α=1

T −1∑
β=1

∑
v

P α(u, v)P β(u, v)

≤ M

N

(
β
√

N + 2
2

) T −1∑
γ=1

(2γ − 1)max
v

P γ (u, v).

Adding these two expressions gives an expression of at most

M

N

(
β
√

N + 2
2

)(
1 +

2T∑
γ=1

3γ max
v

P γ (u, v)

)
.

The remaining two cases will add to the same bound, so effectively this
substitutes the expression 2(1 + maxu

∑2T
γ=1 3γ maxv P γ (u, v)) in place of a

4 max{AT ,A∗
T } in the original theorem. �
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To simplify, note that if maxu,v P j (u, v) ≤ c + dj for c, d ∈ [0,1), then
2T∑
j=1

3j (c + dj ) = 3cT (2T + 1) + 3d
1 − d2T − 2T d2T (1 − d)

(1 − d)2

(3.8)
≤ (

1 + o(1)
)
6cT 2 + 3d

(1 − d)2 .

4. Convergence of the Rho walk. Let us now turn our attention to the Pollard
Rho walk for discrete logarithm. To apply the collision time result we will first
show that maxu,v∈ZN

P s(u, v) decreases quickly in s so that Lemma 3.3 may be
used. We then find T such that P T (u, v) ≈ 1/N for every u, v ∈ ZN . However,
instead of studying the Rho walk directly, most of the work will instead involve a
“block walk” in which only a certain subset of the states visited by the Rho walk
are considered.

DEFINITION 4.1. Let us refer to the three types of moves that the Pollard
Rho random walk makes, namely (u,u + 1), (u,u + x) and (u,2u) as moves of
Type 1, Type 2 and Type 3, respectively. In general, let the random walk be denoted
by Y0, Y1, Y2, . . . with Yt indicating the position of the walk (modulo N ) at time
t ≥ 0. Let T1 be the first time that the walk makes a move of Type 3. Let b1 =
YT1−1 − YT0 (i.e., the ground covered, modulo N , only using consecutive moves
of Types 1 and 2). More generally, let Ti be the first time, since Ti−1, that a move
of Type 3 happens, and set bi = YTi−1 − YTi−1 . Then the block walk B is the walk
Xs = YTs = 2sYT0 + 2

∑s
i=1 2s−ibi .

By combining our Birthday Paradox for Markov chains with several lemmas to
be shown in this section, we obtain the main result of the paper:

THEOREM 4.2. For every choice of starting state, the expected number of
steps required for the Pollard Rho algorithm for discrete logarithm on a group G

to have a collision is at most(
1 + o(1)

)
12

√
19

√|G| < (
1 + o(1)

)
52.5

√|G|.

In order to prove this it is necessary to show that Bs(u, v) decreases quickly for
the block walk.

LEMMA 4.3. If s ≤ �log2 N�, then for every u, v ∈ ZN the block walk satisfies

Bs(u, v) ≤ (2/3)s .

If s > �log2 N� then Bs(u, v) ≤ 3/2

N log2 3−1 ≤ 3/2√
N

.
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A bound on the asymptotic rate of convergence is also required:

THEOREM 4.4. If s ≥ 
m log 2(m−1)
ε

� where m = 
log2 N�, then for every
u, v ∈ ZN the block walk satisfies

1 − ε

N
≤ B2s(u, v) ≤ 1 + ε

N
.

This is all that is needed to prove the main result:

PROOF OF THEOREM 4.2. The proof will use Theorem 3.6 because this gives
a somewhat sharper bound. Alternatively, Theorem 3.2 and Lemma 3.3 can be
applied nearly identically to get the slightly weaker (1 + o(1))72

√|G|.
First consider steps of the block walk. Lemma 4.3 implies that Bs(u, v) ≤ 3/2√

N
+

(2
3)

s
, for s ≥ 0 and for all u, v. Hence, by equation (3.8), if T = o(

4
√

N), then
1 + ∑2T

j=1 3jBj (u, v) ≤ 19 + o(1). By Theorem 4.4, M ≤ 1 + ε and m ≥ 1 −
ε after 2(log2 N)(log logN + log 3

ε
) steps. Hence, if ε = 1/N2, then T = (4 +

o(1))(log2 N)2 = o(
4
√

N), and m = 1 − o(1/N), and M = 1 + o(1/N). Plugging
this into Theorem 3.6, a collision fails to occur in

k

(
2

√√√√√
(

1 +
2T∑
j=1

3j max
u,v

Bj (u, v)

)
N

M
+ 2T

)
= (

1 + o(1)
)
2
√

19k
√

N

steps with a probability of, at most, (1 − δ)k where δ = m2/2M2 = (1 − o(1))/2.
Now return to the Rho walk. Recall that Ti denotes the number of Rho steps

required for i block steps. The difference Ti+1 − Ti is an i.i.d. random variable
with the same distribution as T1 − T0. Hence, if i ≥ j , then E[Ti − Tj ] = (i −
j)E[T1 − T0] = 3(i − j). In particular, if we let r = (1 + o(1))2

√
19N , let R

denote the number of Rho steps before a collision, and let B denote the number of
block steps before a collision, then

E[R] ≤
∞∑

k=0

Pr[B > kr]E[
T(k+1)r − Tkr | B > kr

]

=
∞∑

k=0

Pr[B > kr]E[
T(k+1)r − Tkr

]

≤
∞∑

k=0

(
1 + o(1)

2

)k

3r = (
1 + o(1)

)
12

√
19

√
N.

�

PROOF OF LEMMA 4.3. We start with a weaker, but somewhat more intuitive,
proof of a bound on Bs(u, v) and then improve it to obtain the result of the lemma.
The key idea here will be to separate out a portion of the Markov chain which is
tree-like with some large depth L, namely the moves induced solely by bi = 0 and
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bi = 1 moves. Because of the high depth of the tree, the walk spreads out for the
first L steps, and hence the probability of being at a vertex also decreases quickly.

Let S = {i ∈ [1, . . . , s] :bi ∈ {0,1}} and z = ∑
i /∈S 2s−ibi be random variables

whose values are determined by the first Ts steps of the random walk. Then YTs =
2sYT0 + 2z + 2

∑
i∈S 2s−ibi . Hence, choosing YT0 = u, YTs = v, we may write

Bs(u, v)

= ∑
S

Prob(S)
∑

z∈ZN

Prob(z | S)Prob

(∑
i∈S

2s−ibi = v

2
− 2s−1u − z

∣∣∣ z, S

)

≤ ∑
S

Prob(S) max
w∈ZN

Prob
(∑

i∈S

2s−ibi = w
∣∣∣ S

)
,

and so for a fixed choice of S, we can ignore what happens on Sc.
Each w ∈ [0, . . . ,N − 1] has a unique binary expansion, and so if s ≤ �log2 N�,

then modulo N each w can still be written in, at most, one way as an s bit
string. For the block walk, Prob(bi = 0) ≥ 1/3 and Prob(bi = 1) ≥ 1/9, and so
max{Prob(bi = 0 | i ∈ S),Prob(bi = 1 | i ∈ S)} ≤ 8

9 . It follows that

max
w∈ZN

Prob
(∑

i∈S

2s−ibi = w
∣∣∣ S

)
≤ (8/9)|S|(4.1)

using independence of the bis. Hence,

Bs(u, v) ≤ ∑
S

Prob(S)(8/9)|S| =
s∑

r=0

Prob(|S| = r)(8/9)r

≤
s∑

r=0

(
s

r

)(
4

9

)r(
1 − 4

9

)s−r(8

9

)r

=
(

4

9

8

9
+ 5

9

)s

=
(

77

81

)s

.

The second inequality was because (8/9)|S| is decreasing in |S| and so underesti-
mating |S| by assuming Prob(i ∈ S) = 4/9 will only increase the upper bound on
Bs(u, v).

In order to improve on this, we will shortly redefine S (namely, events {i ∈
S}, {i /∈ S}) and auxiliary variables ci , using the steps of the Rho walk. Also note
that the block walk is induced by a Rho walk, so we may assume that the bi were
constructed by a series of steps of the Rho walk. With probability 1/4 set i ∈
S and ci = 0, otherwise if the first step is of Type 1, then set i ∈ S and ci = 1
while if the first step is of Type 3 then put i /∈ S and ci = 0, and finally if the first
step is of Type 2, then again repeat the above decision making process, using the
subsequent steps of the walk. Note that the above construction can be summarized
as consisting of one of four equally likely outcomes (at each time) where the last
three outcomes depend on the type of the step that the Rho walk takes; indeed, each
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of these three outcomes happens with probability 3
4 × 1

3 = 1/4; finally, a Type 2
step forces us to reiterate the four-way decision-making process.

In summary, Pr(i ∈ S) = ∑∞
l=0(1/4)l(1/2) = 2/3. Also observe that Pr(ci = 0 |

i ∈ S) = Pr(ci = 1 | i ∈ S) and that Pr(bi − ci = x | i ∈ S, ci = 0) = Pr(bi − ci =
x | i ∈ S, ci = 1). Hence the steps done earlier (leading to the weaker bound) carry
through with z = ∑

i 2s−i(bi − ci) and with
∑

i∈S 2s−ibi replaced by
∑

i∈S 2s−ici .
In (4.1) replace (8/9)|S| by (1/2)|S|, and in showing the final upper bound on
Bs(u, v), replace 4/9 by 2/3. This leads to the bound Bs(u, v) ≤ (2/3)s .

Finally, when s > �log2 N�, simply apply the preceding argument to S′ = S ∩
[1, . . . , �log2 N�]. Alternately, note that when s ≥ �log2 N�, then

Bs(u, v) ≤ max
w

B�log2 N�(u,w) ≤ (2/3)log2 N−1

for every doubly-stochastic Markov chain B. �

In [6, 8] sufficiently strong bounds on the asymptotics of B2s(u, v) are shown
in several ways, including the use of characters and quadratic forms, canonical
paths and Fourier analysis. We give here the Fourier approach, as it establishes the
sharpest mixing bounds. To bound mixing time of the block walk, it suffices to
show that for large enough s, the distribution νs of

Zs = 2s−1b1 + 2s−2b2 + · · · + bs

is close to the uniform distribution U = 1/N because then the distribution of Xs =
2sYT0 + 2Zs will be close to uniform as well. More precisely, convergence in chi-
square distance will be shown that

LEMMA 4.5. If νs(j) = Pr[Zs = j ], ξ = 1 − 4−√
10

9 , and m satisfies 2m−1 <

N < 2m, then

N

N−1∑
j=0

(
νs(j) − U(j)

)2 ≤ 2
((

1 + ξ2�s/m�)m−1 − 1
)
.

PROOF OF THEOREM 4.4. By Cauchy–Schwarz,∣∣∣∣B2s(u, v) − U(v)

U(v)

∣∣∣∣
2

=
∣∣∣∣
∑

w(Bs(u,w) − U(w))(Bs(w, v) − U(v))

U(v)

∣∣∣∣
2

(4.2)

=
∣∣∣∣∑

w

U(w)

(
Bs(u,w)

U(w)
− 1

)(
B∗s(v,w)

U(w)
− 1

)∣∣∣∣
2

≤ ∑
w

U(w)

∣∣∣∣Bs(u,w)

U(w)
− 1

∣∣∣∣
2 ∑

x

U(x)

∣∣∣∣B∗s(v, x)

U(x)
− 1

∣∣∣∣
2

.
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Lemma 4.5 bounds the first sum of (4.2). The second sum is the same quantity but
for the time-reversed walk B∗(y, x) = B(x, y). To examine the reversed walk let
b∗
i denote the sum of steps taken by B∗ between the (i − 1)st and ith time that a

u → u/2 transition is chosen (i.e., consider block steps for the reversed walk), and
let Z∗

s = 2−s+1b∗
1 + · · · + b∗

s . If we define bi = −b∗
i , then the bi are independent

random variables from the same distribution as the blocks of B, and so

Pr[−2s−1Z∗
s = j ] = Pr[b1 + 2b2 + · · · + 2s−1bs = j ]

= Pr[Zs = j ].
Lemma 4.5 thus bounds the second sum of (4.2) as well, and the theorem
follows. �

Before proving Lemma 4.5 let us review the standard Fourier transform and the
Plancherel identity. For any complex-valued function f on ZN and ω = e2πi/N ,
recall that the Fourier transform f̂ : ZN → C is given by f̂ (�) = ∑N−1

j=0 ω�jf (j),
and the Plancherel identity asserts that

N

N−1∑
j=0

|f (j)|2 =
N−1∑
j=0

|f̂ (j)|2.

For the distribution μ of a ZN -valued random variable X, its Fourier transform
is

μ̂(�) =
N−1∑
j=0

ω�jμ(j) = E[ω�X].

Thus, given distributions μ1,μ2 of two independent random variables Y1, Y2, the
distribution ν of X := Y1 + Y2 has the Fourier transform ν̂ = μ̂1μ̂2 , since

ν̂(�) = E[ω�X] = E
[
ω�(Y1+Y2)

]
(4.3)

= E[ω�Y1]E[ω�Y2] = μ̂1(�)μ̂2(�).

Generally, the distribution ν of X := Y1 + · · · + Ys with independent Yis has the
Fourier transform ν̂ = ∏s

r=1 μ̂r . Moreover, for the uniform distribution U , it is
easy to check that

Û (�) =
{

1, if � = 0,
0, otherwise.

As the random variables 2rbs−rs are independent, ν̂s = ∏s−1
r=0 μ̂r where μr are

the distributions of 2rbs−r . The linearity of the Fourier transform and ν̂s(0) =
E[1] = 1 yield

ν̂s − U(�) = ν̂s(�) − Û (�) =
⎧⎪⎨
⎪⎩

0, if � = 0,
s−1∏
r=0

μ̂r (�), otherwise.
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PROOF OF LEMMA 4.5. By Plancherel’s identity, it is enough to show that

N−1∑
�=1

∣∣∣∣∣
s−1∏
r=0

μ̂r (�)

∣∣∣∣∣
2

≤ 2
((

1 + ξ2�s/m�)m−1 − 1
)
.

Let Ar be the event that bs−r = 0 or 1. Then,

μ̂r (�) = E[ω�2r bs−r ]
= Pr[bs−r = 0] + Pr[bs−r = 1]ω�2r

+ Pr[Ār ]E[ω�2r bs−r |Ār ],
and, for x := Pr[bs−r = 0] and y := Pr[bs−r = 1],

|μ̂r (�)| ≤ |x + yω�2r | + (1 − x − y)|E[ω�2r bs−r |Ār ]|
≤ |x + yω�2r | + 1 − x − y.

Notice that

|x + yω�2r |2 =
(
x + y cos

2π�2r

N

)2

+ y2 sin2 2π�2r

N

= x2 + y2 + 2xy cos
2π�2r

N
.

If cos 2π�2r

N
≤ 0, then

|μ̂r (�)| ≤ (x2 + y2)1/2 + 1 − x − y

= 1 − (
x + y − (x2 + y2)1/2)

.

Since x = Pr[bs−r = 0] ≥ 1/3, and y = Pr[bs−r = 1] ≥ 1/9, it is easy to see that
x +y − (x2 +y2)1/2 has its minimum when x = 1/3 and y = 1/9. (For both partial
derivatives are positive.) Hence,

|μ̂r (�)| ≤ ξ = 1 − 4 − √
10

9
provided cos

2π�2r

N
≤ 0.

If cos 2π�2r

N
> 0, we use the trivial bound μ̂r (�) = E[ω�2r bs−r ] ≤ 1.

For � = 1, . . . ,N − 1, let φs(�) be the number of r = 0, . . . , s − 1 such that
cos 2π�2r

N
≤ 0. Then

s−1∏
r=0

|μ̂r (�)| ≤ ξφs(�).(4.4)

To estimate φs(�), we consider the binary expansion of

�/N = 0.α
�,1α�,2 · · ·α

�,s
· · · ,
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α
�,r

∈ {0,1} with α
�,r

= 0 infinitely often. Hence, �/N = ∑∞
r=1 2−rα

�,r
. The frac-

tional part of �2r/N may be written as

{�2r/N} = 0.α
�,r+1α�,r+2 · · ·α

�,s
· · · .

Notice that cos 2π�2r

N
≤ 0 if the fractional part of �2r/N is (inclusively) between

1/4 and 3/4 which follows if α
r+1 �= α

r+2 . Thus φs(�) is at least as large as the
number of alterations in the sequence (α

�,1, α�,2, . . . , α�,s+1).
We now take m such that 2m−1 < N < 2m. Observe that, for � = 1, . . . ,N − 1,

the subsequences α(�) := (α
�,1, α�,2, . . . , α�,m

) of length m are pairwise distinct:

If α(�) = α(�′) for some � < �′ then �′−�
N

is less than
∑

r≥m+1 2−r ≤ 2−m which
is impossible as N < 2m. Similarly, for fixed r and � = 1, . . . ,N − 1, all sub-
sequences α(�; r) := (α

�,r+1, α�,r+2, . . . , α�,r+m
) are pairwise distinct. In particu-

lar, for fixed r with r = 0, . . . , �s/m� − 1, all subsequences α(�; rm), � = 1, . . . ,

N − 1, are pairwise distinct. Since the fractional part {2rm�
N

} = 0.α
�,rm+1α�,rm+2 · · ·

must be the same as �′
N

for some �′ in the range 1 ≤ �′ ≤ N − 1, there is a
unique permutation σr of 1, . . . ,N − 1 such that α(�; rm) = α(σr(�)). Writing
|α(σr(�))|A for the number of alternations in α(σr(�)), we have

φs(�) ≥
�s/m�−1∑

r=0

|α(σr(�))|A,

where σ0 is the identity. Therefore, (4.4) gives

N−1∑
�=1

∣∣∣∣∣
s−1∏
r=0

μ̂r (�)

∣∣∣∣∣
2

≤
N−1∑
�=1

ξ2
∑�s/m�−1

r=0 |α(σr (�))|A .

Using

ξx+y + ξx′+y′

≤ ξmin{x,x′}+min{y,y′} + ξmax{x,x′}+max{y,y′}

inductively, the above upper bound may be maximized when all σrs are the iden-
tity, that is,

N−1∑
�=1

∣∣∣∣∣
s−1∏
r=0

μ̂r (�)

∣∣∣∣∣
2

≤
N−1∑
�=1

ξ2�s/m�|α(�)|
A .

Note that 1/N ≤ �/N ≤ 1 − 1/N implies that α(�) is neither (0, . . . ,0) nor
(1, . . . ,1) (both are of length m). This means that all α(�) have at least one al-
ternation. Since α(�)s are pairwise distinct,

N−1∑
�=1

ξ2�s/m�|α(�)|
A ≤ ∑

α:|α|
A

>0

ξ2�s/m�|α|
A ,
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where the sum is taken over all sequences α ∈ {0,1}m with |α|
A

> 0.
Let H(z) be the number of αs with exactly z alterations. Then

H(z) = 2
(

m − 1
z

)
,

and hence

∑
α:|α|

A
>0

ξ2�s/m�|α|
A = 2

m−1∑
z=1

(
m − 1

z

)
ξ2�s/m�z

= 2
((

1 + ξ2�s/m�)m−1 − 1
)
. �

REMARK 4.6. For the reader interested in applying these methods to show a
Birthday-type result for other problems, it is worth noting that a Fourier approach
can also be used to show that Bs(u, v) decreases quickly, and so AT ,A∗

T = O(1).
For the distribution νs of Xs the Plancherel identity gives

max
v

Pr[Xs = v] = max
v

νs(v)2 ≤
N−1∑
w=0

νs(w)2

= 1

N

N−1∑
�=0

|ν̂s(�)|2 = 1

N

N−1∑
�=0

∣∣∣∣∣
s−1∏
r=0

μ̂r (�)

∣∣∣∣∣
2

.

For � = 0,1, . . . ,N − 1, let φs(�) be the number of r = 0, . . . , s − 1 such that
cos 2π�2r

N
≤ 0. Then

s−1∏
r=0

|μ̂r (�)| ≤ ξφs(�).

Take m such that 2m−1 < N < 2m. Then, for s ≤ m − 1 and any (fixed) binary
sequence α1, . . . , αs (that is, αj ∈ {0,1}), there are at most 
2−sN� �s such that
the binary expansion of �/N up to s digits is 0.α1 · · ·αs . Since there are at most
2e−�(s)2s binary sequences with fewer than (s − 1)/3 alterations,

s−1∏
r=0

|μ̂r (�)| = 2e−�(s)

except for at most 2e−�(s)2s
2−sN� = 2e−�(s)N values of �. Using a trivial
bound

∏s−1
r=0 |μ̂r (�)| ≤ 1 for such �’s, we have

max
v

Pr[Xs = v] = 2e−�(s) + 2e−�(s) = 2e−�(s).

If s > m − 1, then
∏s−1

r=0 |μ̂r (�)| ≤ ∏m−2
r=0 |μ̂r (�)| implies that

max
v

Pr[Xs = v] = 2e−�(m−1) = O
(
N−�(1)).
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One might expect that the correct order of the mixing time of the Block walk
Xs is indeed �(logp log logp). This is in fact the case, at least for certain values
of p and x.

THEOREM 4.7. If p = 2t − 1 and x = p − 1, then the block walk has mixing
time τ(1/4) = �(logp log logp).

PROOF. The upper bound on mixing time, O(logp log logp), was shown in
Theorem 4.4 via a Fourier argument.

The proof of a lower bound of �(logp log logp) is modeled after an argu-
ments of Hildebrand [4] which in turn closely follows a proof of Chung, Diaconis
and Graham [2]. The basic idea is by now fairly standard: choose a function and
show that its expectation under the stationary distribution and under the n-step
distribution P n are far apart with sufficiently small variance to conclude that the
two distributions (P n and π ) must differ significantly. Theorem 4.7 is not used
in main results of this paper, and the proof is fairly long, and so it is left for the
Appendix. �

5. Distinguished point methods. The Rho algorithm can be parallelized to J

processors via the Distinguished Points method of van Oorschot and Wiener [19].
To do this, start with a global choice of (random) partition S1 � S2 � S3 (i.e.,
a common iterating function F ), and choose J initial values {yj

0 }Jj=1 from ZN ,
one per processor. Then run the Rho walk on processor j starting from initial

state g(y
j
0 ), until a collision occurs between either two walks or a walk and itself.

To detect a collision let ϕ :G → {0,1} be an easily computed hash function with
support {x ∈ G :ϕ(x) = 1} to be called the distinguished points. Each time a dis-
tinguished point is reached by a processor, it is sent to a central repository and
compared against previously received states. Once a distinguished point is reached
twice then a collision has occurred, and the discrete logarithm can likely be found
while, conversely, once a collision occurs, the collision will be detected the next
time a distinguished point is reached.

The proofs in previous sections immediately imply a factor of J speed up when
parallelizing. To see this, suppose the initial values {yj

0 }Jj=1 are chosen uniformly
at random. Run a Rho walk for some T steps per processor, and then define {Xi} by
starting with the Rho walk of processor #1, then appending that from processor #2,
etc.; that is, if Y

j
i denotes the ith state of copy j of the walk, for i ∈ {0,1, . . . , T }

and j ∈ {0,1,2, . . . , J −1}, then Xi = Y
i div(T +1)
i mod(T +1) for i ∈ {0,1, . . . , J (T +1)−1}.

This is a time-dependent random walk which follows the Rho walk, except at mul-
tiples of time T + 1 where it instead jumps to a uniformly random state. Since
our proofs involve pessimistic estimates on the distance of a distribution from uni-
form, and these jumps result in uniform samples, then they can only improve the
result. Hence this effectively leads to a Rho walk with J (T + 1) − 1 steps, and a
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factor J speed-up per processor is achieved. If the initial values were not uniform
then discard the first O(log2 N) steps per processor and treat the next state as the
initial value which by Theorem 4.4 will give a nearly uniform start state.

APPENDIX

PROOF OF THEOREM 4.7. Our approach follows that taken in Section 4 of
Hildebrand [4], “A proof of Case 2.” Recall that we will show that EU(f ) and
EP n(f ) are far apart for some function f with sufficiently small variance to con-
clude that the two distributions (P n and the uniform distribution U on Zp) must
differ significantly.

More precisely let Pn be the distribution of the block walk on Zp starting at
state u = 0 and proceeding for n steps. For some α > 0, let

A = {
y : |f (y) − EU(f )| ≥ α

√
VarU(f )

}
.

By Chebyshev’s inequality, U(A) ≤ 1/α2. Also, for some β > 0 let

B = {
y : |f (y) − EPn(f )| ≥ β

√
VarPn(f )

}
.

By Chebyshev’s inequality, Pn(B) ≤ 1/β2. If Ac ∩ Bc = ∅, then Pn(A
c) ≤

Pn(B) ≤ 1/β2, and so

min
v∈Ac

Pn(v)

U(v)
≤ Pn(A

c)

U(Ac)
≤ 1/β2

1 − 1/α2 .

If
√

VarU(f ),
√

VarPn(f ) = o(|EU(f ) − EPn(f )|) for a sequence n(p) =
�(logp log logp), then as p → ∞ it is possible to choose α,β → ∞ such that

Ac ∩ Bc = 0. The theorem then follows as minv∈�
Pn(v)
U(v)

p→∞−→ 0.
The “separating” function f : Zp → C to be used here is

f (k) =
t−1∑
j=0

qk2j

where q = e2πi/p.

Then EU(f ) = 1
p

∑t−1
j=0

∑p−1
k=0 (q2j

)k = 1
p

∑t−1
j=0 0 = 0 since qα is a prim-

itive root of unity when p is prime and 1 ≤ α < p. Likewise, EU(f f̄ ) =
1
p

∑t−1
j,j ′=0

∑p−1
k=0 qk∗2j

qk∗2j ′ = 1
p

∑t−1
j=0 p = t by the orthogonality relationship of

roots of unity. It follows that VarU(f ) = t .
The Block walk on Zp with n = rt steps will be considered where r ∈ N will be

chosen later. Let Pn(·) denote the distribution of Zn = 2n−1b1 + 2n−2b2 +· · ·+ bn

induced by n steps of the block walk starting at state u = 0. A generic increment
will be denoted by b, since the bi are independent random variables from the same
distribution.
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It will be useful to introduce a bit of notation.
If α ∈ Z and y ∈ Zp , then define

μα(y) = Pr[2αb = y] = Pr[b = y2−α].
Recall the Fourier transform of a distribution ν on Zp is given by ν̂(�) =∑p−1
k=0 q�kν(k) = Eν(q

�k). Properties of certain Fourier transforms are required
in our work. First, since p = 2t − 1 then μα(y) = μα+ct (y) for c ∈ N, and so
μ̂α(y) = μ̂(α mod t)(y). By this and (4.3), if y ∈ Zp , then

P̂n(y) =
n−1∏
α=0

μ̂α(y) =
(

t−1∏
α=0

μ̂α(y)

)r

= P̂t (y)r .

Also, μα(2j y) = μ(α−j)(y), and so

∀j ∈ N : P̂t (2
j y) =

t−1∏
α=0

μ̂α(2j y) =
t−1∏
α=0

μ̂α(y) = P̂t (y).

Finally, for 0 ≤ j ≤ t − 1, define

�j = P̂t (2
j − 1) =

t−1∏
α=0

μ̂α(2j − 1).

Note that P̂t (1 − 2j ) = P̂t (2j − 1) because μα(y) = μα(−y) when the step sizes
are {1, x} = {1,−1}. Also, �t−j = �j because, modulo p, 2t−j − 1 = 2−j − 1,
and so P̂t (2t−j − 1) = P̂t (2−j − 1) = P̂t (2j (2−j − 1)) = P̂t (2j − 1).

Now turn to mean and variance:

EPn(f ) = ∑
k

Pn(k)

t−1∑
j=0

qk2j =
t−1∑
j=0

P̂n(2
j )

=
t−1∑
j=0

P̂t (2
j )r =

t−1∑
j=0

P̂t (1)r = t�r
1.

Likewise,

EPn(f f̄ ) = ∑
k

Pn(k)

t−1∑
j,j ′=0

qk(2j−2j ′
) =

t−1∑
j,j ′=0

P̂n(2
j − 2j ′

)

=
t−1∑

j,j ′=0

P̂t (2
j − 2j ′

)r =
t−1∑
j=0

t−1∑
β=0

P̂t

(
2j (1 − 2β)

)r

= t

t−1∑
β=0

P̂t (2
β − 1)r = t

t−1∑
β=0

�r
β.
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It follows that

VarPn(f ) = EPn(f f̄ ) − EPn(f )EPn(f̄ ) = t

t−1∑
j=0

�r
j − t2|�1|2r .

To apply these relations in Chebyshev’s inequality the quantities �j need to be
examined further. Let b denote the increment taken but with arithmetic NOT done
modulo p, so that b = p + 1 is possible, that is, repeatedly decide with probability
1/3 whether to terminate and if not then flip a coin and decide whether to add +1 or
−1. Let ak = Pr[b = k], and note that also ak = Pr[b = −k] since the nondoubling
steps are symmetric, that is, u → u + 1 and u → u + x = u − 1. Then ak satisfies
the recurrence relation

ak = 1
3(ak−1 + ak+1), a0 = 1

3 + 2
3a1, a∞ = 0

which has solution ak = 1√
5
(3−√

5
2 )|k|. For y ∈ R, let

G(y) =
∞∑

k=−∞
ake

2πiky = 1√
5

1 − ((3 − √
5)/2)2

1 + ((3 − √
5)/2)2 − (3 − √

5) cos(2πy)
.

Since

μα(k) = Pr[b = k2−α] = Pr[b2α ≡ k modp] = ∑
{b:b2α≡k modp}

ab,

then

�j =
t−1∏
α=0

μ̂α(2j − 1) =
t−1∏
α=0

∞∑
k=−∞

qk(2j−1)μα(k)

=
t−1∏
α=0

∞∑
b=−∞

abe
2πib2α(2j−1)/p

=
t−1∏
α=0

G

(
2α(2j − 1)

p

)
.

We can now show the necessary bounds. Recall that n = rt for some sequence

r = r(t) ∈ N to be defined. Let λ = λ(t) ∈ R be a sequence such that λ
t→∞−−→ ∞,

λ = o(log t), and

r = log t

2 log(1/|�1|) − λ

is an integer. Such a sequence will exist if |�1| is bounded away from 0.

CLAIM 1. |�1| is bounded away from 0 and 1 as p = 2t − 1 → ∞.
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PROOF. First, a few preliminary calculations are necessary. If y ∈ [0,1/2],
then

G(y) ≥ 1√
5

1 − ((3 − √
5)/2)2

1 + ((3 − √
5)/2)2 + (3 − √

5)
= 1

5
.

Also, since y ∈ R, then |G(y)| ≤ ∑
ak|e2πiky | = ∑

ak = 1 with equality at y = 0.
And, since the first derivative satisfies the relation 0 ≥ G′(y) ≥ −2π(3 − √

5) >

−5, then G(ε) ≥ G(0) − 5ε = 1 − 5ε for ε ≥ 0.
To show that �1 is bounded away from 1 observe that

�1 ≤ G(2t−1/p) ∗ 1t−1 t→∞−−→ G(1/2) = 1
5 .

To bound �1 away from 0 note that since G(y) is decreasing for y ∈ [0,1/2],
then

�1 =
t−1∏
α=0

G(2α/p)

=
t−1∏

α=t−5

G(2α/p)

t−6∏
α=0

G(2α/p)

≥
5∏

β=1

1

5

t∏
β=6

(1 − 5 · 2−β − 5 · 2−t )

≥ 5−5e−5/(25(1−5/26−5/2t )).

The final inequality used the relation is ln(1 − x) ≥ −x
1−x

. �

CLAIM 2. (VarU(f ))1/2 = o
(|EPn(f ) − EU(f )|).

PROOF. Since |�1| is bounded away from 0 and 1, then

|EPn(f ) − EU(f )| = t |�1|r = √
t |�1|−λ.

The claim follows as (VarU(f ))1/2 = √
t and |�1|λ → 0. �

CLAIM 3. (VarPn(f ))1/2 = o
(|EPn(f ) − EU(f )|).

PROOF. Assume

1

t

t−1∑
j=0

(
�j

�2
1

)r
t→∞−−→ 1.
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Then the claim follows from

(VarPn(f ))1/2 = t |�1|r
√√√√√1

t

t−1∑
j=0

(
�j

�2
1

)r

− 1 = o(t |�1|r ).

Hildebrand [4] requires 4 pages (pages 351–354) to prove the assumption, albeit
for a different function G(y). Fortunately we do not need to rework his proof as it
does not make explicit use of G(y) but instead depends on only a few properties
of it. There are two facts required in his proof. First, he shows the following:

FACT 1. There is some t0 such that if t ≥ t0, then �j ≤ �1 for all j ≥ 1.

Hildebrand’s proof of this utilizes the following properties: G(y) = G(1−y) =
G(−y), G(y) is decreasing when y ∈ [0,1/4], and G(1

2 − 2−i ) is decreasing in
i ≥ 3 [this corrects an error where he should have claimed

lim
p=2t−1→∞

G

(
2t−1 − 2t−j−1

p

)
≤ G(3/8)

instead of G(1/2)]. These conditions apply to our choice of G(y) as is shown in
the proof of our Claim 1.

The second necessary tool is the following:

FACT 2. There exists constants c0, t1 such that for t ≥ t1 and t1/3 ≤ j ≤ t/2,
then

�j

�2
1

≤ 1 + c0

2j
.

Hildebrand’s proof utilizes the following properties: G′(0) = 0, |G′(y)| ≤ A,
and G(y) ≥ B for all y and some A,B > 0. All three conditions were shown in
the proof of our Claim 1, and so his argument will carry through.

The two facts can now be combined to finish the proof. Let t be sufficiently large
that c0

2(t1/3)
≤ 1/r which is possible as r = O(log t). Recalling that �t−j = �j ,

then

t−1∑
j=1

∣∣∣∣
(

�j

�2
1

)r

− 1
∣∣∣∣ ≤ 2

∑
1≤j<t1/3

1

�r
1

+ 2
∑

t1/3≤j≤t/2

r2 c0

2j

≤ 2t1/3t1/2�λ
1 + 2

t

2

r2c0

2(t1/3)

= o(t).
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Since �0 = 1, then

1

t

t−1∑
j=0

(
�j

�2
1

)r

≤ 1

t

(
1

�2r
1

+ (t − 1) + o(t)

)
= 1 + o(1).

In the other direction, since VarPn(f ) ≥ 0, then 1
t

∑t−1
j=0(

�j

�2
1
)r ≥ 1. �
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