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We consider a long-term optimal investment problem where an investor
tries to minimize the probability of falling below a target growth rate. From a
mathematical viewpoint, this is a large deviation control problem. This prob-
lem will be shown to relate to a risk-sensitive stochastic control problem for
a sufficiently large time horizon. Indeed, in our theorem we state a duality in
the relation between the above two problems. Furthermore, under a multidi-
mensional linear Gaussian model we obtain explicit solutions for the primal
problem.

1. Introduction. In recent studies of finance, it has been of great concern to
consider problems from risk management. In this paper, we consider the problem
of the control of a down-side risk probability for an investor. To minimize such
probabilities and obtain an optimal (or nearly optimal) portfolio, we relate the
problem of the portfolio optimization with risk sensitive criterion. In [35, 36], from
the consideration of a performance index for funds when compared to a bench-
mark, a similar problem is considered. In [30, 31], problems of maximizing the
up-side chance probability are studied. These studies show potential applications
of risk-sensitive dynamic management to the problem of risk management.

Portfolio optimization with risk-sensitive criterion has been considered in sev-
eral recent works (see [2–4, 7, 10, 14–16, 18, 19, 21, 25, 28] and [29]). The prob-
lem is to maximize the expected utility of terminal wealth with the HARA utility
function being considered,

max
{
E

[
1

γ
(Xπ

T )γ
]}

,(1.1)

where Xπ
t is the wealth process using strategy π , and the maximum is taken over

a class of admissible strategies. In the following discussion, it is also convenient to
replace (1.1) by

max{E[(Xπ
T )γ ]}, γ > 0,(1.1a)
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and

min{E[(Xπ
T )γ ]}, γ < 0.(1.1b)

The parameter γ is taken from (−∞,1) and for γ = 0, 1
γ
(Xπ

T )γ is interpreted
as logXπ

T which is a Kelly utility. When the HARA utility is used, the problem
can be reformulated as a risk-sensitive control problem where γ plays the role of
risk-sensitive parameter. Then methods from the theory of stochastic control can be
applied to the portfolio optimization problem. In particular, we may apply dynamic
programming to solve the problem. This approach is very useful in discrete time
models (see [24] for some idea). In continuous time, we need to solve the Bellman
equation. In the past few years, a special class of models has been extensively
studied in this frame work where a factor process is introduced and the return,
together with the volatility of stock prices, is affected by the factor process. That
is, we assume in a market that we have one bank account with price S0

t , m stocks
with prices Si

t , i = 1, . . . ,m, and n economic factors Yt = (Y 1
t , Y 2

t , . . . , Y n
t ). Their

dynamics are given by

dS0
t = r(Yt )S

0
t dt, S0

0 = s0,(1.2)

dSi
t = Si

t

{
αi(Yt ) dt +

n+m∑
k=1

σ i
k(Yt ) dWk

t

}
, Si(0) = si, i = 1, . . . ,m,(1.3)

dYt = β(Yt ) dt + λ(Yt ) dWt, Y (0) = y ∈ R
n,(1.4)

where Wt = (Wk
t )k=1,...,(n+m) is an (n + m)-dimensional standard Brownian mo-

tion defined on a filtered probability space (�, F ,P , Ft ). A closed form optimal
strategy may be obtained by solving the Bellman equation. See [10] for the initial
study and the subsequence works cited above. For an introduction of the theory of
the risk-sensitive control problem, one can see [37]. For the mathematical theory
of the risk-sensitive control problem and the connection with the robust control
problem, one can see [11, 12, 17, 27].

Bielecki and Pliska ([2], Section 6) mention a possible use of portfolio opti-
mization with risk-sensitive criterion in the study of the problem of up-side chance
and down-side risk. The problem of up-side chance is to consider

max
{
P

(
1

T
logXπ

T ≥ c

)}
(1.5)

for large T where the maximization is taken for π in a class of admissible strate-
gies. Or more generally,

max
{
P

(
1

T
log

Xπ
T

IT

≥ c

)}
,(1.6)

where IT is a benchmark process. For simplicity, we take It = 1 in the following
discussion. A mathematical theory was developed in [30] and [31] for the max-
imization of the up-side chance probabilities. It is shown that the probabilities
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in (1.5) are related to those in (1.1) with 0 < γ < 1 through a duality relation.
A nearly optimal portfolio for (1.5) can be obtained from an optimal portfolio for
(1.1) for a particular chosen γ . Some idea from large deviation theory is implic-
itly used in his approach. This will be described later in this section. Interestingly,
the maximization of the probability of up-side chance is not a conventional op-
timization problem and, in general, is difficult to treat. Therefore, studies in [30,
31] suggest the possibility of indirectly using the theory of stochastic control in
such a nonconventional optimization problem. See also [19] for more studies on
this problem. However, Sekine [33] recently tried to use a duality approach to treat
such problems. In [30], Pham also proposed to develop a mathematical theory for
the down-side risk probability,

min
{
P

(
1

T
logXπ

T ≤ k

)}
,(1.7)

or more generally,

min
{
P

(
1

T
log

Xπ
T

IT

≤ k

)}
.(1.8)

The problem is to minimize (1.6) and obtain an optimal (or nearly optimal) port-
folio. Here k is considered such that the event has small probabilities. Hence we
are dealing with a rare event. From the consideration of finance, such rare events
in down-side risk are not favorable to an investor. Therefore its occurrence may
result in a significant consequence in portfolio management. Hence the study of
(1.7) or (1.8) may be of meaningful implications in finance. See interesting dis-
cussions in [5, 6] and [35, 36] for some related problems where the consideration
is the performance index for funds. In this paper, we develop some mathematical
analyses for (1.7). Similar to [30, 31], we will show a dual relation between (1.1)
and (1.7) for large T . The result says that for k, there is a correspondence γ (k) < 0
such that an optimal portfolio of (1.1) with γ = γ (k) is a nearly optimal portfolio
of (1.7). The meaning of this result is that an investor who wants to control (1.7)
for a particular k will have the same behavior as an investor whose risk parameter
is γ (k). See a similar result in [36] for some discrete time models.

In this paper we consider only the linear Gaussian models. But our method may
be applied to more general (nonlinear) models. Gaussian models have practical
uses for practitioners. A simple Gaussian factor model was first proposed in [26].
Such models have several important properties. It is much easier to estimate the
coefficients by using linear regression (see [32]). This has practical applications.
Tractibility is another big advantage of these models. For such models, a closed-
form solution for the optimal portfolio selection problem (1.1) is possible by solv-
ing a Ricatti equation, which is a matrix equation and is easier to solve [2, 3,
14–16, 25]. For Gaussian models, we have some finer mathematical results [25].
In the later sections, we will see that these results will be crucial for our analy-
sis. It is important to consider the model when some factors cannot be observed



DOWN-SIDE RISK MINIMIZATION 55

directly. The solution is far away from complete. One can find some results for
linear Gaussian models in [18, 29, 34]. However, this is not our main concern in
this paper.

The papers [30, 31] (and also this paper) consider (1.5) [and (1.7), respectively]
for such c (and k) that (1.5) [and (1.7)] has small probability. That is, we are
dealing with large deviation probabilities. Therefore, we expect that some idea
from large deviation theory can be used to relate (1.1) and (1.5) [or (1.7)] that we
now explain. The formal calculation given in the following may be instructive to
see the idea. For a given strategy π , assume ZT = logXπ

T satisfies a large deviation
principle with rate I (k,π). Formally, this means

P

(
logXπ

T

T
� k

)
� exp(I (k,π)T )

as T → ∞. The Laplace–Varadhan lemma (see [8]) implies

E[(Xπ
T )γ ] = E[exp(γ logXπ

T )] � exp(T 	(γ,π)),

where

	(γ,π) = sup
k

{γ k + I (k,π)}.

If we want to minimize 	(γ,π) [and minimize I (k,π)] over π , then

inf
π

	(γ,π) = inf
π

sup
k

{γ k + I (k,π)}.(1.9)

Denote

J (k) = inf
π

{I (k,π)},
	(γ ) = inf

π
{	(γ,π)}.

If we are allowed to change the order of inf and sup on the right-hand side of (1.9),
then we obtain

	(γ ) = sup
k

{γ k + J (k)}.(1.10)

If J (k) is a concave function, then we expect to have the dual relation

J (k) = inf
γ

{	(γ ) − γ k}(1.11)

(see [9]). On the other hand, if we want to maximize 	(γ,π) [and maximize
I (k,π)] over possible π , then

sup
π

	(γ,π) = sup
π

sup
k

{γ k + I (k,π)}.(1.12)
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Denote

I (k) = sup
π

{I (k,π)},

	(γ ) = sup
π

{	(γ,π)}.
Then

	(γ ) = sup
k

{γ k + I (k)}.

If I (k) is concave function, then we expect to have the dual relation,

I (k) = inf
γ

{	(γ ) − γ k}.
In [30, 31], through the above intuition, the following relation was proved:


(c) = inf
0<γ<1

{�(γ ) − γ c},

where, for large T ,

value of (1.1) � 1

γ
exp(T �(γ )),

value of (1.5) � exp(T 
(c)).

On the other hand, one of the main results of our paper is to prove


(k) = inf
γ<0

{�(γ ) − γ k},

where, for large T ,

value of (1.7) � exp(T 
(k)).

The problem analyzed here is closely related to the problem studied in [30, 31],
since

P

(
1

T
logXπ

T ≤ k

)
= 1 − P

(
1

T
logXπ

T > k

)
.

However, in both studies we are interested in the region of c and k such that prob-
abilities in (1.5) and (1.7) are small. This means in this paper we study the region
of c such that (1.5) has large probability while in [30, 31], it is studied in the re-
gion of c that (1.5) has small probability. This explains why the results of [30,
31] cannot be readily applied to the calculation of the down-side risk probabili-
ties. We consider both of the problems for large T . We show in this paper that the
minimization of (1.7) relates to the problem (1.1) for γ < 0. However, the proba-
bility in (1.5) relates to problem (1.1) for 0 < γ < 1 as was shown in [30]. We will
show that an optimal (or nearly optimal) portfolio for (1.7) can be derived from
an optimal portfolio of (1.1) for a proper chosen γ < 0 that relates to k through
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the duality relation. This is expected, after [30, 31]. However, our result does not
follow from a simple Markov inequality as in [30, 31]. We need to use some finer
results for (1.1), taken from [25] and some extensions given in Section 2 later. This
is unexpected from the argument in [30, 31] and is also unexpected from the large
deviation theory. Intuitively, when changing the order of inf and sup in (1.9) to
obtain (1.10), it may cause some difficulty. Mathematically, we also want to men-
tion another important point. The convexity of the value of (1.1b) with respect to
γ after taking limit for large T will be crucial in our analysis. We note that the
convexity of (1.1b) does not follow for finite T . This property is easily seen for
(1.1a) from our formal derivation given in the previous paragraph, since taking the
maximum of a family of convex functions is a convex function.

The paper is organized as follows. In Section 2, the model will be explicitly
stated and the mathematical problem of down-side risk will be formulated. The as-
sociated problems of portfolio optimization will also be described. Since the prob-
lem has different formulations in an infinite time horizon, we will careful state
our problem. We also give some remarks to mention other related problems. The
main results will be stated in this section. These include the main theorem (The-
orem 2.1), and several important propositions (Propositions 2.1–2.7). The results
are presented in a way that a proof of Theorem 2.1 will follow using mainly results
in the propositions and some minor properties. The proof of our main theorem also
suggests that our main result will follow when we can prove the statements given
in several crucial propositions. Therefore, the approach in this paper can be applied
to more general models (including some nonlinear models). The problem for some
nonlinear models is currently under investigation.

In Section 3, we give the proof of our main theorem. In Section 4, we prove
the propositions stated in Section 2. These propositions concern the portfolio opti-
mization problem (1.1) and the behaviors of the solution of the Bellman equation.
Some results in these propositions have been obtained in [25]. They include Propo-
sitions 2.1, 2.2 and 2.3. Therefore, in the proof of these results, we give a sketch or
modification of the arguments in [25] and mention the places in [25] where one can
find the details of analysis used. Propositions 2.4, 2.5, 2.6 and 2.7 are some new
results that are suggested by the problem studied in this paper. Therefore, some
more details of the proofs will be given for these propositions.

2. The problem and main results.

2.1. Down-side risk problem. We consider a market model consisting of one
bank account and m risky stocks. The interest rate of bank account as well as the
returns and volatility of stocks are affected by n economic factors. The price of
bank account S0 and the price of risky stocks Si, i = 1, . . . ,m, are given by

dS0
t = r(Yt )S

0
t dt, S0

0 = s0,(2.1)

dSi
t = Si

t

{
αi(Yt ) dt +

n+m∑
k=1

σ i
k(Yt ) dWk

t

}
, Si(0) = si, i = 1, . . . ,m,(2.2)
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where Wt = (Wk
t )k=1,...,(n+m) is an (n + m)-dimensional standard Brownian mo-

tion process defined on a filtered probability space (�, F ,P , Ft ). The factor
process Yt with n components is described by

dYt = β(Yt ) dt + λ(Yt ) dWt, Y (0) = y ∈ R
n.(2.3)

In this paper we assume that r(y),α(y), σ (y),β(y) and λ(y) are given by

r(y) := r,

α(y) := a + Ay, σ(y) := �,(2.4)

β(y) := b + By and λ(y) := 

with constants r ≥ 0, a ∈ R
m and b ∈ R

n. Moreover, A,B,�, are m× n, n× n,
m× (n+m), n× (n+m) constant matrices, respectively. In this paper, we assume
the following conditions (A):

��∗ > 0,(A1)

G := B − �∗(��∗)−1A is stable.(A2)

REMARK 2.1. The matrix G is stable if the real parts of its eigenvalues are
negative.

Consider an investor who invests at time t a proportion πi
t of his wealth in the

ith risky stock Si, i = 1, . . . ,m. With πt = (π1
t , . . . , πm

t )∗ chosen, the proportion
of wealth invested in the bank account is 1 −π∗

t 1 where (·)∗ denotes the transpose
of a vector or a matrix. Here 1 = (1, . . . ,1)∗. We allow short selling (πi

t < 0 for
some i) or borrowing (1 − π∗

t 1 < 0).
We assume the self-financing condition. Then the investor’s wealth, Xπ

t , starting
with the initial capital x satisfies the equation⎧⎪⎨⎪⎩

dXπ
t

Xπ
t

= (1 − π∗
t 1)

dS0
t

S0
t

+
m∑

i=1

πi
t

dSi
t

Si
t

,

Xπ
0 = x.

(2.5)

This equation can be solved and we have

Xπ
T = x exp

[∫ T

0

{
r + (a + AYt − r1)∗πt

(2.6)

− 1

2
π∗

t ��∗πt

}
dt +

∫ T

0
π∗

t � dWt

]
.

For a finite T and given target growth rate k, we shall consider the probability of
minimizing the “down-side” risk,

inf
π∈AT

P

(
logXπ

T

T
≤ k

)
,(2.7)
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where AT is the set of all admissible investment strategies which will be prescribed
in Section 2 [see (2.31)]. Here, the investor is interested in minimizing the proba-
bility that his wealth falls below a target growth rate. We will be mainly concerned
with the large T asymptotics. That is,


(k) := lim
T →∞

1

T
inf

π∈AT

logP

(
logXπ

T

T
≤ k

)
.(2.8)

We shall calculate 
(k). Connecting to this, we will obtain a (nearly) optimal
strategy for (2.7) for large T .

2.2. Portfolio optimization problem. Since it is difficult to directly calculate
(2.7) and (2.8), in order to solve our problem we need to introduce the following
portfolio optimization problem of maximizing the expected utility. For γ < 0, we
consider

sup
π∈AT

E

(
1

γ
(Xπ

T )γ
)
.

This is the same as

inf
π∈AT

E((Xπ
T )γ ).(2.9)

The large T asymptotics are given by

�(γ ) := lim
T →∞

1

T
inf

π∈AT

logE(Xπ
T )γ , γ < 0.(2.10)

For (2.9), we define

J (x, y,π;T ) := x−γ E(Xπ
T )γ ,(2.11)

where Xπ
0 = x,Y0 = y, and π is taken from the set AT . AT will be defined in

(2.31). We then define

v(t, y) = inf
π∈AT −t

logJ (x, y,π;T − t), γ < 0.(2.12)

Using (2.6), we have

J (x, y,π;T ) = E

(
exp

(∫ T

0
γφ(Yt ,πt ) dt

)
ζπ
T

)
,

where φ(y,p) is defined by

φ(y,p) := r + (
α(y) − r1

)∗
p − 1 − γ

2
p∗��∗p(2.13)

and

ζπ
T = exp

(∫ T

0
γπ∗

t � dWt − 1

2

∫ T

0
γ 2|�∗πt |2 dt

)
.(2.14)
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If we assume

E(ζπ
T ) = 1,(2.15)

then by Girsanov theorem, we have

J (x, y,π;T ) = Eπ

(
exp

(∫ T

0
γφ(Yt ,πt ) dt

))
,(2.16)

where Eπ(·) is the expectation with respect to the probability measure P π defined
by

dP π

dP

∣∣∣∣
FT

= ζπ
T .(2.17)

We can rewrite the equation for Yt as

dYt = β(Yt ,πt ) dt + dWπ(t),(2.18)

where

β(y,π) = β(y) + γ�∗π(2.19)

and

Wπ
t = Wt −

∫ t

0
γ�∗πs ds.(2.20)

Wπ
t is a (n + m)-dimensional Brownian motion under P π . (2.9) becomes a sto-

chastic control problem with criterion logJ (x, y,π;T ) [given in (2.16)], (2.18) is
the state dynamic and πt is the control process. Here we note that J (x, y,π;T ) is
not dependent on x. Therefore the value function is given by v(0, y) [and v(t, y)

for the problem in (2.12)]. Then, by Bellman’s dynamic programming principle, v

should satisfy the following Bellman equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂v

∂t
+ inf

π∈R

{
1

2
tr(∗D2v) + (β + γ�∗π)∗Dv

+ 1

2
(Dv)∗∗Dv + γφ(·, π)

}
= 0,

v(T , y) = 0,

or, equivalently,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
+ 1

2
tr(∗D2v) +

{
β + γ

1 − γ
�∗(��∗)−1(α − r1)

}∗
Dv

+ 1

2
(Dv)∗

{
I + γ

1 − γ
�∗(��∗)−1�

}
∗Dv

+ γ

2(1 − γ )
(α − r1)∗(��∗)−1(α − r1) + γ r = 0,

v(T , y) = 0

(2.21)
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(see Section VI.8 [17]). Actually, given a solution v(t, y) of (2.21), under some
suitable conditions, π̂t defined below gives an optimal strategy of (2.9):

π̂t := π̂(t, Yt ),
(2.22)

π̂(t, y) := 1

1 − γ
(��∗)(y)−1(

α(y) − r1 + �∗Dv(t, y)
)

(see [17, 28]). Moreover, in relation to (2.10) we shall consider the ergodic type
Bellman equation which is the limiting equation of the above Bellman equation,

χ = inf
π∈R

{
1

2
tr(∗D2ξ) + (β + γ�∗π)∗Dξ

+ 1

2
(Dξ)∗∗Dξ + γφ(·, π)

}
,

or, equivalently,

χ = 1

2
tr(∗D2ξ) +

{
β + γ

1 − γ
�∗(��∗)−1(α − r1)

}∗
Dξ

+ 1

2
(Dξ)∗

{
I + γ

1 − γ
�∗(��∗)−1�

}
∗Dξ(2.23)

+ γ

2(1 − γ )
(α − r1)∗(��∗)−1(α − r1) + γ r.

REMARK 2.2. The portfolio optimization problem in an infinite time horizon
is closely connected with (2.10). On an infinite time horizon the criterion to be
minimized is

lim
T →∞

1

T
logE(Xπ

T )γ ,

π ∈ A, A is a class of admissible strategies. The problem is to calculate the value

inf
π∈A

lim
T →∞

1

T
logE(Xπ

T )γ(2.24)

and obtain an optimal strategy. The Bellman equation for (2.24) is also given by
(2.23). Connecting with (2.24), we may consider the minimization of the “down-
side” risk probabilities in an infinite time horizon,

inf
π∈A

lim
T →∞

1

T
logP

(
logXπ

T

T
≤ k

)
.(2.25)

There are some more mathematical difficulties that arise from the problems in an
infinite time horizon. Some further discussion for this problem will be given after
we state our main theorem (Theorem 2.1).



62 H. HATA, H. NAGAI AND S.-J. SHEU

2.3. Main results. The main idea of a stochastic control method for (2.9) or
(2.10) is to solve the equations (2.21) or (2.23). From this, we can obtain the value
in (2.9) or (2.10). We may also obtain an optimal strategy for (2.9) from the solu-
tion of (2.21). We state in this subsection the relevant results. Theorem 2.1 is our
main result which also shows the connection between the problems (2.8) and (2.9)
[or (2.10)]. Some propositions are given that will be used to prove Theorem 2.1.

PROPOSITION 2.1 [25]. Assume (A1) and γ < 0. Then (2.21) has a solution
given by

v(t, y) = 1
2y∗P(t)y + q(t)∗y + h(t),(2.26)

where P(t) satisfies the Riccati differential equation:{
Ṗ (t) + P(t)N−1∗P(t) + K∗

1 P(t) + P(t)K1 − C∗C = 0,

P (T ) = 0,
(2.27)

where

N−1 :=
{
I + γ

1 − γ
�∗(��∗)−1�

}
> 0,

K1 := B + γ

1 − γ
�∗(��∗)−1A,(2.28)

C :=
√

− γ

1 − γ
�∗(��∗)−1A,

and q(t), h(t) satisfy the equations⎧⎪⎪⎨⎪⎪⎩
q̇(t) + (

K1 + N−1∗P(t)
)∗

q(t) + P(t)b

+ γ

1 − γ

(
A∗ + P(t)�∗)

(��∗)−1(a − r1) = 0,

q(T ) = 0,

(2.29)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ḣ(t) + 1

2
tr

(
∗P(t)

) + 1

2
q(t)∗∗q(t) + b∗q(t) + γ r

+ γ

2(1 − γ )

(
a − r1 + �∗q(t)

)∗
(��∗)−1

× (
a − r1 + �∗q(t)

) = 0,

h(T ) = 0.

(2.30)

The proof can be found in [25]. We will give some remarks in Section 4.1.
We now define the class of admissible investment strategies, AT ,

AT :=
{
(πt )t∈[0,T ];

(2.31)

E

[
E

(∫ [(
P(s)Ys + q(s)

)∗
 + γπ∗

s �
]
dWs

)
T

]
= 1

}
.
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This class of admissible strategies is also used in [25]. Here we use the notation,
E (Z) := (E (Z)t )t∈[0,T ], for the stochastic exponential of a continuous semimartin-
gale Z : E (Z)t := eZt−1/2〈Z〉t . Therefore, ζπ

T in (2.14) is equal to E (
∫

γπ∗� dW)T .

PROPOSITION 2.2 [25]. Assume (A1) and γ < 0. Let P(t), q(t), h(t) be de-
fined as in Proposition 2.1. Then the following defines an admissible strategy:

π̂(t) := π̂(t, Yt ),
(2.32)

π̂(t, y) = 1

1 − γ
(��∗)−1[a − r1 + �∗q(t) + {A + �∗P(t)}y]

and is optimal for the problem (2.9). Moreover,

v(0, y) = 1
2y∗P(0)y + q(0)∗y + h(0).

The proofs of Proposition 2.2 can be found in [25]. Some remarks will also be
given in Section 4.1.

In the following, notation v(t, y;T ),P (t;T ), q(t;T ),h(t;T ) will be used for
the dependence of P(t), q(t), h(t) on T . Similarly, we use

v(t, y;T ;γ ), P (t;T ;γ ), q(t;T ;γ ), h(t;T ;γ ),

if we need to discuss the dependence of the functions on γ .
We now consider (2.10). We consider a solution of (2.23) that is quadratic in y.

That is,

ξ(y) := 1
2y∗Py + q∗y,(2.33)

where P is a symmetric n× n matrix, and q is a vector in R
n. P and q will satisfy

the equations:

K∗
1 P + PK1 + PN−1∗P − C∗C = 0,(2.34)

(K1 + N−1∗P )∗q + Pb
(2.35)

+ γ

1 − γ
(A∗ + P�∗)(��∗)−1(a − r1) = 0.

We have the following results.

PROPOSITION 2.3 [25]. In addition to (A1), we assume (A2). Then the fol-
lowing properties hold:

(i) P(t) = P(t;T ) converges as T → ∞ to a nonpositive definite matrix P ,
which is a solution of the algebraic Riccati equation (2.34). Moreover,

K1 + N−1∗P
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is stable, and P satisfies the estimate

−
∫ ∞

0
esG∗

A∗(��∗)−1AesG ds ≤ P ≤ 0,(2.36)

where G is given in (A2).
(ii) q(t) = q(t;T ) converges as T → ∞ to a constant vector q which satisfies

(2.35). Moreover, −ḣ(t) = −ḣ(t;T ) converges to a constant χ(γ ) defined by

χ(γ ) = 1

2
tr(∗P ) + 1

2
q∗∗q + b∗q + γ r

(2.37)
+ γ

2(1 − γ )
(a − r1 + �∗q)∗(��∗)−1(a − r1 + �∗q).

(iii) We obtain

lim
T →∞

v(0;y)

T
= lim

T →∞
h(0;T )

T
= χ(γ ).(2.38)

The proof of Proposition 2.3 can be found in [25]. Some remarks will be also
given in Section 4.2.

We use ξγ (y),P (γ ), q(γ ) for the dependence of ξ(y),P , q on γ .

PROPOSITION 2.4. Along with (A1) and (A2), we assume (A3);

(B,) is controllable.(A3)

Then the pair (ξ,χ(γ )) is the unique solution of (2.23) with χ = χ(γ ) where
ξ(y) and χ(γ ) are given by (2.33) and (2.37), respectively.

The proof of Proposition 2.4 will be given in Section 4.2.

REMARK 2.3. The pair (K,L), of the n×n matrix K and the n× l matrix L,
is said controllable if the n×nl matrix (L,KL,K2L, . . . ,Kn−1L) has rank n. We
remark that the generator of Yt , Gf = 1

2 tr(∗D2f ) + β · Df , is an hypoelliptic
second-order operator if (A3) holds (see [20]).

REMARK 2.4. It is shown in [22] that there is χ∗(γ ) such that for any
χ ≥ χ∗(γ ), (2.23) has a solution ξ(y). There are only finitely many particular
χ ’s where the solution ξ(y) is quadratic in y. Under certain conditions, (2.23),
for χ = χ∗(γ ), has a unique solution ξ∗(y) satisfying ξ∗(0) = 0. The unique
pair χ∗(γ ), ξ∗(·) may also be characterized by the growth condition of ξ∗(y) as
|y| → ∞ (see [27]).

The differentiability of ξγ (y) [or χ(γ ), P (γ ), q(γ )] will play an important role
in the proof of our main theorem (Theorem 2.1). We have the following results.
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PROPOSITION 2.5. Under assumptions (A1) and (A2), the following results
hold:

(i) χ(γ ) and P (γ ), q(γ ) are twice differentiable with respect to γ .
(ii) χ(γ ) is convex with respect to γ .

The proof of Proposition 2.5(i) [and (ii)] will be given in Section 4.3 (and Sec-
tion 4.4).

Similar to (2.32), we use ξ(·) to define

πγ (y) = 1

1 − γ
(��∗)−1(

α(y) − r1 + �∗Dξ(y)
)

(2.39)

= 1

1 − γ
(��∗)−1[a − r1 + �∗q(γ ) + {A + �∗P (γ )}y].

Now we also define

βγ (y) := β(y) + γ�∗πγ (y) + ∗Dξ(y)

= b + By + γ

1 − γ
�∗(��∗)−1(a + Ay − r1)

(2.40)
+ N−1∗(

P (γ )y + q(γ )
)

= (
K1 + N−1∗P (γ )

)
y + fγ ,

where

fγ := b + γ

1 − γ
�∗(��∗)−1(a − r1) + N−1∗q.

Define

u = u(y) := {∗Dξ(y) + γ�∗πγ (y)}∗

=
{
∗(Py + q)(2.41)

+ γ

1 − γ
�∗(��∗)−1(

�∗(P y + q) + a + Ay − r1
)}∗

.

We will show

E

(
E

(∫
udW

)
t

)
= 1, t > 0.(2.42)

Then we define a new probability measure P̂ by

dP̂

dP

∣∣∣∣
Ft

:= E
(∫

udW

)
t

.(2.43)
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Define Ŵt by

Ŵt = Wt −
∫ t

0
u(Ys)

∗ ds.(2.44)

Then Ŵt is a Brownian motion under the probability measure P̂ , and Y satisfies

dYt = βγ (Yt ) dt + dŴt .(2.45)

REMARK 2.5. We compare βγ (y) in (2.40) and β(·, ·) in (2.19),

βγ (y) = β(y,πγ (y)) + ∗(
P (γ )y + q(γ )

)
.

As shown in (2.16), β(y,πγ (y)) is used to change the measure to derive the useful
expression of J (x, y,π;T ). Because of the integral from 0 to T in (2.16) when
πt = πγ (Yt ), the expectation may grow exponentially and will cause difficulty in
the analysis. The difference of βγ (y) and β(y,πγ (y)) is made to take care of this.
This gives another measure change, hence another term is added to β(y,πγ (y))

which leads to βγ (y). A similar idea is used in [23]. In the proof of our main
theorem (Theorem 2.1), we will also see some uses of P̂ .

Under P̂ , Yt is a Gaussian process. The variance of Yt is given by U(t),

U(t) =
∫ t

0
e(t−s)(K1+N−1∗P )∗e(t−s)(K1+N−1∗P )∗ ds,

and its mean m(t) is the solution of the following equation:

ṁ(t) = (K1 + N−1∗P)m(t) + fγ .

We show in the next proposition that K1 +∗N−1∗P is stable under assumption
(A2); then Yt is ergodic under P̂ .

PROPOSITION 2.6. Under assumptions (A1) and (A2), K1 + ∗N−1∗P is
stable. There are c1(γ ) > 0, c2(γ ) > 0 and a positive definite n × n matrix Kγ

such that

y∗Kγ βγ (y) ≤ −c1(γ )|y|2 + c2(γ ),(2.46)

where βγ (y) is given by (2.40).

The proof is given in Section 4.5.

PROPOSITION 2.7. Under assumptions (A1) and (A2) we obtain

lim
γ→−∞χ ′(γ ) = r.(2.47)
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For the proof, see Section 4.6. This result gives the range of k in (2.8) that our
main result holds (Theorem 2.1).

We can now state our main theorem. Its proof, given in next section, is based on
the results in Propositions 2.1–2.7.

THEOREM 2.1. Assume (A1) and (A2). Then, for all r < k < χ ′(0−), we have
the following:


(k) = inf
γ<0

{χ(γ ) − γ k}.(2.48)

Moreover, define the strategy,

π̂
[k]
t := π̂(t, Yt ),(2.49)

where π̂(t, y) is defined in (2.32) with γ = γ (k). Here γ (k) < 0 s.t. χ ′(γ (k)) =
k ∈ (r,χ ′(0−)). We denote χ ′(γ ) = dχ

dγ
(γ ). Then π̂ [k], on the sufficiently large

time horizon T , is a nearly optimal strategy for the problem (2.7), namely,


(k) = lim
T →∞

1

T
logP

(
logXπ̂ [k]

T

T
≤ k

)
.

For k < r ,


(k) = inf
γ<0

{χ(γ ) − γ k} = −∞.

If B is stable, then

χ(0−) = 0(2.50)

and

χ ′(0−) = 1

2
tr

(
∗ dP

dγ
(0−)

)
(2.51)

+ 1

2

(
AB−1b − (a − r1)

)∗
(��∗)−1(

AB−1b − (a − r1)
) + r,

where

dP

dγ
(0−) =

∫ ∞
0

esB∗
A∗(��∗)−1AesB ds,


(k) = inf
γ<0

{χ(γ ) − γ k} = 0, k ≥ χ ′(0−).

REMARK 2.6. In Proposition 2.2, for a given T ,

P(t) = P(t;T ), q(t) = q(t;T ), h(t) = h(t;T )

and

π̂(t, y) = π̂(t, y;T ).
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Hence, to avoid confusion, we may use π̂t
T ,k for π

[k]
t . Therefore, for γ = γ (k),

E((Xπ̂T,k

T )γ ) = inf
π∈AT

E((Xπ
T )γ ).

π̂t
T ,k is an optimal strategy for (2.9) [γ = γ (k)] but may not be an optimal strategy

for (2.7). This is the reason we say π̂t
T ,k is nearly optimal for (2.7) when T is large,

since the value using this strategy is close to the optimal value when T is large.
On the other hand, we can use πγ (·) in (2.39) to define

π̂γ (t) = πγ (Yt ).

We may expect that this will also give a nearly optimal strategy. That is, in a sense,

E((X
π̂γ

T )γ )(2.52)

is close to

inf
π∈AT

E((Xπ
T )γ ),

if T is large. There are two problems when one wants to prove this rigorously. For
the first problem, it is not easy to show π̂γ (·) is an element of AT . For the second
problem, it may happen that (2.52) becomes infinite for some finite T . See [14] for
a study of a model where there is one stock in the market. When this happens, the
problem (2.24) may not have a solution. That is, there is no optimal strategy for
(2.24). However, it is shown in [14] that some modification of π̂γ (·) gives a nearly
optimal strategy. Such behavior also indicates that (2.25) may be more difficult to
treat than (2.8). However, if we assume (A1)–(A3) and the following condition,

P (γ )�∗(��∗)−1�∗P (γ ) < A∗(��∗)−1A,

then it is proved in [25] (Theorem 2.3) that

lim
T →∞

1

T
logE(X

π̂γ

T ) = χ(γ ).

Using this and following the same argument as in Theorem 2.1, we can obtain the
upper estimate for down-side risk probability. For the lower estimate, the same
argument in Theorem 2.1 can be applied. In conclusion, we have the following
result; its proof is omitted.

THEOREM 2.2. Assume (A1)–(A3). Let r < k < χ ′(0−) and γ (k) < 0 be the
unique number satisfying χ ′(γ (k)) = k. Assume

P (γ (k))�∗(��∗)−1�∗P (γ (k)) < A∗(��∗)−1A.

Define

π̂k(t) := πγ (k)(Yt ).
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Then π̂k(·) ∈ AT for any T and π̂k on a sufficiently large time horizon T is a
nearly optimal strategy for the problem (2.7). Namely,


(k) = lim
T →∞

1

T
logP

(
logX

π̂k

T

T
≤ k

)
.

In (2.25) we define A to be a family consisting of processes πt such that π |[0,T ],
the restriction of πt to [0, T ], is in AT for all T . Then π̂k(·) ∈ A and is an optimal
strategy for (2.25).

3. Proof of Theorem 2.1. In this section,we shall give a proof of our main
theorem using results in Propositions 2.1–2.7. The proof of the propositions will
be given in Section 4.

From Proposition 2.5(ii), χ is convex. Let us consider

χ̂ (k) := inf
γ<0

{χ(γ ) − γ k}, k > r.

Since χ is smooth, we see that χ̂ (k) is strictly concave, nondecreasing and satisfies

χ̂ (k) =
{

0, if k ≥ χ ′(0−),
χ(γ (k)) − γ (k)χ ′(γ (k)), if r < k < χ ′(0−),

where γ (d) < 0 is such that χ ′(γ (d)) = d ∈ (r,χ ′(0−)). In Section 4.4, we will
show χ ′(γ ) > 0 for γ < 0. Therefore, γ (d) is uniquely defined. Moreover, χ̂ is
continuous on (r,χ ′(0−)).

We now take a small ε > 0. Then k − ε > r . Suppose γ̃ < 0 attains the follow-
ing:

χ̂ (k − ε) := inf
γ<0

{χ(γ ) − γ (k − ε)} = χ(γ̃ ) − γ̃ (k − ε).

Note that

k − ε = χ ′(γ̃ ).(3.1)

We denote γ̃ as γ in the following.
From Proposition 2.3, we recall that the pair (χ(γ ), ξ) solves (2.23);

χ(γ ) = 1

2
tr(∗D2ξ) +

{
b + By + γ

1 − γ
�∗(��∗)−1(a + Ay − r1)

}∗
Dξ

+ 1

2
(Dξ)∗N−1∗Dξ

+ γ

2(1 − γ )
(a + Ay − r1)∗(��∗)−1(a + Ay − r1) + γ r,

or, equivalently,

χ(γ ) = 1
2 tr(∗D2ξ(y)) + βγ (y)∗Dξ(y) + V0,(3.2)
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where βγ (y) is defined in (2.40) and

V0 = V0(y)

:= −1

2
Dξ(y)∗N−1Dξ(y)(3.3)

+ γ

2(1 − γ )
(a + Ay − r1)∗(��∗)−1(a + Ay − r1) + γ r.

By differentiation of (3.2) with respect to γ , we have

χ ′(γ ) = 1

2
tr(∗D2η(y)) + βγ (y)∗Dη(y)

+ 1

(1 − γ )2 �∗(��∗)−1(a + Ay − r1)∗Dξ

+ 1

2(1 − γ )2 (Dξ)∗(y)�∗(��∗)−1�∗Dξ(y)

+ 1

2(1 − γ )2 (a + Ay − r1)∗(��∗)−1(a + Ay − r1) + r,

where η = ∂ξ
∂γ

. That is,

χ ′(γ ) = 1

2
tr(∗D2η(y)) + βγ (y)∗Dη(y) + V1,(3.4)

V1 = V1(y) := 1

2(1 − γ )2 {�∗Dξ(y) + (a + Ay − r1)}∗(��∗)−1

(3.5)
× {�∗Dξ(y) + (a + Ay − r1)} + r.

Furthermore, from (3.2) and (3.4), we can obtain

χ(γ ) − γχ ′(γ )
(3.6)

= 1
2 tr

(
∗D2(ξ − γ η)(y)

) + βγ (y)∗D(ξ − γ η)(y) + V2,

where V2 is defined by

V2 = V2(y) = −1
2 |u|2;(3.7)

u(·) is in (2.41). Indeed, from (3.2) and (3.4),

χ(γ ) − γχ ′(γ ) = 1
2 tr

(
∗D2(ξ − γ η)(y)

) + βγ (y)∗D(ξ − γ η)(y) + V0 − γV1.

By (3.3) and (3.5), a straightforward calculation shows that

V0 − γV1 = −1

2
Dξ(y)∗∗Dξ(y)

− γ

1 − γ
{�∗Dξ(y) + (a + Ay − r1)}∗(��∗)−1�∗Dξ(y)
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− 1

2

(
γ

1 − γ

)2

{�∗Dξ(y) + (a + Ay − r1)}∗

× (��∗)−1{�∗Dξ(y) + (a + Ay − r1)}
= −1

2
|u|2,

where the last equality follows from (2.41). Hence we have (3.7).
For π ∈ AT , we have by (2.6),

Xπ
T = x exp

[∫ T

0

{
r + (a + AYt − r1)∗πt − 1

2
π∗

t ��∗πt

}
dt +

∫ T

0
π∗

t � dWt

]
.

Then
logXπ

T

T
= logx

T
+ 1

T

∫ T

0
π∗

t � dWt

+ 1

T

∫ T

0

[
−1

2
π∗

t ��∗πt + {π∗
t (a + AYt − r1) + r}

]
dt.

Recalling Ŵt defined by (2.44), we can rewrite the last relation as

logXπ
T

T
= logx

T
+ 1

T

∫ T

0
π∗

t � dŴt

− 1

2T

∫ T

0

{
πt − 1

1 − γ
(��∗)−1(

�∗Dξ(Yt ) + a + AYt − r1
)}∗

× ��∗
{
πt − 1

1 − γ
(��∗)−1(

�∗Dξ(Yt ) + a + AYt − r1
)}

dt

+ 1

T

∫ T

0

{
1

2(1 − γ )2

(
�∗Dξ(Yt ) + a + AYt − r1

)∗
× (��∗)−1(

�∗Dξ(Yt ) + a + AYt − r1
) + r

}
dt.

From (3.5) and with some calculation, we can rewrite this as

logXπ
T

T
= logx

T
+ 1

T

∫ T

0

1

1 − γ

{
(��∗)−1(

�∗Dξ(Yt )

+ a + AYt − r1
)}∗

� dŴt

+ 1

T
log E

(∫ {
π − 1

1 − γ
(��∗)−1(

�∗Dξ(Y )(3.8)

+ a + AY − r1
)}∗

� dŴ

)
T

+ 1

T

∫ T

0
V1(Yt ) dt.
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Define the following events:

A :=
{
ω; logXπ

T

T
≤ k

}
,

A1,T :=
{
ω; 1

T

∫ T

0
V2(Yt ) dt ≥ χ(γ ) − γχ ′(γ ) − ε

}
,

A2,T :=
{
ω; 1

T

∫ T

0
u(Yt )

∗ dŴt ≤ ε

}
and

A3,T :=
{
ω; logx

T
+ 1

T

∫ T

0
V1(Yt ) dt ≤ χ ′(γ ) + ε

2

}
,

A4,T :=
{
ω; 1

T

∫ T

0

1

1 − γ

{
(��∗)−1(

�∗Dξ(Yt )

+ a + AYt − r1
)}∗

� dŴt ≤ ε

4

}
,

A5,T :=
{
ω; 1

T
log E

(∫ (
π − 1

1 − γ
(��∗)−1

× (
�∗Dξ(Y ) + a + AY − r1

))∗
� dW

)
T

≤ ε

4

}
.

From (3.1) and (3.8), we see that

A3,T ∩ A4,T ∩ A5,T ⊆ A.(3.9)

Recall that P̂ is the probability defined by (2.43). By using (3.6), (2.45) and
Itô’s formula, we have

(ξ − γ η)(YT ) − (ξ − γ η)(y) = (
χ(γ ) − γχ ′(γ )

)
T −

∫ T

0
V2(Yt ) dt

+
∫ T

0
D(ξ − γ η)∗(Yt )dŴt .

We apply Chebyshev’s inequality:

P̂ (Ac
1,T ) ≤ 1

ε2 Ê

[∣∣∣∣χ(γ ) − γχ ′(γ ) − 1

T

∫ T

0
V2(Yt ) dt

∣∣∣∣2]
≤ 1

ε2T 2 Ê

[∣∣∣∣(ξ − γ η)(YT ) − (ξ − γ η)(y)

−
∫ T

0
D(ξ − γ η)∗(Yt )dŴt

∣∣∣∣2]
.
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Noting that ξ(y), and η(y) are quadratic in y, then

|(ξ − γ η)(y)| ≤ K(1 + |y|2),
|D(ξ − γ η)(y)| ≤ K(1 + |y|).

Therefore, we have

Ê

[∣∣∣∣(ξ − γ η)(YT ) − (ξ − γ η)(y) −
∫ T

0
D(ξ − γ η)∗(Yt )λ(Yt ) dŴt

∣∣∣∣2]

≤ K

{
1 + |y|4 + T + Ê[|YT |4] +

∫ T

0
Ê[|Yt |2]dt

}
≤ d1(γ ){|y|4 + 1 + (|y|2 + 1)T }

for some d1(γ ) > 0 where the last inequality follows from Lemma 3.1 below.
Therefore, we see that

P̂ (Ac
1,T ) ≤ d1(γ ){|y|4 + 1 + (|y|2 + 1)T }

ε2T 2

and

P̂ (Ac
1,T ) ≤ ε,(3.10)

provided T is sufficiently large.
By using Chebyshev’s inequality again, we have

P̂ (Ac
2,T ) ≤ 1

ε2T 2 Ê

[∣∣∣∣∫ T

0
u(Yt )

∗ dŴt

∣∣∣∣2]
= 1

ε2T 2 Ê

[∫ T

0
|u(Yt )|2 dt

]
.

By (2.41) and using |Dξ(y)| ≤ K(1 + |y|), we obtain

P̂ (Ac
2,T ) ≤ K

ε2T 2

(
T +

∫ T

0
Ê[|Yt |2]dt

)

≤ d2(γ )(|y|2 + 1)

ε2T
,

for some d2(γ ) > 0 where the last inequality follows from Lemma 3.1 below.
Therefore, we see that

P̂ (Ac
2,T ) ≤ ε,(3.11)

provided T is sufficiently large.
Using a similar argument, we can show

P̂ (Ac
4,T ) ≤ ε.(3.12)

We now consider P̂ (Ac
3,T ). By (3.4) and Itô’s formula,

dη(Yt ) = −V1(Yt ) dt + χ ′(γ ) dt + (Dη(Yt ))
∗dŴt .
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From this, we have∫ T

0
V1(Yt ) dt = η(Y0) − η(YT ) + χ ′(γ )T +

∫ T

0
(Dη(Yt ))

∗dŴt .

Then, A3,T is the same as{
ω; logx

T
+ η(Y0) − η(YT )

T
+ 1

T

∫ T

0
(Dη(Yt ))

∗dŴt ≤ ε

2

}
.

Now we can use the same argument as above to get

P̂ (Ac
3,T ) ≤ ε,(3.13)

provided T is sufficiently large.
For A5,T , we have

P̂ (Ac
5,T ) ≤ e−ε/4T

× Ê

[
E

(∫ {
π − 1

1 − γ
(��∗)−1(

�∗Dξ(Y )

+ a + AY − r1
)}∗

� dW

)
T

]
≤ e−ε/4T .

Then we have

P̂ (Ac
5,T ) ≤ ε,(3.14)

if T is sufficiently large.
Hence, from (3.7), (3.9), (3.10), (3.11), (3.12), (3.13) and (3.14), we have

P(A) = Ê

[
exp

{
−

∫ T

0
u(Yt )

∗ dŴt − 1

2

∫ T

0
|u(Yt )|2 dt

}
;A

]

= Ê

[
exp

{
−

∫ T

0
u(Yt )

∗ dŴt +
∫ T

0
V2(Yt ) dt

}
;A

]
≥ exp

[(
χ(γ ) − γχ ′(γ ) − 2ε

)
T

] · P̂ (A1,T ∩ A2,T ∩ A)

≥ exp
[(

χ(γ ) − γχ ′(γ ) − 2ε
)
T

] · P̂ (A1,T ∩ A2,T ∩ A3,T ∩ A4,T ∩ A5,T )

≥ exp
[(

χ(γ ) − γχ ′(γ ) − 2ε
)
T

] · (1 − 5ε).

The estimate of P(A) is uniform in π . Therefore, we see that


(k) ≥ lim
T →∞

1

T
log

{
exp

[(
χ(γ ) − γχ ′(γ ) − 2ε

)
T

] · (1 − 5ε)
}

= χ̂ (k − ε) − 2ε.
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By continuity of χ̂ on (χ ′(−∞),χ ′(0−)) and sending ε to 0, we obtain


(k) ≥ inf
γ<0

{χ(γ ) − γ k}.(3.15)

On the other hand, if π = π̂ [k], we have

P

(
logXπ̂ [k]

T

T
≤ k

)
= P

(
(Xπ̂

T )γ (k) ≥ eγ (k)kT )
≤ E

[
(Xπ̂

T )γ (k)] · e−γ (k)kT

= exp
(
γ (k) logx + v(0, y;T ;γ (k)) − γ (k)kT

)
.

Therefore, by Proposition 2.3(iii),

lim
T →∞

1

T
logP

(
logXπ̂ [k]

T

T
≤ k

)
≤ χ(γ (k)) − γ (k)k

= χ(γ (k)) − γ (k)χ ′(γ (k))

= inf
γ<0

{χ(γ ) − γ k}.
Together with (3.15), we get


(k) = lim
T →∞

1

T
logP

(
logXπ̂ [k]

T

T
≤ k

)
= inf

γ<0
{χ(γ ) − γ k}.

We have proved (2.48).
We now consider k < r . By convexity of χ(·), we have

χ(−1) ≥ χ(γ ) + χ ′(γ )(−1 − γ ), γ < −1.

That is,

χ(γ ) − γ k ≤ χ(−1) + χ ′(γ ) + γ
(
χ ′(γ ) − k

)
.

Since χ ′(γ ) is bounded, χ ′(γ ) → r as γ → −∞ (Proposition 2.7), we see

χ(γ ) − γ k → −∞, γ → −∞.

In particular,

inf
γ<0

{χ(γ ) − γ k} = −∞.

On the other hand, we take π = 0. Then

X0
T = x exp(rT ),

P

(
logX0

T

T
≤ k

)
= 0 if T is sufficiently large.

In particular, 
(k) = −∞.
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We now assume that B is stable. Consider d
dt

etK∗
1 PetK1 and use (2.34). We can

show

P − etK∗
1 PetK1 =

∫ t

0
esK∗

1 (PN−1∗P − C∗C)esK1 ds.

Since K1 is stable if γ < 0 is near 0 [see (2.28)], when t tends to infinite, we have

−P +
∫ ∞

0
esK∗

1 PN−1∗PesK1 ds =
∫ ∞

0
esK∗

1 C∗CesK1 ds.

We want to let γ → 0− for P = P (γ ). By Proposition 2.3(i), −P(γ ) is nonnega-
tive. The above relation implies that −P (γ ) is bounded above as γ → 0. By (4.9)
in the next section, P(γ ) is nondecreasing. Therefore,

P (0−) = lim
γ→0−P(γ )

exists and is nonpositive definite. Since C(γ ) → 0 as γ → 0−, we take the limit
in the above relation and we easily see P(0−) = 0.

By (2.35),

B∗q(0−) = 0.

We have q(0−) = 0. From (2.37), we have χ(0−) = 0. We have proved (2.50).
Using (4.9), we obtain

dP

dγ
(0−) =

∫ ∞
0

esB∗
A∗(��∗)−1AesB ds.

By (4.12), we have

dq

dγ
(0−) = −(B∗)−1

[
dP

dγ
(0−)b + A∗(��∗)−1(a − r1)

]
.

By (4.13), we have

χ ′(0−) = 1

2
tr

(
∗ dP

dγ
(0−)

)
+ dq

dγ
(0−)∗b + 1

2
(a − r1)∗(��∗)−1(a − r1)+ r.

Using the above expression for dP
dγ

(0−), we can show

B∗ dP

dγ
(0−) + dP

dγ
(0−)B = −A∗(��∗)−1A.

Multiplying this by (B∗)−1 on the left and B−1 on the right, we have

(B∗)−1 dP

dγ
(0−) + dP

dγ
(0−)B−1 = −(B∗)−1A∗(��∗)−1AB−1.
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Then

(B∗)−1 dP

dγ
(0−)b · b

= −1

2
(AB−1b)∗(��∗)−1AB−1b,

dq

dγ
(0−)∗b + 1

2
(a − r1)∗(��∗)−1(a − r1)

= 1

2

(
AB−1b − (a − r1)

)∗
(��∗)−1(

AB−1b − (a − r1)
)
.

An expression of χ ′(0−) as in (2.51) follows.
Finally, we show

inf
γ<0

{χ(γ ) − γ k} = 0, k ≥ χ ′(0−).

Let k ≥ χ ′(0−). Since χ(0−) = 0, we have

inf
γ<0

{χ(γ ) − γ k} ≤ 0.

Take k1 < χ ′(0−). Then


(k1) = inf
γ<0

{χ(γ ) − γ k1} ≤ inf
γ<0

{χ(γ ) − γ k},

(k1) = χ(γ (k1)) − γ (k1)k1,

where

χ ′(γ (k1)) = k1.

γ (k1) → 0− as k1 → χ ′(0−). Then 
(k1) → 0 as k1 → χ ′(0−). Therefore,

inf
γ<0

{χ(γ ) − γ k} ≥ 0;

hence

inf
γ<0

{χ(γ ) − γ k} = 0.

This completes the proof of our main theorem. The following is a lemma used in
the above proof.

LEMMA 3.1. Assume (A1) and (A2). Then, for all p ≥ 1, there is M =
M(γ,p) such that

Ê[|Yt |2p] ≤ |y|2p + M, t ≥ 0.(3.16)
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PROOF. Let Kγ be the positive definite matrix in Proposition 2.6. We apply
Itô’s differential rule to (Y ∗

t Kγ Yt )
p . Yt is given in (2.45) and we consider the

probability P̂ [in (2.43)]. To simplify the calculation, we assume Kγ = I (identity
matrix) in the following. Noting that (2.46) holds for Kγ = I , we have

d|Yt |2p = 2p|Yt |2(p−1)Y ∗
t dŴt + 2p|Yt |2(p−1)Y ∗

t βγ (Yt ) dt

+ p|Yt |2(p−1) tr∗ ds + 2p(p − 1)|Yt |2(p−2)Y ∗
t ∗Yt dt

≤ 2p|Yt |2(p−1)Y ∗
t dŴt

+ p|Yt |2(p−1){−2c1(γ )|Yt |2 + 2c2(γ ) + c3}dt

for some c3 > 0. Moreover, if we take θ as 0 < θ < 2pc1(γ ), then we have

d|Yt |2peθt ≤ 2peθt |Yt |2(p−1)Y ∗
t dŴt

+ eθt |Yt |2(p−1)[p{−2c1(γ )|Yt |2 + 2c2(γ ) + c3} + θ |Yt |2]dt

≤ 2peθt |Yt |2(p−1)Y ∗
t dŴt + eθtM dt,

where

M := sup
y

|y|2(p−1)[p{−2c1(γ )|y|2 + 2c2(γ ) + c3} + θ |y|2].
Therefore, we obtain

|Yt |2p ≤ |y|2p + M

θ
(1 − e−θt ) + 2p

∫ t

0
e−θ(t−s)|Ys |2(p−1)Y ∗

s dŴs.

From this, by an argument using a stopping time, we obtain (3.16) with M = M/θ .
�

REMARK 3.1. The proof of Theorem 2.1 is based on the results in Proposi-
tions 2.1–2.7. It is interesting to verify these results for more general non-Gaussian
models. We make the following observation. If we assume:

(i) α,σ,β,λ are globally Lipschitz;
(ii) μ1|ξ |2 ≤ ξ∗σσ ∗(y)ξ ≤ μ2|ξ |2,μ1,μ2 > 0;

(iii) ν1|ξ |2 ≤ ξ∗λλ∗(y)ξ ≤ ν2|ξ |2, ν1, ν2 > 0; then there is χ∗(γ ) such that
(2.23) has a solution for χ ≥ χ∗(γ ) (see Theorem 2.6 in [22]). Moreover, under
certain conditions, there is a unique solution ξγ (y) with ξγ (0) = 0 for χ = χ∗(γ )

(see Theorem 3.8 in [22]). Assume ∗ is positive, and for Gaussian cases studied
here that satisfy the conditions (A1), (A2), (A3), χ∗(γ ) = χ(γ ), ξ∗

γ (y) = ξγ (y),
which are defined in Proposition 2.3. It is an interesting problem to find conditions
on coefficients that prove other propositions.

4. Proof of propositions.

4.1. Finite time horizon problem. In this subsection, we prove Propositions
2.1 and 2.2. We follow closely the arguments of Kuroda and Nagai [25].
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First of all, we attack the finite time horizon problem (2.9). Then the solution v

of the Bellman equation (2.21) can be expressed as quadratic function such that

v(t, y) = 1
2y∗P(t)y + q(t)∗y + h(t),

provided that equation (2.27) has a solution. Here q and h are solutions of (2.29)
and (2.30), respectively. We recall the following result (5.2) in [13], Theorem IV. If
γ < 0, then we see that (2.27) has the unique solution P(t) ≤ 0. See also Remark 1
of Section 2 in [25], but notice that γ and the solution P(t) of (2.27) correspond
to − θ

2 and − θ
2P(t) in [25], respectively. Therefore, as in the proof of Theorem 2.1

in [25], we obtain Propositions 2.1 and 2.2.

4.2. Asymptotics as T → ∞. In this section we prove Propositions 2.3 and
2.4. Here we recall the following theorem (see Theorem 4.1 and Lemma 5.2
in [38]).

THEOREM 4.1 [38]. Assume that N > 0 and (K1,) is stabilizable, then for
the solution Q(t) = Q(t;T ) of{

Q̇(t) + K∗
1 Q(t) + Q(t)K1 − Q(t)N−1∗Q(t) + C∗C = 0,

Q(T ) = 0.
(4.1)

∃ limT →∞ Q(t;T ) = Q, and Q satisfies the algebraic Riccati equation,

K∗
1 Q + QK1 − QN−1∗Q + C∗C = 0.(4.2)

Moreover, if (C,K1) is detectable, then K∗
1 − N−1∗Q is stable and the non-

negative definite solution of (4.2) is unique.

REMARK 4.1. The pair (L,M) of the n × n matrix L and the n × l matrix
M is stabilizable if there exists a l × n matrix K such that L − MK is stable. The
pair (L,F ) of the l × n matrix L and the n × n matrix F is called detectable if
(F ∗,L∗) is stabilizable.

PROOF OF PROPOSITION 2.3(i) AND (ii). Let us set Q(t) = −P(t). Then we
see that Q satisfies (4.1). Let K1,C be given in (2.28). Take K = �∗(��∗)−1A.
Then K1 − K = B − �∗(��∗)−1A = G is stable. Note also that if we set
K2 :=

√ −1
γ (1−γ )

∗, then K∗
1 −CK2 = G∗ is stable [G is given in (A2)]. Therefore,

we see that (K1,) is stabilizable, (C,K1) is detectable and Theorem 4.1 applies.
Then we can follow the arguments of Proposition 2.2 in Kuroda and Nagai [25];
we omit the details here.

PROOF OF PROPOSITION 2.3(iii). Note that P(t;T ) is uniformly bounded
with respect to t and T (see Remark 1 of Section 4 in [25]). Moreover, since
K1 +N−1∗P(t;T ) converges to a stable matrix K1 +N−1∗P as T → ∞,
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we can show by (2.29) that q(t;T ) is uniformly bounded with respect to t and T .
See Lemma 4.4 in [25]. Therefore we obtain (2.38). �

PROOF OF PROPOSITION 2.4. Let us assume (A1)–(A3). Then we have the
solution P of (2.34) and q of (2.35). Moreover, the pair (ξ(y),χ(γ )) of ξ(y),
defined by (2.33) and χ(γ ) defined by (2.37), satisfies (2.23) (cf. Section 2 in
Kuroda and Nagai [25]). Here we note that from (A2), K1 + N−1∗P is stable
(by Theorem 4.1). Moreover, from (A3) we see that the variance of Yt under P̂

[defined in (2.43)] is nondegenerate (see Lemma 5.1 of Kuroda and Nagai [25]).
Therefore, we see that Yt given by (2.45) is P̂ -ergodic. The rest of the proof follows
closely the arguments of Theorem 3.8 in Kaise and Sheu [22] and is omitted here.

�

4.3. Differentiability with respect to HARA parameter γ . In this subsection,
we shall prove Proposition 2.5(i). Let us first note that the Riccati differential equa-
tion (2.1) can be solved by considering a Hamiltonian system. Indeed, introduce a
Hamiltonian matrix H defined by

H =
(−K1 N−1∗

C∗C K∗
1

)
,(4.3)

and consider the ordinary differential equation(
U̇ (t)

V̇ (t)

)
= H

(
U̇ (t)

V̇ (t)

)
, 0 ≤ t ≤ T ,

(
U̇ (0)

V̇ (0)

)
=

(
En

0

)
.(4.4)

See Chapter V in [1]. Note that U and V are n × n matrix valued functions on
0 ≤ t ≤ T , and En is the n×n unit matrix. Then it is known that U(t) is invertible,
and W(t) := V (t)U(t)−1 is the solution to the Riccati differential equation{

Ẇ (t) = K∗
1 W(t) + W(t)K1 − W(t)N−1∗W(t) + C∗C,

W(0) = 0.
(4.5)

Then we see that, by setting P̂ (t) := −P(T − t;T ), we have P̂ (t) = W(t).

LEMMA 4.1. The solution P(t) := P(t;T ;γ ) to the Riccati equation (2.27)
is in C1-class with respect to γ .

PROOF. The Hamiltonian matrix H defined by (4.3) is smooth with respect
to γ and so is the solution (U(t),V (t))∗ of (4.4). Moreover, U(t) is invertible.
Therefore, U(t)−1 is in C1-class and

∂U(t)−1

∂γ
= −U(t)−1 ∂U(t)

∂γ
U(t)−1.

Thus we see that W(t) = V (t)U(t)−1 is in C1-class with respect to γ . Hence we
conclude our present lemma. �
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Now, let us rewrite (2.27) as

Ṗ (t) + (
K1 + N−1∗P(t)

)∗
P(t) + P(t)

(
K1 + N−1∗P(t)

)
(4.6)

− P(t)N−1∗P(t) − C∗C = 0.

Then by differentiating (4.6) with respect to γ , we obtain

d

dt

(
∂P

∂γ

)
+ (

K1 + N−1∗P(t)
)∗ ∂P

∂γ

+ ∂P

∂γ

(
K1 + N−1∗P(t)

)
(4.7)

+ 1

(1 − γ )2

(
�∗P(t) + A

)∗
(��∗)−1(

�∗P(t) + A
) = 0.

Then we obtain the following lemma.

LEMMA 4.2. Assume (A1) and (A2). Then the solution ∂P
∂γ

(t;T ;γ ) of (4.7)

converges to dP
dγ

which satisfies

(K1 + N−1∗P )∗ dP

dγ
+ dP

dγ
(K1 + N−1∗P)

(4.8)

+ 1

(1 − γ )2 (�∗P + A)∗(��∗)−1(�∗P + A) = 0.

Moreover, we obtain the following expression:

dP

dγ
= 1

(1 − γ )2

∫ ∞
0

es(K1+N−1∗P)∗(�∗P + A)∗

(4.9)
× (��∗)−1(�∗P + A)es(K1+N−1∗P) ds.

PROOF. Note that K1 +N−1∗P(t;T ) converges to the stable matrix K1 +
N−1∗P . We can see that similar to Lemma 4.4 of [25], ∂P

∂γ
(t;T ) converges to

a matrix (∂P
∂γ

) which satisfies

(K1 + N−1∗P )∗
(

∂P

∂γ

)

+
(

∂P

∂γ

)
(K1 + N−1∗P )

+ 1

(1 − γ )2 (�∗P + A)∗(��∗)−1(�∗P + A) = 0.
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Then

d

dt

{
et(K1+N−1∗P)∗

(
∂P

∂γ

)
et(K1+N−1∗P )

}

= et(K1+N−1∗P)∗
(
(K1 + N−1∗P)∗

(
∂P

∂γ

)

+
(

∂P

∂γ

)
(K1 + N−1∗P )

)
et(K1+N−1∗P)

= − 1

(1 − γ )2 et(K1+N−1∗P)∗(�∗P + A)∗(��∗)−1

× (�∗P + A)et(K1+N−1∗P ).

Integrating over t , then ( ∂P
∂γ

) satisfies(
∂P

∂γ

)
− et(K1+N−1∗P)∗

(
∂P

∂γ

)
et(K1+N−1∗P)

= 1

(1 − γ )2

∫ t

0
es(K1+N−1∗P )∗(�∗P + A)∗

× (��∗)−1(�∗P + A)es(K1+N−1∗P) ds.

We see that (
∂P

∂γ

)
= 1

(1 − γ )2

∫ ∞
0

es(K1+N−1∗P )∗(�∗P + A)∗

(4.10)
× (��∗)−1(�∗P + A)es(K1+N−1∗P) ds.

On the other hand, we have

P(γ + �) − P (γ ) = lim
T →∞{P(t;T ;γ + �) − P(t;T ;γ )}

= lim
T →∞

∫ γ+�

γ

∂P

∂γ
(t;T ;u)du

=
∫ γ+�

γ

(
∂P

∂γ

)
(u) du.

From (4.10), ( ∂P
∂γ

) is continuous with respect to γ . Therefore, we see that P is

differentiable with respect to γ , and dP
dγ

(γ ) = ( ∂P
∂γ

)(γ ). �

As for differentiability of q with respect to γ , we can see this is similar to
Lemma 4.2. Indeed, (2.29) is a linear equation and its coefficients are all in C1-
class with respect to γ . Therefore, the solution q(t) of (2.29) is in C1-class with
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respect to γ , and we have

d

dt

(
∂q

∂γ

)
+ (

K1 + N−1∗P(t)
)∗ ∂q

∂γ
+ ∂(K1 + N−1∗P(t))∗

∂γ
q(t)

+ ∂P

∂γ
b + 1

(1 − γ )2

(
�∗P(t) + A

)∗
(��∗)−1(a − r1)(4.11)

+ γ

1 − γ

∂P

∂γ
�∗(��∗)−1(a − r1) = 0.

Thus we have the following lemma, similar to Lemma 4.2.

LEMMA 4.3. Under assumptions (A1) and (A2), as T → ∞, ∂q
∂γ

(t;T ;γ ), the

solution of (4.11) converges to dq
dγ

which satisfies

(K1 + N−1∗P)∗ dq

dγ
+ 	

(
γ,

dP

dγ
,P , q

)
= 0,(4.12)

where

	

(
γ,

dP

dγ
,P , q

)
:=

[
1

(1 − γ )2 �∗(��∗)−1(A + �∗P) + N−1∗ dP

dγ

]∗
q

+ dP

dγ
b + 1

(1 − γ )2 (A + �∗P)∗(��∗)−1(a − r1)

+ γ

1 − γ

dP

dγ
�∗(��∗)−1(a − r1).

Differentiability of χ(γ ) is directly seen from (2.37). Indeed, we have

dχ

dγ
= 1

2
tr

(
∗ dP

dγ

)
+ q∗∗ dq

dγ
+ b∗ dq

dγ
+ r

+ 1

2(1 − γ )2 (a − r1 + �∗q)∗(��∗)−1(a − r1 + �∗q)(4.13)

+ γ

1 − γ
(a − r1 + �∗q)∗(��∗)−1�∗ dq

dγ
.

The following lemma is a direct consequence of (4.9), (4.12) and (4.13).

LEMMA 4.4. Under assumptions (A1) and (A2), dP
dγ

,
dq
dγ

and dχ
dγ

are differen-
tiable with respect to γ .
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PROOF. Differentiability of dP
dγ

is seen by looking at (4.9). As for dq
dγ

, from
(4.12) we obtain

dq

dγ
= −[(K1 + N−1∗P)∗]−1	

(
γ,

dP

dγ
,P , q

)
,

and so it turns out to be differentiable. From these facts and (4.13), differentiability
of dχ

dγ
follows. �

4.4. Convexity of χ . In this subsection, we shall show Proposition 2.5(ii).

PROOF OF PROPOSITION 2.5(ii). Note that K1 + N−1∗P is stable un-
der assumption (A2). In the previous subsection, namely the proof of Proposi-
tion 2.5(i), we have shown in Lemma 4.4 that under assumptions (A1) and (A2),
P ,q and χ are twice differentiable with respect to γ and so is ξ . Recall that

dχ

dγ
(γ ) = 1

2
tr(∗D2η(y)) + βγ (y)∗Dη(y) + V1,

where η := ∂ξ
∂γ

, βγ (y) is given by (2.40) and V1 is defined by (3.5). Moreover,

setting ζ := ∂2ξ

∂γ 2 , we have

d2χ

dγ 2 (γ ) = 1

2
tr(∗D2ζ(y)) + βγ (y)∗Dζ(y) +

(
∂βγ (y)

∂γ

)∗
Dη(y)

+ 1

(1 − γ )3 {�∗Dξ(y) + (a + Ay − r1)}∗

× (��∗)−1{�∗Dξ(y) + (a + Ay − r1)}
+ 1

(1 − γ )2 (Dη)∗(y)�∗(��∗)−1

× {�∗Dξ(y) + (a + Ay − r1)}.
Using

∂βγ

∂γ
(y) = 1

(1 − γ )2 �∗(��∗)−1{�∗Dξ(y) + (a + Ay − r1)}

+ N−1∗Dη(y),

we obtain

d2χ

dγ 2 (γ ) = 1

2
tr(∗D2ζ(y)) + βγ (y)∗Dζ + �(y;γ ),
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where

�(y;γ ) := (Dη)∗(y)
(
I − �∗(��∗)−1�

)
∗Dη(y)

+ 1

(1 − γ )3 {(1 − γ )�∗Dη(y) + �∗Dξ(y) + (a + Ay − r1)}∗

× (��∗)−1{(1 − γ )�∗Dη(y) + �∗Dξ(y) + (a + Ay − r1)}.
Note that |�(y;γ )| ≤ K(1 + |y|2). From (3.16) we can see that

d2χ

dγ 2 (γ ) = lim
T →∞

1

T
Ê

[∫ T

0
�(Ys;γ )ds

]
< ∞.

Since �(y;γ ) ≥ 0, we conclude d2χ

dγ 2 (γ ) ≥ 0. Therefore, Proposition 2.5(ii) is ob-
tained. �

4.5. Proof of Proposition 2.6. Recall that K1 +N−1∗P is stable from The-
orem 4.1. Let us set G := K1 + N−1∗P , and consider

K :=
∫ ∞

0
etG

∗
etG dt > 0.

Then K satisfies the following equation:

G
∗
K + KG = −I.

Therefore, we have

〈KGy,y〉 + 〈y,KGy〉 = −〈y, y〉,
〈Gy,Ky〉 = −1

2〈y, y〉.
Since

βγ (y) = Gy + fγ

[see (2.40)], we can deduce (2.46) after some calculation. Here Kγ = K,c1(γ ) =
1/4, and c2(γ ) = |Kfγ |2.

4.6. Asymptotics as γ → −∞. In this subsection we shall consider asymp-
totic behavior of dχ

dγ
(γ ) as γ → −∞, and obtain Proposition 2.7.

PROOF OF PROPOSITION 2.7. We first consider P(γ ) which is a solution of
the algebraic Riccati equation (2.34). We then note that dP

dγ
≥ 0 holds, and P is

bounded because of (4.9) and (2.36). We set P (−∞) := limγ→−∞ P (γ ). Now we
rewrite (2.34) as

(K1 − K)∗P + P(K1 − K) + (∗P + NK)∗N−1(∗P + NK)
(4.14)

− K∗NK − C∗C = 0,
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where

K := 1

1 − γ
�∗(��∗)−1A.(4.15)

Noting that

N = I − γ�∗(��∗)−1�,

lim
γ→−∞K = 0, lim

γ→−∞K1 = G,

lim
γ→−∞N−1 = I − �∗(��∗)−1� := N̂(−∞),

lim
γ→−∞(K∗NK + C∗C) = A∗(��∗)−1A,

where G = B − �∗(��∗)−1A [see (A2)]. We obtain

G∗P (−∞) + P (−∞)G
(4.16)

+ P (−∞)N̂(−∞)
∗P (−∞) − A∗(��∗)−1A = 0.

Moreover, we rewrite (4.16) as(
G + N̂(−∞)

∗P (−∞)

)∗
P (−∞) + P (−∞)

(
G + N̂(−∞)

∗P (−∞)

)
− (

P (−∞)N̂(−∞)
∗P (−∞) + A∗(��∗)−1A

) = 0.

We consider

d

dt
et (G+N̂(−∞)

∗P (−∞))
∗
P (−∞)e

t (G+N̂(−∞)
∗P (−∞))

and using the above relation, we can show∫ ∞
0

es(G+N̂(−∞)
∗P (−∞))

∗
P (−∞)

× N̂(−∞)
∗P (−∞)e

s(G+N̂(−∞)
∗P (−∞)) ds(4.17)

≤ −P (−∞).

Here we use P (−∞) ≤ 0. Since G∗ is stable,(
G∗ + (

N̂(−∞)
∗P (−∞)

)∗
,
(
N̂(−∞)

∗P (−∞)

)∗)
is stabilizable which means that (N̂(−∞)

∗P (−∞),G + N̂(−∞)
∗P (−∞)) is de-

tectable. Therefore, noting that (N̂(−∞))
2 = N̂(−∞) and that∥∥∥∥∫ ∞

0
es(G+N̂(−∞)

∗P (−∞))
∗
P (−∞)N̂(−∞)

∗P (−∞)e
s(G+N̂(−∞)

∗P (−∞)) ds

∥∥∥∥
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is bounded because of (4.17), we see that G + N̂(−∞)
∗P (−∞) is stable

(see [39], Proposition 3.2). Now noting that

K1 − K = G,
d

dγ
(K1 − K) = 0,

NK = �∗(��∗)−1A,
d

dγ
(NK) = 0,

K∗NK + C∗C = A∗(��∗)−1A and
d

dγ
(K∗NK + C∗C) = 0.

Then, by differentiating (4.14) with respect to γ , we obtain

(K1 + N−1∗P)∗ dP

dγ
+ dP

dγ
(K1 + N−1∗P)

(4.18)

+ 1

(1 − γ )2 (∗P + NK)∗�∗(��∗)−1�(∗P + NK) = 0.

Set (dP
dγ

)(−∞) = limγ→−∞ dP
dγ

. Then, sending γ to −∞ in (4.18), we see that

(
G + N̂(−∞)

∗P (−∞)

)∗(
dP

dγ

)
(−∞)

+
(

dP

dγ

)
(−∞)

(
G + N̂(−∞)

∗P (−∞)

) = 0.

Since G + N̂(−∞)
∗P (−∞) is stable, we see that(

dP

dγ

)
(−∞)

= 0.(4.19)

Set q(−∞) = limγ→−∞ q(γ ). As for q(γ ), sending γ to −∞ in (2.35), we have(
G + N̂(−∞)

∗P (−∞)

)∗
q(−∞) + b∗P (−∞)

− (
A∗ + P (−∞)�∗)

(��∗)−1(a − r1) = 0,

and so

q(−∞) = {(
G + N̂(∞)

∗P (−∞)

)∗}−1

× [(
A∗ + P (−∞)�∗)

(��∗)−1(a − r1) − b∗P (−∞)

]
.

Moreover, setting (
dq
dγ

)(−∞) = limγ→−∞ dq
dγ

, we see by (4.12) that

(
G + N̂(−∞)

∗P (−∞)

)∗(
dq

dγ

)
(−∞)

= 0.
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Since G + N̂(−∞)
∗P (−∞) is stable, we have(

dq

dγ

)
(−∞)

= 0.(4.20)

The present proposition is directly seen by using (4.13), (4.19) and (4.20). �
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