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EQUALITY OF CRITICAL POINTS FOR POLYMER DEPINNING
TRANSITIONS WITH LOOP EXPONENT ONE

BY KENNETH S. ALEXANDER1 AND NIKOS ZYGOURAS

University of Southern California and University of Warwick

We consider a polymer with configuration modelled by the trajectory of
a Markov chain, interacting with a potential of form u + Vn when it visits a
particular state 0 at time n, with {Vn} representing i.i.d. quenched disorder.
There is a critical value of u above which the polymer is pinned by the po-
tential. A particular case not covered in a number of previous studies is that
of loop exponent one, in which the probability of an excursion of length n

takes the form ϕ(n)/n for some slowly varying ϕ; this includes simple ran-
dom walk in two dimensions. We show that in this case, at all temperatures,
the critical values of u in the quenched and annealed models are equal, in
contrast to all other loop exponents, for which these critical values are known
to differ, at least at low temperatures.

1. Introduction. A polymer pinning model is described by a Markov chain
(Xn)n≥0 on a state space containing a special point 0 where the polymer inter-
acts with a potential. The space-time trajectory of the Markov chain represents the
physical configuration of the polymer, with the nth monomer of the polymer chain
located at (n,Xn) (or just at Xn, for an undirected model). When the chain visits 0
at some time n, it encounters a potential of form u + Vn. The i.i.d. random vari-
ables (Vn)n≥1 typically model variation in monomer species. We study the phase
transition in which the polymer depins from the potential when u goes below a
critical value. We denote the distribution of the Markov chain (started from 0)
in the absence of the potential by P X and we assume that it is recurrent. This
recurrence assumption is merely a convenience and does not change the essential
mathematics; see [1, 11]. Of greatest interest is the case where the excursion length
distribution decays as a power law:

P X(E = n) = n−cϕ(n), n ≥ 1.(1.1)

Here, the loop exponent is c ≥ 1, E denotes the length of an excursion from 0,
that is, the time elapsed between successive returns to 0, and ϕ is a slowly varying
function, that is, a function satisfying ϕ(κn)/ϕ(n) → 1 as n tends to infinity for
all κ > 0.
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A large part of the existing rigorous literature on such models omits the case
c = 1 because it is often technically different and not covered by the methods
that apply to c > 1; see, for example, [1, 13, 15, 17]. That omission is partially
remedied in this paper and we will see that the behavior for c = 1 can be quite
different from the behavior for c > 1. The case c = 1 includes symmetric simple
random walk in two dimensions, for which ϕ(n) ∼ π/(logn)2 [14]. The essential
feature of c = 1 is that P X(E > n) is a slowly varying function of n so that, for
example, the longest of the first m excursions typically has length greater than any
power of m. This effectively enables the polymer to (at low cost) bypass stretches
of disorder in which the values Vn are insufficiently favorable and make returns to
0 in more favorable stretches.

The quenched version of the pinning model is described by the Gibbs measure

dμ
β,u,V
N (x) = 1

ZN

eβHu
N(x,V) dP X(x),(1.2)

where x = (xn)n≥0 is a path, V = (Vn)n≥0 is a realization of the disorder and

Hu
N(x,V) =

N∑
n=1

(u + Vn)δ0(xn).(1.3)

The normalization

ZN = ZN(β,u,V) = EX[
eβHu

N(x,V)]
is the partition function. The disorder V is a sequence of i.i.d. random variables
with mean zero and variance one. We denote the distribution of this sequence
by P V . We assume that V1 has exponential moments of all orders and denote
by MV (β) the moment generating function of P V .

Let

LX
N = LX

N(x) :=
N∑

n=0

δ0(xn)

denote the local time at 0 and define the quenched free energy

fq(β,u) := 1

β
lim

N→∞
1

N
logZN(β,u,V),

where this limit is taken P V -a.s. The existence and nonrandomness of this limit is
standard, as is the fact that

fq(β,u) = 1

β
lim

N→∞
1

N
EV logZN(β,u,V);

see [8]. The parameter u ∈ R can be thought of as the mean value of the potential,
while the parameter β > 0 is the inverse temperature. It is known that the phase
space in (β,u) is divided by a critical line u = u

q
c (β) into two regions: localized
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and delocalized. In the delocalized region u < u
q
c (β), we have fq(β,u) = 0, while

in the localized region u > u
q
c (β), we have fq(β,u) > 0. It is proved in [12] that

fq(β, ·) is infinitely differentiable for all u > u
q
c (β). An alternate, more phenom-

enological, characterization of the two regions is as follows. From convexity, we
have, for fixed β , that〈

LN

N

〉β,u,V

N

= 1

β

∂

∂u

(
1

N
logZN(β,u,V)

)
→ ∂

∂u
fq(β,u) for all u,(1.4)

P V -a.s., where 〈·〉β,u,V
N denotes expectation under μ

β,u,V
N . This limiting value is

called the contact fraction, denoted Cq(β,u), and it is positive in the localized
region and zero in the delocalized region. When the contact fraction is positive, we
say the polymer is pinned.

The effect of the quenched disorder on the phase transition is quantified by
comparing the quenched model to the corresponding annealed model, which is
obtained by averaging the quenched Gibbs weight over the disorder to give the
annealed Gibbs weight

EV (
eβHu

N(x,V)) = eβ�LN(x),

where � = u + β−1 logMV (β). The corresponding annealed partition function is

Za
N = Za

N(β,u) := EX(eβ�LN )

and the Gibbs measure is

dμ
β,u
N (x) = 1

Za
N

eβ�LN(x) dP X(x).(1.5)

The corresponding annealed free energy and contact fraction are denoted fa(β,u)

and Ca(β,u), respectively. The annealed critical point is readily shown to be
ua

c (β) = −β−1 logMV (β) for all β > 0 (see [2]), so � = u−ua
c (β). It is a standard

consequence of Jensen’s inequality that fa(β,u) ≥ fq(β,u), so ua
c (β) ≤ u

q
c (β).

The effect, or lack of effect, of the disorder on the depinning transition may be
seen in whether these two critical points actually differ and whether the specific
heat exponent (describing the behavior of the free energy as u decreases to the
critical point) is different in the quenched case.

Although most mathematically rigorous work is relatively recent, there is an
extensive physics literature on polymer pinning models; see the recent book [8] and
the surveys [9, 16] and references therein. In [1] (see also [15] for a slightly weaker
statement with simpler proof), it was proven that for 1 < c < 3/2, and for c = 3/2
with

∑∞
n=1 1/nϕ(n)2 < ∞, for sufficiently small β , one has u

q
c (β) = ua

c (β) and
the specific heat exponents are the same. Both works considered Gaussian disorder,
although the method in [1] can be extended to accommodate more general disorder
having a finite exponential moment.

By contrast, it follows straightforwardly from the sufficient condition ([17],
(3.6)) that for c > 1, if V1 is unbounded, or if V1 is bounded and its essential
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supremum v satisfies P V (V1 = v) = 0, then, for sufficiently large β , one has
u

q
c (β) > ua

c (β); the method is based on fractional moment estimates. These re-
sults, together with [1], suggest that for 1 < c < 3/2, there should be a transition
from weak to strong disorder, that is, there should exist a value β0 > 0 below
which the annealed and quenched critical curves coincide [i.e., u

q
c (β) = ua

c (β) for
β < β0, while for β > β0, one has ua

c (β) < u
q
c (β)], but this has not been proven.

For 1 < c < 3/2 and certain choices of bounded V1 [necessarily with P(V1 =
v) > 0], it is known that the quenched and annealed critical points are equal for
all β > 0 [5]. However, in these examples, Var(eβV1)/[E(eβV1)]2 stays bounded as
β → ∞, so there is no true “strong disorder” regime.

For c > 3/2, it follows from [11] that the quenched and annealed specific heat
exponents are different and it was proven in [4] that the critical points are strictly
different for all β > 0, that is, β0 = 0. In [3], the distinctness of critical points at
high temperature was extended to include c = 3/2 with ϕ(n) → 0 as n → ∞ and
the asymptotic order of the gap u

q
c (β) − ua

c (β) was given. Recently, in [10], the
critical points were shown to be distinct for all β > 0 for the case of c = 3/2 and
ϕ(n) asymptotically a positive constant, a case about which physicists had long
disagreed [6, 7].

Here, we show that even with true strong disorder, the critical points remain the
same in the case c = 1.

THEOREM 1.1. Consider the quenched model (1.2) and suppose that
E(etV1) < ∞ for all t ∈ R and that (1.1) holds with c = 1. For all β > 0 and
all u > ua

c (β), the quenched free energy fq(β,u) > 0 and thus u
q
c (β) = ua

c (β) for
all β > 0.

In [1] and [15], for the case 1 < c < 3/2, a statement stronger than the equality
of the critical points was proven: given ε > 0, if β and β� are sufficiently small,
then one has fa(β,u) ≥ fq(β,u) > (1 − ε)fa(β,u). One may ask whether a sim-
ilar statement (possibly strengthened to be valid for all β’s) holds for the c = 1
case. We do not pursue that question here, although we expect such a statement
to be true for small β . There are technical obstacles to carrying over the proof for
1 < c < 3/2 to the case c = 1, as noted in Section 4 of [1].

2. Notation and idea of the proof. Denote the local time at zero over a time
interval I by

LX
I = ∑

n∈I

δ0(xn),(2.1)

so that LX
N = LX[0,N]. The overlap between two paths X,X′ in an interval I is

defined as

B
X,X′
I = ∑

n∈I

δ0(xn)δ0(x
′
n).(2.2)
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We denote by P X,X′
the measure corresponding to two independent copies X,X′

of the Markov chain. The “energy gained over an interval I” is defined as

Hu
I (x,V ) = ∑

n∈I

(u + Vn)δ0(xn).(2.3)

The annealed correlation length is defined to be M = M(β,u) := 1/(βfa(β,u)).
From (1.5), both βfa(β,u) and M are functions of only the product β�. Using
Laplace asymptotics and the large deviations for the local time LN , one can deduce
the asymptotics of M and Ca(β,u) for β� → 0. Specifically, letting


(t) =
∫ ∞
t

ϕ(es) ds,

we obtain

β� ∼ 
(logM) and Ca(β,u) ∼ 1

Mϕ(M)
as β� → 0.

For example, if ϕ(n) ∼ K(logn)−α for some α > 1, then

logM = log
1

βfa(β,u)
∼

(
α − 1

K
β�

)−1/(α−1)

as β� → 0,(2.4)

so fa(β, ·) is C∞, even at u = ua
c (β). The details are similar to those in the case

c > 1 considered in [1], but we do not include them here as they are not required
for our analysis.

We use length scales K1(β,M),K2(β,M), related as follows, for β,M > 0.
Let �V (β) := logMV (2β) − 2 logMV (β). For c = 1, (1.1) implies that ϕ(x) → 0
as x → ∞. Since ϕ is slowly varying, this in turn implies that

logx

log(1/ϕ(x))
→ ∞ as x → ∞.

Therefore, we can choose K1,K2 satisfying

32K2 < e�V (β)K2(2.5)

and

4(M ∨ 1) log
1

ϕ(K1)
< K2 <

1

2�V (β)
log

K1

2
.(2.6)

For fixed β , as � → 0 (i.e., M → ∞), we then have M � K2 � K1. We assume
henceforth that K1,K2 are even integers.

Define the intervals

Ii = [
iK1, (i + 1)K1

) ∩ Z, I
γ
i = [

iK1, (i + γ )K1
) ∩ Z

for 0 < γ < 1. For an interval I , let τI = inf{n ∈ I :xn = 0} and σI = sup{n ∈
I :xn = 0}. We set τI = σI = ∞ if the path does not visit 0 during the interval I .



LOOP EXPONENT ONE 361

We denote by �NK1 the set of all paths of length NK1 which have the following

property: if τIi
< ∞ for some i ≤ N , then τIi

∈ I
1/2
i and σIi

− τIi
≤ K2.

Idea of the proof. We will look at a scale NK1 and restrict the partition function
ZNK1(u,β,V) to paths that belong to the set �NK1 . Further, we will restrict our
attention to paths within �NK1 which bypass bad blocks of length K1. Roughly
speaking, a bad block is defined to be a block for which the quenched partition
function of a path starting at a uniform random point in the block, and making its
final visit to 0 in the block within time K2 after this starting point, is less than
half of the corresponding annealed partition function. In Lemma 3.2, we control
the probability of having a bad block. It then remains to make an energy-entropy
balancing of the paths that belong in �NK1 and bypass bad blocks, and to show
that for β > 0 and � = u + β−1 logMV (β) > 0, this balance is uniformly (in N )
bounded away from zero. For this, we will use the fact that in a good block, the free
energy gained is of the order K2/M (this is essentially Lemma 3.1), and the fact
that because P X(E > k) is a slowly varying function of k, the cost of bypassing
bad blocks is small.

3. Proof of the theorem.

LEMMA 3.1. Let β > 0, u ∈ R,� = u + β−1 logMV (β) and M = M(β,u).
Then, for all N > 2β�M ,

logEX[eβ�LN ] ≥ 1

2

N

M
.(3.1)

PROOF. It is observed in [1] that aN := β� + logEX[eβ�LN ] is subadditive
in N . Since aN/N → βfa(β,u), it follows that

β� + logEX[eβ�LN ] ≥ Nβfa(β,�) = N

M

and the result is immediate. �

The block Ii is called good if it satisfies

∑
b∈I

1/2
i

EX[
e
βHu[b,b+K2](x,V)|xb = 0

]
>

1

2

∑
b∈I

1/2
i

EV EX[
e
βHu[b,b+K2](x,V)|xb = 0

]

= |I 1/2
i |
2

EX[eβ�LK2 ]
and called bad otherwise. Let pV

good := P V (Ii is good) and pV
bad := P V (Ii is bad).

PROPOSITION 3.2. For K1,K2 satisfying (2.5) and the second inequality in
(2.6), we have pV

good > 1/2.
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PROOF. By Chebyshev’s inequality,

pV
bad ≤ 4

VarV (
∑

b∈I
1/2
i

EX[eβHu[b,b+K2](x,V)|xb = 0])
(
∑

b∈I
1/2
i

EV EX[eβHu[b,b+K2](x,V)|xb = 0])2

< 4
( ∑

b,b′∈I
1/2
i

1|b−b′|≤K2

× EV EX,X′[
e
βHu[b,b+K2](x,V)+βHu

[b′,b′+K2](x
′,V)|xb = x′

b′ = 0
])

×
( ∑

b,b′∈I
1/2
i

EV,V ′
EX,X′[

e
βHu[b,b+K2](x,V)(X)+βHu

[b′,b′+K2](x
′,V′)|

xb = x′
b′ = 0

])−1

.

Here, we used the fact that whenever the two independent paths x,x′ visit
zero at points b, b′ such that |b − b′| > K2, the energies Hu[b,b+K2](x,V) and
Hu

[b′,b′+K2](x
′,V) are independent.

An easy calculation shows that the above is equal to

4
( ∑

b,b′∈I
1/2
i

1|b−b′|≤K2E
X,X′[

e
β�(LX[b,b+K2]+LX′

[b′,b′+K2])e
�V (β)B

X,X′
[b,b+K2]∩[b′,b′+K2] |

xb = x′
b′ = 0

])

×
( ∑

b,b′∈I
1/2
i

EX,X′[
e
β�(LX[b,b+K2]+LX′

[b′,b′+K2])|xb = x′
b′ = 0

])−1

≤ 4
( ∑

b,b′∈I
1/2
i

1|b−b′|≤K2e
�V (β)K2

× EX,X′[
e
β�(LX[b,b+K2]+LX′

[b′,b′+K2])|xb = x′
b′ = 0

])

×
( ∑

b,b′∈I
1/2
i

EX,X′[
e
β�(LX[b,b+K2]+LX′

[b′,b′+K2])|xb = x′
b′ = 0

])−1

= 4

|I 1/2
i |2

∑
b,b′∈I

1/2
i

1|b−b′|≤K2e
�V (β)K2 <

32K2

K1
e�V (β)K2

<
1

K1
e2�V (β)K2 <

1

2
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for K1,K2 satisfying (2.5) and the second inequality in (2.6). In the third line,
we have used the fact that the expectations in the second line do not depend on b

and b′. �

We now return to the proof of Theorem 1.1. Let

JN := {i ≤ N : Ii is good} ∪ {0} = {
i1 < · · · < i|JN |

}
.

Under P V , the sequence (ij − ij−1)j≥1 is an i.i.d. sequence of geometric random
variables with parameter pV

good.

We denote by �
JN

NK1
= �

JN

NK1
(V) the set of paths x ∈ �NK1 which satisfy

xNK1 = 0 and make no returns to 0 in bad blocks after the first block. In the follow-
ing computation, aj and bj are the starting and ending points, respectively, of the
excursion from Iij to Iij+1 . Let pn = P X(E = n). As a convention, we set b0 := 0

and b|JN | := NK1. Let ZNK1(�
JN

NK1
) denote the partition function restricted to the

set of paths �
JN

NK1
. We then have

ZNK1(�
JN

NK1
)

= ∑
a1≤K2

∑
b1∈I

1/2
i2

∑
a2−b1≤K2

· · · ∑
b|JN |−1∈I

1/2
i|JN |

∑
a|JN |−b|JN |−1≤K2

|JN |∏
j=1

EX[
e
βHu[bj−1,aj ](x,V)

δ0(xaj
)|xbj−1 = 0

]
pbj−aj

≥ ∑
a1≤K2

∑
b1∈I

1/2
i2

∑
a2−b1≤K2

· · · ∑
b|JN |−1∈I

1/2
i|JN |

∑
a|JN |−b|JN |−1≤K2

|JN |∏
j=1

EX[
e
βHu[bj−1,aj ](x,V);σ[bj−1,bj−1+K2] = aj |xbj−1 = 0

]
pbj−aj

.

With a mild abuse of notation, let us interpret Ii|JN |+1 as meaning the one-point
interval {NK1}. On the set {σ[bj−1,bj−1+K2] = aj }, we have that Hu[bj−1,aj ](x,V) =
Hu[bj−1,bj−1+K2](x,V) and, therefore, for some C, the above is bounded below by∑

a1≤K2

∑
b1∈I

1/2
i2

∑
a2−b1≤K2

· · · ∑
b|JN |−1∈I

1/2
|JN |

∑
a|JN |−b|JN |−1≤K2

|JN |∏
j=1

EX[
e
βHu[bj−1,bj−1+K2](x,V);σ[bj−1,bj−1+K2] = aj |xbj−1 = 0

]

× min
a∈I

3/4
ij

,b∈I
1/2
ij+1

pb−a
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= EX[
e
βHu[0,K2](x,V)]( min

a∈I
3/4
i1

,b∈I
1/2
i2

pb−a

)

×
|JN |∏
j=2

∑
bj−1∈I

1/2
ij

EX[
e
βHu[bj−1,bj−1+K2](x,V)|xbj−1 = 0

]
min

a∈I
3/4
ij

,b∈I
1/2
ij+1

pb−a

≥ EX[
e
βHu[0,K2](x,V)]( min

a∈I
3/4
i1

,b∈I
1/2
i2

pb−a

)

×
|JN |∏
j=2

|I 1/2
ij

|EX[eβ�LK2 ] min
a∈I

3/4
ij

,b∈I
1/2
ij+1

pb−a

≥ EX[
e
βHu[0,K2](x,V)]

C
ϕ((i2 − i1 + 1)K1)

(i2 − i1 + 1)K1

×
|JN |∏
j=2

(
C

ϕ((ij+1 − ij + 1)K1)

(ij+1 − ij + 1)K1
|I 1/2

ij
|EX[eβ�LK2 ]

)

= 1

K1
EX[

e
βHu[0,K2](x,V)]

×
[|JN |∏

j=1

C
ϕ((ij+1 − ij + 1)K1)

4(ij+1 − ij + 1)

]
(EX[eβ�LK2 ])|JN |−1.

In the second inequality, we used the fact that the interval Iij is good, while the last
equality makes essential use of c = 1 in the cancellation of factors K1. We then
have that

1

NK1
logZNK1 ≥ 1

NK1
logZNK1(�

JN

NK1
)

≥ 1

NK1
log

(
1

K1
EX[

e
βHu[0,K2](x,V)]) + |JN | − 1

NK1
logEX[eβ�LK2 ]

+ 1

NK1

|JN |∑
j=1

log
Cϕ((ij+1 − ij + 1)K1)

4(ij+1 − ij + 1)
.

Letting N → ∞, we get that the left-hand side converges to the quenched free
energy fq(β,u), while the right-hand side converges to

1

K1
pV

good logEX[eβ�LK2 ] + 1

K1
pV

goodE
V log

Cϕ(i2K1)

i2
,

where C is a constant different from what appears above. Recall that i2 − 1 is
a geometric random variable under P V with parameter pV

good. For K sufficiently
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large, we have

Cϕ := inf
{
xϕ(kx)

ϕ(k)
:x ≥ 1, k ≥ K

}
> 0

and we may assume that K1 ≥ K . We then have

fq(β,u) ≥ 1

K1
pV

good

(
logEX[eβ�LK2 ] + EV log

CCϕϕ(K1)

i2
2

)

= 1

K1
pV

good
(
logEX[eβ�LK2 ] + log(CCϕϕ(K1)) − 2EV [log i2])

≥ 1

K1
pV

good

(
logEX[eβ�LK2 ] + log(CCϕϕ(K1)) − 2 log

(
1

pV
good

+ 1
))

and, by Lemma 3.1 and Proposition 3.2, this is bounded below by

1

2K1

(
K2

2M
+ log(CCϕϕ(K1)) − 2 log 3

)
.(3.2)

Then, using the first inequality in (2.6), we get that, provided M is sufficiently
large, that is, � is small,

fq(β,u) >
1

2K1

(
K2

4M
+ log

CCϕ

9

)
> 0.(3.3)

This completes the proof of Theorem 1.1.
In the case ϕ(n) ∼ K(logn)−α for some α > 1, by (2.4), there are con-

stants Ci(β) such that for � < C1(β), (2.5) and (2.6) are satisfied for K1 =
exp(C2(β)M logM) and K2 = C3(β)M logM . Thus, the lower bound (3.3) says
that

fq(β,u) > e−C4(β)M logM

with M given approximately by (2.4). We know of no reason to believe that this
bound is sharp.
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