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COMPARISONS FOR BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS ON MARKOV CHAINS AND RELATED

NO-ARBITRAGE CONDITIONS

BY SAMUEL N. COHEN AND ROBERT J. ELLIOTT

University of Adelaide and University of Adelaide and University of Calgary

Most previous contributions to BSDEs, and the related theories of non-
linear expectation and dynamic risk measures, have been in the framework of
continuous time diffusions or jump diffusions. Using solutions of BSDEs on
spaces related to finite state, continuous time Markov chains, we develop a
theory of nonlinear expectations in the spirit of [Dynamically consistent non-
linear evaluations and expectations (2005) Shandong Univ.]. We prove basic
properties of these expectations and show their applications to dynamic risk
measures on such spaces. In particular, we prove comparison theorems for
scalar and vector valued solutions to BSDEs, and discuss arbitrage and risk
measures in the scalar case.

1. Introduction. Most previous contributions to backward stochastic differ-
ential equations (BSDEs), and the related theories of nonlinear expectation and
dynamic risk measures, have been in the framework of continuous time diffusions
or jump diffusions. The setting has usually been scalar. In this paper a situation
is considered where randomness is generated by a continuous time, finite state
Markov chain. A corresponding discrete time theory is covered in the paper [5]. In
this paper both scalar and vector comparison theorems are proved in this frame-
work. Following [15] this gives rise to a theory of nonlinear expectations. The
proofs and results are different from those in the diffusion case.

Consider a continuous time, finite state Markov chain X = {Xt, t ∈ [0, T ]}.
Without loss of generality, we identify the states of this process with the standard
unit vectors ei in R

N where N is the number of states of the chain.
We consider stochastic processes defined on the filtered probability space (�,

F , {Ft }, P) where {Ft } is the completed natural filtration generated by the σ -fields
Ft = σ({Xu,u ≤ t},F ∈ FT : P(F ) = 0), and F = FT . Note that, as X is a right-
continuous jump process with distinct jumps, this filtration is right continuous. If
At denotes the rate matrix for X at time t , then this chain has the representation

Xt = X0 +
∫
]0,t]

AuXu− du + Mt,(1.1)
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where Mt is a martingale (see Appendix B of [9]). As in [4], we know that the
predictable quadratic covariation matrix of this martingale, 〈M,M〉t , has the rep-
resentation

〈M,M〉t =
∫
]0,t]

(
diag(AuXu−) − Au diag(Xu−) − diag(Xu−)A∗

u

)
du.(1.2)

In an earlier paper, [4], we considered pairs, (Y,Z), Zt ∈ R
K×N , adapted and

left continuous, Yt ∈ R
K adapted and cádlág which are solutions to equations of

the form

Yt −
∫
]t,T ]

F(ω,u,Yu−,Zu) du +
∫
]t,T ]

Zu dMu = Q.(1.3)

Here Q is an FT measurable, R
K valued, P-square integrable random variable, and

F is a map � × [0, T ] × R
K × R

K×N → R
K which is progressively measurable.

Let ψt be the nonnegative definite matrix,

ψt := diag(AtXt−) − At diag(Xt−) − diag(Xt−)A∗
t(1.4)

and

‖Z‖2
Xt− := Tr(ZψtZ

∗).(1.5)

Then ‖ · ‖Xt− defines a (stochastic) seminorm, with the property that

Tr(Zt d〈M,M〉tZ∗
t ) = ‖Zt‖2

Xt− dt.(1.6)

We have shown the following result in [4].

THEOREM 1.1. For Q ∈ L2(FT ), if F is Lipschitz continuous, in the sense
that there exists c ≥ 0 such that, for any Z1,Z2, Y 1, Y 2 square integrable and of
appropriate dimension,

‖F(t, Y 1
u−,Z1

t ) − F(u,Y 2
t−,Z2

t )‖ ≤ c(‖Z1
t − Z2

t ‖Xt− + ‖Y 1
t− − Y 2

t−‖)
dt × P-a.s., then there exists a solution (Y,Z) to (1.3), such that

E

[∫
]0,T ]

‖Yt‖2 du

]
< +∞,

E

[∫
]0,T ]

‖Zt‖2
Xt− du

]
< +∞,

and this solution is the unique such solution, up to indistinguishability for Y and
equality d〈M,M〉t × P-a.s. for Z.

In this paper, we shall develop properties and applications of these solutions.
Note that, where appropriate, we shall denote by ≤, ≥, etc. an inequality holding

simultaneously on all components of a vector quantity.

2. Extension to stopping times. We first extend the results of [4] to include
the case where T , the terminal time of our BSDE, is an essentially bounded stop-
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ping time. By this we mean that T is a stopping time and there exists a real value
T max such that P(T > T max) = 0.

Assume that F(ω, t, Yt−,Zt ) is well defined and Lipschitz continuous dt × P-
a.s. on [0, T max]. Then from Theorem 1.1, there is a unique solution of the BSDE,

Yt −
∫
]t,T max]

Iu≤T F (ω,u,Yu−,Zu) du +
∫
]t,T max]

Zu dMu = Q,(2.1)

for any Q ∈ L2(FT max); this of course includes all Q ∈ L2(FT ), as P(T ≤ T max) =
1. For FT measurable Q, we evaluate (2.1) at T , and take an FT conditional ex-
pectation. This gives

YT + E

[∫
]T ,T max]

Zu dMu

∣∣∣FT

]
= Q

P-a.s., and as M is a martingale we see YT = Q P-a.s. It follows from this that∫
]T ,T max] Zu dMu = 0 P-a.s., hence Zt = 0, d〈M,M〉t × P almost surely, for all

T < t ≤ T max. Consequently, we can rewrite our BSDE as

Yt −
∫
]t∧T ,T ]

F(ω,u,Yu−,Zu) du +
∫
]t∧T ,T ]

Zu dMu = Q,(2.2)

which is a useful generalization of (1.3).
We shall restrict ourselves to deterministic T in the following; however, it is

clear that, given appropriate modifications, the results stated could easily be mod-
ified to remain valid when T is an essentially bounded stopping time.

3. Basic theorems. Before developing specific applications of these process-
es, we establish the following results. The methods used are based on those in [7],
where similar results are proven for BSDEs on spaces related to Brownian motions.

We shall henceforth assume that F is P-a.s. left continuous in t , is Lipschitz
continuous as in Theorem 1.1 and satisfies

E

[∫
]0,T ]

‖F(ω, t, Yt−,Zt )‖2 dt

]
< +∞

for all Y , Z bounded as in Theorem 1.1. Such a driver will be called standard. If
also Q ∈ L2(FT ), then the pair (F,Q) will be called standard.

We shall assume that the rate matrix A of our chain is left continuous, and there
is an 0 < εr < 1 such that it satisfies

e∗
i Atej ∈ [εr,1/εr ] ∪ {0}(3.1)

dt-a.s., for all i and j , i 
= j . This assumption is trivially satisfied if the chain X

is time-homogenous, and essentially states that we shall not consider chains with
positive transition rates unbounded or arbitrarily close to zero.

3.1. Various lemmas. Throughout this section, 1 will denote a column vector
of appropriate dimension with all components equal to one.

We first note that, from the basic properties of stochastic integrals (see, e.g.,
[14], page 28), the following isometry holds.
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LEMMA 3.1. For any predictable (matrix) process Z (of appropriate dimen-
sion) any s < t ,

E

[∥∥∥∥
∫
]s,t]

Zu dMu

∥∥∥∥
2]

= E

[∫
]s,t]

‖Zu‖2
Xt− du

]
.

PROOF. Let 〈·, ·〉 denote the predictable quadratic covariation. Expanding the
norms in terms of traces and products, we wish to show

E Tr
[(∫

]s,t]
Zu dMu

)(∫
]s,t]

Zu dMu

)∗]

(3.2)

= E

[∫
]s,t]

Tr[Zu d〈M,M〉u(Zu)
∗]

]
.

If
∫
]s,t] Zu dMu is square integrable, then(∫

]s,t]
Zu dMu

)(∫
]s,t]

Zu dMu

)∗
−

〈∫
]s,·]

Zu dMu,

∫
]s,·]

Zu dMu

〉
t

is a uniformly integrable martingale (see [14], page 38), and〈∫
]s,·]

Zu dMu,

∫
]s,·]

Zu dMu

〉
t

=
∫
]s,t]

Zu d〈M,M〉u(Zu)
∗

(by [14], page 48, Theorem 4.4). Combining these equations and taking a trace
and an expectation gives the result in this case.

If
∫
]s,t] Zu dMu is not square integrable, then, as both sides of (3.2) are nonneg-

ative, they both equal +∞. The result follows. �

LEMMA 3.2. For (F,Q) standard, if Y is the solution to (1.3) given by Theo-
rem 1.1, then Y satisfies

sup
t∈[0,T ]

E[‖Yt‖2] < +∞.

PROOF. We have

sup
t∈[0,T ]

E[‖Yt‖2] = sup
t∈[0,T ]

E

[∥∥∥∥Q +
∫
]t,T ]

F(ω,u,Yu−,Zu) du −
∫
]t,T ]

Zu dMu

∥∥∥∥
2]

≤ 2E[‖Q‖2] + 4E

[∫
]0,T ]

‖F(ω,u,Yu−,Zu)‖2 du

]

+ 4 sup
t∈[0,T ]

E

[∥∥∥∥
∫
]t,T ]

Zu dMu

∥∥∥∥
2]

≤ 2E[‖Q‖2] + 4E

[∫
]0,T ]

‖F(ω,u,Yu−,Zu)‖2 du

]

+ 4E

[∫
]0,T ]

‖Zu‖2
Xt− du

]
.
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As Q ∈ L2(FT ), F is standard and E[∫]0,T ] ‖Zu‖2
Xt− du] is finite by the conditions

of Theorem 1.1; this gives the desired inequality. �

LEMMA 3.3. For all t , the matrix ψt is symmetric and bounded, and has
all row and column sums equal to zero. The matrix given by its Moore–Penrose
inverse, ψ+

t , is also bounded and has all row and column sums equal to zero.

PROOF. As At is a rate matrix, A∗
t 1 = 0. Hence, from (1.4),

ψt1 = diag(AtXt−)1 − At diag(Xt−)1 − diag(Xt−)A∗
t 1

= AtXt− − AtXt− − 0

= 0 ∈ R
N,

that is, the rows of ψt all sum to zero, and so ψt is singular.
The symmetry of ψt is trivial, which implies the columns of ψt also all sum to

zero. For clarity, an example of ψt is presented for N = 4 in the Appendix.
For any matrix with real components, the Moore–Penrose inverse exists. We

first note that, if and only if e∗
jAtXt− = 0, the j th row and column of ψt will be

zero. Also, if we exclude the row and column indicated by Xt−, ψt is a diagonal
matrix. Therefore, if ψt has m rows and columns of zeros, the rank of ψt will
be N − 1 − m (unless m = N , in which case it will be zero). Let ψ̃t denote ψt

excluding the row and column corresponding to Xt− and any rows and columns
of zeros. Using the results of [6], Theorem 6.1, we can express ψ+

t as the inverse
of ψ̃t , pre- and post-multiplied by bounded matrices with row and column sums
of zero, as appropriate. As ψ̃t is a diagonal matrix, its inverse is bounded by (3.1).
Hence ψ+

t is bounded, and has all row and column sums equal to zero. �

LEMMA 3.4. At each time t , for all j such that e∗
jAtXt− 
= 0,

ψ+
t ψt (ej − Xt−) = ψtψ

+
t (ej − Xt−) = ej − Xt−.

Furthermore, the vectors (ej − Xt−) form a basis for the range of the projections,
ψ+

t ψt and ψtψ
+
t .

PROOF. Again we use the results of [6], in particular Theorems 6.1, 7.1
and 7.2. By Cohen, Elliott and Pearce [6], Theorem 6.1, we know that ψ+

t is a
true inverse for ψt , and (ψ+

t )+ is a true inverse for ψ+
t , within the class of matri-

ces with both row and column sums zero and with rows and columns of zeros in
the same rows and columns as ψt . Therefore ψt = (ψ+

t )+. The desired equation is
then simply the result of [6], Theorem 7.1. The remaining statement is then simply
an application of [6], Theorem 7.2. �
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LEMMA 3.5. For any standard driver F , for any Y and Z, up to indistin-
guishability,

F(ω, t, Yt−,Zt ) = F(ω, t, Yt−,Ztψtψ
+
t )

and ∫
]0,t]

Zu dMu =
∫
]0,t]

Zuψuψ
+
u dMu.

Therefore, it is no loss of generality to assume that Z = Zψψ+.

PROOF. Recall that, from the definition of the Moore–Penrose inverse,
ψtψ

+
t ψt = ψt . Hence, for any t , P-a.s.,∫

]0,t]
‖Zu − Zuψuψ

+
u ‖2

Xt− du

=
∫
]0,t]

Tr([Zu − Zuψuψ
+
u ]d〈M,M〉u[Zu − Zuψuψ

+
u ]∗)

=
∫
]0,t]

Tr([Zu − Zuψuψ
+
u ]ψt [Zu − Zuψuψ

+
u ]∗) dt

= 0.

By the Lipschitz continuity of F this implies

E

[∫
]0,t]

‖F(ω,u,Yu−,Zu) − F(ω,u,Yu−,Zuψuψ
+
u )‖2 du

]

≤ c2E

[∫
]0,t]

‖Zu − Zuψuψ
+
u ‖2

Xu− du

]

= 0.

As F is P-a.s. left continuous in t , and Yt− and Z are left continuous processes,
we use the result of [8], Lemma 2.21, to show that

F(ω, t, Yt−,Zt ) = F(ω, t, Yt−,Ztψtψ
+
t )

up to indistinguishability.
By Lemma 3.1,

E

[∥∥∥∥
∫
]0,t]

(Zu − Zuψuψ
+
u ) dMu

∥∥∥∥
2]

= E

[∫
]0,t]

‖Zu − Zuψuψ
+
u ‖2

Xt− du

]
= 0

and so for all t , P-a.s., ∫
]0,t]

(Zu − Zuψuψ
+
u ) dMu = 0.

As this process is a stochastic integral, it is càdlàg (see [14], Theorem 4.31), and
therefore we can again use [8], Lemma 2.21, to show the stochastic integrals are
equal up to indistinguishability. �
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LEMMA 3.6. ‖Zt‖Xt− = 0 only if Ztψtψ
+
t = 0. Hence without loss of gener-

ality, ‖Zt‖Xt− = 0 if and only if Zt = 0.

PROOF. We know that

0 = ‖Zt‖Xt− = Tr(ZtψtZ
∗
t ).

As ψt is nonnegative definite, there exists a matrix P such that ψt = PP ∗, the
Cholesky decomposition of ψt . Hence

0 = Tr(ZtψtZ
∗
t ) = Tr(ZtP (ZtP )∗),

which is true if and only if ZtP = 0. Hence, without loss of generality,

Zt = Ztψtψ
+
t = ZtPP ∗ψ+

t = 0. �

LEMMA 3.7. For all t ∈ [0, T ],
ψtXt− = −AtXt− = −∑

j

(e∗
jAtXt−)(ej − Xt−).(3.3)

PROOF. From (1.4),

ψtXt− = diag(AtXt−)Xt− − At diag(Xt−)Xt− − diag(Xt−)A∗
t Xt−.

As Xt− is a standard basis vector in R
N , we have

ψtXt− = diag(AtXt−)Xt− − AtXt− − (diag(Xt−)A∗
t )Xt−.

Further,

diag(AtXt−)Xt− = (X∗
t−AtXt−)Xt− = (diag(Xt−)A∗

t )Xt−,

therefore

ψtXt− = −AtXt−,

establishing the first equality.
We now note that, as 1∗At = 0, we have

X∗
t−AtXt− = − ∑

j : Xt−
=ej

(e∗
jAtXt−)

and hence

AtXt− = ∑
j : Xt−
=ej

(e∗
jAtXt−)ej −

[ ∑
j : Xt−
=ej

(e∗
jAtXt−)

]
Xt−

= ∑
j

(e∗
jAtXt−)(ej − Xt−).

�
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LEMMA 3.8. For processes Z solving (1.3), without loss of generality, the
‖ · ‖Xt− norm has two equivalent forms:

‖Zt‖2
Xt− = Tr(ZtψtZ

∗
t )

= ∑
i,j

(e∗
jAtXt−)[e∗

i Zt (ej − Xt−)]2.

PROOF. Consider the ‖ · ‖Xt− norm of Zt . The trace can be calculated as
Tr(ZtψtZ

∗
t ) = ∑

i e
∗
i ZtψtZ

∗
t ei , and therefore it is clear that we can consider each

row e∗
i Z separately from the others. Because of this, we need only to establish the

result where Z is a single row vector.
For any row vector of the form v = ∑

ej 
=Xt− cj e
∗
j , it is clear that

diag(Xt−)v∗ = 0

and, therefore,

‖v‖Xt− = vψtv
∗

= v
(
diag(AtXt−) − At diag(Xt−) − diag(Xt−)A∗

t

)
v∗

(3.4)

=
( ∑

ej 
=Xt−
cj e

∗
j

)
(diag(AtXt−))

( ∑
ej 
=Xt−

cj ej

)

= ∑
ej 
=Xt−

(e∗
jAtXt−)c2

j .

We shall use this “linearity” to establish the result.
By Lemma 3.5, without loss of generality, we can write Zt = Ztψtψ

+
t . We can

therefore write Zt as a linear combination Zt = ∑
j cj (ej −Xt−)∗, by Lemmas 3.3

and 3.4. For simplicity, we define cj = 0 if ej = Xt−.
We define a vector of the form considered above,

Z̃t = ∑
ej 
=Xt−

(
cj + ∑

k

ck

)
e∗
j

(3.5)

= ∑
j

cj e
∗
j +

(∑
k

ck

)
1∗ −

(∑
k

ck

)
X∗

t−

and as ψt is a matrix with column sums of zero, this and Lemma 3.4 imply

Z̃tψtψ
+
t = ∑

j

cj e
∗
j −

(∑
j

cj

)
X∗

t− = Zt .

By Lemma 3.4, we then know

Zt(ej − Xt−) = Z̃tψtψ
+
t (ej − Xt−) = Z̃t (ej − Xt−)
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and it follows from (3.5) that

cj + ∑
k

ck = Z̃t (ej − Xt−) = Zt(ej − Xt−)(3.6)

for all ej 
= Xt−.
As Z = Z̃ψtψ

+
t and ψtψ

+
t ψt = ψt , it is clear from (1.5) that

‖Z‖2
Xt− = ‖Z̃‖2

Xt−

= ∑
ej 
=Xt−

(e∗
jAtXt−)

[
cj + ∑

k

ck

]2

= ∑
j

(e∗
jAtXt−)[Z(ej − Xt−)]2.

�

LEMMA 3.9. Without loss of generality, the row sums of Zt and Ztψt are all
zero for all t .

PROOF. The row sums of Z can be written Z1. As ψ and ψ+ are matrices
with all row and column sums equal to zero, ψ1 = ψ+1 = 0 which directly shows,
using Lemma 3.5, Z1 = Zψψ+1 = 0 and Zψ1 = 0. �

LEMMA 3.10. Consider a process Z ∈ R
1×N solving a standard, scalar,

(K = 1) BSDE of the form of (1.3). Suppose that for a given t , Zt is such that
‖Zt‖Xt− 
= 0, and, for some ε,

0 < ε < ε3/2
r N−3/2

with εr as in (3.1), we know

−ε‖Zt‖Xt− ≤ (e∗
jAtXt−)Zt (ej − Xt−)

for all j . Then

ZtψtXt− ≤ −ε‖Zt‖Xt− .

PROOF. We know from Lemma 3.8 that

‖Zt‖2
Xt− = Tr(ZtψtZ

∗
t )

= ∑
j

(e∗
jAtXt−)[Zt(ej − Xt−)]2.

By (3.1), for all ej 
= Xt−, e∗
jAtXt− ∈ [εr,1/εr ] ∪ {0}, for some εr > 0, and so

‖Zt‖2
Xt− ≤ ∑

{j : e∗
j AtXt−>0}

ε−1
r [Zt(ej − Xt−)]2

(3.7)
≤ Nε−1

r max
{j : e∗

j AtXt−>0}
[Zt(ej − Xt−)]2.
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Multiplying both sides by N−1εr , this implies there must be an ej with
e∗
jAtXt− > 0 such that

εrN
−1‖Zt‖2

Xt− ≤ [Zt(ej − Xt−)]2.

As e∗
jAtXt− ≥ εr , we have

ε3/2
r N−1/2‖Zt‖Xt− ≤ (e∗

jAtXt−)Zt (ej − Xt−).

For all ej such that (e∗
jAtXt−)Zt (ej − Xt−) < 0, we have, by assumption,

−ε‖Zt‖Xt ≤ (e∗
jAtXt−)Zt (ej − Xt−) < 0.

By Lemma 3.7, we deduce

ZtψtXt− = −ZtAtXt−
= −∑

j

(e∗
jAtXt−)Zt (ej − Xt−)

≤ −ε3/2
r N−1/2‖Zt‖2

Xt− + (N − 1)ε‖Zt‖Xt−

≤ −ε‖Zt‖Xt−,

where the final inequality is from the assumption that ε < ε
3/2
r N−3/2. �

3.2. Linear BSDEs.

THEOREM 3.11 (Linear BSDEs). Let (α,β, γ ) be a du × P-a.s. bounded
(RK×N,R

K×K,R
K) valued predictable process, φ a predictable R

K valued
process with E[∫]0,T ] ‖φt‖2 dt] < +∞, T a deterministic terminal time and Q

a square-integrable FT measurable R
K valued random variable. Then the linear

BSDE given by

Yt −
∫
]t,T ]

[φu + βuYu− + αuZ
∗
uγu]du +

∫
]t,T ]

Zu dMu = Q(3.8)

has a unique square integrable solution (Y,Z) (up to appropriate sets of measure
zero). Furthermore, if

I + αsψ
+
s (ej − Xs−)γ ∗

s(3.9)

is invertible for all j such that e∗
jAsXs− > 0, except possibly on some evanescent

set, then Y is given by the explicit formula

Yt = E

[
�T

t Q +
∫
]t,T ]

�u
t φu du

∣∣∣Ft

]
(3.10)

up to indistinguishability. Here �s
t is the adjoint process defined for t ≤ s ≤ T by

the forward linear SDE,

�s
t = I +

∫
]t,s]

�u−
t [βu du + αuψ

+
u dMuγ

∗
u ].(3.11)
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Before proving this, we establish the following results:

LEMMA 3.12. The adjoint process defined by (3.11) will satisfy, for t ≤ r ≤ s,

�r
t �

s
r = �s

t .

PROOF. Assume without loss of generality t < s < T . Write

dVu = βu du + αuψ
+
u dMuγ

∗
u .

Then � is defined by the forward SDE,

�s
t = I +

∫
]t,s]

�u−
t dVu.

If H is Ft measurable in R
N×N , then

L = H�

is the unique solution to

Ls
t = H +

∫
]t,s]

Lu−
t dVu.

Suppose t ≤ r , and define

Ds
t =

{
�s

t , for t ≤ s ≤ r ,
�r

t �
s
r , for t ≤ r ≤ s.

Then

Ds
t = I +

∫
]t,s]

Du−
t dVu

for t ≤ s ≤ r , and

Ds
t = �r

t +
∫
]r,s]

Du−
t dVu

= I +
∫
]t,s]

Du−
t dVu

for t ≤ r ≤ s. By uniqueness, for t ≤ r ≤ s, this implies Ds
t = �s

t = �r
t �

s
r , as

desired. �

We now discuss how solutions of first-order matrix differential equations can be
expressed as product integrals.

LEMMA 3.13. Consider a deterministic first-order differential equation of the
form

Gt
s = I +

∫
]s,t]

Gu−
s Hu du.(3.12)
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Here G and H are K ×K matrix-valued functions, H is bounded and Lebesgue in-
tegrable and s < t . Then (3.12) has an invertible solution, which can be expressed
as a product integral, denoted by

Gt
s = �]s,t](I + Hu du).

If Ht has nonnegative entries off the main diagonal for dt-almost all t , then this
solution has all entries nonnegative.

PROOF. As H is bounded and Lebesgue integrable, we can appeal to the the-
ory of the product integral. Using this,

Gt
s = �]s,t](I + Hu du) = lim

n→∞
n−1∏
i=0

{
I +

∫
](sn)i ,(sn)i+1]

Hu du

}
,(3.13)

where, for each n, (sn) is an arbitrary partition of ]s, t] into n parts,

s = (sn)0 < (sn)1 < (sn)2 < · · · < (sn)n = t,

converging, as n → ∞, in the sense that

lim
n→∞ max

i
|(sn)i − (sn)i+1| = 0,

∏
indicates products taken sequentially on the right and the limit is taken in the

matrix norm Tr(Gt
s(G

t
s)

∗). This is called the product integral of H , exists by [13],
Theorem 1 and solves the integral equation, (3.12) by [13], Theorem 5.

Gt
s has an inverse, given by

(Gt
s)

−1 = lim
n→∞

0∏
i=n−1

{
I −

∫
](sn)i ,(sn)i+1]

Hu du

}
(3.14)

as noted in [12], page 134.
Finally, if H has nonnegative entries off the main diagonal dt-a.e., as H

is bounded, for sufficiently large n,
∫
](sn)i ,(sn)i+1] Hu du has all diagonal entries

greater than −1 for all i. Therefore,

I +
∫
](sn)i ,(sn)i+1]

Hu du

is nonnegative for all i. Consequently, the product in (3.13) must be nonnegative.
As the set of matrices with nonnegative components is closed, the limit �]s,t](I +
Hu du) will also have all components nonnegative. �

LEMMA 3.14. Let t be a time at which X jumps, that is, 
Xt 
= 0. Then

P(
Xt = ej − Xt− for some j with e∗
jAtXt− > 0) = 1.
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PROOF. Recall that e∗
jAuei is left continuous and lies in [εr, ε

−1
r ] ∪ {0}. If for

some time u we have e∗
jAuei = 0, then there exist r < u ≤ s such that e∗

jAuei = 0
for all u ∈]r, s]. As A is left continuous and X is cádlág, A and X have countably
many discontinuities, and therefore, for each ei, ej , there is a countable set of
stopping times rn, sn such that Xrn = ei and

e∗
jAuei = 0 for all u ∈]rn, sn].

It is then clear that, for a given pair ei, ej ,

{u : e∗
jAuXu− = 0 and Xu− = ei} = ⋃

n

]rn, sn].

For a given n, let

τ = min{t > rn :
Xt 
= 0} ∧ sn.

Then

E[Xτ |Frn] = Xrn + E

[∫
]rn,τ ]

AuXu− du
∣∣∣Frn

]

and hence

E[e∗
j
Xτ ] = E

[
E

[∫
]rn,τ ]

e∗
jAuXu− du

∣∣∣Frn

]]
= 0.

It is clear that the left-hand side of this equation is positive if and only if
P(
Xτ = ej − ei) > 0. Hence we have shown that

P(
Xt = ej − ei for some t ∈]rn, sn]) = 0.

Taking a sum over all i, j and the countable index n gives the desired result. �

LEMMA 3.15. Suppose that for all s ∈]t, T ],
I + αsψ

+
s (ej − Xs−)γ ∗

s

is invertible for all j such that e∗
jAsXs− > 0, except possibly on some evanescent

set. Then the adjoint process �s
t defined by (3.11) is invertible (except possibly on

this evanescent set).

PROOF. By the definition of M in (1.1), we can rewrite (3.11) as

�s
t = I +

∫
]t,s]

�u
t [βu − αuψ

+
u AuXu−γ ∗

u ]du

(3.15)
+ ∑

t<u≤s

�
(u−)
t αuψ

+
u 
Xuγ

∗
u .
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When 
Xu = 0, (3.15) is of the form of a classical, deterministic, linear matrix dif-
ferential equation, with nonsingular solution �s

s0
given by the analogue of (3.13).

Therefore, if two consecutive jump times are s0, s1, for s ∈ [s0, s1[ we have

�s
t = �

s0
t �]s0,s]{I + [βu − αuψ

+
u AuXu−γ ∗

u ]du} = �
s0
t �s

s0

by Lemma 3.13. If �
s0
t is invertible, then

(�s
t )

−1 = (�s
s0

)−1(�
s0
t )−1(3.16)

exists.
At each jump time, (3.15) implies we have


�s
t = �

(s−)
t αsψ

+
s 
Xsγ

∗
s .

Hence

�s
t = �

(s−)
t (I + αsψ

+
s 
Xsγ

∗
s ).

By Lemma 3.14, at each jump time s,

P(
Xs = ej − Xs− for some j with e∗
jAsXs− > 0) = 1.

By assumption, I + αsψ
+
s (ej − Xs−)γ ∗

s is invertible for all such j (up to evanes-
cence), and

(�s
t )

−1 = (I + αsψ
+
s 
Xsγ

∗
s )−1(

�
(s−)
t

)−1
.(3.17)

The process X almost surely has finitely many jumps in [0, T ]. Through a
process of induction using the starting value �t

t = I and (3.16) and (3.17), we
can conclude �s

t is invertible (up to evanescence). �

THEOREM 3.16. Suppose βu − αuψ
+
u AuXu−γ ∗

u has all nonnegative compo-
nents off the main diagonal P × du-a.s., for u ∈]t, T ], and, except possibly on
some evanescent subset of � × ]t, T ],

I + αuψ
+
u (ej − Xu−)γ ∗

u

has nonnegative components for all j such that e∗
jAuXu− > 0. Then the adjoint

process �s
t has all entries nonnegative for all s ∈]t, T ], up to evanescence.

PROOF. As above, if two consecutive jump times are s0, s1, for s ∈ [s0, s1[ we
have from (3.15),

�s
t = �

s0
t �]s0,s]{I + [βu − αuψ

+
u AuXu−γ ∗

u ]du}.
By assumption, [βu − αuψ

+
u AuXu−γ ∗

u ]du has nonnegative components off the
main diagonal, and therefore by Lemma 3.13, �s

s0
has nonnegative components.

The product of matrices with nonnegative components has nonnegative compo-
nents, so if �

s0
t has nonnegative components, �s

t has nonnegative components.
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At each jump time, we have from (3.15) that 
�s
t = �

(s−)
t αsψ

+
s 
Xsγ

∗
s . This

implies

�s
t = �

(s−)
t (I + αsψ

+
s 
Xsγ

∗
s )

and the term in parentheses has all nonnegative components by our assumption
and the argument of Lemma 3.15 regarding the values of 
Xs .

The process X almost surely has finitely many jumps in [0, T ], and therefore
through a process of induction using the starting value �t

t = I , we conclude that
�s

t has nonnegative entries up to evanescence. �

COROLLARY 3.17. The conditions of Theorem 3.16 are necessary for �s
t to

have all entries nonnegative for all s and t .

PROOF. First consider the case when s is not a jump time. Then, as noted
by [3], page 176, for small δ > 0,

�s
s−δ = I + [

βs−δ − αs−δψ
+
s−δAs−δX(s−δ)−γ ∗

u

]
δ + O(δ2).

Hence if [βs−δ −αs−δψ
+
s−δAs−δX(s−δ)−γ ∗

u ] has negative components off the main
diagonal, then so will �s

s−δ .
For s, a jump time, again for small δ > 0

�s
s−δ = I + αsψ

+
s 
Xsγ

∗
s + O(δ).

The result follows. �

A useful result when applying this lemma is the following.

LEMMA 3.18. For a nonnegative column vector x ∈ R
K and any basis vector

ei ∈ R
K , the matrix I + xe∗

i has nonnegative components and is invertible.

PROOF. Clearly, I + xe∗
i has nonnegative components. For I + xe∗

i to be sin-
gular, there must be a nontrivial linear combination of its rows equalling zero. Sup-
pose yj denotes the j th row of I + xe∗

i and
∑K

j=1 cjyj = 0. As, for each j 
= i, yj

is the only row containing a nonzero entry in the j th place, we must have cj = 0
for j 
= i. Therefore we must have ciyi = 0. By assumption, x is nonnegative, so
yi = (1 + e∗

i x)ei 
= 0, therefore ci = 0 also. Therefore there is no nontrivial linear
combination of the rows of I + xe∗

i , and so I + xe∗
i is invertible. �

LEMMA 3.19. Under the conditions of Theorem 3.11,

sup
t

E[‖�t
0‖2] < +∞

and

sup
t

E

[∥∥∥∥�t
0Yt +

∫
]0,t]

�u−
0 φu du

∥∥∥∥
2]

< +∞.
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PROOF. We first show supt E‖�t
0‖2 < +∞. From (3.11),

E[‖�t
0‖2] ≤ 2‖I‖2 + 2E

[∥∥∥∥
∫
]0,t]

�u−
0 [βu du + αuψ

+
u dMuγ

∗
u ]

∥∥∥∥
2]

≤ 2‖I‖2 + 4
∫
]0,t]

E[‖�u−
0 ‖2]E[‖βu‖2]du

+ 4E

[∥∥∥∥
∫
]0,t]

�u−
0 αuψ

+
u dMuγ

∗
u

∥∥∥∥
2]

.

The last term of the right-hand side can then be decomposed using Lemma 3.1, to
give

4E

[∥∥∥∥
∫
]0,t]

�u−
0 αuψ

+
u dMuγ

∗
u

∥∥∥∥
2]

= 4E

[∫
]0,t]

(γ ∗
u γu)Tr(�u−

0 αuψ
+
u d〈M,M〉u(ψ+

u )∗α∗
u(�u−

0 )∗)
]

≤ 4E

[∫
]0,t]

(γ ∗
u γu)Tr((�u−

0 )∗�u−
0 )Tr(αuψ

+
u ψu(ψ

+
u )∗α∗

u) du

]

≤ 4
∫
]0,t]

E[‖�u−
0 ‖2]E[‖γu‖2‖αuψ

+
u ‖2

Xu−]du.

We therefore have

E[‖�t
0‖2] ≤ 2‖I‖2 + 4

∫
]0,t]

E[‖�u−
0 ‖2]E[‖βu‖2 + ‖γu‖2‖αuψ

+
u ‖2

Xu−]du

and Grönwall’s lemma yields

E[‖�t
0‖2] ≤ 2‖I‖2 exp

{
4E

[∫
]0,t]

‖βu‖2 + ‖γu‖2‖αuψ
+
u ‖2

Xu− du

]}
.

As α,β, γ,ψ and ψ+ are all du×P-a.s. bounded (by assumption and Lemma 3.3),
the right-hand side of this is finite for all t . As it is also increasing in t ,

sup
t

E[‖�t
0‖2] ≤ 2‖I‖2 exp

{
4E

[∫
]0,T ]

‖βu‖2 + ‖γu‖2‖αuψ
+
u ‖2

Xu− du

]}
< +∞.

To show the second statement, note

E

[∥∥∥∥�t
0Yt +

∫
]0,t]

�u−
0 φu du

∥∥∥∥
2]

≤ 2E[‖�t
0‖2]E[‖Yt‖2] + 2

∫
]0,t]

E[‖�u−
0 ‖2]E[‖φu‖2]du.
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Hence

sup
t

E

[∥∥∥∥�t
0Yt +

∫
]0,t]

�u−
0 φu du

∥∥∥∥
2]

≤ 2
(
sup

t
E[‖�t

0‖2]
)(

sup
t

E[‖Yt‖2]
)

+ 2
(
sup
u

E[‖�u−
0 ‖2]

)(
E

[∫
]0,T ]

‖φu‖2 du

])

and each of these terms is finite. �

PROOF OF THEOREM 3.11. It is clear that (3.8) is of the form of (1.3), where
F(ω, t, Yt−,Zt ) = φt + βtYt− + αtZtγ

∗
t is a Lipschitz continuous, square inte-

grable driver for the equation. The uniqueness of the solution follows from Theo-
rem 1.1. We now search for the closed-form solution.

The first required result is that

�t
0Yt +

∫
]0,t]

�u
0φu du

is a uniformly integrable martingale. To see this, observe that in this context all
integrals are Stieltjes integrals, and hence

�t
0Yt = �0

0Y0 +
∫
]0,t]

[�u−
0 dYu + d�u

0Yu−] + ∑
0<u≤t


�u
0
Yu

= �0
0Y0 −

∫
]0,t]

�u−
0 [φu + βuYu− + αuZ

∗
uγu]du +

∫
]0,t]

�u−
0 Zu dMu

+
∫
]0,t]

�u−
t βuYu− du +

∫
]0,t]

�u−
t αuψ

+
u dMuγ

∗
u Yu−

+ ∑
0<u≤t

�u−
0 αuψ

+
u 
Muγ

∗
u Zu
Mu.

Then, as a 1 × 1 matrix is its own transpose,

�u−
0 αuψ

+
u 
Muγ

∗
u Zu
Mu = �u−

0 αuψ
+
u 
Mu
M∗

uZ∗
uγu.

The quantity 
Mu
M∗
u is equal to d[M,M]u, the measure induced by the op-

tional quadratic covariation matrix of M . d〈M,M〉u is then the dual predictable
projection of d[M,M]u (see [8]). Therefore,

�t
0Yt +

∫
]0,t]

�u−
0 φu du = Lt −

∫
]0,t]

�u−
0 αuZ

∗
uγu du

+
∫
]0,t]

�u−
0 αuψ

+
u d〈M,M〉uZ∗

uγu
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for some local martingale L. It follows that

�t
0Yt +

∫
]0,t]

�u−
0 φu du = Lt +

∫
]0,t]

�u−
0 [αuψ

+
u ψu − αu]Z∗

uγu du

and from Lemmas 3.3 and 3.5, ψ+
u ψuZ

∗ = Z∗ without loss of generality, so the
latter of these terms is zero, and, therefore, the left-hand side is a local martingale.

By Lemma 3.19, �t
0Yt + ∫

]0,t] �u
0φu du is square integrable, and hence is a uni-

formly integrable martingale (see [14], page 12). Hence it is indistinguishable from
the conditional expectation of its terminal value (see [14], page 11)

�t
0Yt +

∫
]0,t]

�u−
0 φu du = E

[
�T

0 Q +
∫
]0,T ]

�u
0φu du

∣∣∣Ft

]
.

Through standard calculations and the use of Lemmas 3.12 and 3.15, we can con-
clude that, up to indistinguishability,

Yt = E

[
�T

t Q +
∫
]t,T ]

�u
t φu du

∣∣∣Ft

]
. �

COROLLARY 3.20. If Q and φ are nonnegative, and the assumptions of The-
orem 3.16 are satisfied, then Y is nonnegative. If, in addition Y0 = 0, then, Y = 0
up to indistinguishability (and hence Q = 0, P-a.s.) and φt = 0, P × dt-a.s.

PROOF. This follows from Theorem 3.11 and the nonnegativity result of The-
orem 3.16. The strict comparison is trivial, given the invertibility of �t

s for all s

and t and the fact that Y is cádlág. �

4. A scalar comparison theorem. We shall now establish a comparison the-
orem relating the solutions of two BSDEs in the scalar case.

REMARK 4.1. In the scalar case, when K = 1, the assumptions of Theo-
rem 3.16 simplify considerably. The assumption of nonnegativity of

βt − αtψ
+
t AtXt−γ ∗

t ,

off the main diagonal becomes trivial (as there are no off diagonal terms) and the
assumption that

I + αsψ
+
s (ej − Xs−)γ ∗

s

is P-a.s. invertible and nonnegative for all j such that e∗
jAsXs− > 0 can be simpli-

fied to

αsψ
+
s (ej − Xs−) > −1(4.1)

as γ = 1, without loss of generality.



BSDES ON MARKOV CHAINS 285

THEOREM 4.2 (Scalar comparison theorem). Suppose we have two standard,
scalar (K = 1), BSDEs corresponding to coefficients and terminal values (F 1,Q1)

and (F 2,Q2). Let (Y 1,Z1) and (Y 2,Z2) be the associated solutions. We suppose
the following conditions hold:

(i) Q1 ≥ Q2
P-a.s.;

(ii) dt × P-a.s.,

F 1(ω, t, Y 2
t−,Z2

t ) ≥ F 2(ω, t, Y 2
t−,Z2

t );
(iii) there exists an ε > 0 such that P-a.s., for all t ∈ [0, T ], if Z1

t , Z2
t are such

that

(e∗
jAtXt−)[Z1

t − Z2
t ](ej − Xt−) ≥ −ε‖Z1

t − Z2
t ‖Xt−

for all ej , then

F 1(ω, t, Y 2
t−,Z1

t ) − F 1(ω, t, Y 2
t−,Z2

t ) ≥ −[Z1
t − Z2

t ]AtXt−

with equality only if ‖Z1
t − Z2

t ‖Xt− = 0.

It is then true that Y 1 ≥ Y 2
P-a.s. Moreover, this comparison is strict, that is, if

on some A ∈ Ft we have Y 1
t = Y 2

t , then Q1 = Q2
P-a.s. on A, F 1(ω, s, Y 2

s ,Z2
s ) =

F 2(ω, s, Y 2
s ,Z2

s ) ds ×P-a.s. on [t, T ]×A and Y 1 is indistinguishable from Y 2 on
[t, T ] × A.

REMARK 4.3. Note that assumption (iii) need only hold for Z1 and Z2; there
may well be other processes Z for which it fails. This will correspond with various
types of dominance, as will be seen in Section 7 below. In practice, however, it
may be more convenient to assume that this assumption holds for all Z1 and Z2,
as it is not clear how one might show this condition holds for a particular (F,Q)

without first finding the solution processes (Y,Z) analytically.
An intuitive interpretation of this assumption is, “consider the difference be-

tween the SDEs with starting value Y 2
t−, trend F(ω, t, Yt ,Z

i
t ), and hedging

processes Z1
t and Z2

t . If the only sizeable jumps that can occur in this difference
are positive, then the overall trend through time should be negative.”

PROOF OF THEOREM 4.2. We can write

Y 1
t − Y 2

t −
∫
]t,T ]

[F 1(ω,u,Y 1
u−,Z1

u) − F 2(ω,u,Y 2
u−,Z2

u)]du

(4.2)
+

∫
]t,T ]

[Z1
u − Z2

u]dMu = Q1 − Q2.

Taking (4.2), the equation satisfied by δY := Y 1 − Y 2 and δZ := Z1 − Z2, we
shall form an equivalent linear BSDE for δY and apply Corollary 3.20 to prove the



286 S. N. COHEN AND R. J. ELLIOTT

desired result. For notational simplicity, we shall omit the ω, t arguments of F 1,
F 2 as implicit. We also define 0/0 := 0 wherever needed.

Without loss of generality, we can assume

ε < ε3/2
r N−3/2,

where εr is as in (3.1).
We consider three cases.

1. If F 1(Y 2
t−,Z1

t ) − F 1(Y 2
t−,Z2

t ) ≥ 0, then let

φt = F 1(Y 2
t−,Z1

t ) − F 2(Y 2
t−,Z2

t ),

βt = F 1(Y 1
t−,Z1

t ) − F 1(Y 2
t−,Z1

t )

δYt−
,

αt = 0,

γt = 1.

Note that assumption (ii) and the fact F 1(Y 2
t−,Z1

t ) − F 1(Y 2
t−,Z2

t ) ≥ 0 implies
that φt ≥ 0.

2. If F 1(Y 2
t−,Z1

t ) − F 1(Y 2
t−,Z2

t ) < 0 and there is a j such that

(e∗
jAtXt−)[Z1

t − Z2
t ](ej − Xt−) < −ε‖Z1

t − Z2
t ‖Xt−,

then let

φt = F 1(Y 2
t−,Z2

t ) − F 2(Y 2
t−,Z2

t ),

βt = F 1(Y 1
t−,Z1

t ) − F 1(Y 2
t−,Z1

t )

δYt−
,

αt = F 1(Y 2
t−,Z1

t ) − F 1(Y 2
t−,Z2

t )

[Z1
t − Z2

t ]ψtej

· e∗
jψt ,

γt = 1.

3. If F 1(Y 2
t−,Z1

t ) − F 1(Y 2
t−,Z2

t ) < 0 and

(e∗
jAtXt−)[Z1

t − Z2
t ](ej − Xt−) ≥ −ε‖Z1

t − Z2
t ‖Xt−(4.3)

for all j , then let

φt = F 1(Y 2
t−,Z2

t ) − F 2(Y 2
t−,Z2

t ),

βt = F 1(Y 1
t−,Z1

t ) − F 1(Y 2
t−,Z1

t )

δYt−
,

αt = F 1(Y 2
t−,Z1

t ) − F 1(Y 2
t−,Z2

t )

[Z1
t − Z2

t ]ψtXt−
· X∗

t−ψt,

γt = 1.
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In all three cases, it is clear that

F 1(Y 1
t−,Z1

t ) − F 2(Y 2
t−,Z2

t ) = φt + βt(δYt−) + αt(δZt )
∗γt ,

and so the linear BSDE with these values of φt , βt , αt and γt is equivalent to (4.2).
Furthermore, E[∫]0,T ] ‖φt‖2 dt] < +∞ as F is standard, and in each case, βt , αt

and γt are dt × P-a.s. bounded. This is trivial for γt and follows directly from
Lipschitz continuity for βt in all cases.

In case 1, αt = 0. In case 2, we know that ψtej = (e∗
jAtXt−)[ej − Xt−] by the

definition of ψ in (1.4). By assumption, the absolute value of [Z1
t − Z2

t ]ψtej is
then at least ε‖Z1

t − Z2
t ‖Xt− , and therefore αt is bounded by Lipschitz continuity.

In case 3, by Lemma 3.6 and the fact F 1(Y 2
t−,Z1

t ) 
= F 1(Y 2
t−,Z2

t ), we know
‖Z1

t − Z2
t ‖Xt− 
= 0, and so we are in precisely the situation considered in Lem-

ma 3.10. Therefore [Z1
t − Z2

t ]ψtXt− < −ε‖Z1
t − Z2

t ‖Xt− , and so Lipschitz conti-
nuity implies the boundedness of αt in case 3.

We have assumed that F 1 and F 2 are standard, and hence P-a.s. is left continu-
ous in t , as are Y i

t− and Zi
t for i = 1,2. By construction, we see that the variable Ct

indicating which of cases 1, 2 and 3 is in force at any time t is predictable. Further-
more, the processes α, β and φ defined in each case are also predictable. We then
use Ct to piece together the various definitions of α, β and φ to give a single pre-
dictable linear BSDE, with the same driver values as F 1(Y 1

t−,Z1
t ) − F 2(Y 2

t−,Z2
t ),

dt × P-a.s. This linear BSDE satisfies all the requirements for Theorem 3.11.
We now appeal to Remark 4.1 to determine that the only requirement to show

nonnegativity of δY is that, for all t , αtψ
+
t (ek − Xt−) > −1 for all k with

e∗
kAt−Xt− > 0.

In case 1 this is clear. In case 2, we can write

αtψ
+
t (ek − Xt−) = F 1(Y 2

t−,Z1
t ) − F 1(Y 2

t−,Z2
t )

e∗
jψt [Z1

t − Z2
t ]∗

e∗
jψtψ

+
t (ek − Xt−),

and, by Lemma 3.4, e∗
jψtψ

+(ek − Xt−) = e∗
j (ek − Xt−) which is zero unless

k = j . If k = j we see that

αtψ
+
t (ek − Xt−) = F 1(Y 2

t−,Z1
t ) − F 1(Y 2

t−,Z2
t )

e∗
jψt [Z1

t − Z2
t ]∗

> 0

by construction.
In case 3, we know from Lemma 3.10 that [Z1

t −Z2
t ]ψtXt− is negative. For any

k satisfying Lemma 3.4, this implies

X∗
t−ψtψ

+
t (ek − Xt−)

X∗
t−ψt [Z1

t − Z2
t ]∗

= X∗
t−(ek − Xt−)

X∗
t−ψt [Z1

t − Z2
t ]∗
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is positive. We then use assumption (iii) of the theorem, along with Lemma 3.7, to
show that

αtψ
+
t (ek − Xt−)

= F 1(ω, t, Y 2
t−,Z1

t ) − F 1(ω, t, Y 2
t−,Z2

t )

[Z1
t − Z2

t ]ψtXt−
X∗

t−(ek − Xt−)

> −[Z1
t − Z2

t ]AtXt−
[Z1

t − Z2
t ]ψtXt−

X∗
t−(ek − Xt−)

= −[Z1
t − Z2

t ]ψtXt−
[Z1

t − Z2
t ]ψtXt−

= −1

as desired.
Therefore, we have shown that δY = Y 1 − Y 2; the difference of our processes

satisfies the requirements of Remark 4.1. That is, the assumptions of Corollary 3.20
are satisfied by this process and δY is therefore nonnegative P-a.s. The rest of the
theorem also follows by Corollary 3.20. �

REMARK 4.4. In general assumption (iii) cannot be omitted, and is closely
related to various geometric interpretations of no arbitrage (see Section 7). The fact
that it is possible to create such Z1 and Z2 (due to the linear redundancy in M),
indicates a significant difference between the Markov chain theory considered here
and that based on Brownian motion considered elsewhere.

4.1. Scalar counterexamples. Suppose the theorem were to hold without as-
sumption (iii). Then we can create contradictions as follows.

EXAMPLE 4.1. Take any standard F such that there is Y 1, Y 2, Z1 and Z2

with Y 1
0 = Y 2

0 , [Z1
t − Z2

t ](ej − Xt−) nonnegative for all ej with e∗
jAtXt− > 0 and

positive for at least one such j , and

F(ω, t, Y 2
t−,Z1

t ) − F(ω, t, Y 2
t−,Z2

t ) ≤ −[Z1
t − Z2

t ]AtXt−
on some (stochastic) set of positive dt measure. Without loss of generality, we
shall assume that this set is the stochastic interval [0, S], where S is an essentially
bounded stopping time. Extend F to [0, T ] for some deterministic time T as in
Section 2.

Then define Q1 and Q2 by the forward stochastic differential equations

Y 1
t −

∫
]t,T ]

F(ω,u,Y 1
u−,Z1

u) du +
∫
]t,T ]

Z1
u dMu = Q1,

Y 2
t −

∫
]t,T ]

F(ω,u,Y 2
u−,Z2

u) du +
∫
]t,T ]

Z2
u dMu = Q2.
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If we consider the process δY := Y 1 − Y 2, we can see that δY is nondecreasing
over [0, T ] with probability one, and is increasing with positive probability. This
is because at every jump time s,


(δY )s = [Z1
s − Z2

s ]
Xs = [Z1
s − Z2

s ](ej − Xs−)

for some j which is nonnegative a.s. and positive with positive probability, and at
every other time, the derivative of δY is equal to

d(δY )

du
= −F(ω,u,Y 1

u−,Z1
u) + F(ω,u,Y 2

u−,Z2
u)

− Z1
uAuXu− + Z2

uAuXu−
> 0

by assumption. Therefore Q1 ≥ Q2
P-a.s., and Q1 > Q2 with positive probability.

However, the initial value, δY0 = 0, would imply, by the strict comparison of the
theorem, that Q1 = Q2

P-a.s., which is a contradiction.

EXAMPLE 4.2. For a given Markov chain, X, with three states where the rate
matrix is such that the jump rate between any pair of states is nonvanishing, define
the process {Jt } which counts the number of jumps in X strictly prior to time t .
Let

Z1
t = [

2
√

1 − 2−2(Jt+2)e∗
i1

− 2−(Jt+1)e∗
i2

]
ψtψ

+
t ,

where ei1 , ei2 and Xt− are the three basis vectors in R
3. Let Z2 = 0 and

F 1 = F 2 = F(ω, t, Yt−,Zt ) = −‖Zt‖Xt− − ZtAtXt−.

This particular combination for Z1 − Z2 always has the possibility of negative
jumps, however, these decrease exponentially in magnitude while ‖Z1 −Z2‖Xt− =
4 is constant. For Jt sufficiently large, this will fail to satisfy assumption (iii) for
any fixed ε. The sizes of the negative jumps are such that their sum will always be
more than −1.

Consider the forward SDEs defined by these Z1 and Z2 with starting value
Y 1

0 = Y 2
0 = 0; for terminal time T = 1, Y 2

T = 0 and Y 1
T ≥ 3 P-a.s., contradicting

the theorem.

REMARK 4.5. These examples also demonstrate the interrelationship be-
tween the scalar comparison theorem, assumption (iii) and dominance. This is
explored further in Section 7.
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5. General comparison theorems. We now wish to extend Theorem 4.2 to
the vector case. This is nontrivial, as the simplifications of Remark 4.1 are not
possible, and we must satisfy the more difficult conditions of Corollary 3.20 di-
rectly. We also do not have the useful result of Lemma 3.10. We present here some
alternative generalizations.

THEOREM 5.1 (Vector comparison Theorem 1). Suppose we have two stan-
dard BSDE parameters, (F 1,Q1) and (F 2,Q2). Let (Y 1,Z1) and (Y 2,Z2) be the
associated solutions.

Recall that a BSDE here has F(ω, t, Yt−,Zt ), Yt−,Q ∈ R
K and Zt ∈ R

K×N

where N is the number of states of the Markov chain X.
We suppose the following conditions hold:

(i) Q1 ≥ Q2
P-a.s.;

(ii) dt × P-a.s.,

F 1(ω, t, Y 2
t−,Z2

t ) ≥ F 2(ω, t, Y 2
t−,Z2

t );
(iii) there exists an ε > 0 such that P-a.s., for all t ∈ [0, T ], for any basis vector

ek ∈ R
K , if Z1

t , Z2
t are such that

(e∗
jAtXt−)e∗

k [Z1
t − Z2

t ](ej − Xt−) ≥ −ε‖e∗
k [Z1

t − Z2
t ]‖Xt−

for all ej , then

e∗
k [F 1(ω, t, Y 2

t−,Z1
t ) − F 1(ω, t, Y 2

t−,Z2
t )] ≥ −e∗

k [Z1
t − Z2

t ]AtXt−

with equality only if ‖e∗
k [Z1

t − Z2
t ]‖Xt− = 0;

(iv) for each i, e∗
i F

1 can be written as a function

e∗
i F

1(ω, t, Yt−,Zt ) = F 1
i (ω, t, e∗

i Yt−, e∗
i Zt ),

that is, the ith component of F 1 depends only on the ith component of Y and the
ith row of Z (and ω and t); and similarly for F 2.

It is then true that Y 1 ≥ Y 2
P-a.s. Moreover, this comparison is strict,

that is, if on some A ∈ Ft , we have Y 1
t = Y 2

t , then Q1 = Q2
P-a.s., on A,

F 1(ω, s, Y 2
s ,Z2

s ) = F 2(ω, s, Y 2
s ,Z2

s ) ds × P-a.s. on [t, T ] × A and and Y 1 is
indistinguishable from Y 2 on [t, T ] × A.

PROOF. This can be established using the results of Theorem 4.2. From (1.3),
we know that, with δY := Y 1 − Y 2, δZ := Z1 − Z2,

Q1 − Q2 = δZt −
∫
]t,T ]

[F 1(ω,u,Z1
u−, Y 1

u ) − F 2(ω,u,Z2
u−, Y 2

u )]du

+
∫
]t,T ]

δYu dMu,
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which implies, for each i,

e∗
i [Q1 − Q2]

= e∗
i δYt −

∫
]t,T ]

e∗
i [F 1(ω,u,Y 1

u−,Z1
u) − F 2(ω,u,Y 2

u−,Z2
u)]du

+
∫
]t,T ]

e∗
i δZu dMu

= e∗
i δYt −

∫
]t,T ]

[F 1
i (ω,u, e∗

i Y
1
u−, e∗

i Z
1
u) − F 2

i (ω,u, e∗
i Y

2
u−, e∗

i Z
2
u)]du

+
∫
]t,T ]

e∗
i δZu dMu,

which is of the form considered in Theorem 4.2. As all the assumptions needed in
the scalar case are given, the result is shown for each component e∗

i δY by Theo-
rem 4.2. As this holds for all i, the vector result follows. �

COROLLARY 5.2. For any pair of BSDEs satisfying assumption (iv) of The-
orem 5.1, if assumptions (i)–(iii) are satisfied by any component of the terminal
condition and driver, then the comparison theorem will hold on that component.

PROOF. This is a direct result of applying Theorem 4.2 to the component in
question. �

It is clear that this theorem does not provide for much more behavior than the
scalar case, as it is considering each component separately from the others. Re-
moving this requirement is nontrivial, but can be done. To do so using the machin-
ery of the solutions to linear BSDEs, we must make the following, in some sense
stronger, assumption.

THEOREM 5.3 (Vector comparison Theorem 2). Suppose we have two stan-
dard BSDE parameters (F 1,Q1) and (F 2,Q2). Let (Y 1,Z1) and (Y 2,Z2) be the
associated solutions where the dimensions of F , Q, Y and Z are as in Theorem 5.1.
We suppose the following conditions hold:

(i) Q1 ≥ Q2
P-a.s.;

(ii) dt × P-a.s.,

F 1(ω, t, Y 2
t−,Z2

t ) ≥ F 2(ω, t, Y 2
t−,Z2

t );
(iii) there exists an ε > 0 such that, P-a.s., for all t ∈ [0, T ], for any basis vector

ej ∈ R
K , if

(e∗
kAtXt−)e∗

j [Z1
t − Z2

t ](ek − Xt−) ≥ −ε‖Z1
t − Z2

t ‖Xt−
for all ek 
= Xt−, then

e∗
j [F 1(ω, t, Y 2

t−,Z1
t ) − F 1(ω, t, Y 2

t−,Z2
t )] ≥ 0;
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(iv) for each i, e∗
i F

1 can be written as a function

e∗
i F

1(ω, t, Yt−,Zt ) = F 1
i (ω, t, e∗

i Yt−,Zt ),

that is, the ith component of F 1 depends only on the ith component of Y (and on
ω, t and Zt ).

It is then true that Y 1 ≥ Y 2
P-a.s. Moreover, this comparison is strict, that is, if

on some A ∈ Ft we have Y 1
t = Y 2

t , then Q1 = Q2
P-a.s. on A, F 1(ω, s, Y 2

s ,Z2
s ) =

F 2(ω, s, Y 2
s ,Z2

s ) ds × P-a.s. on [t, T ] × A, and Y 1 is indistinguishable from Y 2

on [t, T ] × A.

REMARK 5.4. The key differences between Theorems 5.3 and 5.1 are that in
Theorem 5.3, a weaker assumption is placed on the behavior of the driver F 1 in
relation to interactions between the rows of the Z matrix, but a stronger assumption
is placed on the behavior of a component of F 1 when no jump is significantly
negative in that component. We shall also see that this weaker assumption leads to
a significantly weaker result—the strict comparison cannot here be shown to hold
componentwise.

REMARK 5.5. Assumption (iii) in Theorem 5.3 is a stronger assumption than
for Theorem 5.1. In the scalar case, which is the foundation of Theorem 5.1, we
used Lemma 3.10 to show that each row, e∗

i [Z1
t − Z2

t ]ψtXt−, is negative, and our
assumption was equivalent to

e∗
k [F 1(ω, t, Y 2

t−,Z1
t ) − F 1(ω, t, Y 2

t−,Z2
t )] ≥ e∗

k [Z1
t − Z2

t ]ψtXt−,

which is clearly satisfied when

e∗
k [F 1(ω, t, Y 2

t−,Z1
t ) − F 1(ω, t, Y 2

t−,Z2
t )] ≥ 0.

PROOF OF THEOREM 5.3. For simplicity of notation, again let δYt = Y 1
t −Y 2

t ,
δZt = Z1

t − Z2
t . We also will omit the ω and t arguments of F as implicit. Note

that here φ,γ ∈ R
K , β ∈ R

K×K and α ∈ R
K×N . We will construct α, β , γ and φ

in two stages.

1. Consider first those components of F 1(Y 2
t−,Z1

t )−F 1(Y 2
t−,Z2

t ) which are non-
negative. Let ei indicate each such component in turn. Then define the corre-
sponding components of φt and βt , and rows of αt , by

e∗
i φt = e∗

i [F 1(Y 2
t−,Z1

t ) − F 2(Y 2
t−,Z2

t )] ≥ 0,

e∗
i βt = e∗

i [F 1(Y 1
t−,Z1

t ) − F 1(Y 2
t−,Z1

t )]
e∗
i [δYt−] e∗

i ,

e∗
i αt = 0.

It follows that E[∫]0,T ] ‖e∗
i φt‖2 dt] < +∞ as F 1,F 2 are standard, e∗

i βt is
dt × P-a.s. bounded by Lipschitz continuity of F 1, and they will satisfy the
requirements of Corollary 3.20.
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2. If all components are dealt with by the above, then we have completed the
construction. Otherwise, for each time point t , let γt indicate the smallest of the
remaining components of δYt− in absolute value, that is, γt is the basis vector
such that |γ ∗

t δYt−| ≤ |e∗
j δYt−| for all j .

For each of the remaining components, we now define

e∗
i φt = e∗

i [F 1(Y 2
t−,Z2

t ) − F 2(Y 2
t−,Z2

t )] ≥ 0,

e∗
i βt = e∗

i [F 1(Y 1
t−,Z1

t ) − F 1(Y 2
t−,Z1

t )] − Bγ ∗
t [δYt−]

e∗
i [δYt−] e∗

i + Bγ ∗
t

for a large, fixed number B ≥ cε−1ε−1
r , where c is the Lipschitz constant of F 1,

ε is as in assumption (iii) of the theorem, and εr is as in (3.1). As γt indicates
the smallest component in absolute value of Yt−, Lipschitz continuity again
guarantees that this will remain bounded.

By assumption (iii) of the theorem, recalling

ψtek = (ekAtXt−)[ek − Xt−],
either for some ek 
= Xt−,

γ ∗
t [δZt ]ψtek < −ε‖δZt‖Xt−(5.1)

or

γ ∗
t [F 1(Y 2

t−,Z1
t ) − F 1(Y 2

t−,Z2
t )] ≥ 0.

However, we have selected γt such that

γ ∗
t [F 1(Y 2

t−,Z1
t ) − F 1(Y 2

t−,Z2
t )] < 0(5.2)

and therefore (5.1) must hold. Define

e∗
i αt =

(
e∗
i [F 1(Y 2

t−,Z1
t ) − F 1(Y 2

t−,Z2
t )]

γ ∗
t [δZt ]ψtek

)
e∗
kψt .

This is dt ×P-a.s. bounded by Lipschitz continuity and (5.1). As e∗
kψtψ

+
t (ej −

Xt−) ≥ 0 for ej , ek 
= Xt−, and the fraction in parentheses is positive [by (5.1)]
we have that

I + αkψ
+(ej − Xt−)γ ∗

is an invertible matrix with nonnegative components by Lemmas 3.18 and 3.4.

For the rows defined in the first case, we have βt only having elements on
the main diagonal, and αt having a corresponding row of zeros. Hence βt −
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αtψ
+
t AtXt−γ ∗

t has only entries on the main diagonal. For the rows defined in
the second case, we have, for each row i,

|e∗
i αtψ

+
t AtXt−| =

∣∣∣∣
(

e∗
i [F 1(Y 2

t−,Z1
t ) − F 1(Y 2

t−,Z2
t )]

γ ∗
t [δZt ]ψtek

)
e∗
kψtψ

+
t AtXt−

∣∣∣∣

≤
∣∣∣∣e

∗
i [F 1(Y 2

t−,Z1
t ) − F 1(Y 2

t−,Z2
t )]

γ ∗
t [δZt ]ψtek

∣∣∣∣ε−1
r

≤ cε−1ε−1
r

≤ B.

Therefore the ith row of βt − αtψ
+
t AtXt−γ ∗

t has an entry on the main diagonal,
an entry of B − e∗

i αtψ
+
t AtXt− ≥ 0 in the γt column (when this is off the main

diagonal), and zeros elsewhere. Hence βt −αtψ
+
t AtXt−γ ∗

t has nonnegative entries
off the main diagonal.

We therefore have defined, for each time t , random variables φt , βt , αt such that

F 1(Y 1
t−,Z1

t ) − F 2(Y 2
t−,Z2

t ) = φt + βtδYt− + αtδZ
∗
t γt .

As in the scalar case, we can now piece together these φt , βt , αt and γt to
give predictable processes, φ, β , α and γ . We have established that β , α and γ

are dt × P-a.s. bounded. As F is standard, φ is also square integrable, and is
nonnegative by construction.

Therefore, up to the desired dt × P-a.s. level of certainty, the requirements of
Corollary 3.20 are satisfied for the linear BSDE solved by δY . The result follows.

�

REMARK 5.6. This proof is significantly weaker than that of Theorem 5.1.
In particular, Corollary 5.2 has not been established in this case. It would appear
intuitively reasonable, from a geometric perspective, that it should hold, and also
that the weaker conditions of Theorem 5.1 assumption (iii) should be sufficient.
However, the machinery of appealing to the solutions of linear BSDEs does not
appear to be adequate to prove these results.

The assumption that the ith component of F can depend only on the ith com-
ponent of Y may be overly restrictive. Because of this, we have the following
alternative generalization, where we instead assume that F does not depend on Z.

THEOREM 5.7 (Vector comparison Theorem 3). Suppose we have two stan-
dard BSDE parameters (F 1,Q1) and (F 2,Q2). Let (Y 1,Z1) and (Y 2,Z2) be the
associated solutions. We suppose the following conditions hold:

(i) Q1 ≥ Q2
P-a.s.;
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(ii) dt × P-a.s.,

F 1(ω, t, Y 2
t−,Z2

t ) ≥ F 2(ω, t, Y 2
t−,Z2

t );
(iii) there exists an ε > 0 such that, dt × P-a.s., for each i, if

e∗
i F

1(ω, t, Y 1
t−,Zt ) < e∗

i F
1(ω, t, Y 2

t−,Zt ),

then either

|e∗
i [Y 1

t− − Y 2
t−]| > ε‖Y 1

t− − Y 2
t−‖

or there is a j with

e∗
j [Y 1

t− − Y 2
t−] < −ε‖Y 1

t− − Y 2
t−‖;

(iv) F 1 does not depend on Z (or equivalently, by Lemma 3.9, F 1 depends only
on the row sums of Z, not on its individual elements).

It is then true that Y 1 ≥ Y 2
P-a.s. Moreover, this comparison is strict, that is, if

on some A ∈ Ft we have Y 1
t = Y 2

t , then Q1 = Q2
P-a.s. on A, F 1(ω, s, Y 2

s ,Z2
s ) =

F 2(ω, s, Y 2
s ,Z2

s ) ds ×P-a.s. on [t, T ]×A and Y 1 is indistinguishable from Y 2 on
[t, T ] × A.

PROOF. We have that

Y 1
t − Y 2

t −
∫
]t,T ]

[F 1(ω,u,Y 1
u−,Z1

u) − F 2(ω,u,Y 2
u−,Z2

u)]du

(5.3)
+

∫
]t,T ]

[Z1
u − Z2

u]dMu = Q1 − Q2.

As before, let δY = Y 1 − Y 2, and omit the ω and t arguments of F as implicit.
We first seek to construct an R

K process φt and an R
K×K process βt such that

the linear BSDE with these components matches (5.3). As F 1 does not depend
on Z, we shall see that the α term in this BSDE is zero. Again, consider first those
components, represented by ei , where

e∗
i [F 1(Y 1

t−,Z1
t ) − F 1(Y 2

t−,Z1
t )] ≥ 0.

For these rows, define

e∗
i φt = e∗

i [F 1(Y 1
t−,Z1

t ) − F 2(Y 2
t−,Z2

t )] ≥ 0,
(5.4)

e∗
i βt = 0.

For the other rows, first define

e∗
i φt = ei[F 1(Y 2

t−,Z2
t ) − F 2(Y 2

t−,Z2
t )] ≥ 0.

As we are in the situation considered in assumption (iii), either

|e∗
i [Y 1

t− − Y 2
t−]| > ε‖Y 1

t− − Y 2
t−‖,
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in which case define

e∗
i βt = e∗

i [F 1(Y 1
t−,Z2

t ) − F 1(Y 2
t−,Z2

t )]
e∗
i [δYt−] e∗

i(5.5)

or there is a j with

e∗
j [Y 1

t− − Y 2
t−] < −ε‖Y 1

t− − Y 2
t−‖,

in which case, define

e∗
i βt = e∗

i [F 1(Y 1
t−,Z2

t ) − F 1(Y 2
t−,Z2

t )]
e∗
j [δYt−] e∗

j .(5.6)

In both cases, F is Lipschitz continuous, and so the matrix βt is bounded. We
have constructed βt such that all off diagonal entries are are either zero [as in (5.4)
and (5.5)], or are the ratio of two negative quantities [as in (5.6)], and will therefore
be nonnegative.

We now note that, as assumption (iv) states, F 1 does not depend on Z, we have

F 1(Y 1
t−,Z1

t ) − F 1(Y 1
t−,Z2

t ) = F 1(Y 1
t−,0) − F 1(Y 1

t−,0)

= 0.

We again, as in Theorems 4.2 and 5.3, piece together these random variables
φt and βt into a pair of predictable processes. As shown above, the process β is
bounded and has nonnegative quantities off the main diagonal, the process φ is
nonnegative by construction and E[∫]0,T ] ‖φt‖2 dt] < +∞ as F is standard.

The process δY then satisfies the linear BSDE,

δYt −
∫
]t,T ]

[φt + βtδYu−]du +
∫
]t,T ]

[Z1
u − Z2

u]dMu = Q1 − Q2 ≥ 0.

As βt has nonnegative entries off the main diagonal and αt ≡ 0, the conditions
of Corollary 3.20 are satisfied. The result follows. �

This theorem is counterintuitive, and when examined closely would appear to
create a contradiction. The only resolution to this is the following corollary.

COROLLARY 5.8. For a pair of BSDEs satisfying Theorem 5.7, the strict com-
parison must hold componentwise. That is, if for some t and some ei , on some A ∈

Ft we have e∗
i Y

1
t = e∗

i Y
2
t , then e∗

i Q
1 = e∗

i Q
2

P-a.s. on A, e∗
i F

1(ω, s, Y 2
s ,Z2

s ) =
e∗
i F

2(ω, s, Y 2
s ,Z2

s ) ds × P-a.s. on [t, T ] × A and e∗
i Y

1 is indistinguishable from
e∗
i Y

2 on [t, T ] × A.

PROOF. Without loss of generality, we shall assume that i = 1, t = 0, A = �.
Then the assumptions of the theorem state e∗

1Y
1
0 = e∗

1Y
2
0 , and from Theorem 5.7,
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Y 1
s ≥ Y 2

s P-a.s. for all s ≥ 0. These assumptions immediately imply that, for
small s, the process e∗

1Ys must be P-a.s. nondecreasing.
We can then rewrite (5.3) as a forward SDE for δY = Y 1 − Y 2, with initial

time s0, omitting the ω, s and Z arguments of F as implicit or irrelevant,

δYs = δYs0 −
∫
]s0,s]

[F 1(Y 1
u−) − F 2(Y 2

u−)]du +
∫
]s0,s]

[Z1
u − Z2

u]dMu.(5.7)

By assumption (iii) of Theorem 5.7, and the fact Y 1
s ≥ Y 2

s , unless

|e∗
1[Y 1

s− − Y 2
s−]| > ε‖Y 1

s− − Y 2
s−‖

for some ε > 0, we must have

e∗
1F

1(Y 1
s−) ≥ e∗

1F
1(Y 2

s−)

dt × P-a.s. This implies that, dt × P-a.s.,

−e∗
1F

1(Y 1
s−) + e∗

1F
2(Y 2

s−) ≤ −e∗
1F

1(Y 2
s−) + e∗

1F
2(Y 2

s−),(5.8)

and by assumption (ii) of Theorem 5.7, this last term is nonpositive.
Now let s∗ = inf{s : e∗

1δYs 
= 0} ∧ T . Then as δY is càdlàg, e∗
1δYs∗− = 0. We

wish to show s∗ = T .
For s = s∗, the fact δY ≥ 0 and e∗

1δYs∗− = 0 implies, by assumption (iii) of
Theorem 5.7, either that:

1. δYs∗− = 0

or that
2. 0 = |e∗

1[Y 1
s∗− − Y 2

s∗−]| < ε‖Y 1
s∗− − Y 2

s∗−‖
for all ε > 0, and therefore (5.8) holds.

In the first case, we can use the strict comparison of Theorem 5.7 to show that
δYs = 0 for all s ≥ s∗. Therefore s∗ = T .

In the second case, for simplicity of notation, for s < 0, we define, Y i
s = Y i

0 ,
Zi

s = 0, F i(ω, s,Z,Y ) = 0 for i = 1,2.
Suppose s∗ < T , so s∗ = inf{s : e∗

1δYs 
= 0}. For small 
s, ε > 0, we can rewrite
(5.7) as

e∗
1δYs∗+
s = e∗

1δYs∗−ε − e∗
1[F 1(Y 1

s∗−ε) − F 2(Y 2
s∗−ε)]

(

s + s∗ − (s∗ − ε) ∨ 0

)

+ O
(
(ε + 
s)2) +

∫
]s∗−ε,s∗+
s]

e∗
1[Z1

u − Z2
u]dMu.

Note for s∗ > 0 and 0 < ε < s∗,


s + s∗ − (s∗ − ε) ∨ 0 = 
s + ε.
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We know from (5.8) that the term −e∗
1[F 1(Y 1

s∗−ε) − F 2(Y 2
s∗−ε)](
s + s∗ − (s∗ −

ε) ∨ 0) is nonincreasing in 
s, and therefore, as
∫
]s∗−ε,s∗+
s] e∗

1[Z1
u − Z2

u]dMu is
a martingale in 
s,

−e∗
1[F 1(Y 1

s∗−ε) − F 2(Y 2
s∗−ε)]

(

s + s∗ − (s∗ − ε) ∨ 0

)

+
∫
]s∗−ε,s∗+
s]

e∗
1[Z1

u − Z2
u]dMu

cannot be P-a.s. nondecreasing in 
s except if it is zero.
However, this implies that for all sufficiently small 
s,

e∗
1δYs∗+
s = e∗

1δYs∗−ε = 0.

This contradicts our assumption s∗ = inf{s : e∗
1δYs 
= 0}, and hence s∗ = T in the

second case.
Therefore, we must have e∗

1δY = 0 constant. In other words, we must have
e∗

1[Y 1 − Y 2] = 0, that is, the strict comparison holds componentwise. �

5.1. A vector example.

EXAMPLE 5.1. To demonstrate the conclusion of Theorem 5.7, we consider
the following example. Consider two BSDEs with the same driver,

F(ω, t, Yt−,Zt ) = f (ω, t) +
[

0 0
1 1

]
Yt−

for a left continuous, dt × P square integrable, R
2 process f = [f1, f2]∗. Suppose

that Q1 ≥ Q2
P-a.s. and that the terminal time T is deterministic. Under these

conditions, Theorem 5.7 should hold. Here the difference Y 1 − Y 2 satisfies the
equation

Y 1
t − Y 2

t −
∫
]t,T ]

[
0 0
1 1

]
(Y 1

u− − Y 2
u−) du +

∫
]t,T ]

[Z1
u − Z2

u]dMu = Q1 − Q2.

Our results on linear BSDEs, along with the fact that

�]s,t]
{
I +

[
0 0
1 1

]
du

}
= exp

{[
0 0
1 1

]
(t − s)

}

= I + (et−s − 1)

[
0 0
1 1

]

implies

Y 1
t − Y 2

t = E

[(
I + (eT −t − 1)

[
0 0
1 1

])
(Q1 − Q2)

∣∣∣Ft

]

=
[

1 0
eT −t − 1 eT −t

]
E[Q1 − Q2|Ft ].
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It is then clear that the first component of Y 1 − Y 2 will be simply the condi-
tional expectation. If this reaches zero for some t , as Q1 ≥ Q2

P-a.s., then the first
component of Q1 − Q2 must be almost surely zero given Ft . On the other hand,
the second component is a positive sum of the two components of Q1 −Q2. If this
equals zero for some t , then both components of Q1 − Q2 must be almost surely
zero given Ft .

Conversely, if we had

F(ω, t, Yt−,Zt ) = f (ω, t) +
[

0 0
−1 1

]
Yt−.

Theorem 5.7 would not apply. In this case we would find

Y 1
t − Y 2

t =
[

1 0
−eT −t + 1 eT −t

]
E[Q1 − Q2|Ft ].

If then the second component of Q1 − Q2 has small conditional expectation com-
pared with the first, for any t < T we see that the second component of Y 1 − Y 2 is
negative.

REMARK 5.9. A possible economic interpretation of the third assumption of
Theorem 5.7 is the following. Suppose that Yt represents a vector of prices. If one
asset has an increased price, that should not, ceteris paribus, lead to other assets
increasing in price. Assuming that the economy is closed this assumption may be
reasonable, as investors must make a decision as to how to partition their portfolios,
and an increase in one partition should not increase other partitions.

6. F -expectations. One interpretation of the solution to a BSDE is as a
type of generalized expectation. In particular, for a fixed standard driver, F , and
Q ∈ R

K , an Ft measurable, square integrable random variable, we can define the
conditional F -evaluation to be

E F
s,t (Q) = Ys(6.1)

for s ≤ t where Ys is the solution to

Ys −
∫
]s,t]

F(ω,u,Yu−,Zu) du +
∫
]s,t]

Zu dMu = Q.

DEFINITION 6.1. Following [15], we shall call a system of operators

Es,t :L2(Ft ) → L2(Fs), 0 ≤ s ≤ t ≤ T ,

an Ft -consistent nonlinear evaluation for {Qs,t ⊂ L2(Ft )|0 ≤ s ≤ t ≤ T } defined
on [0, T ] if it satisfies the following properties:
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1. For Q,Q′ ∈ Qs,t ,

Es,t (Q) ≥ Es,t (Q
′)

P-a.s. componentwise whenever Q ≥ Q′
P-a.s. componentwise, with equality

iff Q = Q′
P-a.s.;

2. Et,t (Q) = Q P-a.s.;
3. Er,s(Es,t (Q)) = Er,t (Q) P-a.s. for any r ≤ s ≤ t;
4. For any A ∈ Fs , IAEs,t (Q) = IAEs,t (IAQ) P-a.s.

We are here allowing a significant generalization of [15], as our evaluations
can all be vector valued, provided they are square integrable. This generalization
allows the use of these evaluations in multi-objective problems, where a scalar
evaluation process may be insufficient.

We also only require these properties to hold on some subset Qs,t of the set
of square integrable terminal conditions, a distinction which shall become impor-
tant when we consider arbitrage and finite market modelling. Note, however, that
Es,t is defined over the whole of L2(Ft ), but it is only on Qt

s that property 1
holds. Furthermore, we add the restriction that if Q ≥ Q′

P-a.s., Q,Q′ ∈ Qt , then
Es,t (Q) = Es,t (Q

′) P-a.s. iff Q = Q′
P-a.s.

REMARK 6.1. If Es,t is an Ft -consistent nonlinear evaluation for Qs,t , it is
also an Ft -consistent nonlinear evaluation for any subset of Qs,t .

DEFINITION 6.2. We often wish for the sets {Qs,t } to be stable through time.
That is, E will be called dynamically monotone for {Qs,t } if and only if, for all
r ≤ s ≤ t :

(i) E is an Ft consistent nonlinear evaluation for {Qs,t };
(ii) Qr,t ⊆ Qs,t (Qs,t is nondecreasing in s);

(iii) Es,t (Q) ∈ Qr,s for all Q ∈ Qr,t .

REMARK 6.2. In an economic context, where Es,t represents the price at s of
an asset to be sold at time t , dynamic monotonicity corresponds, in some sense, to
the statements:

(ii) “An asset with an arbitrage free price, when bought at a time r and sold at
time t , should also have an arbitrage free price when bought at any time s follow-
ing r (with s prior to t)” and

(iii) “An asset with an arbitrage free price, when the asset is bought at a time
r and sold at time t , should be arbitrage free when sold at any time s prior to t

(with s following r).”

THEOREM 6.3. Fix a driver F . Consider a collection of sets {Qs,t ⊂ L2(Ft )}
with Qr,t ⊆ Qs,t for all r ≤ s ≤ t . Suppose that, for any Q1,Q2 ∈ Qs,t , at least
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one of Theorems 4.2, 5.1, 5.3 and 5.7 holds on [s, t], with F 1 = F 2 = F whenever
Q1 ≥ Q2

P-a.s. Then E F
s,t defined in (6.1) is an Ft -consistent nonlinear evaluation

for {Qs,t }.

PROOF. 1. The statement E F
s,t (Q1) ≥ E F

s,t (Q2) P-a.s. whenever Q1 ≥ Q2 P-
a.s. is simply the main result of each comparison theorem, one of which holds
by assumption. The strict comparison then establishes the second statement.

2. The fact E F
t,t (Q) = Q P-a.s. for any Ft measurable Q is trivial, as we have

defined E F
t,t (Q) by the solution to a BSDE, which reaches its terminal value Q

at time t by construction.
3. For any r ≤ s ≤ t , let Y denote the solution to the relevant BSDE. Then we

have

Q = Yr −
∫
]r,t]

F(ω,u,Yu−,Zu) du +
∫
]r,t]

Zu dMu,

which implies

Ys = Yr −
∫
]r,s]

F(ω,u,Yu−,Zu) du +
∫
]r,s]

Zu dMu.

Hence Yr is also the time r value of a solution to the BSDE with terminal time
s and value Ys . Hence

E F
r,s(E F

s,t (Q)) = E F
r,t (Q)

P-a.s., as desired.
4. We wish to show that for A ∈ Fs , IAEs,t (Q) = IAEs,t (IAQ) P-a.s. Write

Es,t (Q) as the solution to the BSDE with terminal value Q, and Es,t (IAQ)

as the solution to the BSDE with terminal value IAQ. Premultiplying these
BSDEs by IA gives two BSDEs, both with terminal value IAQ, driver
F̃ (ω, t, Yt ,Zt ) = IAF (ω, t, Yt ,Zt ) and solutions IAEs,t (Q) and IAEs,t (IAQ),
respectively. From Theorem 1.1, the solution to this BSDE is unique, hence
IAEs,t (Q) = IAEs,t (IAQ) up to indistinguishability. �

REMARK 6.4. As we have seen in Section 4.1, even in the scalar case, the as-
sumption that a comparison theorem holds, and hence E F

s,t is a nonlinear evaluation
on Qs,t , is nontrivial.

DEFINITION 6.3. Let {Qs,t ⊂ L2(Ft )} be a family of sets which are nonde-
creasing in s. For a BSDE driver F 1, suppose that, for all s ≤ t ≤ T , assump-
tion (iii) [and assumption (iv), when applicable], of at least one of Theorems 4.2,
5.1, 5.3 and 5.7 hold on ]s, t] for all Q1,Q2 ∈ Qs,t [whether or not assumption (i)
holds]. Then F 1 is said to be a balanced driver on {Qs,t }.
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REMARK 6.5. The logic of this name is due to the geometry of the problem,
as, in some sense, F 1 here balances the outcomes with zero hedging within the
range of outcomes with hedging.

LEMMA 6.6. Let F be a balanced driver on {Qs,t } where Qs,t is nondecreas-
ing in s. Then E F is an Ft consistent nonlinear evaluation on {Qs,t }.

PROOF. The requirements for F to be balanced are stronger than those needed
for Theorem 6.3, and so the result follows. �

LEMMA 6.7. Fix a driver F balanced on {Qs,t } where Qs,t is nondecreas-
ing in s. Then there exists a family of sets, {Q̃s,t }, such that E F is dynamically
monotone for {Q̃s,t } and Qs,t ⊆ Q̃s,t for all s ≤ t ≤ T .

PROOF. Just as the proof of Theorem 6.3 (point 3), it is easy to see that E F is
recursive, that is,

E F
r,s(E F

s,t (Q)) = E F
r,t (Q).

Define

Q̃s,t = {E F
t,u(Q)|Q ∈ Qs,u for some u ≥ t}.

As F is balanced on {Qs,t }, assumptions (iii) and (iv) of the relevant comparison
theorem must hold on ]s, u] for all Q ∈ Qs,u. As E F is recursive, it follows that
assumptions (iii) and (iv) of the comparison theorem must hold on ]s, t] for all
Q ∈ Q̃s,t , that is, F is balanced on {Q̃s,t }. It follows from Lemma 6.3 that E F is
an Ft consistent nonlinear evaluation on {Q̃s,t }.

As Qs,t is nondecreasing in s, it is clear that Q̃s,t is nondecreasing in s. Also,
as E F

t,t (Q) = Q, it is clear that Qs,t ⊆ Q̃s,t for all s ≤ t .

Finally, for any Q ∈ Q̃r,t , there exists a u ≥ t with Q = E F
t,u(Q

′) for some
Q′ ∈ Qr,u. Therefore, by recursivity,

E F
s,t (Q) = E F

s,u(Q
′) ∈ Q̃r,s . �

DEFINITION 6.4. Again following [15], we shall call a system of operators,

E (·|Ft ) :L2(FT ) → L2(Ft ), 0 ≤ t ≤ T ,

an Ft -consistent nonlinear expectation for {Qt ⊂ L2(FT )} defined on [0, T ] if it
satisfies the following properties.

1. For Q,Q′ ∈ Qt ,

E (Q|Ft ) ≥ E (Q′|Ft )

P-a.s. componentwise whenever Q ≥ Q′
P-a.s. componentwise, with equality

iff Q = Q′
P-a.s.
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2. E (Q|Ft ) = Q P-a.s. for any Ft measurable Q.
3. E (E (Q|Ft )|Fs) = E (Q|Fs) P-a.s. for any s ≤ t.

4. For any A ∈ Ft , IAE (Q|Ft ) = E (IAQ|Ft ) P-a.s.

REMARK 6.8. It is clear that any nonlinear expectation is also a nonlinear
evaluation, with Es,t (·) = E (·|Fs) for all s ≤ t , and hence the concept of dynamic
monotonicity extends to this new setting. On the other hand, as the terminal time is
irrelevant in this context, one can simply specify the sets Qt = QT

t , as the expec-
tation refers without loss of generality to the terminal values at time T . Therefore,
we say E (·|Ft ) is dynamically monotone for {Qt } if, for all s ≤ t :

(i) E is an Ft consistent nonlinear expectation for {Qt };
(ii) Qs ⊆ Qt (Qt is nondecreasing in t);

(iii) E (Q|Ft ) ∈ Qs for all Q ∈ Qs .

THEOREM 6.9. Fix a driver F such that F(ω, t, Yt−,0) = 0 dt × P-a.s. Con-
sider a family of sets, {Qt ⊂ L2(FT )}, such that for any Q,Q′ ∈ Qt with Q ≥ Q′,
at least one of Theorems 4.2, 5.1, 5.3 and 5.7 holds on ]t, T ] with F 1 = F 2 = F .
The functional E F (·|Ft ) defined for each t by

E F (Q|Ft ) = Yt ,(6.2)

where Yt is the solution to

Yt −
∫
]t,T ]

F(ω,u,Yu−,Zu) du +
∫
]t,T ]

Zu dMu = Q

is an Ft -consistent nonlinear expectation for {Qt }.

PROOF. Properties 1 and 3 follow exactly as in the proof of Theorem 6.3.
Property 2 follows because we know that for t < T , if Q is Ft measurable then

the solution of

Yt −
∫
]t,T ]

F(ω,u,Yu−,Zu) du +
∫
]t,T ]

Zu dMu = Q

has Zu = 0 d〈M,M〉u ×P-a.s. (Simply take an Ft conditional expectation as done
earlier.) Hence for t ≤ u ≤ T , F(ω,u,Yu−,Zu) = 0, and therefore Yt = Q P-a.s.,
as desired.

For property 3, we know that IAE (Q|Ft ) is the solution to a BSDE with terminal
value IAQ and driver IAF (ω, t, Y,Z). As F(ω, t, Yt−,0) = 0, IAF (ω, t, Y,Z) =
F(ω, t, Y, IAZ) P-a.s. We also know E (IAQ|Ft ) is the solution to a BSDE with
driver F , and taking an Ft conditional expectation shows that the solution Z

process for E (IAQ|Ft ) satisfies Z = IAZ. Hence the two quantities solve the same
BSDE, and so by the uniqueness of Theorem 1.1 must be equal. �
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COROLLARY 6.10. Fix a driver F balanced on {Qt } where Qt is nondecreas-
ing in t and F(ω, t, Yt−,0) = 0 dt × P-a.s. Then there exists a family of sets {Q̃t }
such that E F is dynamically monotone for {Q̃t } and Qt ⊆ Q̃t for all s ≤ t ≤ T .

PROOF. This follows exactly as in Lemmas 6.6 and 6.7 and Theorem 6.9. �

THEOREM 6.11. For any {Qt }, there exists a nonlinear F -expectation on
{Qt }.

PROOF. Simply take F ≡ 0. Then the nonlinear expectation corresponds to
the classical expectation (and is balanced on {Qt }), and immediately satisfies all
the desired properties. �

7. Dominance, arbitrage and F -expectations. In this section we shall ex-
plore in detail the behavior of E F given different sets {Qs,t }. We wish to discuss
the relationship between F -expectations, arbitrage and assumption (iii) of Theo-
rem 4.2. This will highlight how this model can be used to understand phenomena
which may be lost under a model driven by Brownian motion and the importance of
considering nonlinear expectations only for subsets {Qs,t ⊂ L2(Ft )}. Throughout
this section, we will consider only a single, fixed driver F , and all vector inequali-
ties are to be read componentwise.

In this context we need to distinguish between the closely related concepts of
arbitrage and dominance. This is essentially because our “pricing rule,” as defined
by the solutions to a BSDE, is nonlinear.

We begin with definitions of dominance and arbitrage in this context.

DEFINITION 7.1. Fix an initial time s. Consider a terminal time t ≥ s and a
pair of terminal values Q1,Q2 ∈ L2(Ft ). Let Y 1 and Y 2 a pair of corresponding
evaluation processes. If, for some A ∈ Fs , we have Q1 ≥ Q2 and Y 1

s ≤ Y 2
s both

P-a.s. on A, and at least one of these inequalities is strict with positive probability
on A, then we shall say that Q1 dominates Q2 at s, under this evaluation, given A.

DEFINITION 7.2. Fix an initial time s. Consider a terminal time t ≥ s and
terminal value Q ∈ L2(Ft ). Let Y be the the corresponding evaluation process. If,
for some A ∈ Fs , we have Q ≥ 0 and Ys ≤ 0, both P-a.s. on A, and at least one of
these inequalities is strict with positive probability on A, then we shall say that Q

is an arbitrage opportunity at s, under this evaluation, given A.

DEFINITION 7.3. We shall say that a set Qs,t ⊂ L2(Ft ) allows dominance if
there exists Q1,Q2 ∈ Qs,t with Q1 dominating Q2 at s. Similarly for arbitrage.

REMARK 7.1. If the evaluation of the terminal value Q = 0 is Ys = 0 P-a.s.
on A, then an arbitrage opportunity is simply a strategy which dominates the zero
strategy.
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This distinction and terminology has a simple interpretation when we think of
our evaluations as prices. An “arbitrage” opportunity is any situation where, for
no positive outlay today, a positive outcome can be ensured in the future. On the
other hand, for an asset to dominate another, is to state a strict preference relation
between the two, as the better option in the future is at least as cheap today. (Exam-
ples of this price interpretation of BSDE solutions, for example, to option pricing
under constraints, can be found in [7].)

It is significant in this context that these situations are not scale-invariant. This
means that there may be a situation where there is a small arbitrage opportunity,
but the nonlinearity of the pricing rule means that this cannot be replicated signif-
icantly.

When F is linear and Qs,t is a vector space, as is implicitly assumed in a Black–
Scholes market model, the existence of dominance and the existence of arbitrage
are equivalent. In our context, we need to maintain the distinction between them,
particularly due to the nonlinearity of F .

THEOREM 7.2. For any Ft consistent, nonlinear evaluation for {Qs,t } (in the
sense of Definition 6.1), the sets Qs,t do not allow dominance under this evalua-
tion.

PROOF. This is simply the first property of nonlinear evaluations. �

COROLLARY 7.3. Let F be a balanced driver on {Qs,t }. Then the sets Qs,t

do not allow dominance, under the pricing rule given by the BSDE solutions with
driver F .

PROOF. As F is balanced, by Lemma 6.6 we know that such an F defines an
Ft consistent nonlinear evaluation for {Qs,t }. �

THEOREM 7.4. For any Ft consistent nonlinear expectation for {Qt } with
0 ∈ Qt for all t , the sets Qt do not allow either arbitrage or dominance under this
nonlinear expectation.

PROOF. These are simply the first and second properties of nonlinear expec-
tations, and an application of Remark 7.1. �

COROLLARY 7.5. Consider a driver F satisfying F(ω, t,0,0) = 0, dt × P-
a.s. on [0, T ]. Then if F is a balanced driver on some sets {Qt } with 0 ∈ Qt for
all t , the sets Qt do not allow arbitrage under the evaluation given by E F .

PROOF. We know that such an F defines a nonlinear expectation on Q, by
Corollary 6.10. �
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As we have seen in Section 4.1, there exist examples of BSDE solutions in
this context where arbitrage opportunities do exist. This is a significant distinction
between these models based on Markov chains and models based on Brownian
motions.

REMARK 7.6. For given market data, we may ask when the data are consistent
with arbitrage free BSDE pricing. Let Q0,t denote the time t values of all possible
tradable assets in the market, including combinations of assets. Our question is
then equivalent to asking if there exists a driver F such that there is a nonlinear
evaluation E F

0,t (·) for {Q0,t } which maps each terminal condition to its current
price.

If there is a unique F that will do this, we have a complete, arbitrage free, BSDE
pricing scheme. This does not guarantee that the BSDE solutions for terminal con-
ditions not in {Q0,t } will be valid, arbitrage free prices.

REMARK 7.7. Under BSDE pricing with Markov chains, we may have arbi-
trage free pricing for those assets in the market, but not for other assets we wish to
consider. If we were to hypothetically introduce other assets into the market, while
retaining no arbitrage, this could result in changing the driver F , and hence the
dynamics of all stocks in the market.

8. Geometry. Different assumptions on {Qs,t } and F imply different geomet-
ric results on the values of Yt . For simplicity, we here restrict our attention to the
scalar (K = 1) case.

DEFINITION 8.1. For any s, we define Hs(Q) to be the essential convex hull
of Q at time s to be the smallest Fs measurable convex set such that P(Q ∈
Hs(Q)|Fs) = 1.

DEFINITION 8.2. We define r.i.Hs(Q) to be the relative interior of Hs(Q),
that is, the interior of Hs(Q) viewed as a subset of the affine hull it generates.

REMARK 8.1. The interested reader is referred to any good book on elemen-
tary stochastic finance for a more detailed definition (e.g., [11], page 27 or [10],
page 65).

THEOREM 8.2. Consider a scalar (K = 1), nonlinear F -expectation E F (·|Ft )

for {Qt }. Suppose, for all q ∈ R, q ∈ Q0. Then for all Q ∈ Q0, P-a.s.,

E F (Q|F0) ∈ r.i.H0(Q).

PROOF. If H0(Q) is singular, that is, it contains only a single point, then Q is
F0 measurable (up to equality P-a.s.), and so Y0 = Q P-a.s., and the condition is
trivial.
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Otherwise, we first wish to show that E F (Q|F0) > infH0(Q). Let

Qmin = infH0(Q).

As this is F0 measurable, the solution to the BSDE with driver F and terminal
condition Qmin is simply Y0 = Qmin. If H0(Q) is unbounded below, Qmin = −∞
and the statement is trivial. Otherwise, Qmin ∈ R, and so Qmin ∈ Q. No dominance
in Q then implies that

E F (Q|F0) > Qmin.

We can then repeat this argument with Qmax = supH0(Q), to show that
E F (Q|F0) < supH0(Q). Hence E F (Q|F0) lies strictly within the interior of
H0(Q), which, as we are dealing with nonsingular, scalar valued Q, corresponds
precisely with the set r.i.H0(Q) as desired. �

REMARK 8.3. Clearly, this result can be extended to show E F (Q|Ft ) ∈
r.i.Ht (Q). However, care must be taken as there is no guarantee that Qmin :=
infHt(Q) ∈ L2(FT ), even though Qmin is Ft measurable.

To show this general result, the existence theorem must be strengthened to show
that if E[Q2|Ft ] < +∞ P-a.s., then there exists a solution (Y,Z) to the BSDE
(1.3) on [t, T ]. With this extension, we can weaken our definition of Qt to be

Qt ⊆ {Q :Q ∈ L0(FT ),E[Q2|Ft ] < +∞,P-a.s.}.
We then assume that L0(Ft ) ⊆ Qt , and the result follows.

9. Other properties of EF and applications to risk measures. One use of
BSDEs which has developed recently is as a framework for developing dynami-
cally consistent, convex or coherent risk measures. This can be seen in [2], and
more generally in [16]. We here present the key results in the context of BSDEs
driven by Markov chains.

As noted in [15], the theory of nonlinear expectations provides an ideal setting
for the discussion of risk measures in the sense of [1] and others. We shall consider
dynamic risk measures ρF

t of the form

ρF
t (Q) := −E F

t,T (Q),

where E F is a nonlinear F -evaluation for some {Qs,T ⊂ L2(FT )}. As before, our
approach allows a considerable generalization of earlier results, as the quantities
considered can be vector valued.

An alternative specification, used in [2] and [16], is to let ρF
t (Q) = E F

t,T (−Q),
the solution to a BSDE with terminal condition −Q. Under this alternative spec-
ification, the following results remain valid, however, the result of Theorems 9.7
holds for ρ with F convex rather than concave.

We seek to determine properties of ρF
t , or, equivalently, of E F

t,T which are par-
ticularly relevant in the context of risk measures.
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The first four properties below follow directly from the properties of nonlinear
evaluations, recalling the proofs of Theorems 6.3 and 6.9, with Qt = ∅ where
appropriate.

LEMMA 9.1 (Terminal equality). For any F , ρF
t satisfies the terminal condi-

tion ρF
T (Q) = −Q.

PROOF. Equivalent to property 2 of nonlinear evaluations. �

THEOREM 9.2 (Dynamic consistency). For any F , ρF
t satisfies the recursivity

and dynamic consistency requirements,

ρF
s (Q) = ρF

s (−ρF
t (Q))

and

ρF
t (Q) = ρF

t (Q′) ⇒ ρF
s (Q) = ρF

s (Q′),

for times s ≤ t ≤ T , all equalities being P-a.s.

PROOF. The first statement is equivalent to property 3 of nonlinear evalua-
tions. The second follows by uniqueness of solutions to BSDEs with given termi-
nal conditions, as in Theorem 1.1. �

LEMMA 9.3 (Constants). Let Q be P-a.s. equal to a Ft measurable terminal
condition. Then if F is a driver with normalization F(ω, t,Q,0) = 0 dt × P-a.s.,
ρF

t (Q) = −Q for all t .

PROOF. Equivalent to property 4 of nonlinear expectations. �

THEOREM 9.4 (Monotonicity). Let F be a balanced driver for {Qt,T }. Then
for any Q1,Q2 ∈ Qt,T with Q1 ≥ Q2

P-a.s., we have ρF
t (Q1) ≤ ρF

t (Q2), with
equality if and only if Q1 = Q2, P-a.s.

PROOF. Equivalent to property 1 of nonlinear evaluations. �

LEMMA 9.5 (Translation invariance). Let F be a driver for a BSDE with nor-
malization F(ω,u,Yu−,0) = 0 P× du-a.s., on ]t, T ]. Suppose F does not depend
on Yu−. Then for any q ∈ L2(Ft ),

ρF
t (Q + q) = ρF

t (Q) − q,

E F
t,T (Q + q) = Et,T (Q) + q.



BSDES ON MARKOV CHAINS 309

PROOF. As F does not depend on Yu−, we know that

Yt −
∫
]t,T ]

F(ω,u,Yu−,Zu) du +
∫
]t,T ]

Zu dMu = Q

implies

[Yt + q] −
∫
]t,T ]

F(ω,u, [Yu− + q],Zu) du +
∫
]t,T ]

Zu dMu = [Q + q].
The result follows. �

THEOREM 9.6 (Positive homogeneity). Let F be a positively homogeneous
driver, that is, for any λ > 0, if (Y,Z) is the solution corresponding to some Q,
P × du-a.s. on ]t, T ],

F(ω,u,λYu−, λZu) = λF(ω,u,Yu−,Zu).

Then for all such Q, ρF
t (λQ) = λρF

t (Q) and E F
t,T (λQ) = λE F

t,T (Q).

PROOF. Simply multiply the BSDE with terminal condition Q through by λ.
�

THEOREM 9.7 (Convexity/concavity). Suppose Qt,T is a convex set. Let
F be a concave balanced driver for Qt,T , that is, for any λ ∈ [0,1], any
(Y 1,Z1), (Y 2,Z2) the solutions corresponding to Q1,Q2 ∈ Qt,T , P × du-a.s. on
]t, T ],

F
(
ω,u,λY 1

u− + (1 − λ)Y 2
u−, λZ1

u + (1 − λ)Z2
u

)
≥ λF(ω,u,Y 1

u−,Zu) + (1 − λ)F (ω,u,Y 2
u−,Z2

u).

Then for any λ ∈ [0,1] and any Q1,Q2 ∈ Qt,T ,

ρF
t

(
λQ1 + (1 − λ)Q2) ≤ λρF

t (Q1) + (1 − λ)ρF
t (Q2),

E F
t,T

(
λQ1 + (1 − λ)Q2) ≥ λE F

t,T (Q1) + (1 − λ)E F
t,T (Q2).

PROOF. Taking a convex combination of the BSDEs with terminal conditions
Q1 and Q2 gives the equation

λY 1
t + (1 − λ)Y 2

t −
∫
]t,T ]

[λF(ω,u,Y 1
u−,Zu) + (1 − λ)F (ω,u,Y 2

u−,Z2
u)]du

+
∫
]t,T ]

[λZ1
u + (1 − λ)Z2

u]dMu = λQ1 + (1 − λ)Q2,

which is a BSDE with terminal condition λQ1 − (1 − λ)Q2 and driver

F̃ = λF(ω,u,Y 1
u−,Zu) + (1 − λ)F (ω,u,Y 2

u−,Z2
u).

We next consider the BSDE with terminal condition λQ1 + (1 − λ)Q2 and
driver F . Denote the solution to this by Yλ. We can compare these BSDEs using
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the relevant comparison theorem—the first assumption of the theorem is trivial, the
second is satisfied by the convexity of F , and the remainder because F is balanced
on Qt,T . Hence, our solutions satisfy

Yλ ≥ λY 1 + (1 − λ)Y 2

with equality if and only if the terminal conditions are equal with conditional prob-
ability one. The inequality for E F

t,T follows. The inequality for ρF
t can then be

established by noting that as E F
t,T (Q) is concave in Q, it follows that ρF

t (Q) =
−E F

t,T (Q) is convex in Q. �

10. Conclusions. BSDEs with an underlying finite state Markov chain as a
stochastic process form a viable alternative to BSDEs based on Brownian motions
and Brownian motions with Poisson jumps. We have given closed-form solutions
to linear BSDEs on Markov chains, and then have used these to develop a compar-
ison theorem for the solutions.

These BSDEs allow for very delicate modelling of no arbitrage conditions. In
particular, they allow no arbitrage only to be required on a subset of all possible
terminal conditions, but the pricing rule to allow arbitrage outside this set. This is
in contrast to BSDEs based on Brownian motion, where the comparison theorem
guarantees no arbitrage in all cases. We have drawn a connection between the ex-
clusion of arbitrage and the presence of a balanced driver F , a condition which can
be understood as an infinitesimal no-arbitrage condition. We have also discussed
the geometry of these BSDEs and the relation to no arbitrage conditions.

Finally, we have shown key properties which can be used when developing non-
linear evaluations and risk measures from these BSDEs. The added requirements
of the theorem help us to distinguish precisely what is needed for each of these
properties to hold which may prove useful when considering other models.

APPENDIX: EXAMPLE PREDICTABLE QUADRATIC
COVARIATION MATRIX

For clarity, an example of ψt is presented here for N = 4. Suppose Xt− =
[0,0,1,0]∗, AtXt− = [a1, a2,−a1 − a2 − a4, a4]∗. Then

ψt =

⎡
⎢⎢⎣

a1 0 −a1 0
0 a2 −a2 0

−a1 −a2 a1 + a2 + a4 −a4
0 0 −a4 a4

⎤
⎥⎥⎦ .
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