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A NEW FORMULA FOR SOME LINEAR STOCHASTIC
EQUATIONS WITH APPLICATIONS

BY OFFER KELLA1 AND MARC YOR

Hebrew University of Jerusalem and Université Pierre et Marie Curie

We give a representation of the solution for a stochastic linear equation of
the form Xt = Yt + ∫

(0,t] Xs− dZs where Z is a càdlàg semimartingale and Y

is a càdlàg adapted process with bounded variation on finite intervals. As an
application we study the case where Y and −Z are nondecreasing, jointly
have stationary increments and the jumps of −Z are bounded by 1. Special
cases of this process are shot-noise processes, growth collapse (additive in-
crease, multiplicative decrease) processes and clearing processes. When Y

and Z are, in addition, independent Lévy processes, the resulting X is called
a generalized Ornstein–Uhlenbeck process.

1. Introduction. In this paper we show that when Z is a càdlàg adapted semi-
martingale and Y is càdlàg adapted and with bounded variation on compact inter-
vals, then the unique càdlàg adapted solution of Xt = Yt + ∫

(0,t] Xs− dZs is given
via the representation Xt = ∫

[0,t] Uu,t dYu where Uu,t is defined by formula (2) be-
low. This form seems to be new and we note that the integral with respect to Y

is defined path-wise while the integral in the integral equation can be a stochastic
integral. Of course when Y is a semimartingale, one cannot expect such a repre-
sentation of the solution since {Uu,t |0 ≤ u ≤ t} is not adapted as a process indexed
by u.

We discuss an application to the case where Y and −Z are nondecreasing
processes jointly having stationary increments and subsequently specialize to cases
where one or both also have independent increments (Lévy processes). This model
is a generalization of both the shot-noise process as well as a growth–collapse
process (e.g., see, [7, 11, 16] and references therein) or more generally an additive
increase and multiplicative decrease process. The later have been used as models
for the TCP window size in communication networks.

We note that Jacod ([8], Theorem 6.8, page 194) and Yoeurp and Yor [21] give
a complete solution for the case where the integrator is a semimartingale and the
driving process is càdlàg, Jaschke [9] gives a derivation for the case where the
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integrator does not have jumps of size −1, and Protter ([20], Theorems 52 and 53,
pages 322–323) treats the case with a continuous integrator.

The literature related to generalized Ornstein–Uhlenbeck processes and their
applications which are directly related to some of the special cases of the applica-
tions that we consider is huge and growing exponentially fast. We refer the reader
to [1–6, 14, 15, 17–19, 22] and further references therein.

2. Main result. With respect to some standard (right continuous augmented)
filtration, let Y = {Yt |t ≥ 0} and Z = {Zt |t ≥ 0} be two adapted càdlàg processes.
Denote Z0− = 0, and for t > 0, Zt− = lims↑t Zs . Set �Zt = Zt − Zt− when Z is
of bounded variation on compact intervals (BV); set Zc

t = Zt − ∑
0≤s≤t �Zs and

similarly for any other càdlàg process considered in this paper.

THEOREM 1. Assume Y and Z are càdlàg and adapted, Y is BV and Z is
a semimartingale. Then the unique càdlàg adapted solution to the equation Xt =
Yt + ∫

(0,t] Xs− dZs is

Xt =
∫
[0,t]

Uu,t dYu,(1)

where

Uu,t =

⎧⎪⎪⎨
⎪⎪⎩

eZt−Zu−(1/2)([Z,Z]ct −[Z,Z]cu)

× ∏
u<s≤t

(1 + �Zs)e
−�Zs , 0 ≤ u < t ,

1, 0 ≤ u = t

(2)

and [Z,Z] is the quadratic variation process associated with Z. When Z is BV
then (2) reduces to

Uu,t =
⎧⎨
⎩

eZc
t −Zc

u

∏
u<s≤t

(1 + �Zs), 0 ≤ u < t ,

1, 0 ≤ u = t ,
(3)

where Zc is the continuous part of Z as defined earlier (rather than the continuous
martingale part of Z as is customary in stochastic calculus).

PROOF. Note that with T0 = 0 and for n ≥ 1, Tn = inf{t > Tn−1|�Zt = −1},
then for Tn < u ≤ t < Tn+1

UTn,t

UTn,u−
= Uu,t (1 + �Zu),

UTn,t

UTn,u

= Uu,t .(4)

Also, since Y is a BV process, the covariation process [Y,Z] is given via [Y,Z]t =∑
0≤s≤t �Ys�Zs . If one follows the solution in equation (6.9) in Theorem (6.8) on
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page 194 of [8], then for Tn ≤ t < Tn+1 we have that

Xt = UTn,t

(
�YTn +

∫
(Tn,t]

U−1
Tn,u− dYu −

∫
(Tn,t]

U−1
Tn,u d[Y,Z]u

)

= UTn,t�YTn +
∫
(Tn,t]

Uu,t (1 + �Zu)dYu − ∑
Tn<u≤t

Uu,t�Yu�Zu(5)

=
∫
[Tn,t]

Uu,t dYu,

where the second equality is justified since the first integral on the right-hand side
of the first equality is a path-wise Stieltjes integral, and the second is a sum which
is also defined path-wise. If Y was a general semimartingale, then interchanging
UTn,t with the integral sign like this would not be justified as the resulting integrand
would no longer be adapted. Clearly if n ≥ 1, then Uu,t = 0 for u < Tn, and thus

Xt =
∫
[0,t]

Uu,t dYu.(6)

Since this holds for all n, the proof for the more general case is complete. For
the case where Z is BV, it is evident that [Z,Z]c = 0, and it is easy to check that∑

u<s≤t �Zs is convergent (actually, absolutely convergent), and hence the result
follows. �

Of course one may also define the counting process,

Nt = ∑
0<s≤t

1{�Zs=−1},(7)

which is a.s. finite for all t ≥ 0 and right-continuous (possibly a.s. identically zero
or terminating), and write

Xt =
∫
[TNt ,t]

Uu,t dYu.(8)

It is worth while to note that for the case where Z is also a BV process, there is
a more direct proof involving (path-wise) Stieltjes integration which can be taught
in a classroom as follows. Write Z = A − B , where A and B are right-continuous
and nondecreasing and have no jump points in common. Write Ad

t = At − Ac
t =∑

0<s≤t max(�Zs,0) and similarly for B . Observe that by right continuity �At ,
�Bt , Ad

t − A0 and Bd
t − B0 all converge to zero as t ↓ 0. In particular, for every t

for which −1 ≤ �Bs (≤ 0) for 0 < s ≤ t , we have that

1 + Ad
t − A0 ≤ ∏

0<s≤t

(1 + �As) ≤ eAd
t −A0(9)
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and

1 + Bd
t − B0 ≤ ∏

0<s≤t

(1 + �Bs) ≤ eBd
t −B0(10)

which implies that

∏
0<s≤t

(1 + �Zs) =
( ∏

0<s≤t

(1 + �As)

)( ∏
0<s≤t

(1 + �Bs)

)
→ 1(11)

as t ↓ 0.
Now note that with Ct = eZc

t and Dt = ∏
0<s≤t (1 + �Zs), ordinary (Stieltjes)

integration by parts yields

Ut ≡ CtDt = C0+D0++
∫
(0,t]

Ds− dCs +
∫
(0,t]

Cs− dDs + ∑
0<s≤t

�Cs�Ds,(12)

and it is easy to check that the continuity of C and the fact that dCt = Ct dZc
t imply

that

Ut = 1 +
∫
(0,t]

Us− dZs.(13)

With this formula established, it is clear that if we denote Uu,t as in (3), then in an
identical way to which (13) was obtained we have (path-wise) that

Uu,t = 1 +
∫
(u,t]

Uu,s− dZs(14)

for all 0 ≤ u ≤ t .
Now, if Xt = ∫

[0,t] Us,t dYs , then Xt− = ∫
[0,t) Us,t− dYs and thus

∫
(0,t] Xs− dZs

is given by ∫
(0,t]

∫
[0,s)

Uu,s− dYu dZs =
∫
[0,t)

∫
(u,t]

Uu,s− dZs dYu

(15)
=

∫
[0,t)

(Uu,t − 1)dYu,

but since Ut,t = 1 we can include t in the domain of integration without changing
the value which gives∫

(0,t]
Xs− dZs =

∫
[0,t]

(Uu,t − 1)dYu = Xt − Yt(16)

as required.
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3. Applications. Assume that Y and Z are right-continuous and nondecreas-
ing jointly having stationary increments in the strong sense that the law of θs(Y,Z)

is independent of s where

θs(Y (t),Z(t)) = (
Y(t + s) − Y (s),Z(t + s) − Z(s)

)
.(17)

It is standard to (uniquely) extend (Y,Z) to be a double sided process having sta-
tionary increments, that is, that t ∈ R rather than t ≥ 0, thus we assume it at the
outset. Finally we assume that Z has jumps bounded by 1. Without loss of gen-
erality let us assume that Y0 = Z0 = 0, otherwise we perform what follows for
Y −Y0 and Z −Z0 which also have stationary increments. We consider the unique
process X defined via Xt = X0 + Yt − ∫

(0,t] Xs− dZs for t ≥ 0 where X0 is almost
surely finite; the unique solution of which is

Xt = X0e
−Zc

t

∏
0<s≤t

(1 − �Zs) +
∫
(0,t]

e−(Zc
t −Zc

u)
∏

u<s≤t

(1 − �Zs)dYu,(18)

where an empty product (when u = t or when t = 0 on the right) is defined to be 1.
Special cases of such processes are the shot-noise processes in which Zt = rt

and Y are compound Poisson, growth collapse or additive increase multiplicative
decrease (AIMD) processes in which Yt = rt and usually Z = qNλ where Nλ is a
Poisson process with rate λ, and 0 < q < 1, as well as clearing processes where Z

is a Poisson process or, more generally, a renewal counting process (see, e.g., [10,
12]).

Consider the nondecreasing processes

Jt = Zc
t − ∑

0<s≤t

log(1 − �Zs)1{�Zs<1},(19)

and Nt = ∑
0<s≤t 1{�Zs=1}. Then it is clear that Y,J,N jointly have stationary

increments (in the strong sense), and from (18) we have

Xt = X0e
−Jt 1{Nt=0} +

∫
(0,t]

e−(Jt−Js)1{Nt−Ns=0} dYs.(20)

If
∫
(−∞,0] eJs dYs is a.s. finite (recalling that for s ≤ 0, Js ≤ J0 = 0), then

setting X∗
t = ∫

(−∞,t] e−(Jt−Js)1{Nt−Ns=0} dYs it is clear that X∗ is a stationary
process. Moreover, if, in addition, either limt→∞ Nt ≥ 1 a.s. (equivalently, T1 =
inf{t |�Zt = 1} is a.s. finite) or Jt → ∞ a.s. as t → ∞, then |X∗

t −Xt | → 0 a.s. as
t → ∞, and thus for any a.s. finite initial X0, a limiting distribution exists which
is distributed like X∗

0 .
In fact, when X0 is independent of (Y,Z), then shifting by −t , noting that

θ−t Js = Js−t − J−t (so that θ−t Jt = 0) and similarly for N and Y , it is clear
that Xt has the same distribution as

X0e
J−t 1{N−t=0} +

∫
(0,t]

eJs−t 1{Ns−t=0} dYs−t

(21)
= X0e

J−t 1{N−t=0} +
∫
(−t,0]

eJs 1{Ns=0} dYs.
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In particular, this implies that when X0 = 0, then Xt is stochastically increasing in
t ≥ 0.

Let us summarize our findings as follows.

THEOREM 2. If
∫
(−∞,0] eJs dYs < ∞ a.s., and either T1 < ∞ a.s. or Jt → ∞

a.s. as t → ∞, then X has the unique stationary version

X∗
t =

∫
(−∞,t]

e−(Jt−Js)1{Nt−Ns=0} dYs,(22)

and for every initial a.s. finite X0, Xt converges in distribution to X∗
0 . Moreover,

when X0 = 0 a.s., then Xt is stochastically increasing in t ≥ 0.

We note that when (Y,Z) also have independent increments so that they form
a Lévy process, then the negative of the time reversed process is a left-continuous
version of the forward process, and thus in this case [when X0 is independent of
(Y,Z)], Xt is also distributed like

X0e
−Jt 1{Nt=0} +

∫
(0,t]

e−Js 1{Ns=0} dYs(23)

which is also the consequence of the usual time reversal argument for Lévy
processes. In what follows we will consider special cases of this structure.

We observe that in the general case N is a simple (i.e., a.s. �Nt ∈ {0,1} for
all t) counting process associated with a time stationary point process. Special
cases of such processes are Poisson processes and delayed renewal processes
where the delay has the stationary excess lifetime distribution associated with
the subsequent i.i.d. inter-renewal times. We will consider this special case a bit
later.

3.1. EXt for independent X0, Y , Z. Since Y has stationary increments, it
follows that EYt = EY1t . From (21) we have that when EY1 and EX0 are finite,
then for t ≥ 0,

EXt = EX0EeJ−t 1{N−t=0} + EY1

∫ 0

−t
EeJs 1{Ns=0} ds,(24)

and since for s ≤ 0, we have that Js = −(J0 − Js) is distributed like −J−s =
−(J−s − J0), and similarly for N , we have that

EXt = EX0Ee−Jt 1{Nt=0} + EY1

∫ t

0
Ee−Js 1{Ns=0} ds.(25)
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3.2. EXt for independent X0, Y , Z with Lévy Z. Here Z is a subordinator
with Laplace–Stieltjes exponent −ηz(α) = logEe−αZ1 where, for α ≥ 0,

ηz(α) = czα +
∫
(0,1]

(1 − e−αx)νz(dx)(26)

with cz ≥ 0 and
∫
(0,1] xνz(dx) < ∞. Since the jumps of Z are bounded above by 1,

then νz((1,∞)) = 0.
In this case Zc

t = czt , N is a Poisson process with rate λ = νz{1} which is
independent of the subordinator,

Jt = czt − ∑
0<s≤t

log(1 − �Zs)1{�Zs<1};(27)

the Lévy measure of which, call it νj , is defined via νj ((a, b]) = νz((1 − e−a,1 −
e−b]) for 0 < a < b < ∞ and with exponent

ηj (α) = czα +
∫
(0,∞)

(1 − e−αx)νj (dx)

(28)
= czα +

∫
(0,1)

(
1 − (1 − x)α

)
νz(dx),

so that for α > 0,

ηj (α) + λ = czα +
∫
(0,1]

(
1 − (1 − x)α

)
νz(dx).(29)

We note that∫
(0,∞)

min(x,1)νj (dx) =
∫
(0,1)

min
(− log(1 − x),1

)
νz(dx),(30)

and since − log(1 − x) ≤ x
1−x

≤ xe for 0 < x ≤ 1 − e−1, the right-hand side is
dominated above by e

∫
(0,1) xνz(dx) < ∞, so that νj is indeed the proper Lévy

measure of a subordinator. Now, for this case, Ee−Js = e−ηj (1)s where

ηj (1) = cz +
∫
(0,1)

(
1 − (1 − x)1)

νz(dx)

(31)
= cz +

∫
(0,1)

xνz(dx) = η′
z(0) − λ

recalling λ = νz{1}. Therefore, Ee−Js 1{Ns=0} = e−(η′
z(0)−λ)se−λs = e−η′

z(0)s so
that in this case, since η′

z(0) = cz + ∫
(0,1] xνz(dx) = EZ1, (25) becomes

EXt = EX0e
−EZ1t + EY1

EZ1
(1 − e−EZ1t ).(32)

Recall that here Y need not have independent increments.
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3.3. Independent X0, Y , Z with Lévy Y . Since for every 0 = t0 < t1 < · · · <

tn = t the independence between Y and Z and hence the independence of Y and J ,
yield

E

[
exp

(
−α

n∑
i=1

e
−Jti−1 1{Nti−1=0}(Yti − Yti−1)

)∣∣∣Z
]

(33)

=
n∏

i=1

exp
(−ηy

(
αe

−Jti−1 1{Nti−1=0}
)
(ti − ti−1)

)
.

It thus follows, as in equation (5.9) of [13] for the more general multivariate case
and in Proposition 1 of [19] for the case where Y and Z are compound Poisson,
that

E

[
exp

(
−α

∫
(0,t]

e−Js 1{Ns=0} dYs

)∣∣∣Z]
(34)

= exp
(
−

∫ t

0
ηy

(
αe−Js 1{Ns=0}

)
ds

)
.

This implies, as in Theorem 5.1 of [13], that the conditional distribution of∫
(0,t] e−Js 1{Ns=0} dYs given Z is infinitely divisible, as on the right-hand side,

−ηy/n is also a Laplace–Stieltjes exponent of a subordinator.
Equation (34), with ξ0(α) = Ee−αX0 , a ∧ b = min(a, b), and recalling

T1 = inf{t |�Zt = 1} = inf{t |Nt > 0}(35)

yields

Ee−αXt = Eξ0
(
αe−Jt 1{Nt=0}

)
exp

(
−

∫ t

0
ηy(αe−Js )1{Ns=0} ds

)

= Eξ0(αe−Jt ) exp
(
−

∫ t

0
ηy(αe−Js )ds

)
1{T1>t}(36)

+ E exp
(
−

∫ T1

0
ηy(αe−Js )ds

)
1{T1≤t}.

Clearly, when either T1 < ∞ a.s. or Jt → ∞ a.s. as t → ∞, then

lim
t→∞Ee−αXt = E exp

(
−

∫ T1

0
ηy(αe−Js )ds

)
.(37)

We now observe that if N and J are independent, as for instance in the case
where Z is a subordinator, and N is the counting process associated with a time
stationary version of a renewal process the latter having inter-renewal time distri-
bution F having a finite mean μ, then it is well known that N is a delayed renewal
process in which the times between the (i − 1)th and ith jumps are distributed F
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for i ≥ 2 and the time until the first jump (i.e., the delay) has a distribution with
density fe(t) = (1 − F(t))/μ. Therefore, in this case,

E exp
(
−

∫ T1

0
ηy(αe−Js )ds

)
=

∫ ∞
0

E exp
(
−

∫ t

0
ηy(αe−Js )ds

)
fe(t)dt.(38)

Differentiating the right-hand side of the first equality in (36) once and setting
α = 0 gives (25) as expected, while for the case where X0 = 0 a.s., differentiating
twice and setting α = 0 yields

EX2
t = (η′

y(0))2E

(∫ t

0
e−Js 1{Ns=0} ds

)2

− η′′
y(0)E

∫ t

0
e−2Js 1{Ns=0} ds.(39)

3.4. EX2
t for independent Y , Z with Lévy Y,Z and X0 = 0. We note that for

every β > 0, E
∫ t

0 e−βJs 1{Ns=0} ds = 1−e
−(ηj (β)+λ)t

ηj (β)+λ
, where λ = νz{1}. Also, note

that since Nu ≤ Ns for u ≤ s,(∫ t

0
e−Js 1{Ns=0} ds

)2

= 2
∫ t

0

∫ s

0
e−Js−Ju1{Ns=0} duds

(40)

= 2
∫ t

0

∫ s

0
e−(Js−Ju)e−2Ju1{Ns=0} duds,

and therefore (using Fubini and the stationary independent increments property
of J ), the expected value of the left-hand side is

2
∫ t

0

∫ s

0
e−(ηj (1)+λ)(s−u)e−(ηj (2)+λ)u duds

(41)

= 2
(1 − e−(ηj (1)+λ)t )/(ηj (1) + λ) − (1 − e−(ηj (2)+λ)t )/(ηj (2) + λ)

ηj (2) − ηj (1)
.

Finally, we observe that for every positive integer n, we obtain [recall (29)]

ηj (n) + λ = czn +
∫
(0,1]

(
1 − (1 − x)n

)
νz(dx)

(42)

= czn +
n∑

k=1

(
n

k

)
(−1)k−1

∫
(0,1]

xkνz(dx),

and since, η
(0)
z (0) = ηz(0) = 0, η′

z(0) = cz + ∫
(0,1) xνz(dx) and η

(k)
z (0) =

(−1)k−1 ∫
(0,1] xkνz(dx), for k ≥ 2, it holds that

ηj (n) + λ =
n∑

k=0

(
n

k

)
η(k)

z (0).(43)

In particular ηj (1) + λ = η′
z(0) = cz + ∫

(0,1] xν(dx) and ηj (2) + λ = 2η′
z(0) +

η′′
z (0), so that ηj (2) − ηj (1) = η′

z(0) + η′′
z (0).
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To summarize, when EX0 = 0, we have

EX2
t = 2(η′

y(0))2

× ((
1 − e−η′

z(0)t )/η′
z(0) − (

1 − e−(
2η′

z(0)+η′′
z (0)

)
t )/(

2η′
z(0) + η′′

z (0)
))

(44)
/
(
η′

z(0) + η′′
z (0)

)

− η′′
y(0)

1 − e−(2η′
z(0)+η′′

z (0))t

2η′
z(0) + η′′

z (0)

which converges to

2(η′
y(0))2 − η′

z(0)η′′
y(0)

η′
z(0)(2η′

z(0) + η′′
z (0))

= (η′
y(0)/η′

z(0))2 − η′′
y(0)/(2η′

z(0))

1 + η′′
z (0)/(2η′

z(0))
(45)

as t → ∞. We note that as νz(1,∞) = 0, then clearly whenever either cz > 0 or
νz(0,1) 
= 0 (i.e., Z − N is not identically zero), it holds that

η′
z(0) = cz +

∫
(0,1]

xνz(dx) >

∫
(0,1]

x2νz(dx) = −η′′
z (0).(46)

3.5. Lévy Z, linear Y and X0 = x. It is of interest to consider the special case
where Yt = rt for some r > 0 and X0 = x for some x ≥ 0. For the case where Z

is compound Poisson this model becomes the growth–collapse process from [16]
where the computation of transient moments turns out to be especially tractable.
Since

Xt

r
= x

r
+ t −

∫
(0,t]

Xs−
r

dZs(47)

we may without loss of generality assume that r = 1. Recall (23). Following the
ideas in the proof of Proposition 3.1 of [4], we first write for a ≥ 0 and b ≥ 1,

Ee−aJt

(∫ t

0
e−Js ds

)b

= bEe−aJt

∫ t

0

(∫ t

u
e−Js ds

)b−1

e−Ju du

= b

∫ t

0
Ee−a(Jt−Ju)

(∫ t

u
e−(Js−Ju) ds

)b−1

e−(a+b)Ju du(48)

= b

∫ t

0
e−ηj (a+b)uEe−aJt−u

(∫ t−u

0
e−Js ds

)b−1

.

Thus, if T ∼ exp(θ) for some θ > 0 and is independent of Z, then since the con-
ditional distribution of T − u given T > u is the same as that of T (memoryless
property), it readily follows that

Ee−aJT

(∫ T

0
e−Js ds

)b

= b

ηj (a + b) + θ
Ee−aJT

(∫ T

0
e−Js ds

)b−1

.(49)
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For a = 0 we have that, since T1 ∧ T ∼ exp(λ + θ) and
∫ T

0 e−Js 1{Ns=0} ds =∫ T1∧T
0 e−Js ds,

E

(∫ T

0
e−Js 1{Ns=0} ds

)b

= b

ηj (b) + λ + θ
E

(∫ T

0
e−Js 1{Ns=0} ds

)b−1

.(50)

For a > 0 we have, from the fact that T1 ∧ T is independent of 1{T1>T }, that

Ee−aJT 1{NT =0}
(∫ T

0
e−Js 1{Ns=0} ds

)b

= Ee−aJT1∧T 1{T1>T }
(∫ T1∧T

0
e−Js ds

)b

(51)

= θ

λ + θ
Ee−aJT1∧T

(∫ T1∧T

0
e−Js ds

)b

and thus

Ee−aJT 1{NT =0}
(∫ T

0
e−Js 1{Ns=0} ds

)b

= Ee−aJT 1{NT =0}
(∫ T

0
e−Js ds

)b

(52)

= b

ηj (a + b) + λ + θ
Ee−aJT 1{NT =0}

(∫ T

0
e−Js ds

)b−1

.

Clearly, when b = 0 and a > 0 we have that

Ee−aJT 1{NT =0} = e−(ηj (a)+λ)T = θ

ηj (a) + λ + θ
.(53)

Now

EXn
T = E

(
xe−JT 1{NT =0} +

∫ T

0
e−Js 1{Ns=0} ds

)n

=
n∑

k=1

(
n

k

)
xkEe−kJT 1{NT =0}

(∫ T

0
e−Js ds

)n−k

(54)

+ E

(∫ T

0
e−Js 1{Ns=0} ds

)n

,

and denoting [recall (43)]

μi = ηj (i) + λ = czi +
∫
(0,1]

(
1 − (1 − x)i

)
νz(dx) =

i∑
k=0

(
i

k

)
η(k)

z (0),(55)
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it follows from (50), (52), (53) and (54), with some manipulations, that

EXn
T = n!∏n

i=1 μi

(
n∑

k=1

xk ∏k
i=1 μi

k!
(

n∏
i=k+1

μi

μi + θ
−

n∏
i=k

μi

μi + θ

)

(56)

+
n∏

i=1

μi

μi + θ

)
,

where an empty product is defined to be 1. Finally, noting that EXn
T =∫ ∞

0 e−θt dEXn
t it follows that if {Ei |i ≥ 1} are i.i.d. random variables with dis-

tribution exp(1), then Ei/μi ∼ exp(μi). It is well known and easy to check that

n∏
i=k

μi

μi + θ
=

∫ ∞
0

e−θt dP

[
n∑

i=k

Ei

μi

≤ t

]
;(57)

hence, for 1 ≤ k ≤ n,
n∏

i=k+1

μi

μi + θ
−

n∏
i=k

μi

μi + θ
=

∫ ∞
0

e−θt dP

[
n∑

i=k+1

Ei

μi

≤ t <

n∑
i=k

Ei

μi

]
,(58)

and thus we have the following somewhat curious result.

THEOREM 3. Let pij (t) be the transition matrix function of a pure death
process D = {Dt |t ≥ 0} with death rates μi , i ≥ 1 (0 is absorbing). Then

EXn
t = n!∏n

i=1 μi

(
pn0(t) +

n∑
k=1

xk ∏k
i=1 μi

k! pnk(t)

)

(59)

= n!∏n
i=1 μi

E

[
Dt∏
i=1

xμi

i

∣∣∣D0 = n

]
,

where an empty product is 1.

In particular, when x = 0, then

EXn
t = n!∏n

i=1 μi

pn0(t)

= n!
∫

· · ·
∫

∑n
i=1 xi≤t

x1,...,xn≥0

exp

(
−

n∑
i=1

μixi

)
dx1 · · · dxn(60)

= n!tn
∫

· · ·
∫

∑n
i=1 xi≤1

x1,...,xn≥0

exp

(
−t

n∑
i=1

μixi

)
dx1 · · · dxn.
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In fact, one may also give a finite simple algorithm with which to compute
EXn

t . For the sake of brevity we do it only for the case x = 0. This can be done
similarly to the Brownian motion in the proof of Theorem 1 on page 31 of [22] or,
equivalently, directly from (60) as follows. Set f0 = 0 and for n ≥ 1 and 0 < a1 <

a2 < · · · < an, let

fn(a1, . . . , an) =
∫

· · ·
∫

∑n
i=1 xi≤1

x1,...,xn≥0

exp

(
−

n∑
i=1

aixi

)
dx1 · · · dxn

=
∫

· · ·
∫

∑n
i=2 xi≤1

x2,...,xn≥0

(∫ 1−∑n
i=2 xi

0
e−a1x1 dx1

)

(61)

× exp

(
−

n∑
i=2

aixi

)
dx2 · · · dxn

= fn−1(a2, . . . , an) − e−a1fn−1(a2 − a1, . . . , an − a1)

a1
.

Alternatively, if we denote g0 = 1, and for n ≥ 1 and b1, . . . , bn > 0,

gn(b1, . . . , bn) = fn(b1, b1 + b2, . . . , b1 + · · · + bn).(62)

Then

gn(b1, . . . , bn) = gn−1(b1 + b2, b3, . . . , bn) − e−b1gn−1(b2, b3, . . . , bn)

b1
.(63)

From the above, it is also clear (see also [22], Theorem 1, page 31 for the case
of a Brownian motion) that, in fact,

EXn
t = tnn!fn(μ1t, . . . ,μnt)

(64)
= tnn!gn

(
μ1t, (μ2 − μ1)t, . . . , (μn − μn−1)t

)
is a linear combination of exponentials. An algorithm for computing the coeffi-
cients of this linear combination is equivalent to the above simple algorithm which
involves only a finite number of additions and multiplications.

We emphasize that the fact that Theorem 3 holds for all n ≥ 1, and the algorithm
for the computation of moments, also valid for all n ≥ 1, is special for the case
where Z is a nonzero subordinator. This is true since this is the only case where
ηj (n) is finite, strictly positive for all n ≥ 1 and strictly increasing.
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