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A DUAL CHARACTERIZATION OF SELF-GENERATION AND
EXPONENTIAL FORWARD PERFORMANCES

BY GORDAN ŽITKOVIĆ1

University of Texas at Austin

We propose a mathematical framework for the study of a family of ran-
dom fields—called forward performances—which arise as numerical rep-
resentation of certain rational preference relations in mathematical finance.
Their spatial structure corresponds to that of utility functions, while the
temporal one reflects a Nisio-type semigroup property, referred to as self-
generation. In the setting of semimartingale financial markets, we provide a
dual formulation of self-generation in addition to the original one, and show
equivalence between the two, thus giving a dual characterization of forward
performances. Then we focus on random fields with an exponential struc-
ture and provide necessary and sufficient conditions for self-generation in
that case. Finally, we illustrate our methods in financial markets driven by
Itô-processes, where we obtain an explicit parametrization of all exponential
forward performances.

1. Introduction. The present paper aims to contribute to the fruitful and suc-
cessful literature on utility maximization and optimal investment in stochastic fi-
nancial markets. Born in the seminal work of Merton [24, 25], the theory has been
further developed by Pliska [33], Cox and Huang [6], Karatzas et al. [19], He and
Pearson [16], Kramkov and Schachermayer [22], Cvitanić, Schachermayer and
Wang [7], Karatzas and Žitković [21] and many others. In the setting similar to the
one employed in here—namely, incomplete semimartingale markets with utility
functions defined on the whole real line—the pertinent contributions include those
of Frittelli [14], Bellini and Frittelli [4], Schachermayer [36], Owen and Žitković
[32] and others.

The notion of forward performance or forward utility has appeared in the liter-
ature recently, and in various forms, in the work of Choulli, Henderson, Hobson,
Li, Musiela, Stricker and Zariphopoulou (see [5, 17, 26–30]). It refers to a family
of interrelated state-dependent utility functions parametrized by the positive time
axis [0,∞). The glue holding these utility functions together is the following eco-
nomic principle of consistency: a rational economic agent should be indifferent
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between two random pay-offs as long as one can be produced from the other using
a costless dynamic trading strategy in a financial market. We lay no claim to any
originality in its formulation. In fact, it has existed in various forms in the financial
literature for a long time. Recently, it has been used in the context of risk mea-
sures and their generalizations (see [13] and [15], among many other instances).
An axiomatic treatment of a class of forward performances by Zariphopoulou and
Žitković in [38] is based on an implenetation of this idea in the context of the
risk-measure theory, but without a fixed finite investment horizon.

The main goal of the present manuscript is to establish a solid mathematical
footing for the notion of forward performances, provide a dual characterization and
illustrate the obtained results. Mathematically, the economic consistency criterion
described above translates into a Nisio-type semigroup property which we call
self-generation. The obstacles in the analysis, construction and characterization
of self-generating random fields come from several directions. First, the level of
generality needed for financial applications usually surpasses that of a finite-state-
variable (i.e., finite-dimensional Markov setting) and deals with random fields of
utilities whose dependence structure is quite general. Therefore, the classical PDE-
based control-theoretic tools no longer apply. Second, the market models we con-
sider are typically incomplete, as the complete case degenerates in a certain sense,
and lacks interesting mathematical or economic content. Incompleteness or, in an-
alytic language, lack of strict ellipticity renders the analysis much more delicate;
in particular, as is well known in the utility maximization literature (see [7, 19, 21,
22] or [39] for a sample), the dual formulation introduces nontrivial functional-
analytic difficulties. Our third obstacle is the lack of a terminal time-point. In fact,
in the presence of such a point, say T > 0, there is a one-to-one correspondence
between forward performances (random fields) and state-dependent utilities (func-
tions) defined on [0, T ]. The whole semigroup is then constructed via a backward
projection-type operation, starting from its value at T . This situation is completely
analogous to the one found in elementary martingale theory: martingales on the
finite horizon [0, T ] come in a one-to-one correspondence with their terminal val-
ues. On the other hand, when no time horizon is specified, there is no obvious
candidate for the terminal value, and the construction or characterization of self-
generating random fields is far from trivial.

The present manuscript starts with a construction of a proper framework for
the study of utility random fields in the context of financial markets driven by
locally-bounded semimartingales. In this context, we define random fields dual in
the convex-analytic sense to the utility random fields and study their properties.
Our first result states that a utility random field is self-generating if and only if
its dual is self-generating, where the notion of self-generation in the dual case is
defined naturally over sets of probability measures (local-in-time local-martingale
measures for the asset-price processes). The first benefit of the dual formulation
is that it always admits an optimizer, i.e., the minimum in its definition is always
attained, unlike in the case of the original, primal, problem where such a property
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is not required. This point is worth stressing as all the other treatments of forward
performances, save the one in [38], explicitly require that the corresponding utility
maximization problems admit maximizers, typically in a restricted domain. A re-
moval of such a difficult-to-check requirement, as illustrated in the sequel, allows
for much more flexibility in the theory and makes a symmetric dual characteriza-
tion possible. In addition to its pleasant analytic properties, the dual formulation
admits a convenient simplification when the utility random field takes some of the
special forms often used in applications. The second focus of the present paper
is the study of utility random fields of the exponential form. Here, the dual prob-
lem “separates” and we are able to use it to give a complete characterization of
all self-generating exponential utility random fields. Finally, we restrict our atten-
tion to the case of continuous financial models based on Itô-process dynamics and
describe explicitly all exponential forward performances in that setting. By using
an argument based on the optional decomposition theorem, we find that the class
of all forward utilities is essentially no larger than the class of examples presented
heuristically in [29]. In particular, continuity of the market dynamics together with
the self-generation requirement automatically implies the continuity of the utility
random field.

With the notion of forward performances still being in its infancy, the literature
on the subject is rather scarce. In addition to the work of Choulli, Henderson, Hob-
son, Li, Musiela, Stricker and Zariphopoulou mentioned above, the only other in-
stance we are aware of is [3], where the authors focus on a notion of self-generation
defined under much more stringent assumptions, such as market continuity and ap-
plicability of the Itô–Wentzel formula.

One of our major goals is generality, especially in the first part of the paper. That
adds to the technical difficulty of the presentation and involves several novel results
pertaining to the convex-duality analysis of random fields. In order not to interfere
with the presentation flow for the reader only interested in the final product, those
are relegated to the Appendix. The rest of the paper is presented in the logical
order: the modeling environment is set up in Section 2. Section 3 introduces the
notions of self-generation and the related dual concept and states the equivalence
of the two. Section 4 deals with the utility random fields of the exponential type,
while Section 5 studies the Itô-process models.

2. The financial set-up.

2.1. The market model. Let (S0;S) = (S0
t , S1

t , . . . , Sd
t )t∈[0,∞) be a (d + 1)-

dimensional càdlàg semimartingale on a filtered probability space (�, F , F,P),
where F = (Ft )t∈[0,∞) satisfies the usual conditions of right-continuity and
P-completeness and F0 is trivial, i.e., generated by the P-null sets. The d-
dimensional vector S models the price process of the d risky assets, while S0

corresponds to a risk-free asset. As usual, we quote all asset-prices in units of S0.
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Operationally, this amounts to the simplifying assumption S0 ≡ 1, which will hold
throughout.

In order to render the presentation simpler and the theory standard, we assume
that S is locally bounded. Most of what follows can be extended to a more general
setting in which S admits unpredictable unbounded jumps, but at a cost of over-
whelming additional technical complexity. The class of examples in Section 5 is
presented in the setting of Itô-process models and the reader interested solely in
those can assume from the outset that stock-prices follow Itô-processes.

2.2. Admissible portfolios. An F-predictable process π = (πt )t∈[0,∞) is said
to be an admissible portfolio (process) if:

1. π is S-integrable on [0, T ], for each T ≥ 0, in the sense of stochastic-
integration theory for semimartingales (see [34]), and

2. for any T ≥ 0, there exists a constant a > 0 (possibly depending on π and T ,
but not on the state of the world) such that the gains process Xπ , given by
Xπ

t =
∫ t

0 πu dSu, t ≥ 0, is bounded from below by −a, for all t ∈ [0, T ], P-a.s.

The set of all admissible portfolio processes is denoted by A. A separate notation
for the set of all portfolio processes giving rise to bounded gains processes will be
quite useful below: we set Abd = A ∩ (−A).

2.3. No free lunch with vanishing risk on finite horizons. The natural assump-
tion of no arbitrage is routinely replaced in literature by a slightly stronger, but still
economically feasible assumption of no free lunch with vanishing risk (NFLVR).
In our case, we do not require NFLVR to hold on the entire time-horizon [0,∞)—
that would lead to too strong a restriction on the available class of models. Instead,
we impose the local condition no free lunch with vanishing risk on finite horizons
(NFLVRFH).

ASSUMPTION 2.1. For each T ≥ 0, there exists a probability measure Q, de-
fined on FT , with the following properties:

1. Q ∼ P|FT
, where P|FT

is the restriction of the probability measure P to FT ,
and

2. each component of S is a Q-local martingale on [0, T ].
The set of all measures Q with the above properties will be denoted by Me

T .
When we loosen the requirement of equivalence in Assumption 2.1 to the one
of absolute continuity, we get a possibly bigger set which we denote by Ma

T .
The measures in Me

T (Ma
T ) will be called finite-horizon equivalent (absolutely-

continuous) local martingale measures on [0, T ].
We leave it to the reader to check that Assumption 2.1 implies the following

relation for all 0≤ T1 ≤ T2

Me
T1
= {Q|FT1

: Q ∈ Me
T2
}.
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In other words, the restriction map turns the family (Me
t )t∈[0,∞) into an inversely

directed system:

{1}← Me
T1
← Me

T2
← ·· · .(2.1)

In general, such a system will not have an inverse limit, i.e., there will exist no
set Me∞ with the property that Me

T = {Q|FT
: Q ∈ Me∞} for all T ≥ 0. In other

words, even though the market may admit no arbitrage (free lunch with vanishing
risk) on any finite interval [0, T ], there might exist an arbitrage opportunity if we
allow the trading horizon to be arbitrarily long. Therefore, we give the following
definition.

DEFINITION 2.2. A market model (St )t∈[0,∞) is said to be closed if there
exists a set Me∞ of probability measures Q equivalent to P such that

Me
T = {Q|FT

: Q ∈ Me∞}.
REMARK 2.3. Most market models used in practice are not closed. The sim-

plest example is the Samuelson’s model, where the filtration is generated by a
single Brownian motion (Bt )t∈[0,∞), and the price of the risky asset satisfies
dSt = St (μdt + σ dBt), for some constants μ ∈ R, σ > 0. For T ≥ 0, the only
element in Me

T corresponds to a Girsanov transformation which turns Bs + μ
σ
s,

s ∈ [0, T ] into a Brownian motion. It is well known that in the limit as T →∞,
these transformations become “more and more singular” with respect to P|FT

, and
no Q as in Definition 2.2 can be found (see [20], remark on page 193).

In fact, it is useful to think of the closed market models as essentially finite-
horizon, perhaps under a time change. Moreover, just like classical notions of ad-
missibility (boundedness from below, etc.) rule out “nonphysical” arbitrage oppor-
tunities in the form of doubling schemes, the requirement of NFLVRFH does not
insist on closedness, but still rules out arbitrages based on strategies that have a
predetermined deterministic upper bound on time duration.

It will be useful in the sequel to introduce the so-called density processes for
local martingale measures: for T ≥ 0 and Q ∈ Me

T , the process ZQ = {ZQ
t }t∈[0,T ]

is defined as the càdlàg version of the conditional expectation E[ dQ
d(P|FT

)
|Ft ],

t ∈ [0, T ]. In fact, the assumption of NFLVRFH guarantees that each ZQ can be
extended (nonuniquely) to a positive martingale (Zt )t∈[0,∞) on [0,∞), so that:

1. Z is a strictly positive martingale with Z0 = 1, and
2. ZS is a (component-wise) local martingale.

The set of all such processes Z will be denoted by Z e. If the requirement of strict
positivity is replaced by the one of nonnegativity, the obtained, larger, family is
denoted by Z a . The elements of Z e(Z a) are called positive (nonnegative) densi-
ties. It can be argued that in our setting, they are a natural proxy for the family
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of sets of measures from Assumption 2.1. In fact, Assumption 2.1 is equivalent to
the statement Z e �=∅. Furthermore, a financial market is closed if and only if Z e

contains a uniformly integrable element. We conclude the discussion of densities
with a useful convention: we shall often use quotients of the form Yt/Ys , s ≤ t ,
where Y is a nonnegative càdlàg supermartingale (a density process, in particular),
even when the random variable Ys takes the value 0 with positive probability. The
supermartingale property and the regularity of paths of Y imply that Yt = 0, a.s.,
on {Ys = 0}, which allows us to set Yt/Ys := 1 on {Ys = 0}, so that:

1. Ys
Yt

Ys
= Yt , a.s., for all càdlàg supermartingales Y , and

2. E[ Yt

Ys
|Fs] = 1, a.s., when Y is a nonnegative càdlàg martingale.

3. Utility random fields, self-generation and a dual characterization. Hav-
ing described the financial environment in the previous section, we turn to a class
of random fields used in behavioral modelling of economic agents.

3.1. Utility random fields and their associated value fields.

DEFINITION 3.1. A mapping U :� × [0,∞) × R→ R is called a random
field if it is measurable with respect to the product O × B(R) of the optional σ -
algebra on �× [0,∞) and the Borel σ -algebra on R. A utility random field is a
random field such that the following three conditions hold:

1. Utility conditions. There exists �′ ∈ F such that P[�′] = 1 and for all (ω, t) ∈
�′ × [0,∞), the mapping x →U(ω, t;x) is:
(a) a strictly concave, strictly increasing C1(R)-function, and
(b) satisfies the Inada conditions

lim
x→−∞

∂

∂x
U(ω, t;x)=∞, lim

x→∞
∂

∂x
U(ω, t;x)= 0.

2. Path regularity. There exists �′ ∈ F with P[�′] = 1 such that the function t →
U(ω, t;x) is càdlàg on [0,∞) for all (x,ω) ∈R×�′.

3. Integrability. For each x ∈R and T ∈ [0,∞), U(·, T , x) ∈ L1(FT ).

As usual in probability, we suppress the ω from the notation and write simply
U(t, x) in the sequel, unless we want to expressly stress the nondeterministicity
of U .

REMARK 3.2. The reader should note that U(t, x) is assumed to be finite-
valued for all x ∈ R. A parallel theory can be built for utility functions taking
values in [−∞,∞), i.e., in the case when U(t, x) is only finite for x ∈ (a,∞) (or
x ∈ [a,∞)), for some a ∈R. As the authors have shown in [22], the duality theory
in this case requires a lot of care and interesting but technical subtleties appear.
Hence, we do not pursue it in the present paper.
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In addition to natural requirements of Definition 3.1, we will usually impose
the following, very mild technical condition which effectively precludes patholog-
ical appearance of noncountably-additive measures in the dual treatment. A theory
without this requirement is possible, but, similarly to the case described in Re-
mark 3.2, it will not be dealt with here as it would introduce a prohibitive amount
of technicalities without any real benefit. Moreover, as we shall see in the proof
of Theorem 4.4, this technical condition is automatically implied by the natural
integrability conditions for the class of exponential utility random fields on which
a large part of the present paper focuses.

DEFINITION 3.3. A utility random field U is said to be nonsingular if for
each T ≥ 0, and for each nonincreasing sequence {Dn}n∈N in FT with

⋂
n Dn =∅,

there exists a sequence {an}n∈N in (0,∞) such that

an→∞ and lim sup
n

1

an

E[U(T ,−an1Dn)] ≥ 0.

REMARK 3.4. The nonsingularity condition of Definition 3.3 is automati-
cally satisfied for deterministic utility random fields U(ω, t;x)=U(t, x). Indeed,
thanks to Inada conditions, we have limx→−∞−U(−x)/x = ∞. So, for a se-
quence {Dn}n∈N as above, we can find a sequence {an}n∈N with an →∞ such
that −U(t,−an)

√
P[Dn] ≤ an for all n ∈N. Then

lim sup
n

1

an

E[U(t,−an1Dn)] = lim sup
n

(
U(t,−an)P[Dn]

an

)
+ lim

n

U(t,0)

an

≥ 0.

More generally, one can apply the same argument to show that it is enough
for the random field U(T , x) to be (x,ω)-uniformly bounded from below by a
deterministic utility function. This can be further relaxed due to the fact that we
are dealing with the expected value of U in the statement of the condition.

For a σ -algebra G ⊂ F and I ⊆ [−∞,∞], let L0(G; I ) denote the set of all P-
a.s.-equivalence classes of G -measurable (extended) random variables which take
values in I , a.s. For I =R, we simply write L0(G).

The following definition introduces an object—called a value field—related to a
utility random field U , which can be interpreted as the field of indirect utilities for
an economic agent who invests in the financial market modeled by S and uses t-
slices of U as utility functions. In order to make the analysis easier, we parametrize
a value field by the initial and final time-points t ≤ T in the generic investment
horizon [t, T ], as well as the initial (time-t) wealth ξ , which is allowed to be an
Ft -measurable random variable.

DEFINITION 3.5. Let U be a utility random field. The value field associated to
U is a family of mappings {u(·; t, T ) : 0≤ t ≤ T <∞}, with u(·; t, T ) : L∞(Ft )→
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L0(Ft ;R∪ {∞}) given by

u(ξ ; t, T )= ess sup
π∈Abd

E

[
U

(
T , ξ +

∫ T

t
πu dSu

)∣∣∣Ft

]
for ξ ∈ L∞(Ft ).(3.1)

REMARK 3.6.

1. For 0≤ t < T <∞, the integral
∫ T
t πu dSu should be interpreted as

∫ T
t+ πu dSu,

i.e., the possible initial jump �St (where S0− = 0) should be ignored.
2. Condition 4 of Definition 3.1 and the a.s.-monotonicity of the mapping x →

U(T , x) imply that U(T ,X) ∈ L1(FT ), for any X ∈ L∞(FT ). Therefore,
U(T , ξ + ∫ T

t πu dSu) ∈ L1(FT ) and, consequently, u(·; t, T ) takes values in
(−∞,∞], a.s.

3.2. Self-generation. As already mentioned in the Introduction, self-genera-
tion is a mathematical expression of the replication-invariance property of a ratio-
nal agent’s preference structure when it admits a utility representation. Since the
main focus of the present paper is on the mathematical analysis, we refrain from
a deeper economic discussion of the concept. Instead, we direct the reader to [38]
for a risk-measure-theoretic approach, or to the forthcoming in-depth discussion
of the decision-theoretic and axiomatic foundations of the forward utilities and the
notion of self-generation in [40]. Finally, we note that self-generation is related to
a form of a Nisio-type semigroup property. The Nisio semigroup (introduced in
[31]) is a successful attempt at expressing the Bellman’s dynamic programming
principle in analytic terms, typically as a semigroup of nonlinear operators. In our
case, loosely speaking, the operators that form the semigroup are the maximization
operators U → ess supπ∈Abd

E[U(T , · + ∫ T
t πu dSu)|Ft ].

DEFINITION 3.7. We say that a utility random field U is self-generating or a
forward performance if u(ξ ; t, T ) = U(t, ξ), a.s., for all 0 ≤ t ≤ T <∞ and all
ξ ∈ L∞(Ft ), i.e., if

U(t, ξ)= ess sup
π∈Abd

E

[
U

(
T , ξ +

∫ T

t
πu dSu

)∣∣∣Ft

]
a.s.(3.2)

for 0≤ t ≤ T <∞ and all ξ ∈ L∞(Ft ).

REMARK 3.8. The important novel feature of our definition of self-genera-
tion—and this is where our notion differs from that in the work of Musiela and
Zariphopoulou or Berrier et al.—is that we do not require that the essential supre-
mum in (3.2) be attained. This variation opens the door to a more general analysis
as one does not need to specify the exact domain (admissibility class) for the utility
maximization problems. It is well known [especially in the case of utility functions
defined over (−∞,∞)] that the precise choice of the said domain is a nontrivial
matter and that it, in general, depends directly on the utility function used.
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Let us also mention that the requirement that (3.2) hold for all ξ ∈ L∞(Ft )

can be shown to be equivalent to the seemingly weaker requirement where (3.2)
is assumed to hold only for constant ξ . We choose this version to strengthen the
characterization results below, and to keep in line with the structure of the results
in Appendix A.

3.3. Duality for utility random fields. The use of convex duality in utility max-
imization (and optimal stochastic control in general) has proven extremely fruitful.
As we shall see below, analysis of utility random fields is no exception. We start
with a straightforward translation of the well-known Fenchel–Legendre conjugacy
to the random-field case.

For a utility random field U , we define the dual random field V :�× [0,∞)×
(0,∞)→R, by

V (t, y)= sup
x∈R

(
U(t, x)− xy

)
for t ≥ 0, y ≥ 0.(3.3)

The value at y = 0, given by V (t,0)= supx∈R U(t, x) ∈ (−∞,∞] can be adjoined
to the definition of V , and we will use it in the sequel whenever the need arises
without explicit mention. We do not include it in the definition above because of
the fact that it can ruin the otherwise pleasant finite-valuedness which follows from
the Inada conditions [Definition 3.1, 2(b)].

PROPOSITION 3.9. The dual random filed V given by (3.3) inherits the fol-
lowing properties from the utility random field U :

1. V is measurable with respect to the product O × B(0,∞) of the optional σ -
algebra on �× [0,∞) and the Borel σ -algebra on (0,∞).

2. There exists �′ ∈ F with P[�′] = 1 such that for each (ω, t) ∈�′ × [0,∞), the
mapping y → V (ω, t;y), y > 0, is:
(a) strictly convex, continuously differentiable, and
(b) satisfies limy→0

∂
∂y

V (ω, t;y)=∞, limy→∞ ∂
∂y

V (ω, t;y)=∞.
3. There exists an event �′ with P[�′] = 1 such that for all (y,ω) ∈ [0,∞)×�′

the functions t → V (ω, t;y), t ≥ 0, are right-continuous and admit no discon-
tinuities of second-order.

4. For each ζ ∈ L0+(FT ), we have V (T , ζ ) ≥ U(T ,0). Moreover, max(0,−V (T ,

ζ )) ∈ L1(FT ).

PROOF. The properties of the dual random field in Proposition 3.9 follow di-
rectly from the corresponding properties in Definition 3.1 of the (primal) utility
random field U . The only part that needs comment is, perhaps, 3. It follows from
the fact that pointwise convergence of a sequence of convex functions implies
uniform convergence on compacts, as well as pointwise convergence of the corre-
sponding convex conjugates (see Theorem 11.34, page 500 of [35]). �
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The notion of the value random field transfers to the dual case. However, in this
setting, the domain of optimization is chosen so that the full duality relationship
can be derived.

DEFINITION 3.10. For y > 0 and 0 ≤ t < T <∞, we define the dual value
field v(·; t, T ) : L0+(Ft )→ L0(Ft ;R∪ {∞}),

v(η; t, T )= ess inf
Q∈Ma

T

E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ], η ∈ L0+(Ft ).(3.4)

In analogy with the notion of self-generation for the utility random fields, we
introduce the same notion for the their duals.

DEFINITION 3.11. A dual utility random field V is said to be self generating
if v(η; t, T )= V (t, η), i.e.,

V (t, η)= ess inf
Q∈Ma

T

E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ] a.s.(3.5)

for all 0≤ t < T <∞ and all η ∈ L0+(Ft ).

The main technical result, whose proof is quite lengthy and occupies most of
Appendix A (Theorem A.5 and Corollary A.6), extends the conjugacy relationship
from random fields to their value fields. The reader should note that almost no
regularity conditions (except for the one of nonsingularity) are imposed. In partic-
ular, neither the primal nor the dual value field is assumed to be finite, or that the
optimization problems in their definitions admit optimal solutions. In fact, it may
very well happen that u and v have empty effective domains, i.e., that u= v =∞
identically. A similar result, but for nonrandom utilities and under more stringent
assumptions (finiteness of the dual value function and the existence of the dual
optimizer in the class of equivalent martingale measures) has been proved in [37].

THEOREM 3.12. Let U be a utility random field satisfying the nonsingularity
condition of Definition 3.3 and let V be its dual random field as defined in (3.3). If
u and v denote the primal and dual value fields, as defined in (3.1) and (3.4), then

u(ξ ; t, T )= ess inf
η∈L0+(Ft )

(
v(η; t, T )+ ξη

)
a.s. and(3.6)

v(η; t, T )= ess sup
ξ∈L∞(Ft )

(
u(ξ ; t, T )− ξη

)
a.s.(3.7)

for all 0 ≤ t ≤ T < ∞, ξ ∈ L∞(Ft ) and η ∈ L0(Ft ). Moreover, for each ξ ∈
L∞(Ft ), there exist η̂ ∈ L0+(Ft ), Q̂ ∈ Ma

T such that

u(ξ ; t, T )= E[V (T , η̂Z
Q̂
T /Z

Q̂
t )|Ft ] + η̂ξ ∈ L0(Ft ,R∪ {∞}).
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The following characterization follows directly from Theorem 3.12.

COROLLARY 3.13. A nonsingular utility random field is self generating if and
only if its dual random field is self generating.

A more practical version of the characterization above, still in terms of the
dual random field, is given in the following theorem. We adopt a definition of
a submartingale slightly weaker than the standard one: a process (Yt )t∈[0,∞) is
called a submartingale if min(YT ,0) ∈ L1(FT ) and E[YT |Ft ] ≥ Yt , a.s., for all
0≤ t < T <∞, where we use an extended, (−∞,∞]-valued, version of the con-
ditional expectation.

THEOREM 3.14. Let U be a nonsingular utility random field, and let V , given
by (3.3), be its conjugate. Then the following two statements are equivalent.

1. U is self generating.
2. For each y > 0, we have:

(a) the process (V (t, yZt))t∈[0,∞) is a càdlàg submartingale for all Z ∈ Z a ,
and

(b) there exists Z ∈ Z a such that (V (t, yZt))t∈[0,∞) is a martingale.

In particular, if the market is complete, i.e., if Z e = {Z}, then U is self-generating
if and only if the process (V (t, yZt))t∈[0,∞) is a martingale for each y > 0.

PROOF. We start by assuming that U is self generating. By Corollary 3.13,
the relation (3.5) holds. Therefore, for Z ∈ Z a , y > 0 and 0≤ t ≤ T <∞, we can
simply pick η = yZt ∈ L1+(Ft ) and use (3.5) to conclude that (V (t, yZt))t∈[0,∞)

is a càdlàg submartingale. To show (b), we take t = 0, and fix an arbitrary T > 0.
According to Theorem 3.12, for each x ∈R there exists Q̂(x) ∈ Ma

T and y(x)≥ 0
such that

U(0, x)= E
[
V

(
T ,y(x)Z

Q̂(x)
T

)]+ xy(x).

Since U(0, x) = infy>0(V (0, y) + xy) and V (t, y(x)Z
Q̂(x)
t ) + xy(x) is a sub-

martingale on [0, T ], the following two conclusions must hold:

• V (t, y(x)Z
Q̂(x)
t ) is a martingale on [0, T ], and

• U(0, x)= V (0, y(x))+ xy(x).

The conjugacy relationship between U and V forces the relationship y(x) =
∂
∂x

U(0, x). Inada conditions imply that the mapping x → y(x) = ∂
∂x

U(0, x) is
onto (0,∞). Therefore, for each y > 0, there exists x ∈ R such that y = y(x)

and V (t, yZ
Q̂(x)
t ) is a martingale on [0, T ]. The extension to [0,∞) follows by a

simple “patch-up” over larger an larger time horizons [0, T ].
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We start the proof of the converse implication 2⇒1 by noting that 2 yields

V (t, ηZt)≤ E[V (T ,ηZT )|Ft ] a.s. for Z ∈ Z a

as soon as η =∑n
k=1 yk1Ak

is a simple, positive and Ft -measurable random vari-
able. For a general η ∈ L0+(Ft ), let the sequence {ηn}n∈N of simple functions in
L0+(Ft ) be given by

ηn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�η�1/n, ηZT >
∂

∂x
U(T ,0),

η, ηZT = ∂

∂x
U(T ,0),

�η�1/n, ηZT <
∂

∂x
U(T ,0),

where, for x ∈ R, α > 0, �x�α = sup{kα :k ∈ Z, kα ≤ x} and �x�α = inf{kα :k ∈
Z, kα ≥ x}. The fact that V (T , ·) is decreasing on (−∞, ∂

∂x
U(T ,0)) and in-

creasing on ( ∂
∂x

U(T ,0),∞) implies that the sequence {ηn}n∈N of simple, FT -
measurable random variables has the following two properties:

• ηn→ η, a.s.,
• V (T ,ηnZT )↗ V (T ,ηZT ), a.s.

Recall that V (T , x) ≥ U(T ,0) ∈ L1(FT ). Then the monotone convergence theo-
rem implies that

E[V (T ,ηZT )|Ft ] = lim
n

E[V (T ,ηnZT )|Ft ]
(3.8)

≥ lim sup
n

V (t, ηnZt)= V (t, ηZt) a.s.

In particular, we have

V (t, η)≤ ess inf
Z∈Z a

E[V (T ,ηZT /Zt)|Ft ].(3.9)

The equality in (3.9) follows by a similar argument, where all the inequalities are
turned into equalities by the choice of the element Z ∈ Z a for which V (t, yZt) is
a martingale. Therefore, V is self-generating, and by Corollary 3.13, so is U . �

4. Utility random fields of the exponential type. Our next task is to special-
ize the structure of the utility random field and to use Theorem 3.14 to provide a
workable characterization of self generation.

DEFINITION 4.1. A random field U :� × [0,∞) × R→ R is said to be of
the exponential type if there exist stochastic processes (At )t∈[0,∞) and (γt )t∈[0,∞)

such that

U(t, x)=−e−γt x+At for t ≥ 0, x ∈R.(4.1)
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The choice of the form in (4.1) can be explained by the success that the use of
exponential utility has had in the mathematical-finance literature (we single out
the seminal contribution of [8] among a myriad of other important papers). Fur-
thermore, as one varies the coefficient-processes γ and A, one gets a remarkably
flexible family of preference structures. Finally, as we shall see shortly, the dual-
ity theory is especially generous in the exponential case; in particular, it admits a
detailed characterization of the forward utilities of the exponential type.

4.1. A necessary and sufficient condition for self-generation. Our analysis
starts with the notion of relative entropy tailored to the exponential random fields.

DEFINITION 4.2. Let (γt )t∈[0,∞) and (At )t∈[0,∞) be adapted stochastic
processes with γT > 0, a.s. and E[exp(AT )] < ∞ for all T ≥ 0. For 0 ≤ t ≤
T <∞, the relative conditional (γ,A)-entropy on [t, T ], denoted by H(·; t, T ),
is a functional acting on probability measures Q� P|FT

on FT with values in
L0(Ft ,R∪ {∞}), given by

H(Q; t, T )= E

[
h

(
1

γT

Z
Q
T /Z

Q
t

)
−Z

Q
T /Z

Q
t

1

γT

AT

∣∣∣Ft

]
,(4.2)

where, h(y)= y log(y)− y, y ≥ 0.

REMARK 4.3. Inequality h(y)+ exp(x)≥ xy, valid for all x ∈R, y ≥ 0, and
assumption E[exp(AT )] <∞, imply that (h(Y )− YAT )− ∈ L1(FT ), for all Y ∈
L0(FT ). Hence, H takes values in (−∞,∞].

While the processes γ and A are, initially, quite free in the specification of the
class of exponential random fields, the following theorem shows that the require-
ment of self-generation places quite a significant restriction on their structure.

THEOREM 4.4. Let the financial market be as in Section 2 and let (γt )t∈[0,∞)

and (At )t∈[0,∞) be stochastic processes. Then for the exponential random field U ,
given by U(t, x) = −e−γt x+At , t ≥ 0, x ∈ R, the following two statements are
equivalent.

1. U a self-generating utility random field.
2. The following three assertions hold:

(a) γ and A are càdlàg semimartingales with γT > 0, for all T ≥ 0, a.s., and
E[exp(AT + nγT )]<∞, for all T ≥ 0 and all n ∈N.

(b) For all 0≤ t < T <∞, and all Q ∈ Ma
T

EQ

[
1

γT

∣∣∣Ft

]
= 1

γt

on {H(Q; t, T ) <∞}.
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(c) For all 0≤ t < T <∞,

h

(
1

γt

)
− 1

γt

At = ess inf
Q∈Ma

T

H(Q; t, T ) a.s.

Furthermore, if U is self-generating, it is automatically nonsingular.

PROOF. 1 ⇒ 2 We first show that a self-generating exponential random
field U must satisfy all three parts of statement 2.

2(a) holds. Definition 3.1 of the utility random field implies that (γtx −
At)t∈[0,∞) is an adapted and càdlàg process for each x. The constant process π ≡ 0
is in Abd, so the self-generation property (3.2) and part 2 of Definition 3.1 imply
that (U(t, x))t∈[0,∞) is a càdlàg supermartingale, for each x ∈ R. Therefore, its
C2-transformation (γtx−At)t∈[0,∞) is a semimartingale, and so are both γ and A.
Finally, γT > 0, a.s. for all T ≥ 0 by part 1 of Definition 3.1 and the random vari-
able exp(AT + nγT ) is in L1 for each n ∈N by part 3 of the same definition.

U is nonsingular. Let 0 ≤ T <∞ be arbitrary but fixed, and let {Dn}n∈N be
a decreasing sequence in FT with

⋂
n Dn = ∅. Since U(T ,m) ∈ L1(FT ), for all

m ∈N, we have

lim
n→∞E[exp(mγT 1Dn +AT )]→ C where C = E[exp(AT )] ∈ (0,∞).

In particular, for each m ∈N, there exists nm ∈N such that

E[exp(mγT 1Dn +AT )] ≤ 2C for all n≥ nm.

We can choose the sequence {nm}m∈N to be strictly increasing so that the sequence
{an}n∈N, defined by

an = sup{m ∈N :nm ≤ n} where sup ∅ := 1,

takes values in N and converges to ∞ as n→∞. Then, since nan ≤ n for large
enough n ∈N, we have

0≤− lim sup
n→∞

1

an

E[U(T ,−an1Dn)] = lim inf
n→∞

1

an

E[exp(anγT 1Dn +AT )]
≤ lim sup

n→∞
2C

an

= 0.

Thus, the condition of Definition 3.3 is fulfilled.
2(b) and 2(c) hold. An elementary calculation shows that the random field V ,

dual to U in the sense of (3.3), has the form

V (t, y)= h

(
1

γt

y

)
− 1

γt

yAt for t ≥ 0 and y ≥ 0,(4.3)

with the function h as in Definition 4.2. Using the nonsingularity of U established
above, Corollary 3.13 implies that V is self-generating, i.e., that

h

(
1

γt

η

)
− 1

γt

ηAt = ess inf
Z∈Z a

E

[
h

(
1

γt

ηZT /Zt

)
− 1

γt

ηZT /ZtAT

∣∣∣Ft

]
a.s.
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for each η ∈ L0+(Ft ). A rearrangement of terms yields that

(
η+ h(η)

) 1

γt

+ η

(
h

(
1

γt

)
− 1

γt

At

)
(4.4)

= ess inf
Q∈Ma

T

((
η+ h(η)

)
EQ

[
1

γT

∣∣∣Ft

]
+ ηH(Q; t, T )

)
a.s.

for all 0≤ t ≤ T <∞ and all η ∈ L1+(Ft ). In particular, if we set η = exp(z), for
some z ∈R, and divide the inequality (4.4) throughout by exp(z) > 0, we get

z
1

γt

+ h

(
1

γt

)
− 1

γt

At ≤ zEQ

[
1

γT

∣∣∣Ft

]
+H(Q; t, T ) a.s.

for all z ∈ R and all Q ∈ Ma
T . Since both sides of the above inequality are linear

functions (in z), we must have

1

γt

= EQ

[
1

γT

∣∣∣Ft

]
a.s. on {H(Q; t, T ) <∞} for all Q ∈ Ma

T ,

and

h

(
1

γt

)
− 1

γt

At ≤ ess inf
Q∈Ma

T

H(Q; t, T ) a.s.(4.5)

The equality in (4.4) implies that the a.s.-equality holds in (4.5).
2⇒ 1 Let us assume that U is a random field of the form (4.1) which satisfies

2(a), 2(b) and 2(c). We first check that the requirements of Definition 3.1 hold.
Parts 1 and 3 follow directly from the càdlàg semimartingale property of A and γ .
Part 2 is a consequence of the elementary properties of the exponential function
and the strict positivity of γ . Finally, part 4 follows from the requirement that
exp(AT + nγT ) ∈ L1(FT ) and the monotonicity of the mapping x → exp(γT x +
AT ).

Next, the nonsingularity of U follows as in the first part of the proof by con-
dition 2(a) We can now use Theorem 3.14 to show self-generation. Indeed, the
conditions 2(b) and 2(c) imply that the equation (4.4)—which is equivalent to self
generation of the dual random field V —holds. �

4.2. On condition 2(b) of Theorem 4.4. Condition 2(b) of Theorem 4.4 im-
mediately hints at replicability of the process (1/γt )t∈[0,∞). This is, indeed, true
either under a mild additional assumption on the market model, or when restricted
to a certain, maximal, event. The purpose of this subsection is to expand on those
assumptions. Our main conclusion is Proposition 4.7, which is preceded by two
lemmas.

In addition to the existing notation, we introduce the following subset of Ma
T :

MH
T = {Q ∈ Ma

T :H(Q;0, T ) <∞}.
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For a probability measure Q on FT , we define the “support” equP Q of Q with
respect to P|FT

and the aggregation S H
T of all such supports over the class of

finite-entropy martingale measures:

equP Q=
{

dQ

d(P|FT
)

> 0
}
∈ FT and S H

T = {equP Q : Q ∈ MH
T },

where any two sets whose symmetric difference is P-null are identified.

LEMMA 4.5. For T ≥ 0, assume that MH
T �= ∅. Then there exists a P-a.s.-

unique event C ∈ FT such that:

1. for all A ∈ S H
T , A⊆ C, a.s., and

2. C = equP Q̃, a.s., for some Q̃ ∈ MH
T .

PROOF. Let {An}n∈N be a sequence in S H
T with the property that P[An]→m,

where m= sup{P[A] :A ∈ S H
T }. Moreover, for n ∈ N, let Qn ∈ MH

T be such that
An = equP Qn, and let αn = 2−n(H(Qn;0, T )+ E[exp(AT )] + 1)−1, so that 0 <

αn ≤ 2−n. Then the sequence {Q̃n}n∈N of probability measures defined by

Q̃n =
∑n

k=1 αkQk∑n
k=1 αk

converges in the total-variation norm and, consequently, weakly in σ(L1(FT ),

L∞(FT )) when we identify measures with their Radon–Nikodym derivatives with
respect to P. We denote its limit by Q̃. The functional H(·;0, T ) is easily seen to
be convex and σ(L1(FT ),L∞(FT ))-lower semi-continuous. Thus,

H(Q̃;0, T )=H
(
lim
n

Q̃n;0, T
)
≤ lim inf

n
H(Q̃n;0, T )

≤ lim inf
n

∑n
k=1 αkH(Qn;0, T )∑n

k=1 αk

≤ 1∑∞
k=1 αk

<∞.

Using the fact that Ma
T is convex and closed with respect convergence in total

variation, we conclude that Q̃ ∈ MH
T . Moreover, C := equP Q̃ =⋃

n∈N equP Qn,
and so, P[C] = m. It remains to show that C is maximal in the sense of a.s.-
inclusion, and not only with respect to its size. Let us assume that there exists
A= equP Q′ ∈ S H

T with P[A\C]> 0. Using the same ideas as above, we conclude
that the probability measure Q̄, given by Q̄= 1

2Q̃+ 1
2Q′, lies in MH

T and has the
property P[equP Q̄] = P[C ∪A]> m—a contradiction. �

The set C, whose existence is guaranteed by Lemma 4.5, will be denoted by
max S H

T . If MH
T =∅, we set max S H

T =∅.
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LEMMA 4.6. Suppose that for T ≥ 0, we have

EQ

[
1

γT

]
= 1

γ0
∀Q ∈ MH

T .(4.6)

Then there exists π ∈ A such that

1

γT

= 1

γ0
+

∫ T

0
πu dSu on max S H

T , a.s.(4.7)

PROOF. Let Q̃ be the element of MH
T such that equP Q̃ = max S H

T . We

first show that f ∈ C̄ Q̃
T , where ¯(·)Q̃

denotes the closure in L1(Q̃) while CT =
{∫ T

0 πu dSu :π ∈ Abd} −L∞+ (FT ) and f = 1
γT
− 1

γ0
. Suppose, to the contrary, that

f /∈ C̄ Q̃
T . The Hahn–Banach separation theorem, applied for the duality between

L1(Q̃) and L∞(FT ) guarantees the existence of an element χ ∈ L∞(FT ) such

that E
Q̃
[χζ ] ≤ 0 for ζ ∈ C̄ Q̃

T and E
Q̃
[χf ] > 0. Since −L∞+ (FT ) ⊆ C̄ Q̃

T , we have
χ ∈ L∞+ (FT )\ {0}, and we can assume, without loss of generality, that E

Q̃
[χ ] = 1.

Therefore, the random variable ζ ∗ = χ dQ̃
d(P|FT

)
∈ L1+(FT ) satisfies E[ζ ∗] = 1 and

E[ζ ∗ζ ] ≤ 0, for all ζ ∈ CT . So, Q1 ∈ Ma
T with dQ1

d(P|FT )
= ζ ∗. Moreover, we have

H(Q1;0, T )= E

[
h

(
1

γT

ζ ∗
)
− ζ ∗ 1

γT

AT

]

= E

[
χ

(
h

(
1

γT

Z
Q̃
T

)
−ZQ̃T AT

)]
+E

[
χ log(χ)

1

γT

Z
Q̃
T

]
<∞,

where the finiteness is substantiated by Q̃ ∈ MH
T and assumption (4.6). We deduce

that Q1 ∈ MH
T , thus reaching a contradiction with the conjunction of the fact that

EQ1[f ]> 0 and the assumption (4.6).

The newly established fact that f ∈ C̄ Q̃
T implies that there exists a sequence

{fn}n∈N in CT such that fn → f in L1(Q̃). Note that each fn can be represented
as

fn =
∫ T

0
πn

u dSu − gn

for some πn ∈ Abd, gn ∈ L∞+ , and

0= E
Q̃
[f ] = lim

n
E

Q̃
[fn] = lim

n
E

Q̃

[∫ T

0
πn

u dSu − gn

]
= lim

n
E

Q̃
[−gn].

Thus, gn → 0 in L1(Q̃). Consequently, we can safely take gn = 0, for all n ∈ N,
without affecting the L1(Q̃)-convergence of fn to f . By Theorem 15.4.7 in [9],
there exists π ∈ A such that f = ∫ T

0 πu dSu. �
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The following proposition, which effectively explains the role of condition 2(b)
of Theorem 4.4 in the majority of interesting cases, follows directly from Lem-
mas 4.5 and 4.6.

PROPOSITION 4.7. Suppose that the exponential utility random field U(x)=
−e−γt x+At is self-generating and that for each T ≥ 0, there exists Q ∈ Me

T such
that H(Q;0, T ) <∞. Then there exists π ∈ A such that

1

γt

= 1

γ0
+

∫ t

0
πu dSu for all t ≥ 0, a.s.(4.8)

REMARK 4.8.

1. The additional condition that there exists an equivalent local martingale mea-
sure with finite entropy is standard in the literature. It corresponds to the exis-
tence of the primal optimizer in related exponential-utility maximization prob-
lems (see [8, 14, 18]). Such a condition would follow immediately if we as-
sumed that the essential suprema in the definition of self-generating random
fields were attained in the appropriate domain (see [1]). A simple sufficient con-
dition for the existence of an equivalent finite-entropy local martingale measure
will be given in Lemma 5.4 in Section 5 below.

2. Identification of sufficient conditions for condition 2(b) reduces to the stipu-
lation that (4.8) holds for some π ∈ Abd, together with the verification of the
Q-martingale property of the local martingale (1/γt )t∈[0,T ], for all T ≥ 0 and
all Q ∈ MH

T . A simple (and far from necessary) criterion is that 1/γ ∈ L∞, for
all t ≥ 0.

4.3. On condition 2(c) of Theorem 4.4. We turn to condition 2(c) of Theo-
rem 4.4, assuming throughout that conditions 2(a) and 2(b) hold. For T ≥ 0 and
Q ∈ MH

T , we define a measure Qγ on FT by

dQγ

d(P|FT
)
= γ0

γT

dQ

d(P|FT
)
.(4.9)

Thanks to condition 2(b), Qγ is a well-defined probability measure. It is known in
mathematical finance as the forward measure with respect to a numéraire-change
(1)t∈[0,T ] → (γt )t∈[0,T ]. It is notationally convenient to introduce the following set

Mγ
T = {Qγ : Q ∈ MH

T }.
Since 1

γT
Z

Q
T /Z

Q
t = 1

γt
Z

Qγ

T /Z
Qγ

t , the relative conditional entropy H takes a partic-
ularly simple form when written in terms of Qγ :

H(Q; t, T )= h

(
1

γt

)
− 1

γt

(
log(Z

Qγ

t )+EQγ [log(Z
Qγ

T )−AT |Ft ]).
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For Qγ ∈ Mγ
T , define the process (F

Qγ

t )t∈[0,T ] as

F
Qγ

t =At − log(Z
Qγ

t ), t ∈ [0, T ].
The following proposition is a simple consequence of Theorem 3.14.

PROPOSITION 4.9. Suppose that conditions 2(a) and 2(b) of Theorem 4.4
hold. Then condition 2(c) is equivalent to the conjunction of the following two
statements:

1. for each T ≥ 0 and Qγ ∈ Mγ
T , the process (F

Qγ

t )t∈[0,T ] is a Qγ -supermartin-
gale and

2. for each T ≥ 0 there exists Q̂γ ∈ Mγ
T such that (F

Q̂γ

t )t∈[0,T ] is a Q̂γ -
martingale.

5. Itô-process models.

5.1. The main result. Having characterized exponential self-generating utility
random fields in general locally-bounded semimartingale market models of Sec-
tion 4, we turn to a specific class of models where we can say a great deal more.

Consider a special case of the financial model of Section 2 with one risky asset
driven by a single Brownian motion (Bt )t∈[0,∞) on a filtration generated by two
independent Brownian motions (Bt )t∈[0,∞) and (Wt)t∈[0,∞). The price-process
(St )t∈[0,∞), defined on the underlying filtration F = (Ft )t∈[0,∞)—a natural aug-
mentation of the filtration generated by B and W—admits the following differen-
tial representation:

dSt = θt dt + dBt , t ≥ 0, S0 = s0 ∈R,(5.1)

where (θt )t∈[0,∞) is an F-progressively-measurable processes.

REMARK 5.1. Our choice of unit volatility and “arithmetic” evolution of the
stock price entails no loss of generality compared to the models usually found
in the literature; one can replicate exactly the same contingent claims. On the
other hand, such a simplification relieves the notation and renders the central idea
more transparent. Similarly, an extension to a model with several driving Brown-
ian motions—and several assets—is straightforward and its treatment would only
inflate the already heavy notation.

We assume that
∫ T

0 θ2
u du <∞, for all T > 0, a.s. and that the stochastic process

(Z
θ,0
t )t∈[0,∞), defined by

Z
θ,0
t = exp

(
−

∫ t

0
θu dBu − 1

2

∫ t

0
θ2
u du

)
, t ≥ 0,(5.2)
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is a martingale on [0,∞), so that the condition NFLVRFH of Assumption 2.1 of
Section 2.3 is satisfied.

The main result of this section is the following.

THEOREM 5.2. Assume that the price process (St )t∈[0,∞) is given by (5.1),
let (γt )t∈[0,∞) and (At )t∈[0,∞) be stochastic processes and define the mapping
U :�× [0,∞)×R→R as

U(t, x)=−e−γt x+At .(5.3)

If U is a self-generating utility random field, and

∀p > 1
1

γT

∈ Lp(FT ),(5.4)

∃ε > 0 Z
θ,0
T ∈ L1+ε(FT )(5.5)

hold for all T ≥ 0, then:

1. both γ and A are continuous semimartingales, and
2. there exist progressively-measurable processes (δt )t∈[0,∞), (φt )t∈[0,∞) and

(ρt )t∈[0,∞) with
∫ T

0 (δ2
u + φ2

u + ρ2
u) du <∞, for all T > 0, a.s., such that for

all t ≥ 0, we have

1

γt

= 1

γ0
+

∫ t

0

1

γu

δu dSu,(5.6)

and

At =A0 + 1

2

∫ t

0
(θu − δu)

2 du+ γt

∫ t

0
ρu dSu

(5.7)

− 1

2

∫ t

0
φ2

u du−
∫ t

0
φu dWu.

Conversely, suppose that the processes γ and A are continuous semimartingales
admitting representations (5.6) and (5.7), and, additionally, that the following reg-
ularity conditions are met for all T ≥ 0:

∀n ∈N exp(AT + nγT ) ∈ L1(FT )(5.8)

and

sup
t∈[0,T ]

(|δt | + |ρt | + |φt |) ∈ L∞(FT ), E[e1/2
∫ T

0 θ2
t dt ]<∞.(5.9)

Then U is self-generating.

REMARK 5.3. Thanks to Novikov’s criterion and the Hölder’s inequality that
martingale property of Zθ,0 and assumption (5.5) are implied, for instance, by the
following Novikov-type condition:

∀T ≥ 0,∃ε > 0 E
[
e(1/2+ε)

∫ T
0 θ2

u du]
.
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5.2. Proof of Theorem 5.2. Before we focus on the proof itself, we estab-
lish several auxiliary results. We choose a time-horizon T > 0 and keep it fixed
throughout the proof. If a different time-horizon is needed, the reader will be ex-
plicitly warned.

5.2.1. Martingale measures. Let P denote the set of all F-progressively mea-
surable processes (νt )t∈[0,T ] such that

∫ T
0 ν2

u du <∞, a.s., and let

N = {(ν1, ν2) ∈ P ×P :Zν1,ν2 is a true martingale},
where the positive local martingale (Z

ν1,ν2
t )t∈[0,T ] is given by

dZ
ν1,ν2
t =−Z

ν1,ν2
t

(
ν1(u) dBu + ν2(u) dWu

)
, Z

ν1,ν2
0 = 1.

For (ν1, ν2) ∈ N , we define the probability measure Qν1,ν2 ∼ P|FT
by

dQν1,ν2

d(P|FT
)
= Z

ν1,ν2
T .

By virtue of Girsanov’s theorem (see [11] for details), a probability measure Q∼
P|FT

belongs to Me
T if and only if there exists ν ∈ P such that (θ, ν) ∈ N and

dQ
d(P|FT

)
= Z

θ,ν
T . Let us introduce the following families:

P∞ =
{
ν ∈ P : sup

t∈[0,T ]
|νt | ∈ L∞

}
,

P ν1 = {ν ∈ P : (ν1, ν) ∈ N } for ν1 ∈ P .

LEMMA 5.4. Suppose that the condition (5.5) holds and that the random
field U of (5.3) is self-generating. Then for each ν ∈ P∞,

1. (θ, ν) ∈ N , and
2. H(Qθ,ν;0, T ) <∞.

In particular, Me
T ∩MH

T �=∅.

PROOF. We first show that Qθ,0 ∈ MH
T . Hölder’s inequality used in conjunc-

tion with assumptions (5.4) and (5.5) yields ( 1
γT

Z
θ,0
T )1+ε ∈ L1(FT ), for small

enough ε > 0. Moreover, since Z
θ,ν
T /Z

θ,0
T ∈⋂

p>1 Lp(FT ) for ν ∈ P∞, we have

( 1
γT

Z
θ,ν
T )1+ε ∈ L1(FT ), for small enough ε > 0. Consequently,

h

(
1

γT

Z
θ,ν
T

)
∈ L1(FT ) ∀ν ∈ P∞.(5.10)

Using the elementary inequality xy ≤ x logx − x + ey for all x ≥ 0 and y ∈ R,
condition (5.5) implies

1

γT

Z
θ,ν
T AT ∈ L1(FT ).(5.11)

Assertions (5.10) and (5.11) yield H(Qθ,ν;0, T ) <∞, for all ν ∈ P∞. �
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5.2.2. Proof of necessity. We first show that the self-generation property of U

implies (5.6). By Theorem 4.4, the processes 1
γ

and A are semimartingales and by
Lemma 5.4 and Proposition 4.7, for each T ≥ 0, there exists a progressive process
(δ̂

(T )
t )t∈[0,T ] such that

1

γT

= 1

γ0
+

∫ T

0
δ̂(T )
u dSu.(5.12)

For 0≤ T1 < T2, processes δ̂(T1) and δ̂(T2) agree dP× dt on �× [0, T1]. So, there
exists a progressively measurable process (λ̂t )t∈[0,∞) such that

1

γ·
= 1

γ0
+

∫ ·
0

λ̂u dSu a.s.(5.13)

Finally, positivity of γ implies (5.6) with δt = γt δ̂t .
Next, we turn to the process A. To better understand its structure, we construct

a fictional constrained financial market, as a technical tool. It comprises of three
securities S̃ = (S̃0, S̃1, S̃2), given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
S̃0

t = Bt +
∫ t

0
θ̃u du where θ̃t = θt − δt ,

S̃1
t = t and

S̃2
t =Wt,

(5.14)

with portfolios π = (π0, π1, π2), representing the numbers of shares of each of
the three securities, constrained to take values in the convex set

K = {
(π0, π1, π2)⊆R3 :π1 + 1

2(π2)2 ≤ 0
}
.(5.15)

Let AK denote the set of 3-dimensional S̃-integrable processes (πt )t∈[0,∞) with
πt ∈K for all t ∈ [0, T ], a.s.

The central argument in the proof below is based on a version of the Optional
Decomposition theorem. For the reader’s convenience, we rephrase the pertinent
content of Theorem 3.1 in [12] in our setting, noting that its technical conditions
are satisfied thanks to Proposition B.1 which establishes closedness with respect
to the semimartingale topology of the family

S̃ :=
{∫ ·

0
πu dS̃u :π ∈ AK

}
.

THEOREM 5.5 (Föllmer and Kramkov, 1997). Let (Vt )t∈[0,T ] be a càdlàg and
adapted process which is locally bounded from below. Then the following state-
ments are equivalent:

1. V has a decomposition of the form

Vt = V0 + (π · S̃)t +Dt, t ∈ [0, T ],
for some portfolio process π ∈ AK and a nonincreasing adapted càdlàg
process (Dt)t∈[0,T ], with D0 = 0.
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2. Vt −A
Q
t is a Q-local supermartingale for all Q ∈ M̃, where M̃ is the set of all

probability measures Q on FT with Q∼ P|FT
such that the Q-compensators of

the wealth processes π · S̃ are bounded, in the sense of positive measures on the
optional sets, uniformly over all admissible π ∈ AK (the process A

Q
t denotes

their least upper bound).

Let us first identify the set M̃ and the processes AQ for Q ∈ M̃ in our market S̃.
A generic wealth process π · S̃ has the following differential representation under
a generic measure Qν1,ν2 :

d(π · S̃)t = (
π0(t)θ̃t − π0(t)ν1(t)+ π1(t)+ π2(t)ν2(t)

)
dt + dLt

for some Qν1,ν2 -local martingale L. Note that for a fixed t ∈ [0, T ],

sup
(π0,π1,π2)∈K

(
π0θ̃t − π0ν1(t)+ π1 + π2ν2(t)

)=
{
∞, ν1(t) �= θ̃t ,
−1

2ν2
2(t), ν1(t)= θ̃t .

Therefore,

M̃ = {Qθ̃ ,ν :ν ∈ P θ̃ } and A
Qθ̃ ,ν

t = 1

2

∫ t

0
ν2
u du.

Thanks to the choice of the coefficient θ̃ and the already proven relation (5.6),

we have dQθ̃ ,ν

dP
= γ0

γT

dQθ,ν

dP
, whenever EQθ,ν [ γ0

γT
] = 1. By condition 2(b) of The-

orem 4.4, this equality holds for all ν ∈ P θ , such that Qθ,ν ∈ MH
T . In particu-

lar, by Lemma 5.4, it holds for ν ∈ P∞. In the notation of Section 4.3, we have
Qθ̃ ,ν = (Qθ,ν)γ , i.e., Qθ̃ ,ν is the forward measure associated with Qθ,ν and the
numéraire γ .

By Proposition 4.9, the process F Qθ̃ ,ν = A− log(Zθ̃,ν) is a Qθ̃ ,ν-supermartin-
gale for each ν such that Qθ̃ ,ν ∈ MH

T . So, by Lemma 5.4, it is a Qθ̃ ,ν-

supermartingale for all ν ∈ P∞. Thus, for an arbitrary ν ∈ P θ̃ , the process FQθ̃ ,νn

is a Qθ̃ ,νn
-supermartingale, for each n ∈N, where

νn
t = νt1{t≤τn} where τn = inf

{
t ≥ 0 :

∫ t

0
ν2
u du > n

}
.

Processes F Qθ̃ ,νn

and FQθ̃ ,ν
, as well as measures Qθ̃ ,νn

and Qθ̃ ,ν , agree on [0, τn].
So, the stopped process (F Qθ̃ ,ν

)τn is a Qθ̃ ,ν -supermartingale, for all n ∈ N and
P[τn ≤ T ]→ 0. In other words, (F

Q
t )t∈[0,T ] is a local Q-supermartingale, for each

Q ∈ M̃. A simple application of Itô’s formula implies that the process

At − 1

2

∫ t

0
θ̃2
u du− 1

2

∫ t

0
ν2
u du, t ∈ [0, T ],
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is also a local Qθ̃ ,ν -supermartingale, for each ν with Qθ̃ ,ν ∈ MH
T . Theorem 5.5

yields the existence of a portfolio process π ∈ AK and a nonincreasing adapted
càdlàg process (Dt)t∈[0,T ] such that

At =A0 +
∫ t

0
π̃u dS̃u +Dt.

Thanks to part 2 of Proposition 4.9, the process D must vanish identically. For
the same reason, there can be no “slack” in the portfolio process π̃ , i.e., π1(t)=
−1

2π2(t)2, dP× dt-a.e. Consequently, with φ =−π2, the process A has the fol-
lowing form:

At =A0 + 1

2

∫ t

0
θ̃2
u du+

∫ t

0
π0

u(dBu + θ̃u)− 1

2

∫ t

0
φ2

u du−
∫ t

0
φu dWu.

Let the process ρ be defined as ρt = δt ρ̂t + 1
γt

π0
t , where ρ̂t = 1

γt

∫ t
0 π0 dS̃u.

A straightforward calculation using the identity d(γt

∫ t
0 ζt dSt ) = γt (ζt − δt ×∫ t

0 ζu dSu)(θ̃t dt + dBt) which holds for any ζ ∈ P implies (5.7), for a fixed T .
Finally, the argument for the passage from (5.12) to (5.13) can be reused to show
the validity of (5.7) on the whole positive semi-axis.

5.2.3. Proof of sufficiency. The proof of sufficiency is based on Theorem 4.4.
Condition 2(a) of Theorem 4.4 is assumed in (5.8). Boundedness of the process δ

ensures that 1
γ

is a Qθ,ν-martingale for all ν ∈ P θ . In particular, condition 2(b) of
Theorem 4.4 is fulfilled. To verify condition 2(c) of Theorem 4.4, we turn to the

characterization in Proposition 4.9: the process FQθ̃ ,ν
of Section 4.3 can be written

as

F
Qθ̃ ,ν

t =Mt −
∫ t

0
φu dW̃u − 1

2

∫ t

0
(νu − φu)

2 du,

where Mt = γt

∫ t
0 ρ dSu and W̃t =Wt + ∫ t

0 νu du. Thanks to (5.9), processes Mt

and
∫ t

0 φu dW̃u are martingales under the forward measure Qθ̃ ,ν . So, statement 1
of Proposition 4.9 holds. In order to verify statement 2, we take ν = φ, noting that
Zθ,φ is a true martingale. By Proposition 4.9, U is a self-generating utility random
field.

APPENDIX A: CONVEX DUALITY FOR RANDOM FIELDS

For the purposes of this section, we fix 0 ≤ t ≤ T <∞ and a random variable
κ ∈ L∞+ (Ft ). Unless designated otherwise, all the Lp-spaces (and their duals),
p ∈ [0,∞], will be with respect to (�, FT ,P|FT

). The space L1 will always be
identified with its image in (L∞)∗ under the canonical isometric embedding of a
Banach space into its bidual.

We (re-)introduce the following variations of the standard notation:
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1. The functional Uκ(·) : L∞→ R is defined by Uκ(ζ ) = E[κU(T , ζ )], for ζ ∈
L∞.

2. The convex conjugate Vκ : (L∞)∗ → (−∞,∞] of Uκ is given by

Vκ(ζ ∗)= sup
ζ∈L∞

(
Uκ(ζ )− 〈ζ ∗, ζ 〉) for ζ ∗ ∈ (L∞)∗.

3. Kt→T = {∫ T
t πu dSu :π ∈ Abd}.

4. Ct→T = (Kt→T −L0+)∩L∞.
5. Dt→T = {ζ ∗ ∈ (L∞)∗ : 〈ζ ∗, ζ 〉 ≤ 0 for all ζ ∈ Ct→T }.
6. u(ξ ; t, T )= ess supπ∈Abd

E[U(T , ξ + ∫ T
t πu dSu)|Ft ], for ξ ∈ L∞(Ft ).

7. v(η; t, T )= ess infQ∈Ma
T

E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ], for η ∈ L1+(Ft ).

8. uκ(ζ )= supρ∈Ct→T
Uκ(ζ + ρ) ∈ (−∞,∞], for ζ ∈ L∞.

9. Dη
t→T = {ζ ∗ ∈ Dt→T : 〈ζ ∗, ξ〉 = 〈η, ξ〉 for all ξ ∈ L∞(Ft )}, for η ∈ L1+(Ft ).

10. vκ(η)= infζ ∗∈Dη
t→T

Vκ(ζ ∗), for η ∈ L1+(Ft ) and vκ(η)=∞, for η ∈ L1(Ft ) \
L1+(Ft ).

PROPOSITION A.1. For ζ0 ∈ L∞, we have

uκ(ζ0)= inf
ζ ∗∈Dt→T

(
Vκ(ζ ∗)+ 〈ζ ∗, ζ0〉),(A.1)

where the infimum above is attained at some ζ̂ ∗ ∈ Dt→T .

PROOF. Suppose first that uκ(ζ0) = ∞. The definitions of Vκ and Dt→T

above ensure that for ζ ∗ ∈ Dt→T and ρ ∈ Ct→T , we have

Vκ(ζ ∗)≥Uκ(ζ0 + ρ)− 〈ζ ∗, ζ0 + ρ〉 ≥Uκ(ζ0 + ρ)− 〈ζ ∗, ζ0〉.
Taking a supremum of the right-hand side over all ρ ∈ Ct→T implies that Vκ(ζ ∗)=
∞ for all ζ ∗ ∈ Dt→T , which, in turn, implies (A.1).

When uκ(ζ0) <∞, we define the following two subsets of L∞ ×R:

A= {(ζ, u) ∈ L∞ ×R :u≤ uκ(ζ0 + ζ )},
B = Ct→T × [uκ(ζ0),∞).

It is straightforward to check that:

1. both A and B are convex and nonempty,
2. IntB �=∅ (since −L∞+ ⊂ Ct→T ), and
3. A∩ IntB =∅.

By the Hahn–Banach theorem (see Theorem 5.50, page 190 in [2]) there exists
a constant c ∈ R and a nonnull element (ζ̂ ∗, û∗) of the dual space (L∞)∗ × R ∼=
(L∞ ×R)∗ such that

〈ζ̂ ∗, ζ 〉 + uû∗ + c ≥ 0
(A.2)

∀(ζ, u) such that u≤Uκ(ζ0 + ζ + ρ), for some ρ ∈ Ct→T
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and

〈ζ̂ ∗, ρ〉 + uû∗ + c ≤ 0 ∀u≥ uκ(ζ0),∀ρ ∈ Ct→T .(A.3)

From (A.3) and the fact that 0 ∈ Ct→T , we conclude that û∗ ≤ 0. Using (A.3)
again, this time in conjunction with the positive homogeneity of Ct→T , we get
〈ζ̂ ∗, ρ〉 ≤ 0, for all ρ ∈ Ct→T , which, in turn, implies that ζ̂ ∗ ∈ Dt→T ⊆ (L∞)∗+.

Our next task is to show that û∗ < 0. Suppose, to the contrary, that û∗ = 0.
Then (A.2) and (A.3) imply that 〈ζ̂ ∗, ζ 〉 = c for all ζ in the intersection πL∞(A)∩
πL∞(B) of the projections of A and B onto L∞. Finiteness of Uκ(ζ ) for all ζ ∈
L∞ yields πL∞(A)∩ πL∞(B)= Ct→T . Thus, 〈ζ̂ ∗, ζ 〉 = c, for all ζ ∈ Ct→T . Since
−L∞+ ⊆ Ct→T , this can only happen if ζ̂ ∗ = 0, which is in contradiction with the
assumptions that û∗ = 0 and the nontriviality of the separating functional (ζ̂ ∗, û∗).

Having established that û∗ < 0, we can assume, without loss of generality, that
û∗ = −1. The equation (A.3) with ρ = 0 and u= uκ(ζ0) implies that uκ(ζ0)≥ c.
On the other hand, (A.2) states that

c ≥Uκ(ζ0 + ζ + ρ)− 〈ζ̂ ∗, ζ 〉 ∀ζ ∈ L∞,∀ρ ∈ Ct→T .(A.4)

The fact that 〈ζ̂ ∗, ρ〉 ≤ 0, for all ρ ∈ Ct→T , allows us to combine the previous
conclusions with (A.4) to get the inequality

uκ(ζ0)≥ Uκ(ζ )− 〈ζ̂ ∗, ζ 〉 + 〈ζ̂ ∗, ζ0〉 + 〈ζ̂ ∗, ρ〉
≥ Uκ(ζ )− 〈ζ̂ ∗, ζ 〉 + 〈ζ̂ ∗, ζ0〉.

Taking the supremum over all ζ ∈ L∞, we obtain

uκ(ζ0)≥ sup
ζ∈L∞

(
Uκ(ζ )− 〈ζ̂ ∗, ζ 〉)+ 〈ζ̂ ∗, ζ0〉 =Vκ(ζ̂ ∗)+ 〈ζ̂ ∗, ζ0〉

(A.5)
≥ inf

ζ ∗∈Dt→T

(
Vκ(ζ ∗)+ 〈ζ ∗, ζ0〉).

On the other hand, by the definition of Vκ , we have

Uκ(ζ0 + ρ)≤Vκ(ζ ∗)+ 〈ζ ∗, ζ0 + ρ〉 ≤Vκ(ζ ∗)+ 〈ζ ∗, ζ0〉
for all ζ ∗ ∈ Dt→T and all ρ ∈ Ct→T . Maximization of the left-hand side over all
ρ ∈ Ct→T and minimization of the right-hand side over all ζ ∗ ∈ Dt→T yield

uκ(ζ0)≤ inf
ζ ∗∈Dt→T

(
Vκ(ζ ∗)+ 〈ζ ∗, ζ0〉).(A.6)

One only needs to combine (A.5) and (A.6) to finish the proof. �

COROLLARY A.2. For every η ∈ L1+(Ft ), we have

vκ(η)= sup
ξ∈L∞(Ft )

(
uκ(ξ)− 〈η, ξ〉).
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PROOF. Proposition A.1 implies that uκ : L∞(Ft ) → (−∞,∞] is the con-
vex conjugate of vκ : L1(Ft )→ (−∞,∞], with respect to the pairing (ξ, η) →
〈ξ, η〉 = E[ξη] between L∞(Ft ) and L1(Ft ). In order to complete the proof,
we need to show that vκ is the convex conjugate of uκ . It suffices to show
that vκ is convex and lower semi-continuous with respect to the weak topology
σ(L1,L∞) (see, e.g., Proposition 4.1, page 18 in [10]). For convexity, let ε > 0,
α ∈ (0,1) and η1, η2 ∈ L1+, and choose ζ ∗1 ∈ Dη1

t→T and ζ ∗2 ∈ Dη2
t→T such that

Vκ(ζ ∗1 ) ≤ vκ(η1) + ε/2 and Vκ(ζ ∗2 ) ≤ vκ(η2) + ε/2. Then, by convexity of Vκ ,
we have

αvκ(η1)+ (1− α)vκ(η2)≥−ε+ αVκ(ζ ∗1 )+ (1− α)Vκ(ζ ∗2 )

≥−ε+Vκ

(
αζ ∗1 + (1− α)ζ ∗2

)
.

It is straightforward to show that αζ ∗1 + (1− α)ζ ∗2 ∈ Dαη1+(1−α)η2
t→T and conclude

that vκ is, indeed, convex.
To establish lower semi-continuity, we take a directed set A and a net (ηα)α∈A

in L1 with ηα → η weakly, and aim to show that vκ(η) ≤ lim infα vκ(ηα). With-
out loss of generality, we assume that ηα ∈ L1+ and vκ(ηα) <∞, for all α ∈ A,
and that the limit limα vκ(ηα) exists in (−∞,∞]. Let (εα)α∈A be a net in (0,∞)

converging to 0, and let (ζ ∗α )α∈A be a net in Dt→T with ζ ∗α ∈ Dηα

t→T such that
vκ(ηα) ≥ Vκ(ζ ∗α ) − εα . By the Banach–Alaoglu theorem, there exist a subnet of
(ζ ∗α )α∈A (which we do not relabel) and ζ ∗ ∈ (L∞)∗+ such that ζ ∗α → ζ ∗. By the
weak-* closedness of Dt→T , we have ζ ∗ ∈ Dt→T . We claim that ζ ∗ ∈ Dη

t→T . In-
deed, for ξ ∈ L∞(Ft ), we have

〈ζ ∗, ξ〉 = lim
α
〈ζ ∗α , ξ〉 = lim

α
〈ηα, ξ〉 = 〈η, ξ〉.

By the weak-* lower semi-continuity of Vκ (guaranteed by its definition as conju-
gate functional), we have

vκ(η)≤Vκ(ζ ∗)≤ lim inf
α

Vκ(ζ ∗α )≤ lim inf
α

(
vκ(ηα)+ εα

)= lim
α

vκ(ηα). �

PROPOSITION A.3. The following representation holds for any ζ ∗ ∈ Dt→T

Vκ(ζ ∗)=
⎧⎨
⎩E

[
κV

(
T ,

1

κ
ζ ∗

)]
, ζ ∗ ∈ L1+ and {ζ ∗ > 0} ⊆ {κ > 0},

∞, otherwise.

PROOF. We divide the proof into several cases, depending on the “region” in
which ζ ∗ lies:

1. ζ ∗ is not in (L∞)∗+. Then there exists ζ ∈ L∞+ such that M = 〈ζ ∗, ζ 〉< 0. By
monotonicity, Uκ(nζ )≥Uκ(0) for all n ∈N. So,

Vκ(ζ ∗)≥ lim sup
n∈N

(
Uκ(nζ )− n〈ζ ∗, ζ 〉)

≥ lim sup
n∈N

(
Uκ(0)+ n|M|)=∞.
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2. ζ ∗ is in (L∞)∗+ but not in L1+. The mapping μζ ∗ : FT → [0,1], defined by
μζ ∗(A)= 〈ζ ∗,1A〉, A ∈ FT , is a finitely-additive probability on FT . The con-
dition that ζ ∗ /∈ L1+ implies that μζ ∗ is not countably-additive. Thus, there exist
a constant ε > 0 and a nonincreasing sequence {An}n∈N of events in FT such
that

⋂
n An =∅ and 〈ζ ∗,1An〉 ≥ ε, for all n ∈ N. Let {an}n∈N be as in Defini-

tion 3.3 and let the sequence {ζn}n∈N in L∞ be given by ζn =−an1An . Due to
nonsingularity of U ,

Vκ(ζ ∗)≥ lim sup
n∈N

(
Uκ(ζn)− 〈ζ ∗, ζn〉)

≥ lim sup
n∈N

(
Uκ(ζn)+ an〈ζ ∗,1An〉

)

≥ lim sup
n∈N

an

(
1

an

Uκ(−an1An)+ ε

)
=∞.

3. ζ ∗ is in L1+ and P[{ζ ∗ > 0}∩{κ = 0}]> 0. For n ∈N, define ζn =−n1A, where
A = {ζ ∗ > 0} ∩ {κ = 0}. Then Uκ(ζn) = E[κU(T , ζn)] = E[κU(T ,0))] =
Uκ(0), so

Vκ(ζ ∗)≥ lim sup
n∈N

(
Uκ(ζn)− 〈ζ ∗, ζn〉)

≥ lim sup
n∈N

(
Uκ(0)+ nE[ζ ∗1A])=∞.

4. ζ ∗ is in L1+ and {ζ ∗ > 0} ⊆ {κ > 0}. For any ζ ∈ L∞, we have κζ 1
κ
ζ ∗ = ζ ζ ∗,

and so,

κU(T , ζ )≤ κζ
1

κ
ζ ∗ + κV

(
T ,

1

κ
ζ ∗

)
= ζ ζ ∗ + κV

(
T ,

1

κ
ζ ∗

)
a.s.

for all ζ ∈ L∞. Therefore, Vκ(ζ ∗) ≤ E[κV (T , 1
κ
ζ ∗)]. To prove the opposite

inequality, let {ζn}n∈N be given by

ζn =−V ′
(
T ,

1

κ
ζ ∗

)
1Bn,

where Bn = {κ > 0} ∩ {−n≤−V ′(T , 1
κ
ζ ∗)≤ n}, so that ζn ∈ L∞. Then

κU(T , ζn)− ζnζ
∗ = κU(T ,0)1Bc

n
+ κV

(
T ,

1

κ
ζ ∗

)
1Bn.

The random variable κV (T , 1
κ
ζ ∗) is bounded from below by an integrable ran-

dom variable [one can take κU(T ,0), for example]. So, the monotone conver-
gence theorem implies that

E[κU(T , ζn)− ζnζ
∗]→ E

[
κV

(
T ,

1

κ
ζ ∗

)]
,

which, in turn, yields Vκ(ζ ∗)≥ E[κV (T , 1
κ
ζ ∗)]. �
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LEMMA A.4. A random variable ζ ∗ is in Dt→T ∩L1+ if and only if there exists
a local martingale measure Q ∈ Ma

T and a random variable η ∈ L1+(Ft ) such that

ζ ∗ = ηZ
Q
T /Z

Q
t .

PROOF. Suppose, first, that ζ ∗ = ηZ
Q
T /Z

Q
t for some η ∈ L1+(Ft ) and Q ∈

Ma
T . In order to show that ζ ∗ ∈ Dt→T , pick a ρ ∈ Ct→T of the form ρ =∫ T

t πu dSu − ζ for some π ∈ Abd and ζ ∈ L∞+ . Then

E[ζ ∗ρ] ≤ E

[
ηZ

Q
T

/
Z

Q
t

∫ T

t
πu dSu

]
= E

[
ηEQ

[∫ T

t
πu dSu

∣∣∣Ft

]]
= 0,

by boundedness of
∫ T
t πu dSu. Therefore, ζ ∗ ∈ Dt→T .

Conversely, let ζ ∗ be an element of Dt→T ∩L1+. We pick an arbitrary Q′ ∈ Me
T

and define the random variable ζ ∗
Q′ ∈ L1+ by

ζ ∗Q′ = λζ ∗, where λ= Z
Q′
t

E[ζ ∗|Ft ]1{E[ζ ∗|Ft ]>0} ∈ L0+(Ft ).

We claim that ζ ∗
Q′ is the Radon–Nykodim derivative of a local martingale measure.

To substantiate this claim, take an arbitrary π ∈ Abd and split E[ζ ∗
Q′

∫ T
0 πu dSu]

into E[ζ ∗
Q′

∫ t
0 πu dSu] and E[ζ ∗

Q′
∫ T
t πu dSu]. Then

E

[
ζ ∗Q′

∫ t

0
πu dSu

]
= E

[
E

[
ζ ∗Q′

∫ t

0
πu dSu

∣∣∣Ft

]]

= E

[
E

[
dQ′

d(P|Ft )

∣∣∣Ft

]∫ t

0
πu dSu

]
(A.7)

= EQ′
[∫ t

0
πu dSu

]
= 0.

For the second summand, we define the process {π̂u}u∈[0,∞) by π̂u = πuλ1(t,∞)(u),
for u≥ 0. Then π̂ is predictable and S-integrable, and

λ

∫ T

t
πu dSu =

∫ T

t
π̂u dSu.

Similarly, processes π̂n, defined by π̂n
u = πuλ1{−n≤λ≤n}1(t,∞)(u), for u ≥ 0, are

also predictable and S-integrable. While the same cannot be concluded for π̂ , all
π̂n are in Abd. So, E[ζ ∗ ∫ T

t π̂n
u dSu] = 0 and

∫ T
t π̂u dSu = limn

∫ T
t π̂n

u dSu, a.s.
Hence,

E

[
ζ ∗Q′

∫ T

t
πu dSu

]
= E

[
ζ ∗

∫ T

t
π̂u dSu

]
= E

[
lim
n

ζ ∗
∫ T

t
π̂n

u dSu

]
(A.8)

= lim
n

E

[
ζ ∗

∫ T

t
π̂n

u dSu

]
= 0.
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The above interchange of the limit and the expectation operator is due to the dom-
inated convergence theorem which can be used because∣∣∣∣ζ ∗

∫ T

t
π̂n

u dSu

∣∣∣∣≤
∣∣∣∣ζ ∗

∫ T

t
π̂u dSu

∣∣∣∣= ζ ∗λ
∣∣∣∣
∫ T

t
πu dSu

∣∣∣∣
≤ ζ ∗Q′

∥∥∥∥
∫ T

t
πu dSu

∥∥∥∥
L∞
∈ L1.

We combine equations (A.7) and (A.8) to obtain E[ζ ∗
Q′

∫ T
0 πu dSu] = 0, for all

π ∈ Abd. A standard localization argument can be employed to conclude that each

component of S is a Q-local martingale, where dQ
d(P|Ft )

= ζ ∗
Q′

E[ζ ∗
Q′ ]

. Thus,

ζ ∗ = 1

λ
ζ ∗Q′ = ηZ

Q
T /Z

Q
t , where η= 1

λ
Z

Q
t .

Finally, η ∈ L1 since ζ ∗,ZQ
T /Z

Q
t ∈ L1 and E[ZQ

T /Z
Q
t |Ft ] = 1, a.s. �

THEOREM A.5. The following relationship holds for the value functions u

and v for all ξ ∈ L∞(Ft ):

u(ξ ; t, T )= ess inf
η∈L1+(Ft )

(
v(η; t, T )+ ξη

)
a.s.(A.9)

Moreover, for each ξ ∈ L∞(Ft ) there exist η̂ ∈ L1+(Ft ) with {η̂ = 0} ⊇ {u(ξ ; t,
T )=∞} and Q̂ ∈ Ma

T such that

u(ξ ; t, T )= E[V (η̂Z
Q
T /Z

Q
t )|Ft ] + ξ η̂= v(η̂; t, T )+ ξ η̂.

PROOF. We first establish the equality in (A.9). The relationship U(T , x) ≤
V (T , y)+ xy holds for the functions U(T , ·) and V (T , ·) for all x ∈R, y ≥ 0, a.s.
So, for any ρ ∈ Ct→T , η ∈ L1+(Ft ) and Q ∈ Ma

T ,

E[U(T , ξ + ρ)|Ft ] ≤ E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ] +E[(ξ + ρ)ηZ

Q
T /Z

Q
t |Ft ]

≤ E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ] + ξη a.s.

It follows that the left-hand side of (A.9) is at most as large as the right-hand side,
a.s. To prove their equality, suppose, contrary to the claim, that there exists an
Ft -measurable set A and an ε > 0 such that

E[U(T , ξ + ρ)|Ft ] + ε1A < E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ] + ξη a.s.(A.10)

for any ρ ∈ Ct→T , η ∈ L1+(Ft ) and Q ∈ Ma
T . The set A has the property that

u(ξ ; t, T ) < ∞, a.s., on A, and we can assume without loss of generality that
there exists M <∞ such that u(ξ ; t, T ) ≤M , a.s., on A. After multiplying the
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inequality E[U(T , ξ +ρ)|Ft ]+ ε1A < E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ]+ ξη throughout by

κ = 1A, noting that κ = 1/κ on A and taking expectations, we get

Uκ(ξ + ρ)+ εP[A]< E

[
κV

(
T ,

1

κ
ηZ

Q
T /Z

Q
t

)]
+E[κηξ ]

for all ρ ∈ Ct→T , Q ∈ Ma
T and η ∈ L1+(Ft ). This inequality becomes

Uκ(ξ + ρ)+ εP[A]< Vκ(ζ ∗)+ 〈ζ ∗, ξ〉,
when ζ ∗ = ηZ

Q
T /Z

Q
t , Q ∈ Ma

T and η ∈ L1+(Ft ) satisfies η = η1A. By Proposi-
tion A.3 and Lemma A.4, for any other ζ ∗ ∈ (L∞)∗ we have Vκ(ζ ∗)=∞. There-
fore,

uκ(ξ) < uκ(ξ)+ εP[A] ≤ inf
ζ ∗∈(L∞)∗

(
Vκ(ζ ∗)+ 〈ζ ∗, ξ〉).

This, however, contradicts Proposition A.1, because uκ(ξ)≤M <∞.
It remains to justify the second claim of the theorem. Let

κ =
(
max

(
1, ess sup

ρ∈Ct→T

E[U(T , ξ + ρ)|Ft ]
))−1

,

and let ζ̂ ∗ be the minimizer of ζ ∗ → Vκ(ζ ∗)+ 〈ζ ∗, ξ〉 over (L∞)∗, whose exis-
tence follows from Proposition A.1. Since Vκ(ζ̂ ∗)+ 〈ζ̂ ∗, ξ〉 = 1, Proposition A.3
guarantees that ζ̂ ∗ ∈ L1+. Due to Lemma A.4, there exist Q̂ ∈ Ma

T and η̂ ∈ L1+(Ft )

with {η̂= 0} ⊇ {ess supρ∈Ct→T
E[U(T , ξ + ρ)|Ft ] =∞} such that ζ ∗ = η̂Z

Q̂
T /Z

Q̂
t .

In order to show that ζ̂ ∗ attains the essential infimum on the right-hand side of
(A.9), assume, to the contrary, that there exist ε > 0, η′ ∈ L1+(Ft ), Q′ ∈ Ma

T and a
set B ⊆ Ft with P[B]> 0 such that

E[V (T ,η′ZQ′
T /Z

Q′
t )|Ft ] + ξη′ + ε < E[V (T , η̂Z

Q̂
T /Z

Q̂
t )|Ft ] + ξ η̂ on B.

Let the random variable ζ̃ ∗ ∈ L1+ be defined as

ζ̃ ∗ = η′ZQ′
T /Z

Q′
t 1B + η̂Z

Q̂
T /Z

Q̂
t 1Bc .

It can be shown that ζ̃ ∗ ∈ Dt→T and, thus, itself of the form ζ̃ ∗ = η̃Z
Q̃
T /Z

Q̃
t , for

some Q̃ ∈ Ma
T and η̃ ∈ L1+(Ft ). Using the fact that E[V (T ,ηZ

Q
T /Z

Q
t )|Ft ] = ∞

on {κ = 0} for all η,Q, we conclude that B ⊆ {κ > 0}. So,

Vκ(ζ̃ ∗)+ 〈ζ̃ ∗, ξ〉 ≤Vκ(ζ̂ ∗)+ 〈ζ̂ ∗, ξ〉 − εE[κ1B]< Vκ(ζ̂ ∗)+ 〈ζ̂ ∗, ξ〉,
which contradicts the choice of ζ̂ ∗ as the minimizer. �

COROLLARY A.6. For all η ∈ L1+(Ft ), we have

v(η; t, T )= ess sup
ξ∈L∞(Ft )

(
u(ξ ; t, T )− ξη

)
a.s.
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PROOF. Note that Theorem A.5, equation (A.9) in particular, implies that

v(η; t, T )≥ ess sup
ξ∈L∞(Ft )

(
u(ξ ; t, T )− ξη

)
a.s., for all η ∈ L1+(Ft ).

Let us suppose, contrary to the statement, that there exist η ∈ L1+(Ft ), ε > 0 and a
nonnull Ft -measurable set A such that

E[U(T , ξ + ρ)|Ft ] + ε1A < E[V (T ,ηZ
Q
T /Z

Q
t )|Ft ] + ξη a.s.(A.11)

for all ρ ∈ Ct→T , Q ∈ Ma
T and ξ ∈ L∞(Ft ). Since we can replace η by η1A with-

out violating the validity of (A.11) on A, we assume that η= 0 on Ac. We multiply
both sides of (A.11) by κ = 1A and use Proposition A.3 and Lemma A.4 to get

sup
ρ∈Ct→T

Uκ(ξ + ρ)+ εP[A]< Vκ(ζ ∗)+ 〈ξ, η〉

for all ξ ∈ L∞(Ft ) and all ζ ∗ ∈ Dη
t→T . Therefore,

sup
ξ∈L∞(Ft )

(
uκ(ξ)− 〈ξ, η〉)≤ vκ(η)− εP[A]< vκ(η),

which is in contradiction with Corollary A.2. �

APPENDIX B: CLOSEDNESS OF A SET OF STOCHASTIC INTEGRALS

We finish the paper with a technical result needed in the treatment of the Itô-
process case of Section 5.

PROPOSITION B.1. Let the process S̃, the set K and the family AK be as in
(5.14), (5.15) and the paragraph below it. The set

S̃ =
{∫ ·

0
πu dS̃u :π ∈ AK

}
,

is closed with respect to the semimartingale topology.

PROOF. Were it not for the portfolio constraints, the result would follow di-
rectly from Mémin’s theorem (see Corollary III.4, page 24 in [23]). With con-
straints, we need to work a bit harder. Let {Xn}n∈N be given as Xn = ∫ ·

0 πn
u dS̃u ∈

S̃ , and let X be a semimartingale on F such that Xn → X in the semimartingale
topology. By Mémin’s theorem, X is of the form

Xt =
∫ t

0
πu dS̃u

for some S̃-integrable predictable process (πt )t∈[0,T ]. Our task is to show that
πt ∈K dP× dt-a.e. By Theorem II.3, page 15 of [23], convergence in the semi-
martingale topology implies convergence in the space M2×A of semimartingales,



2208 G. ŽITKOVIĆ

but only through a subsequence and under an equivalent change of measure. More
precisely, there exists a probability measure P̂ ∼ P and an increasing sequence
{nk}k∈N of natural numbers such that

EP̂
∫ T

0

[(
π0

nk
(u)− π0(u)

)2 + (
π2

nk
(u)− π2(u)

)2

+ ∣∣(π0
nk

(u)− π0(u)
)
θ̃u

∣∣+ |π1
nk

(u)− π1(u)|]du→ 0.

An extraction of a further subsequence (still labeled nk) and the fact that the mea-
sures P and P̂ are equivalent yield

πi
nk
→ πi, dP× dt-a.e., i = 0,1,2,

and so, πt ∈K , dP× dt-a.e. �
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