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SEARCH COST FOR A NEARLY OPTIMAL PATH IN
A BINARY TREE1

BY ROBIN PEMANTLE

University of Pennsylvania

Consider a binary tree, to the vertices of which are assigned indepen-
dent Bernoulli random variables with mean p ≤ 1/2. How many of these
Bernoullis one must look at in order to find a path of length n from the root
which maximizes, up to a factor of 1 − ε, the sum of the Bernoullis along the
path? In the case p = 1/2 (the critical value for nontriviality), it is shown to
take �(ε−1n) steps. In the case p < 1/2, the number of steps is shown to be
at least n · exp(const ε−1/2). This last result matches the known upper bound
from [Algorithmica 22 (1998) 388–412] in a certain family of subcases.

1. Introduction. This paper considers a problem in extreme value theory
from a computational complexity viewpoint. Suppose that {Sn,k :n ≥ 1, k ≤ K(n)}
are random variables, with K(n) growing perhaps quite rapidly. Let Mn :=
maxk≤K(n) Sn,k . A prototypical classical extreme value theorem takes the form
fn(Mn) → Z, where convergence is to a constant or a distribution. When K(n)

grows rapidly with n, existence of a large value Sn,k is not the same as efficiently
being able to find such a value. There is a more compelling question from the com-
putational viewpoint: what is the maximum value of Sn,k that can be found by an
algorithm in a reasonable time?

In this paper, we will consider the 2n positions of particles in the nth generation
of a binary branching random walk. Thus K(n) = 2n and {Sn,k : 1 ≤ k ≤ K(n)}
will be {S(v) : |v| = n}, where |v| denotes the depth of a vertex v and S(v) is the
sum of IID increments X(w) over all ancestors w of v. After reviewing known
results on Mn, we will give upper and lower complexity bounds for finding a ver-
tex v at depth n such that S(v) ≥ Mn − εn. It is allowed to query X(w) for any w,
and v is considered “found” once we can evaluate S(v), that is, once all ancestors
of v have been queried.

The problem as stated asks to maximize S(v) over vertices of a fixed depth n.
A closely related paper of Aldous [1] considers the problem of how quickly one
can find a vertex v, at any depth, with S(v) ≥ n. The main results herein are the
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lower complexity bounds proved in Theorems 3.3 and 3.4, with upper bounds in-
cluded to illustrate when the lower bounds are sharp or nearly sharp. The orga-
nization of the paper is as follows. In the remainder of this section we set forth
notation for branching random walks. Section 2 summarizes known limit laws
for extreme values of branching random walk. A number of these results, such
as Proposition 2.1, (2.7), and Propositions 2.2, 2.4 and 2.6, are used in the proofs
of the lower complexity bounds. Section 3 states the main results, Section 4 proves
the upper complexity bounds and other preliminary results, and Section 5 proves
the lower complexity bounds.

Notation. The infinite rooted binary tree will be denoted T and its root will be
denoted 0. Write v ∈ T when v is a vertex of T and v ∼ w when v is a neighbor
(parent or child) of w. Let |v| denote the depth of v, that is, the distance from 0
to v. Write v < w if w is a descendant of v. By a “rooted path” or “branch” we
mean a finite or infinite sequence (0 = x0, x1, x2, . . .) of vertices with each xi being
the parent of xi+1. Our probability space supports random variables {X(v) :v ∈ T }
that are IID with common distribution that is Bernoulli with mean p ≤ 1/2; in
Proposition 3.1 below and parts of Section 2, we allow a more general common
distribution but all other notation remains the same. Let S(v) := ∑

0<w≤v X(w)

denote the partial sums of {X(w)} on paths from the root [in particular, S(0) = 0].
The maximal displacement Mn is defined by

Mn = max|v|=n
S(v).

The subtree from v is the induced subgraph on {w ∈ T :w ≥ v}, rooted at v. The
subtree process {S(w) − S(v) :w ≥ v} has the same distribution as the original
process {S(w) :w ∈ T }.

Our probability space must be big enough to support probabilistic search al-
gorithms. We will not need to define these formally, but simply to bear in mind
that there is a source of randomness independent of {X(v) :v ∈ T }, and that there
is a filtration F0,F1,F2, . . . such that Ft is “everything we have looked at up to
time t”; thus X(v(t)) ∈ Ft , where v(t) is the vertex we choose to inspect at time t ,
and {X(w) :w �= v(1), . . . , v(t)} is independent of Ft ; without loss of generality,
we assume v(t) ∈ Ft−1, that is, any randomness needed to choose v(t) is generated
by time step t − 1.

2. Classical extreme value results.

Growth rate of Mn. Along most infinite paths, the mean of the variables will
be the mean, p, of their common distribution, but there will be exceptional paths
where the nth partial sum is consistently greater than pn. Let X1,X2, . . . be IID
with the same distribution as the variables X(v) and let Sn := ∑n

k=1 Xk denote the
partial sums. By taking expectations, P(Mn ≥ L) ≤ 2n

P(Sn ≥ L). It was shown
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in the 1970s that for p < 1/2, this is asymptotically sharp (see Proposition 2.1
below). Converting this to a computation of the almost sure limiting value of Mn/n

requires the following large deviation computation that is by now quite standard;
for details (see, e.g., [9], Section 1.9). This computation is valid for any common
distribution L of the variables {Xn} with exponential moments; for simplicity,
since this is all we will need, assume |X1| ≤ 1.

Let μ denote the mean of the common distribution L, and pick real numbers
c > μ and λ > 0. Let φ(t) := log EetX1 . By Markov’s inequality,

P(Sn ≥ cn) ≤ EeλSn

eλcn
= exp

[
n
(
φ(λ) − cλ

)]
.

It is easy to see that φ is convex and that when c is less than the essential supremum
of X1, there is a unique λ∗(c) such that this bound is minimized. Thus

1

n
log P(Sn ≥ cn) ≤ φ(λ∗(c)) − cλ∗(c)

and Chernoff’s well-known theorem [8] states that this is asymptotically sharp:

1

n
log P(Sn ≥ cn) → rate(c) := φ(λ∗(c)) − cλ∗(c)

as n → ∞. The proof of this involves remarking that a certain exponential
reweighting of the law L has mean c:

dL′

dL
= eλ∗x

Eeλ∗X1
�⇒ E

′X1 = c.(2.1)

Note, for later use, that Markov’s inequality extends to imply

P(Sn ≥ cn + β) ≤ exp[n · rate(c) − λ∗(c) · β].(2.2)

The following proposition was proved in 1975 by Kingman using analytic meth-
ods, then by Biggins, using an embedded branching process (see also [10, 15] for
an approach via subadditive ergodic theory).

PROPOSITION 2.1 ([16], Theorem 6, and [4], Theorem 3). Let c = c(L) de-
note the value such that rate(c) = − log 2. Then the maximum partial sums at each
level of the binary tree satisfy

Mn

n
→ c(p)(2.3)

in probability as n → ∞.

In particular, when {Xn} are Bernoulli(p) for 0 < p < 1/2, we have

1

n
log P(Sn > qn) = H(p,q) + o(1),(2.4)
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where

H(p,q) := q log
p

q
+ (1 − q) log

1 − p

1 − q
.(2.5)

Denoting c := c(p) := c(L), we see that c solves

c logp + (1 − c) log(1 − p) + c log
(

1

c

)

(2.6)

+ (1 − c) log
(

1

1 − c

)
+ log 2 = 0.

Also, (2.2) becomes

P
(
Sn ≥ c(p)n + β

) ≤ 2−n exp(−λ∗(p)β).(2.7)

Second order behavior of Mn. Fix a bounded law L and let c := c(L). More
accurate large deviation bounds show that P(Mn ≥ cn) → 0, leading to two nat-
ural questions: first, estimate P(Mn ≥ cn), and second, what correction gives the
typical behavior for Mn? We separate into two cases, p = 1/2 and p < 1/2, which
will be seen to behave rather differently in many respects.

One reason second-order results are trickier than the limit results for Mn/n is
that the bounds obtained by computing first moments are no longer sharp. For ex-
ample, in the case of binary variables, when p = 1/2, the expected number of paths
of length n consisting entirely of ones is exactly 1. However, the actual number of
such paths is the number of progeny in the nth generation of a critical branching
process, which is known to be nonzero with probability of order 1/n. The exact
result is:

PROPOSITION 2.2 ([3], Theorem I.9.1). For Bernoulli(1/2) random vari-
ables,

P(Mn = n) = 2 + o(1)

n
.

The typical behavior of Mn when p = 1/2 will not be of great concern here; the
reader may consult [6] to find a proof that Mn = n − C log logn + O(1).

In the case 0 < p < 1/2, the mean number of paths of length n with S(v) ≥
c(p)n is easily shown to be �(n−1/2). The probability of existence of such a
path is expected to be of order n−3/2. Such a result has not been proved. An
analogous result has, however, been proved for a branching Brownian motion.
Here particles move as independent Brownian motions, each particle living for
an exponential amount of time of mean one before splitting into two particles
which then evolve independently. Bramson [5] shows that the maximum Mt of a
branching Brownian motion at time t exceeds ct with probability �(t−3/2), where
c = √

2 is the critical slope, and that Mt = ct − γ log t + O(1) in probability,
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where γ = 3/(2c) = 3/23/2. This was generalized in [7]. At slopes above the criti-
cal slope the large deviation probabilities decay exponentially: for λ >

√
2 one has

P(Mt ≥ λt + θ) ∼ c1(λ, θ)t−1/2e−c2(λ)t ; see [12], Theorem 6.

Survival probability with an absorbing barrier at criticality. For the complex-
ity questions addressed in the present article, the crucial probabilities turn out to be
absorbing barrier probabilities, where the events {Mn ≥ cn} and {Mn ≥ (c − ε)n}
are replaced by the event that along some path from the root of length n the values
Sk are always at least ck or (c − ε)k, for 1 ≤ k ≤ n. The term “barrier” refers to
probability models in which particles are killed when they hit an absorbing bar-
rier, which is located at (c − ε)k. At the critical barrier (ε = 0) the process dies
out. Estimates of survival probabilities with a critical barrier have been published
only for branching Brownian motion (though a somewhat analogous result in the
discrete setting is implicit in [17], Lemma 8). Suppose each particle in a branching
Brownian motion is killed when its position at any time t becomes less than ct .
Starting with a single particle at 1, Kesten estimated the tails of the survival time.

PROPOSITION 2.3 ([14], Theorem 1.3). Consider a branching Brownian mo-
tion started with a single particle at 1, in which particles are killed when their
position as a function of time becomes less than or equal to

√
2t (here

√
2 is

the critical slope). The probability for at least one particle to survive to time t is
exp(−(3π2t)1/3 + O(log2 t)).

REMARK. For λ >
√

2, the probabilities P(Mt ≥ λt) decay exponentially in t .
In this regime, the quantity P(Mt ≥ λt) may be estimated up to a factor of 1+o(1);
such an asymptotic formula was proved in [11], Theorem 1.

Survival probability with an absorbing barrier in the supercritical regime. Re-
laxing the barrier ck to the barrier (c−ε)k yields a supercritical process, for which
one may ask about both finite time and infinite time survival probabilities. These
are the results most intimately connected with search times. The following notation
is useful:

DEFINITION 1 (Survival probabilities). Let {X(v)} be IID bounded random
variables with law L. Let c = c(L) be the unique real number such that

1

n
log P(Sn ≥ cn) → − log 2,

where Sn is the partial sum of n IID variables with law L. By Proposition 2.1,
Mn/n → c in probability. Define the survival probability ρ(L; ε, n) to be the prob-
ability that there exists a path v0, . . . , vn of length n from the root such that for all
j ≤ n, S(vj ) ≥ (c− ε)j . In the case where {X(v)} are Bernoulli with parameter p,
the notation ρ(p; ε, n) will be used instead of ρ(L; ε, n). Extend the notation to
nonintegral values of n by defining ρ(L; ε, n) := ρ(L; ε, �n�).
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In this notation, the quantities ρ(p;0, n) denote the tails of survival probabilities
at the critical barrier. Restating Proposition 2.2, we have ρ(1/2;0, n) ∼ 2/n. We
will be chiefly interested in the probabilities ρ(p; ε,∞) of survival to infinity once
the absorbing barrier has moved so as to make the branching random walk slightly
supercritical. For branching random walk with binary variables and p = 1/2 there
is a sharp result.

PROPOSITION 2.4.

ρ
(1

2 ; ε,∞) = �(ε).(2.8)

PROOF. Assume without loss of generality that ε = 1/n for some integer, n.
One inequality follows from the observation that a path stays above (1 − ε)k for
every k < ε−1 only if it is composed entirely of ones. Therefore, from Proposi-
tion 2.2,

ρ
(1

2 ; ε,∞) ≤ ρ
(1

2 ; ε, ε−1 − 1
) = ρ

(1
2 ;0, ε−1 − 1

) ∼ 2ε.

For the other inequality, note that ρ(1
2 ; ε,∞) is at least the probability that there

exists an infinite path 0 = v0, v1, v2, . . . , along which X(vi) = 1 unless i is a mul-
tiple of n. Let Zi count the vertices at level i all of whose descendants w have
either X(w) = 1 or n divides |w|. Then {Zi} are the generation sizes of a branch-
ing process that is not time-homogeneous but is periodic: the offspring generating
function is f1(z) := (1 + z)2/4 at times that are not multiples of n and f2(z) := z2

at times that are multiples of n. Using a superscript of (k) to denote k-fold compo-
sition, we may write the generating function

∑
k P(Zjn = k)zk as �(j)(z) where

� = f2 ◦ f
(n−1)
1 .

The extinction probability is the increasing limit as j → ∞ of �(j)(0). Substitut-
ing u = 1 − z, the survival probability is the decreasing limit of �̃(j)(1), where
�̃(j+1) = g2 ◦ g

(n−1)
1 ◦ �(j) and gj (z) = 1 − fj (1 − z) for j = 1,2. For u ≤ n−1

we have

u ≥ g1(u) = u − u2

4
≥ u

(
1 − 1

4n

)

and iterating n − 1 times gives g
(n−1)
1 (u) ≥ (3/4)u. Hence,

�̃(u) ≥ 2
(3

4u
) − (3

4u
)2 ≥ u.

It follows that the decreasing limit of �̃(j)(1) is at least n−1 which is equal to ε,
hence ρ(1

2 ; ε,∞) ≥ ε, completing the proof. �

Even in the binary case, when p < 1/2, estimates are quite tricky. It is believed
that:
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CONJECTURE 1. For each p ∈ (0,1/2) there is a constant βp such that as
ε → 0,

logρ(p; ε,∞) ∼ −βpε−1/2.

Furthermore, logρ(p; ε,Lε−3/2) ∼ −βp,Lε−1/2 with βp,L → βp as L → ∞ and
βp,L → 0 as L → 0.

There is one subcase of the case of binary variables, for which such a result is
known. Let pcrit be the value of p for which c(pcrit) = 1/2. Solving (2.6) for p

with c = 1/2 we find that
1
2 logpcrit + 1

2 log(1 − pcrit) + 1
2 log 2 + 1

2 log 2 + log 2 = 0,

which is equivalent to 16pcrit(1 − pcrit) = 1, hence pcrit = (2 − √
3)/4 ≈ 0.067.

Suppose we consider only pairs (p, ε) such that c(p)−ε = 1/2. In other words, we
have chosen p just a little greater than pcrit and must compute the probability that
there is a path, along which, cumulatively, the ones always outnumber the zeros.
Aldous showed that one may compute the probability of such an infinite path by
analyzing the embedded branching process of excess ones.

PROPOSITION 2.5 ([2], Theorem 6). For c(p) − ε = 1/2,

logρ(p; ε,∞) = −κ(p − pcrit)
−1/2 + O(1)

as p ↓ p0, with

κ = π log 1/(4p0)

4
√

1 − 2p0
≈ 1.11.

Equivalently, since c(p) has a finite derivative ν at p0,

logρ(p; ε,∞) = −c∗ε−1/2 + O(1)(2.9)

as ε → 0 with c(p) − ε = 1/2, where c∗ = κ
√

ν.

One way to prove Conjecture 1 without the restriction c(p)− ε = 1/2 would be
to adapt Kesten’s proof for Brownian motion to the random walk setting. Inspec-
tion of the nearly forty journal pages in [14] devoted to the Brownian result lead
one to believe this would be possible but tedious. It is worth formulating an eas-
ier but crude result bounding ρ(p; ε,∞) from above; among other things this will
clarify that the logarithms of the factors other than ρ(p, sε, ε−3/2) in the statement
of Theorem 3.4 below are asymptotically neglible; the proof is given in Section 4.

PROPOSITION 2.6. Fix any law L with mean μ supported on [μ − 1,μ + 1].
Then there is a constant, η > 0 such that for any sufficiently small ε,

logρ(L; ε,∞) ≤ logρ(L; ε, ε−3/2) ≤ −ηε−1/2.
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3. Complexity results. An easy result, found in [13], is that a finite look-
ahead algorithm can produce a path with (c(p) − ε)n 1’s in time g(ε)n for some
function g. This suggests that we focus our effective computation question on
times that are linear in n and try to find the relationship between the linear dis-
crepancy ε from optimality and the linear time constant g(ε).

Upper bounds for the computation time are in general easier, because finding a
reasonable algorithm is easier than proving none exists. In fact, good upper bounds
are obtained using a depth-first search. The notion of a depth-first search is quite
standard; nevertheless, some details are required in order to avoid later ambiguities.
Suppose a random set W of vertices is adapted, in the sense that the event v ∈ W

is measurable with respect to F (v), the σ -field generated by the values X(w) at
all vertices w ≤ v. A depth-first search for an infinite descending path in W is the
following algorithm. Label the two children of v by v0 and v1, so vertices are
labeled by finite sequences of zeros and ones. Order the vertices lexicographically.
At time 1, examine the root; if 0 /∈ W the search fails. At each subsequent time,
examine the leftmost vertex v (the vertex whose label is the least binary number)
among children of vertices previously examined and found to be in W . If v /∈ W

and is composed of all 1’s, then the search fails, otherwise the search continues.
Properties of the depth-first search include the following:

1. The set of examined vertices is always a subtree.
2. The sequence of examined vertices is in lexicographic order.
3. If the search continues for infinite time, then the set of vertices found to be in

W will contain a unique infinite path (this follows from the previous property).

Specialize now to the set W = Wε defined to be the set of vertices v such that
for all w ≤ v, S(w) ≥ (c − ε)|w|. Finding a path from the root of length n in Wε

is one way to locate a witness to Mn ≥ (c − ε)n. Although there may be many
witnesses outside Wε , they are hard to find, so searching Wε turns out to be a pretty
good way to test whether Mn ≥ (c − ε)n. The only drawback is that the search
may fail. Therefore, we define the iterated depth-first search with parameter ε,
denoted by IDFS(ε), as follows. Recall that the subtree process is defined as the
set {S(u) − S(v) :u ≥ v}; thus we may define a set Wε(v), which is the set Wε

of the subtree process from v, to be the set of u ≥ v such that for v ≤ z ≤ u,
S(z) − S(v) ≥ (c − ε)(|z| − |v|).

IDFS:
Repeat until failing to terminate:

Let v be the leftmost among vertices of minimal depth that have not yet
been examined, and execute a depth-first search for an infinite path in
Wε(v).

Thus the algorithm begins with a depth-first search for an infinite path in Wε(0).
If this goes on forever, then this is the whole IDFS. Otherwise, at each termi-
nation, the search begins again from a vertex none of whose descendants has



SEARCH COST FOR NEARLY OPTIMAL PATH 1281

been examined. Therefore, the probability of success after each termination is
ρ(L; ε,∞) > 0. It follows that one plus the number of terminations is a geometric
random variable with mean ρ(L; ε,∞)−1 and in particular, will be finite, hence
IDFS will always find an infinite path in Wε(v) for some v.

The next proposition uses a depth-first search to give a general upper bound in
terms of certain survival probabilities; the proof is given at the beginning of the
next section. The result was known to Aldous [1], though not proved in this form.
For this result, binary random variables are not required.

PROPOSITION 3.1. Let {X(v)} be IID with any bounded distribution L. Fix
any r < 1 and ε > 0. As n → ∞, the probability goes to 1 that IDFS(rε) finds a
vertex v with |v| = n and S(v) ≥ (c − ε)n. The time it takes to do this is at most
ρ(L; rε,∞)−1n + o(n) in probability.

REMARK. The appearance of ρ in this bound explains why the quantities
ρ(p; ε,∞) are relevant to the complexity problem.

The upper bound in the critical case follows directly from this proposition.

COROLLARY 3.2 (Upper complexity bound when p = 1/2). Let p = 1/2.
There is a C > 0 and an algorithm which produces a path of length n having at
least (1 − ε)n 1’s, in time at most Cnε−1, with probability tending to 1 as n → ∞.

PROOF. By (2.8) of Proposition 2.4, we know that ρ(1/2; rε,∞) ≥ c1rε for
some c1 ≥ 0. By Proposition 3.1, for any δ > 0 there is an n0 such that for n > n0,
IDFS(rε) produces the desired path by time ((c1rε)

−1 + δ)n with probability at
least 1 − δ. This proves the lemma for any C > (c1rε)

−1. �

The first main result of this paper is the corresponding lower bound.

THEOREM 3.3 (Lower complexity bound when p = 1/2). Let p = 1/2. For
any search algorithm (see the discussion at the end of Section 1), for any κ < 1/2,
and for all sufficiently small ε (depending on κ), the probability of finding a path
of length n from the root with at least (1 − ε)n 1’s by time κε−1n is O(1/n),
uniformly in the search algorithm.

When p < 1/2, lack of understanding of ρ(p; ε,∞) prevents us from stating
an upper bound beyond what is inherent in Proposition 3.1. In the special case that
c(p) − ε = 1/2, we may put Proposition 2.5 together with Proposition 3.1 to see
that IDFS finds a witness to Mn ≥ (c(p) − ε)n by time n exp(Cε−1/2) for some
C > 0. If Conjecture 1 is true, then for all p and ε the IDFS is likely to succeed in
time O(n exp(Cε−1/2)). The second main result of this paper is a corresponding
lower complexity bound. Because this is stated in terms of ρ it is a reasonably
sharp converse to Proposition 3.1.
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THEOREM 3.4 (Lower complexity bound when p < 1/2). Fix p ∈ (0,1/2)

and s > 1. For any algorithm, the probability of finding a path of length n with at
least (c(p) − ε)n 1’s by time

s − 1

4(1 − c(p))
ε11/2ρ(p, sε, ε−3/2)−1n

is O(ε−1n−1).

REMARKS. If the asymptotics for ρ are as expected, then one could take s =
1 + o(1) as ε → 0 in such a way that

log
[

s − 1

4(1 − c(p))
ε11/2ρ(p; sε, ε−3/2)−1n

]
∼ log[ρ(p; ε, ε−3/2)−1n].

This would require a regularity result on ρ which is not proved. Note also, that it
is expected (Conjecture 1) that

logρ(p; ε,Lε−3/2) ∼ −CLε−1/2,

but that the constant should depend on L, so Theorem 3.4 is at best sharp up to a
constant factor in the logarithm. Finally, we note that as ε → 0 with n fixed, the
search time ceases to grow once ε < 1/n, which is reflected in the fact that the
probability upper bound Cε−1n−1 becomes uniformative when ε is this small.

4. Proofs of preliminary results and upper complexity bounds.

PROOF OF PROPOSITION 3.1. Say that a vertex v is good if there is an infi-
nite descending path x0, x1, x2, . . . from v (a path where each xj+1 is a child of xj )
such that S(xn) − S(v) ≥ (c − rε)n for all n. Such a path is called a good path. If
IDFS(rε) ever examines a good vertex v, then it will never leave the subtree of v.
Not every vertex on a good path is necessarily good. However, if the search al-
gorithm encounters infinitely many good vertices v(1), v(2), . . . , then, since each
must be in the subtree of the previous one, these must form a chain of descendants
and the sequence v(t) : t ≥ 1 must converge to a single end of the tree (an infinite
descending path).

Since each vertex examined by the depth-first search has no descendants previ-
ously examined, we have

P
(
v(t) is good | Ft−1

) = ρ(L; rε,∞)

for all t . By the conditional Borel–Cantelli lemma (e.g., [9], Theorem 4.4.11), the
number of good vertices among v(1), . . . , v(n) is almost surely ρ(rε)n + o(n).
Hence, after the time τn that the nth good vertex is examined, the path from v(τ1)

to v(τn) has the property that any vertex w on the path has

S(w) − S(v(τ1)) ≥ (c − rε)
(|w| − |v(τ1)|).
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Recalling that r < 1, we see there is a random N such that for all vertices v on
the infinite path chosen by the algorithm, if |v| ≥ N then S(v) ≥ (c − ε)|v|. The
conclusion of the proposition follows. �

By Brownian scaling, for a mean-zero, finite variance random walk {Sn}, we
have log P(S1, . . . , Sn ∈ [−L,L]) ∼ −Cn/L2. It is convenient to record a lemma
giving an explicit constant for the upper bound, uniform over all walks with a given
variance.

LEMMA 4.1. Let {Sn} be a random walk whose increments are bounded by 1
and have mean zero and variance σ 2 > 0. Then for L ≥ 1, the probability of the
walk staying in an interval [−L,L] up to time N is bounded above by

P(S1, . . . , SN ∈ [−L,L]) ≤ exp
(
− σ 2N

36eL2

)
,

provided that the exponent is less than −1/4, that is, N > 9eL2/σ 2.

PROOF. For any n ≤ N , the event that S1, . . . , SN ∈ [−L,L] implies that for
each j ≤ k ≤ j + n, |Sk − Sj | ≤ 2L. Breaking into �N/n� time blocks of size n,
plus a possible leftover segment, independence of the increments implies that

P(S1, . . . , SN ∈ [−L,L]) ≤ P(S1, . . . , Sn ∈ [−2L,2L])�N/n�.(4.1)

Later, we will choose

n =
⌈

8eL2

σ 2

⌉
.(4.2)

For now, we let n and α be arbitrary and we let τα := inf{k : |Sk| ≥ α
√

n} be the
time for the random walk to exit the interval [−α

√
n,α

√
n]. Let us obtain an

upper bound on P(τα > n). Clearly, ES2
τα∧(n+1) ≤ (α

√
n+1)2 because Sτα∧(n+1) ∈

[−1 − α
√

n,1 + α
√

n]. Hence,

(
α
√

n + 1
)2 ≥ ES2

τα∧(n+1) ≥
n∑

j=0

σ 2
P(τα > j) ≥ σ 2(n + 1)P(τα > n).

Choosing α = σ/
√

2e and using (a + c)2 ≤ 2(a2 + c2) now gives

P
(
τ(2e)−1/2σ > n

) ≤ ((2e)−1/2σ
√

n + 1)2

σ 2n
≤ e−1 + 2

σ 2n
≤ e−1/2,(4.3)

once σ 2n ≥ 8e. Now, choosing n as in (4.2) implies that α
√

n = σ
√

n/
√

2e ≥ 2L

and hence by (4.1) and (4.3),

P(S1, . . . , SN ∈ [−L,L]) ≤ exp
(
−1

2

⌊
N

n

⌋)
.
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The proof is finished by observing that �n� ≤ 9eL2/σ 2 (because L2 > 1 > σ 2)
and hence that ⌊

N

n

⌋
≥

⌊
Nσ 2

9eL2

⌋
≥ Nσ 2

18eL2 ,

once Nσ 2 ≥ 9eL2. �

PROOF OF PROPOSITION 2.6. We need to find a constant η > 0 such that

ρ(L; ε, ε−3/2) < exp(−ηε−1/2).(4.4)

This is a standard “squeezing” argument: the probability space is broken into two
parts. One has small measure because some particle is found at a position that
is greater by αε−1/2 than it should be, for some constant α > 0; conditioning on
the complement of this event squeezes the path below c(L)k + αε−1/2, but above
(c(L) − ε)k, at each level k; the chance of a random walk trajectory remaining
in such a tube is small enough to make the expected number of such trajectories
small.

To make this precise, begin by letting c = c(L) and λ∗ be as in Proposition 2.1.
For any positive integer N , denote by G(N,ε,α) the event

{∃v : |v| ≤ N and S(v) ≥ c(L)|v| + αε−1/2}.
Applying (2.2) to S(v) for each of 2n vertices v at each generation n ≤ N , we see
that

P[G(N,ε,α)] ≤ N exp(−λ∗αε−1/2).(4.5)

Next, set N := αε−3/2 where α ≤ 1 is a positive parameter that will be specified
later. Let L denote the common law of the Bernoulli(p) variables {Xn}, let L′ de-
note the law of a Bernoulli(c(L)) variable and L′′ denote the law of a compensated
Bernoulli(c(L)) variable. Let Q (resp., Q′,Q′′) denote the law of a sequence {Xn},
that is, IID with law L (resp., L′, L′′). Let σ 2 be the common variance of L′
and L′′ and let c1 denote the constant −σ 2/(36e) from Lemma 4.1. Let H denote
the event that |Sn − c(L)n| ≤ αε−1/2 for 1 ≤ n ≤ N . Applying Lemma 4.1 to the
law L′′ we see that

Q′(H) = Q′′(|Sn| ≤ αε−1/2 for all n ≤ N)
(4.6)

≤ exp
(
−c1

α
ε−1/2

)
.

For any measures ν and π and any event A, we have ν(A) ≤ π(A) ·
supω∈A(dν/dπ)(ω). We may therefore use (2.1) to convert (4.6) into an estimate
for Q(H): plugging β = −αε−1/2 and rate(c) = log(1/2) into (2.1) gives

Q(H) ≤ sup
x≥c(L)n−αε−1/2

Eeλ∗X1

eλ∗x Q′(H)

≤ 2−N exp(λ∗αε−1/2) exp
(
−c1

α
ε−1/2

)
.
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As α ↓ 0, the quantity λ∗α−c1/α converges to −∞, hence we may pick α ∈ (0,1)

such that λ∗α − c1/α ≤ −λ∗α. Fixing this value of α and denoting η := λ∗α, we
have

Q(H) ≤ 2−N exp(−ηε−1/2).

We apply this to the variables {S(w) :w ≤ v} for the branching random walk
on the binary tree, where v is any vertex at depth N . There are 2N such vertices,
whence the probability that some path 0 = v0, . . . , vN satisfies |S(vn) − c(L)n| ≤
αε−1/2 for all n ≤ N is bounded above by exp(−ηε−1/2). Combining this with
(4.5) shows that

ρ(L; ε,αε−3/2) ≤ (N + 1) exp(−ηε−1/2).

Choosing a slightly smaller value of η, we may absorb the factor of N + 1. Be-
cause α is at most 1 and ρ(L; ε,N) is decreasing in N , the proof is complete.

�

5. Proofs of lower complexity bounds. An easy lemma needed at the end of
each of the two proofs is the following:

LEMMA 5.1. Let {Xt : t = 1,2,3, . . .} be adapted to the filtration {Ft } and
have partial sums St := ∑t

k=1 Xk . Suppose there are numbers βt and αt such that
for all t ,

E(Xt | Ft−1) ≤ βt ;
E(X2

t | Ft−1) ≤ αt .

Let βt := t−1 ∑t
s=1 βs and αt := t−1 ∑t

s=1 αs . Then for any T and any β ′ > βT ,

P(ST > Tβ ′) ≤ αT

(β ′ − βT )2
T −1.

In the special case βt ≡ β,αt ≡ α, this becomes

P(ST > Tβ ′) ≤ α

(β ′ − β)2 T −1.(5.1)

PROOF. Let μt = ∑t
k=1 E(Xk | Fk−1). Then {St − μt } is a martingale and

E(St − μt)
2 =

t∑
k=1

Var(Xk | Fk−1) ≤
t∑

k=1

E(X2
k | Fk−1) ≤ tαt .

Using the inequality μt ≤ tβt , we then have, by Chebychev’s inequality,

P(ST > β ′T ) ≤ P
(
ST − μT ≥ (β ′ − βT )T

) ≤ T αT

(β ′ − βT )2T 2
. �
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PROOF OF THEOREM 3.3. It suffices to prove the result when ε = 1/(2b) is
the reciprocal of an even integer and n is even. For such values of ε and n, divide
the vertices of T into two classes. Label v as good if there is a path of length b

descending from v on which the labels are all equal to one; label all other vertices
bad. Suppose γ = (x0, . . . , xn−1) is a path of length n − 1 from the root and that
at most εn vertices v ∈ γ have X(v) = 0. Then at most bεn + b vertices v ∈ γ are
bad, because if xj is bad for j < n − b then at least one of xj , . . . , xj+b must be
labeled with a zero. It follows that least n/2 − b of the vertices in γ are good.

Say that our search algorithm does not jump if each successive vertex inspected
is a neighbor of the root or of a vertex previously inspected. These algorithms
have the property that whenever you peek at a vertex you know nothing about its
descendant tree.

CONJECTURE 2. No algorithm finds a path with at least (1 − ε)n 1’s in a
shorter average time than the best algorithm that does not jump. (See [1], Conjec-
ture 5.1, for a similar conjecture.)

If the conjecture is true, then the proof of the theorem is very short: each new
vertex we peek at has probability O(1/n) of being good, independent of the past;
in time o(n2), we can therefore find only o(n) good vertices, and in particular, we
cannot find n/2 good vertices. In absence of a proof of the conjecture, the proof of
the theorem continues as follows.

Given a search algorithm producing a sequence {v(t) : t ≥ 1} of examined ver-
tices, define sets A(t) as follows. A vertex x is in A(t) if all of the following hold:

(i) x /∈ ⋃
s<t A(s);

(ii) x = v(t) or x is an ancestor of v(t) and |x| > |v(t)| − b;
(iii) there is a descending path from x of length b, passing through v(t), all of

whose vertices w have X(w) = 1.

In other words, x ∈ A(t) if t is the first time a vertex v is peeked at that lies
on a path of length b of 1’s descending from x. Think of A(t) as an accounting
scheme which marks good vertices as “found” as soon as their subtree is explored.
To avoid confusion, note that A(t) is not measurable with respect to Ft : good
vertices “found” at time t are not known to be good until much later. If a path
γ = (x0, . . . , xn−1) has at most εn zeros on it, and this whole path has been found
by our search algorithm by time t , then there are at least n/2 − b values of j such
that X(xj ) = · · · = X(xj+b−1) = 1. For these values of j , the vertex xj is good
and is in A(s) for some s ≤ t . Thus finding γ by time t implies∣∣∣∣

⋃
s≤t

A(s)

∣∣∣∣ ≥ n

2
− b.(5.2)

Now we bound the conditional mean and variance of |A(t)| given Ft−1. Let
yj (t) denote the ancestor of v(t) going back j generations. The possible elements
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of A(t) are v(t) = y0(t), y1(t), . . . , yb−1(t). The event yj (t) ∈ A(t) is contained
in the intersection of the events Gj := {X(yj (t)) = · · · = X(y0(t)) = 1}, G′

j :=
{yi /∈ A(s) ∀0 ≤ i ≤ j,0 < s < t} and the event Hj that if j < b − 1 then there is a
descending path of length b−1− j from a child of v(t) labeled by 1’s and disjoint
from

⋃
s<t A(s). Clearly G′

j ∈ Ft and on G′
j , P(Gj | Ft−1) = 2−j−1. Also, on G′

j ,
Proposition 2.2 and the definition of ρ(p, ε, n) implies that for j < b − 1,

P(Hj | Ft−1,Gj ) = ρ(1/2,1, b − 1 − j) ∼ 2

b − j

as b − j → ∞, independently of t . Putting this together gives

E(|A(t)| | Ft−1) ≤
b−1∑
j=0

2−j−1 2 + u(b − 1 − j)

b − j

for some function u tending to zero. Since 2/b = 4ε, the j th term is 2−j−1(4ε +
o(ε)) uniformly in t and summing the last expression gives

E(|A(t)| | Ft−1) ≤ 4ε + o(ε),

uniformly in t as ε → 0.
To bound the second moment, compute

E(|A(t)|2 | Ft−1) ≤ ∑
0≤j,k≤b−1

P
(
yj , yk ∈ A(t) | Ft−1

)

≤
b−1∑
j=0

(2j + 1)P
(
yj ∈ A(t) | Ft−1

)
.

The probability on the right-hand side is the probability each of the vertices
y0, . . . , yj being marked with a 1, and simultaneously, of the existence of a path
of length b − 1 − j of vertices descending from v(t) also all bearing 1’s. This
probability is equal to

b−1∑
j=0

2j + 1

2j+1

2 + u(b − 1 − j)

b − j
,

which is asymptotic to 4ε
∑∞

j=0(2j + 1)/2j+1 = 12ε as ε → 0. Now fix κ < 1/2
and use Lemma 5.1 with Xt = |A(t)|, β = 4ε + o(ε), α = 12ε + o(ε), T =
κnε−1/4 and

β ′ = n/2 − b

T
= 4

n/2 − ε−1/2

κnε−1 = 4
1/2 − ε−1/(2n)

κε−1 = 4ε

2κ
+ O

(
1

n

)
,
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uniformly in ε. The conclusion, recalling (5.2), is that the probability of finding a
path γ of length n with at most εn zeros on it by time T , is at most

P

(∣∣∣∣
⋃

s≤4κnε−1

A(s)

∣∣∣∣ ≥ n

2
− b

)
≤ P

( ∑
s≤4κnε−1

|A(s)| ≥ n

2
− b

)

(5.3)
≤ θ(ε, n)n−1,

where

θ(ε, n) := α

(β ′ − β)2 (nT −1).

Computing θ(ε, n) we have

β ′ − β = 4ε

(
1

2κ
− 1

)
+ o(ε) + O

(
1

n

)

and hence

θ(ε, n) = 4
(12 + oε(1))ε

ε2(1/(2κ) − 1 + oε(1) + O(1/(nε)))2 κ−1ε

→ 48κ

(1/2 − κ)2

as ε → 0 and nε → ∞. In particular, for sufficiently small ε > 0 and all n, we see
that θ(ε, n) is bounded and the conclusion of the theorem follows from (5.3). �

PROOF OF THEOREM 3.4. It suffices to prove the theorem when ε = b−2/3 for
some integer b. Fix p < 1/2 and s > 1. The strategy is again to show that one must
find a lot of good vertices and that a good vertex is hard to find. This time, the set
of good vertices is the set R(p; ε, b) of vertices v for which there is a descending
path x0, . . . , xb from v such that for each 1 ≤ j ≤ b,

j∑
i=1

X(xi) ≥ (
c(p) − ε

) · j.

Observe that P(v ∈ R(p; ε, b)) = ρ(p; ε, b) for all v.

LEMMA 5.2 (Must find good vertices). Let s > 1 and suppose that γ =
γ (ε,n) = (x0, . . . , xn) is a path of length n from the root with at least (c(p)−ε) ·n
ones. Then there are 0 < ε0 < n0 < ∞ such that for ε ≤ ε0 and n ≥ n0, the number
of vertices in γ (ε,n) ∩ R(p, sε, b) is at least⌊

s − 1

2(1 − c(p))
nε5/2

⌋
.

REMARK. Again, the proof finds this many good vertices that are not only
elements of γ ∩R, but for which the values of X(v) for v ∈ γ are a witness to this.



SEARCH COST FOR NEARLY OPTIMAL PATH 1289

PROOF OF LEMMA 5.2. Color the vertices of γ red and blue under the fol-
lowing recursive rule. Let τ0 = 0. Recursively define τj+1 to be τj + k where k is
the least positive integer less than b for which

S(xτj+k) ≤ S(xτj
) + k

(
c(p) − sε

)
,

if such an integer exists, and is equal to b otherwise. Let J be the least j for which
τj ≥ n. All vertices in the list xτj+1, . . . , xτj+1 receive the same color. The color is
red if τj+1 < n and τj+1 < τj + b and blue otherwise. Denote the set of red and
blue vertices by red and blue, respectively; see Figure 1 for an example of this.

The sum Sred := ∑
v∈red X(v) is equal to the sum over all j for which τj+1 <

n ∧ (τj + b) of S(τj+1) − S(τj ). The sum over each such segment of X(v) is at
most (τj+1 − τj )(c(p) − sε), when

Sred ≤ |red|(c(p) − sε
)
.

On the other hand, for each j such that the vertices xτj+1, . . . , xτj+1 are blue,
either τj > n − b or xτj

∈ γ ∩ R(p; sε, b). Thus the number of blue vertices is at
most b(|γ ∩R(p; sε, b)|+ 1). Using |red|+ |blue| = n and Sblue ≤ |blue|, we have
the inequalities(

c(p) − ε
)
n ≤ S(xn)

≤ (n − |blue|)(c − sε) + |blue|
= n

(
c(p) − sε

) + |blue|(1 − c(p) + sε
)

≤ n
(
c(p) − sε

) + (
b
(|γ ∩ R(p; sε, b)| + 1

))(
1 − c(p) + sε

)
.

Solving and plugging in b = ε−3/2 yields

|γ ∩ R(p; sε, b)| ≥ nε5/2
[

s − 1

1 − c(p) + sε
− 1

nε

]
.

When ε is sufficiently small and nε is sufficiently large, the quantity in square
brackets is at least half of (s − 1)/(1 − c(p)), as desired. This finishes the proof of
the lemma because the result is trivial when ε5/2n < 2(1 − c(p))/(s − 1). �

FIG. 1. Times τj are marked by hollow dots; red segments are dashed, blue segments are solid.
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CONTINUATION OF PROOF OF THEOREM 3.4. Because we do not care about
factors that are polynomial in ε, the count is not as delicate as in the proof of
Theorem 3.3. Define A(t) to be the set of vertices x such that there is a descending
path from x of length b, passing through v(t), such that for all j ≤ b, the initial
segment of length j has at least (c(p) − sε)j 1’s, and such that t is minimal for
this to hold. Formally, x ∈ A(t) if:

(i) x /∈ ⋃
s<t A(s);

(ii) there is a descending path x = y0, y1, . . . , yb−1 from x containing v(t);
(iii) for all j ≤ b,

∑j−1
i=0 X(yi) ≥ (c(p) − sε)j .

Again, given Ft−1, the possible elements of A(t) are the ancestors of v(t) back
b − 1 generations. For each ancestor y, P(y ∈ A(t) | Ft−1) is bounded above by
ρ(p; sε, b). Therefore,

E(|A(t)| | Ft−1) ≤ bρ(p; sε, b).

For the second moment, it suffices to note the upper bound:

E(|A(t)|2 | Ft−1) ≤ bE(|A(t)| | Ft−1)

≤ b2ρ(p; sε, b).

Let N = � (s−1)
2(1−c(p))

nε5/2�. By Lemma 5.2, for any T > 0,

P
(
finding a witness to Mn ≥ (

c(p) − sε
)
n by time T

)
(5.4)

≤ P

(∣∣∣∣
⋃
s≤T

A(s)

∣∣∣∣ ≥ N

)
.

Let α = bρ(p; sε, b), β = b2ρ(p; sε, b), β ′ = 2β and T = N/β ′. Applying (5.1)
of Lemma 5.1 bounds the right-hand side of (5.4) from above by

α

(β ′ − β)2

1

T
= bρ(p; sε, b)

b4ρ(p; sε, b)2

2b2ρ(p; sε, b)

N

= 2

bN
.

This goes to zero as n → ∞; in fact, b−1N−1 = ε3/2N−1 = O(ε−1n−1). It fol-
lows that the probability of finding a witness to Mn ≥ (c(p) − ε)n by time T is
O(ε−1n−1). Using the fact that �x� ≥ x/2 once x ≥ 1 the proof is completed by
observing that, once N ≥ 1,

T = N

2β
≥ s − 1

4(1 − c(p))

nε5/2

2ε−3ρ(p; sε, ε−3/2)

= s − 1

4(1 − c(p))
ε11/2ρ(p; sε, ε−3/2)−1n. �
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