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ON THE CONVERGENCE TO EQUILIBRIUM OF
KAC’S RANDOM WALK ON MATRICES

BY ROBERTO IMBUZEIRO OLIVEIRA1

Instituto de Matemática Pura e Aplicada (IMPA)

We consider Kac’s random walk on n-dimensional rotation matrices,
where each step is a random rotation in the plane generated by two randomly
picked coordinates. We show that this process converges to the Haar measure
on SO(n) in the L2 transportation cost (Wasserstein) metric in O(n2 lnn)

steps. We also prove that our bound is at most a O(lnn) factor away from op-
timal. Previous bounds, due to Diaconis/Saloff-Coste and Pak/Sidenko, had
extra powers of n and held only for L1 transportation cost.

Our proof method includes a general result of independent interest, akin
to the path coupling method of Bubley and Dyer. Suppose that P is a
Markov chain on a Polish length space (M,d) and that for all x, y ∈ M

with d(x, y) � 1 there is a coupling (X,Y ) of one step of P from x and
y (resp.) that contracts distances by a (ξ + o(1)) factor on average. Then the
map μ �→ μP is ξ -contracting in the transportation cost metric.

1. Introduction. Around 50 years ago Kac [7] introduced a one-dimensional
toy model of a Boltzmann gas. It is a discrete-time Markov process whose state at
a time t ∈ {0,1,2,3, . . .} is a vector

v(t)= (v1(t), . . . , vn(t)) ∈ R
n,

corresponding to the velocities of n interacting particles of equal mass. At each
time t , a uniformly distributed pair 1 ≤ it < jt ≤ n and a uniform angle θt ∈ [0,2π ]
are chosen independently. This choice corresponds to a collision between particles
it , jt whose velocities are changed to new values

vit (t + 1) = cos θtvit (t)+ sin θtvjt (t),

vjt (t + 1) =− sin θtvit (t)+ cos θtvjt (t),

whereas the other velocities are kept the same. This prescription for the new ve-
locities implies that the total kinetic energy

E(t)≡
n∑

k=1

vk(t)
2
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is conserved.
For each time step t ,

v(t + 1)=R(it , jt , θt )v(t),

where R(it , jt , θt ) is a rotation by θt of the plane generated by the coordinates
it and jt in n-dimensional space. Two related processes have been studied in the
literature under the heading of “Kac’s random walk”:

• Suppose E(0)= 1. Then the evolution of v(0), v(1), v(2), v(3), . . . corresponds
to an ergodic Markov chain over the (n − 1)-dimensional sphere Sn−1 ⊂ R

n,
with uniform invariant distribution. This is the model originally considered by
Kac [7] in his investigations of the foundations of Statistical Mechanics. See [4,
6, 16] and the references therein for more works in similar directions.

• One might also consider the random walk on matrices determined by choosing
some X(0) ∈ SO(n), the set of n× n rotation matrices, and then setting

X(t + 1)=R(it , jt , θt )X(t), t ≥ 0.

This is a discrete-time ergodic random walk on SO(n) whose stationary distrib-
ution is a Haar measure on SO(n). This process has also been extensively stud-
ied, both for its intrinsic interest and as a sampling algorithm—indeed, a “Gibbs
sampler” [5]—for a Haar measure. Interestingly, this process is featured in Hast-
ings’ seminal 1970 paper on Markov chain Monte Carlo [8]. See [1, 4, 5, 12]
for more details.

The question arises of how fast Kac’s random walk on SO(n) converges to equi-
librium. This question may be posed in different forms. Convergence of density
functions to equilibrium is very well understood: Janvresse [6] obtained the first
bound of optimal magnitude �(n−1) on the L2 spectral gap of the chain on Sn−1.
Carlen, Carvalho and Loss [4] obtained the exact spectral gap for both processes.
Finally, Maslen [10] computed the entire spectrum for both processes.

Convergence to equilibrium in total variation also occurs, as shown by Diaconis
and Saloff-Coste [5] who obtained a very poor eO(n2) mixing time bound for con-
vergence in total variation of the matrix process. We cannot improve on this bound,
but note that total variation is perhaps too stringent a notion of convergence for
simulations (as it is sensitive to errors at arbitrarily small scales), whereas conver-
gence of densities is too weak (e.g., when one starts from a discrete distribution).

We consider an intermediate notion of convergence to equilibrium based on
transportation cost. Given a metric space (M,d) and two probability measures
μ, ν over the Borel σ -field of M , the Lp transportation cost (or Wasserstein)
distance between μ and ν is

Wd,p(μ, ν) = inf{(E[d(X,Y )p])1/p : (X,Y ) is a pair

of random variables coupling (μ, ν)}



1202 R. I. OLIVEIRA

(see Section 2.2 for a formal definition). Diaconis and Saloff-Coste [5] and Pak
and Sidenko [12] use the dual characterization of Wd,1 [15], Remark 6.5, that is
especially relevant for simulations:

Wd,1(μ, ν)= sup
{∫

M
f d(μ− ν) :f :M → R is 1 − Lipschitz under d

}
.(1)

That is, if one can sample from μ, we can estimate
∫
M f dν for any Lipschitz f

up to a Wd,1(μ, ν) intrinsic bias. This is a natural metric for many applications;
as a case in point, we briefly discuss a suggestion of Ailon and Chazelle [1]. It
is well known that one can “reduce the dimension” of a point set S ⊂ R

n while
approximately preserving distances by first applying a random linear transforma-
tion X drawn from the Haar measure on SO(n) and then projecting onto the first k

coordinates. A result known as the Johnson Lindenstrauss lemma says that if one
chooses k = O(ln |S|/ε2) (which does not depend on the ambient dimension n),
then the ratios of pairwise distances in S are all preserved up to (1 ± ε)-factors,
with high probability. One can easily check that a similar result holds when X is
sufficiently close to being Haar distributed in the Wd,1 metric (for an appropriate
metric d; see below). As noted in [1], for X = X(t) coming from Kac’s random
walk, the products st =X(t)s (s ∈ S) can be computed with just a constant amount
of extra memory, as the map st �→ st+1 affects only two coordinates of st ; hence, if
we can prove that X(t) converges rapidly to a Haar measure in the Wd,1 distance,
we have a time- and memory-efficient way of doing dimensionality reduction.

Our main result is a rapid mixing bound for the SO(n) walk. We consider M =
SO(n) with two different choices of metric d . For a, b ∈ SO(n) we define:

hs(a, b) ≡ ‖a − b‖hs =
√

Tr
(
(a − b)†(a − b)

)
the Hilbert–Schmidt norm;

D(a,b) ≡ the Riemannian metric on SO(n) induced by the Hilbert–Schmidt

inner product 〈u, v〉hs ≡ Tr(u†v).

Clearly, hs ≤D always. Define the Lp transportation-cost mixing times:

τd,p(ε)≡ inf{t ∈ N :Wd,p(μKt,H)≤ ε for all prob. measures μ on SO(n)},
where d = D or hs; H is the Haar measure on SO(n); K is the transition kernel
for Kac’s walk; and μKt is the time-t distribution of a walk started from distribu-
tion μ. Note that τhs,p(·)≤ τD,p(·) and that both mixing times are increasing in p.
We will show the following:

THEOREM 1 (Main result). For all n ∈ N \ {0,1}, Kac’s random walk on
SO(n) satisfies the following mixing time estimate:

τD,2(ε)≤
⌈
n2 ln

(
π
√

n

ε

)⌉
.
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Thus, O(n2 lnn) steps of the Markov chain suffice to bring μKt ε-close to the
Haar measure H for any ε = n−O(1). This improves upon the O(n4 lnn) bound by
Diaconis and Saloff-Coste [5] and a very recent preprint by Pak and Sidenko [12]
that lowered the estimate to O(n2.5 lnn) (we only learned about that result after
proving the main results in the present paper). Moreover, these two papers treated
only the L1 case for d = hs, whereas we consider the stronger L2 case with the
stronger metric D.

We also show that our bounds are tight up to a O(lnn) factor, for all n−O(1) ≤
ε ≤ ε0 (ε0 some constant), even when applied to p = 1 and d = hs.

THEOREM 2. There exist c, ε0 > 0 such that, for all n ∈ N \ {0,1},
τhs,1(ε0)≥ cn2.

Theorem 2 follows from a general lower bound for the mixing time of random
walks induced by group actions. The general result might be already known, but
since we could not find a proof of it elsewhere, we provide our own proof in Sec-
tion 6. The bound in Theorem 2 was also claimed in [12].

The key to proving our main result, Theorem 1, is a contraction property of
the Markov transition kernel of the random walk under consideration. Fix again
a metric space (M,d). For ξ > 0, say that a Markov transition kernel P on M is
ξ -Lipschitz for the Wd,p metric if for all probability measures μ,ν on M with
finite pth moments (cf. Section 2.2)

Wd,p(μP, νP )≤ ξWd,p(μ, ν).(2)

If ξ < 1, we shall also say that P is ξ -contracting. We will prove the following
estimate:

LEMMA 1. In the same setting as Theorem 1, Kac’s random walk on matrices
is √

1 − 1(n
2

) -contracting

in the WD,2 metric.

The proof of Lemma 1 follows a strategy related to the path coupling method
for discrete Markov chains introduced by Bubley and Dyer [3]. Suppose P is now
a Markov chain on the set of vertices V of a connected graph G. The graph induces
a natural shortest-path metric d on G. It is sometimes possible to prove a “local
contraction” estimate of the following form: for any x, y ∈ V that are adjacent
in G, there is a coupling of X (distributed according to one step of P from x)
and Y (distributed according to one step of P from y) such that

E[d(X,Y )] ≤ ξ = ξd(x, y) < 1.
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If that is the case, Bubley and Dyer proved that the local couplings extend to “glob-
ally contracting” couplings for all random pairs (x, y)= (X0, Y0) ∈ V 2, with

E[d(X,Y )] ≤ ξE[d(X0, Y0)].
This implies, in particular, that Wd,1(μP t , νP t )≤ diam(G)ξ t for all distributions
μ, ν, where diam(G) is the diameter of the graph G. In the discrete setting such
results easily extend to total variation bounds.

Our adaptation of their technique is based on the fact that SO(n) is a geodesic
space with the metric D: that is, D(a,b) is the length of the shortest curve con-
necting a and b. We will show that whenever (M,d) is a geodesic space (or more
generally a length space; see Section 2.1) and P is such that, for all deterministic
x, y ∈M with d(x, y)� 1,

E[d(X,Y )p] ≤ (
ξ + o(1)

)p
d(x, y)p,

then P is ξ -contracting and Wd,p(μP t , ηP t ) ≤ ξ t diam(M) for all probability
measures μ,η with finite pth moments, where diam(M) is the diameter of M .
That is, we show that if (M,d) is a Polish length space and P satisfies some
reasonable assumptions, one can always extend “local contracting couplings” of
P -steps from nearby deterministic states to “global contracting couplings” for ar-
bitrary initial distributions. This result is stated as Theorem 3 below.

As with the original path-coupling methodology, proving local contraction is
the problem-specific part of our technique. For Kac’s walk, one can use the local
geometry of SO(n) as a Riemannian manifold to do calculations in the tangent
space, which greatly simplifies our proof. The same idea can be applied to two
related random walks (discussed in Section 5):

• a variant of Kac’s walk where θt is nonuniform;
• a random walk on the set U(n) of n× n unitary matrices where each step con-

sists of applying a unitary transformation from U(2) to the span of a pair of
coordinate vectors.

Pak and Sidenko [12] use a related coupling construction, but neither use the local
structure of SO(n) as effectively, nor do they state any general result on local-to-
global couplings. Diaconis and Saloff-Coste [5] use the analytic technique known
as the comparison method, which seems intrinsically suboptimal for this problem,
as well as more difficult to apply. [These two papers also handle some variants of
Kac’s process which do not seem to be related to the case we consider in Section 5.]

The general idea of contracting Markov chains with continuous state spaces
has appeared in other works. Particularly relevant is a preprint of Ollivier [11],
released during the preparation of the present paper, that contains a result related
to (but a bit weaker than) our “path coupling” result, Theorem 3. That paper is
devoted to the study of “positive Ricci curvature” for Markov chains on metric
spaces, which is precisely what we call ξ -contractivity for Wd,1; from that one can
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deduce many properties, such as concentration for the stationary distribution and
some log-Sobolev-like inequalities. See [11] for details and other references where
contraction properties of Markov chains have been used recently. There have been
many other recent results involving analytic, geometric and probabilistic applica-
tions of transportation cost [9, 13, 14]; this suggests that our techniques may find
applications in that growing field. Of course, we also hope that our techniques will
be applied to obtain mixing bounds of other Markov chains of intrinsic interest,
not necessarily related to such geometric and analytic phenomena.

The remainder of the paper is as follows. Section 2 reviews some important con-
cepts from probability, metric geometry and optimal transport. Section 3 proves
our general result on local-to-global couplings, Theorem 3. Section 4 contains the
definition of Kac’s random walk on matrices and the proofs of Lemma 1 and The-
orem 1. Section 5 sketches the two other random walks described above. Mixing
time lower bounds are discussed in Section 6. Finally, Section 7 discusses other
applications of our method and presents an open problem.

2. Preliminaries.

2.1. Metric spaces, length spaces, σ -fields. Whenever we discuss metric
spaces (M,d), saying that A ⊂ M is measurable will mean that A belongs to
the σ -field generated by open sets in M , that is, the Borel σ -field B(M). More-
over, all measures on metric spaces will be implicitly defined over Borel sets. We
will always assume that the metric spaces under consideration are Polish, that is,
complete and separable.

Let γ : [a, b]→M be a continuous curve. The length Ld(γ ) of γ (according to
the metric d) is the following supremum:

Ld(γ )≡ sup

{
n∑

i=1

d(γ (ti−1), γ (ti)) :n ∈ N, a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b

}
.

The curve γ is rectifiable if Ld(γ ) < +∞. The metric space (M,d) is a length
space if for all x, y ∈M

d(x, y)= inf{Ld(γ ) :γ : [0,1]→M continuous, γ (0)= x, γ (1)= y}.
All complete Riemannian manifolds and their Gromov–Hausdorff limits are

length spaces. Nonlocally-compact examples of Polish length spaces include sep-
arable Hilbert spaces, as well as infinite-dimensional L1 spaces.

2.2. Distributions, couplings and mass transportation. All facts stated below
can be found in [15], Chapter 6.

Let (M,d) be a metric space and Pr(M) be the space of probability measures on
(the Borel σ -field of) M . Given μ,ν ∈ Pr(M), a measure ν ∈ Pr(M×M) (with the
product Borel σ -field) is a coupling of (μ, ν) if for all Borel-measurable A⊂M ,

η(A×M)= μ(A), η(M ×A)= ν(A).
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The set of couplings of (μ, ν) is denoted by Cp(μ, ν). This is always a nonempty
set since the product measure μ× ν is in it.

Given p ≥ 1, Prd,p(M) ⊂ Pr(M) is the set of all probability measures μ with
finite pth moments, that is, such that for some (and hence all) o ∈M ,∫

M
d(o, x)p dμ(x) <+∞.

One can define the Lp transportation cost (or Lp Wasserstein) metric Wd,p on
Prd,p(M) by the formula

Wd,p(μ, ν)p ≡ inf
{∫

M×M
d(x, y)p dη(x, y) :η ∈ Cp(μ, ν)

}
,

(3)
μ,ν ∈ Prd,p(M).

Such metrics are related to the “mass transportation problem” where one at-
tempts to minimize the average distance traveled by grains of sand when a sandpile
is moved from one configuration to another.

It is known that (Prd,p(M),Wd,p) is Polish iff (M,d) is Polish. If (M,d) is
Polish, the infimum above is always achieved by some η = ηopt(μ, ν), which we
will refer to as a Lp-optimal coupling of μ and ν.

For x ∈ M , δx ∈ Pr(M) is the Dirac delta (or point mass) at x, the distribution
that assigns measure 1 to the set {x}. A basic property of mass transportation is
that if x, y ∈M , then

Wd,p(δx, δy)= d(x, y).

If μ ∈ Prd,p(M) and δx is as above,

Wd,p(δx,μ)p =
∫

d(x, y)p dμ(y).

It is often convenient to deal with random variables rather than measures. If X

is a M-valued random variable,

LX ∈ Pr(M)

is the distribution (or law) of X. Notice that

LX ∈ Prd,p(M) ⇔ E[d(o,X)p]<+∞ for some (all) o ∈M.

We will write

X =L μ

whenever X is a random variable with LX = μ. Call a random pair (X,Y ) a cou-
pling of (μ, ν) if L(X,Y ) ∈ Cp(μ, ν). Wd,p(μ, ν) can be equivalently viewed as the
infimum of E[d(X,Y )p]1/p over all such couplings.

Finally, we note that if M is compact (as it is in our main application), then for
any p ≥ 1 Prd,p(M)= Pr(M) and Wd,p metrizes weak convergence.
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2.3. Markov transition kernels. In this section we assume (M,d) is Polish.
A Markov transition kernel on M is a map

P :M ×B(M)→[0,1]
such that, for all x ∈ M , Px(·) ≡ P(x, ·) is a probability measure and for all A ∈
B(M), Px(A) is a measurable function of x. A Markov transition kernel defines
an M-valued Markov chain: for each μ ∈ Pr(M), there exists a unique distribution
on sequences of M-valued random variables

{X(t)}+∞
t=0

such that X(0) =L μ and for all t ∈ {1,2,3, . . .}, the distribution of X(t) condi-
tioned on {X(s)}t−1

s=0 is PX(t−1).
For μ ∈ Pr(M) and t ∈ N, μP t is the measure of X(t) defined as above; one

can check that μP t+1 = (μP t)P for all t ≥ 0.

3. From local to global couplings. In this section we will discuss our method
for moving from local to global bounds for the Lipschitz properties of Markov ker-
nels. In our application we have a Markov kernel P on a Polish space (M,d).
Using explicit couplings, we will show that, for some C > 0 and all x, y ∈
M ,

Wd,p(Px,Py)≤ (
C + o(1)

)
d(x, y),

where o(1) → 0 when y → x. The main result in this section implies that,
under some natural conditions, it follows that Wd,p(μP, νP ) ≤ Cr whenever
μ,ν ∈ Prd,p(M) are r-close.

We first state a definition.

DEFINITION 1. A map f :M →N between metric spaces (M,d) and (N,d ′)
is said to be locally C-Lipschitz (for some C > 0) if for all x ∈M

lim sup
y→x

d ′(f (x), f (y))

d(x, y)
≤ C.

THEOREM 3 (Local-to-global coupling). Suppose (M,d) is a Polish length
space, p ≥ 1 is given and P is a Markov transition kernel on (M,d) satisfying the
following characteristics:

1. Px has finite pth moments for all x: that is, Px ∈ Prd,p(M) for all x ∈M ;
2. P is locally C-Lipschitz on M . That is, the map

x �→ Px

from (M,d) to (Prd,p(M),Wd,p) is locally C-Lipschitz.
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Then for all μ ∈ Prd,p(M), we also have μP ∈ Prd,p(M) and, moreover, the map
μ �→ μP is C-Lipschitz, that is,

∀μ,ν ∈ Prd,p(M), Wd,p(μP, νP )≤ CWd,p(μ, ν).

Before we prove this result, we discuss its application to the setting where
C = (1 − κ) for some κ > 0, the diameter diamd(M) of (M,d) is bounded
(Ollivier [11] noted that, for C = (1 − κ) < 1, diamd(M) ≤ 2�/κ , where � =
supx∈M Wd,p(δx,Px). Hence, the assumption that diamd(M) < +∞ is equivalent
to � < +∞) and the other assumptions of Theorem 3 are satisfied. In this case
Prd,p(M) = Pr(M), that is, all probability measures have bounded pth moments.
Moreover, Banach’s fixed point theorem states that a (1 − κ)-Lipschitz map from
a complete metric space to itself has a unique fixed point. Since (Pr(M),Wd,p)

is Polish and μ �→ μP is a (1 − κ)-Lipschitz map from this space to itself, there
exists a unique element μ∗ ∈ Pr(M) with μ∗P = μ∗.

It follows that μ∗ is the unique P -invariant distribution on M . Moreover, for all
t ∈ N and μ ∈ Pr(M),

Wd,p(μP t ,μ∗)=Wd,p(μP t ,μ∗P t)≤ (1 − κ)tWd,p(μ,μ∗)≤ (diamd(M))e−κt .

We collect those facts in the following corollary.

COROLLARY 1. Assume (M,d) and P satisfy the assumptions of Theorem 3
for some p ≥ 1 and C = (1 − κ) < 1 (i.e., κ > 0). Assume, moreover, that the
diameter diamd(M) of (M,d) is finite. Then there exists a unique P -invariant
measure μ∗ on M . Moreover, the Lp transportation cost mixing times

τd,p(ε)≡ min{t ∈ N :∀μ ∈ Pr(M),Wd,p(μP t ,μ∗)≤ ε}
satisfy

τd,p(ε)≤
⌈
κ−1 ln

(
diamd(M)

ε

)⌉
.

We now proceed to prove the theorem.

PROOF OF THEOREM 3. The first step of the proof is a simple lemma (proven
subsequently) about locally Lipschitz functions.

LEMMA 2. With the notation of Definition 1, assume that M is a length space.
Then any f :M → N that is locally C-Lipschitz is C-Lipschitz according to the
standard definition.

For our proof we only need the following direct consequence [let (N,d ′) =
(Prd,p(M),Wd,p), f (x)= Px].
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COROLLARY 2. If P is a Markov transition kernel on a length space (M,d)

satisfying condition 2 of Theorem 3, then Wd,p(Px,Py) ≤ Cd(x, y) for all
x, y ∈M .

The bounding of Wd,p(Px,Py) can be thought of as an implicit construction of
a coupling along a geodesic path; this is precisely where the name “path coupling”
comes from.

The second lemma we need (proven in Section 3.2) shows that μP ∈ Prd,p(M)

whenever μ ∈ Prd,p(M) and shows that we will only need to compare μP and νP ,
for μ, ν with countable support.

LEMMA 3. Let (M,d) be Polish. Suppose P is a Markov transition kernel
on M such that:

1. Px ∈ Prd,p(M) for all x ∈M ;
2. x �→ Px is a C-Lipschitz map from M to Prd,p(M).

Then for all μ ∈ Prd,p(M) we have μP ∈ Prd,p(M). Moreover, there exists
a sequence {μj }j ⊂ Prd,p(M) of measures with countable support such that
Wd,p(μj ,μ)→ 0 and Wd,p(μjP,μP )→ 0.

The lemma implies the following statement: if Wd,p(μP, νP ) ≤ CWd,p(μ, ν)

for all μ, ν in Prd,p(M) that have countable support, then the same holds for all μ,
ν in Prd,p(M). Our final goal is to prove the Lipschitz estimate for measures with
countable support.

Thus, let μ =∑
j∈N pjδxj

be a convex combination of a countable number of
point masses (xj ∈ M for all j ); similarly, let ν =∑

k∈N qkδyk
. The Lp-optimal

coupling η of μ and ν is of the form

η = ∑
j,k∈N

rj,kδ(xj ,yk)

for some convex weights rj,k . Now define for each pair j, k a Lp-optimal coupling
Qj,k of Pxj

,Pyk
. Then

η′ = ∑
j,k∈N

rj,kQj,k ∈ Cp(μP, νP ).

Moreover, since x �→ Px is C-Lipschitz,∫
M×M

d(u, v)p dQj,k(u, v)=Wd,p(Pxj
,Pyk

)p ≤ Cpd(xj , yk)
p,
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which implies

Wd,p(μP, νP )p ≤
∫
M×M

d(u, v)p dη′(u, v)

= ∑
j,k∈N

rj,k

∫
M×M

d(u, v)p dQj,k(u, v)

≤ Cp
∑

j,k∈N

rj,kd(xj , yk)
p

= Cp
∫
M×M

d(u, v)p dη(u, v).

The RHS is simply CpWd,p(μ, ν)p . �

REMARK 1. Ollivier presents a similar result for p = 1 in [11], Proposi-
tion 17. His proof relies on a quite nontrivial fact (proven in, e.g., [15]): the ex-
istence of a Markov transition kernel Q on M2 such that, for all (x, y) ∈ M2,
Q(x,y) is a 1-optimal coupling of (Px,Py). Our argument provides an alternative
approach, which is perhaps simpler, to the same result. Moreover, his proposition
implies our theorem only when P satisfies:

lim sup
r↘0

sup
x,y∈M : d(x,y)≤r

Wd,1(Px,Py)

r
≤ C,

which is a stronger requirement than our local Lipschitz condition.

3.1. Proof of Lemma 2. It suffices to show that, for all x, y ∈ M , any con-
tinuous curve γ : [0,1] → M connecting γ (0) = x to γ (1) = y and any number
C ′ > C,

Wd,p(Px,Py)≤ C ′Ld(γ ).

To prove this, assume without loss of generality that Ld(γ ) < +∞. For 0 ≤ t1 <

t2 ≤ 1, define the length function

�(t1, t2)≡ Ld

(
γ |[min{t1,t2},max{t1,t2}]

)
.

It is an exercise to show that � is a continuous function �(t1, t2) ≥ d(γ (t1), γ (t2))

and

∀0 ≤ t1 < t2 < t3 ≤ 1, �(t1, t2)+ d(γ (t2), γ (t3))≤ �(t1, t3).(4)

For each t ∈ [0,1], we have

lim sup
s→t

d ′(f (γ (s)), f (γ (t)))

�(s, t)
≤ lim sup

s→t

d ′(f (γ (s)), f (γ (t)))

d(γ (s), γ (t))
≤ C,

by the local Lipschitz assumption. Since C′ > C, one can find, for any t ∈ [0,1),
some δt ∈ (0,1 − t) such that ∀s ∈ (t, t + δt ], d ′(f (γ (s)), f (γ (t)))≤ C′�(t, s).
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Now set

T ≡ sup{t ∈ [0,1] :d ′(f (γ (0)), f (γ (t)))≤ C′�(0, t)}.
Notice that

d ′(f (γ (0)), f (γ (T )))≤ C′�(0, T )(5)

by continuity. We claim that T = 1. To see this, suppose T < 1 and set δ = δT .
Then

d ′
(
f (γ (0)), f (γ (T + δ))

) ≤ d ′(f (γ (0)), f (γ (T )))

+ d ′
(
f (γ (T )), f (γ (T + δ))

)
[use (5) and defn. of δT ] ≤ C′�(0, T )+C′d

(
γ (T ), γ (T + δ)

)
[use (4)] = C′�(0, T + δ),

which contradicts the fact that T is the supremum of the corresponding set. We
deduce that T = 1 and

d ′(f (x), f (y))= d ′(f (γ (0)), f (γ (1)))≤ C′�(0,1)= C ′Ld(γ ),

as desired.

3.2. Proof of Lemma 3. For the first statement we note that, for a given refer-
ence point y ∈M ,

Ap ≡
∫
M

d(y, z)p dPy(z) <+∞.

Now for any x ∈M , let (X,Y ) be a Lp-optimal coupling of (Px,Py). Then

‖d(y,X)‖Lp ≤ ‖d(y,Y )‖Lp +‖d(Y,X)‖Lp =A+Wd,p(Px,Py)≤A+Cd(x, y),

which is the same as∫
M

d(y, v)p dPx(v)≤ (
A+Cd(x, y)

)p
.

Hence, if μ ∈ Prd,p(M),∫
M

d(y, v)p dμP (v) =
∫
M

(∫
M

d(y, v)p dPx(v)

)
dμ(x)

=
∫
M

(∫
M
[A+Cd(y, v)]p dPx(v)

)
dμ(x)

[use |a + b|p ≤ 2p(|a|p + |b|p)] ≤ (2C)p
∫
M

∫
M

d(y, v)p dPx(v) dμ(x)

+ 2p
∫
M

∫
M

Ap dPx(v) dμ(x)

≤ (2C)p
∫
M

d(y, v)p dμ(x)+ (2A)p

[μ ∈ Prd,p(M)] < +∞.
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Thus, μP is in Prd,p(M) whenever μ is.
We now present a discrete approximation scheme for μ and μP . Since M is

separable, there exists a sequence of partitions {Pj }j∈N of M such that:

• each partition contains countably many measurable sets;
• for all j ∈ N, Pj+1 refines Pj ; and
• for all j ∈ N, the sets in Pj have diameter at most εj for some sequence εj → 0.

Let us also assume that for each j ∈ N and A ∈Pj we have picked some x
(j)
A ∈A.

Consider the measures

μj ≡
∑

A∈Pj

μ(A)δ
x

(j)
A

.(6)

Clearly, μj ∈ Prd,p(M) for all j and Wd,p(μj ,μ) → 0 when j →+∞. Our goal
will be to show that Wd,p(μjP,μP )→ 0. First recall that x �→ Px is C-Lipschitz,
hence, if x, y ∈ M and d(x, y) ≤ εj , Wd,p(Px,Py) ≤ Cεj . In particular, for all
j ∈ N, all A ∈Pj and all x ∈A,

Wd,p

(
P

x
(j)
A

,Px

)≤ Cεj .

We will use this to show that

∀j < k, Wd,p(μjP,μkP )≤ Cεj
(7)

(in particular, {μjP }j is Cauchy).

Recall that if j < k, Pk is a refinement of Pj , hence, for all B ∈ Pk there exists

a set AB ∈ Pj with B ⊂ AB . For each such B , we have x
(k)
B ∈ AB , which has

diameter ≤ εj , hence, d(x
(k)
B , x

(j)
AB

)≤ εj and there exists a coupling ηB,k,j of P
x

(k)
B

and P
x

(j)
AB

with

∫
M×M

d(u, v)p dηB,k,j (u, v)=Wd,p

(
P

x
(k)
B

,P
x

(j)
AB

)p ≤ (Cεj )
p.

Extend this to a coupling of μkP and μjP by

ηk,j ≡
∑

B∈Pk

μ(B)ηB,k,j .

To prove that ηk,j ∈ Cp(μjP,μkP ), notice that the first marginal of this measure
is ∑

B∈Pk

μ(B)P
x

(k)
B

= μkP.

Moreover, for any A ∈ Pj , the set of all B ∈ Pk with AB = A is a partition of A,
hence the second marginal is also right:

∑
B∈Pk

μ(B)P
x

(j)
AB

= ∑
A∈Pj

( ∑
B∈Pk : AB=A

μ(B)

)
P

x
(j)
A

= ∑
A∈Pj

μ(A)P
x

(j)
A

= μjP.
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It follows that ηk,j ∈ Cp(μjP,μkP ) and, moreover, one can check that∫
M×M

d(u, v)p dηk,j (u, v)≤ (Cεj )
p,

which implies (7).
(Prd,p(M),Wd,p) is Polish since (M,d) is. By the above, we know that there

exists a measure α ∈ Prd,p(M) such that Wd,p(μjP,α) → 0. This also implies
[15], Theorem 6.8, that μjP ⇒ α in the weak topology. However, it is an exercise
to show that μjP ⇒ μP weakly, hence, α = μP and Wd,p(μjP,μP ) → 0, as
desired.

4. Analysis of Kac’s random walk.

4.1. Definitions. Let M(n,R) be the set of all n×n matrices with real-valued
entries. These are the linear operators from R

n to itself and we equip R
n with

a canonical basis e1, . . . , en of orthonormal vectors. For a ∈ M(n,R), a† is the
transpose of a in the basis e1, . . . , en. Using it, one can define the Hilbert–Schmidt
inner product 〈a, b〉hs ≡ Tr(a†b) on M(n,R), under which it is isomorphic to R

n2

with the standard Euclidean inner product. We let ‖ · ‖hs be the corresponding
norm.

An element a ∈ M(n,R) is orthogonal if aa† = id, the identity matrix. The
subset of M(n,R) given by

SO(n)≡ {a ∈M(n,R) :aa† = id,det(a)= 1}
is a smooth, compact, connected submanifold of M(n,R). It is also a Lie group
since it is closed under matrix multiplication and matrix inverse. Therefore, SO(n)

has a Haar measure H , which we may define as the unique probability measure
on that group such that, for all measurable S ⊂ SO(n) and a ∈ SO(n), we have
H(S)=H(Sa)=H(aS), where Sa = {sa : s ∈ S} and aS = {as : s ∈ S}.

We now define Kac’s random walk on SO(n). For 1 ≤ i < j ≤ n and θ ∈ [0,2π ]
define R(i, j, θ) as a rotation by θ of the plane generated by ei, ej . This is equiva-
lent to setting

R(i, j, θ)ek =
⎧⎨
⎩

cos θei + sin θej , k = i,
cos θej − sin θei, k = j ,
ek, k ∈ {1, . . . , n} \ {i, j},

(8)

and extending R(i, j, θ) to all ψ ∈ R
n by linearity. Kac’s random walk on matrices

corresponds to the following Markov transition kernel:

Kx(S)≡ 1

2π
(n

2

) ∑
1≤i<j≤n

∫ 2π

0
δR(i,j,θ)x(S) dθ

[x ∈ SO(n), S ⊂ SO(n) measurable].
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Thus, to generate X =L Kx from x, one chooses 1 ≤ i < j ≤ n uniformly at ran-
dom from all

(n
2

)
possible choices, then picks θ ∈ [0,2π ] also uniformly at random

and then sets X = R(i, j, θ)x. The required measurability conditions are easily
established. One can also check that the Haar measure H is K-invariant.

4.2. The geometry of SO(n). We collect some standard facts that will be used
in our proofs.

The tangent space at the identity matrix id is the set of all anti-self-adjoint op-
erators

T ≡ TidSO(n)= {h ∈M(n,R) :h† =−h}.(9)

We let D be the Riemannian metric on SO(n) induced by 〈·, ··〉hs. Since SO(n)

is compact, one can show the following:

∀z,w ∈ SO(n), ‖z−w‖hs ≤D(z,w)≤ ‖z−w‖hs +O(‖z−w‖2
hs),(10)

where O(rα) is just some term whose absolute value is uniformly bounded by
c|r|α and c > 0 a constant not depending on |r| (we will use this notation from
now on). Moreover, if we let �T be the orthogonal projector onto T (according to
the Hilbert–Schmidt inner product), then (although we will not use this fact, one
can check that �T id = 0)

∀z ∈ SO(n), ‖z− id−�T (z− id)‖hs ≤O(D(z, id)2).(11)

This is so because if ‖z − id‖hs = r � 1, then ‖z − id−h̃‖hs = O(r2) for some
h̃ ∈ T , and h̃= h=�T (z− id) is the best choice of approximation one may make.
Notice that the two equations together imply∣∣D(z, id)− ‖�T (z− id)‖hs

∣∣=O(‖z− id‖2
hs).(12)

We notice that these distances are all invariant under multiplication: if a, b, c ∈
SO(n),

D(ca, cb)=D(ac, bc)=D(a,b)

and similarly for hs(a, b)= ‖a − b‖hs.

4.3. The contraction coefficient. In this section we prove Lemma 1.

PROOF OF LEMMA 1. Consider x, y ∈ SO(n) and let D(x,y) = r . Our main
task is to show that there exists a coupling (X,Y ) of (Kx,Ky) with

E[D(X,Y )2] ≤
(

1 − 1(n
2

))r2 +O(r3),
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where, as in the previous section, O(r3) is some term that is uniformly bounded
by a multiple of |r|3. The existence of such a coupling implies that

WD,2(Kx,Ky)≤
√

1 − 1(n
2

)D(x,y)+O(D(x, y)2),

which shows that K is locally
√

1 − 1/
(n

2

)
-Lipschitz for p = 2.

Our coupling will be as follows. Suppose we set X = R(i, j, θ)x with i, j, θ

randomly picked as prescribed in the definition of the random walk. We will set
Y = R(i, j, θ ′)y with the same i, j and some θ ′ = (θ − α)mod 2π , where α =
α(i, j, x, y) depends on i, j, x, y but not on θ . In that case θ ′ is uniform on [0,2π ]
independently of i, j, x, y, hence, (X,Y ) is a valid coupling of (Kx,Ky). Also
notice that, using the invariance of D under multiplication,

D(X,Y ) = D(R(i, j, θ)x,R(i, j, θ ′)y)
(13)

= D(R(i, j, θ),R(i, j, θ ′)yx†)=D(R(i, j, α), yx†),

as

R(i, j, θ ′)†R(i, j, θ)=R(i, j, θ − θ ′)=R(i, j,α).

We will use (10), (11) and (12) to bound the RHS of (13): this will allow us to
do all calculations we need in the tangent space T = TidSO(n). First, however, we
need an orthonormal basis for that space. For each 1 ≤ k < � ≤ n, let ak� ∈ T be
the linear operator that is uniquely defined by

ak�et ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e�√
2
, t = k,

− ek√
2
, t = �,

0, t ∈ {1, . . . , n} \ {k, �}.
One can check that {ak�}1≤k<�≤n is indeed an orthonormal basis for T =

TidSO(n) with the Hilbert–Schmidt inner product. For 1 ≤ t ≤ n we also define
dt ∈ M(n,R) as the matrix that has a 1 at the (t, t)th entry and zeroes elsewhere.
Then 〈dt , ds〉hs = 1 if t = s and 0 otherwise and also 〈dt , ak�〉hs = 0 for any t, k, �.
With these definitions, one can write

R(i, j,α)= id + (cosα − 1)di + (cosα − 1)dj +
√

2 sinαaij .(14)

Now set h = �T (yx† − id). Since D(yx†, id) = D(x,y) = r , ‖h‖hs = r +O(r2)

and ‖yx† − id−h‖hs = O(r2). Suppose we commit ourselves to making a choice
of α = O(r) (i.e., |α| ≤ cr for a constant c independent of r). Expanding sin and
cos, we get ∥∥R(i, j,α)− id−√

2αaij

∥∥
hs =O(r2).
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Moreover, we also have

D(yx†,R(i, j, α))
(15)

= ‖yx† −R(i, j,α)‖hs +O
(‖yx† −R(i, j,α)‖2

hs
)

= ∥∥yx† − id−√
2αaij

∥∥
hs +O

(∥∥yx† − id−√
2αaij

∥∥2
hs + r2)(16)

= ∥∥h−√
2αaij

∥∥
hs +O(r2).(17)

Thus, we choose α = 〈h,aij 〉hs/
√

2, which minimizes ‖h−√
2αaij‖hs and only

depends on i, j and h = �T (yx† − id). Since the ak� form an orthonormal basis
of T � h, we have

h= ∑
1≤k<�≤n

〈h,ak�〉hsak� ⇒ ∑
1≤k<�≤n

〈h,ak�〉2hs = ‖h‖2
hs = r2 +O(r3).

This shows that |α| =O(r) as desired and, moreover,

D(X,Y )2 = D(yx†,R(i, j, α))2 [by (13)]

= ‖h− 〈h,aij 〉hsaij‖2
hs +O(r3)

(expand h) = ‖h‖2
hs − 〈h,aij 〉2hs +O(r3).

If we now average over i, j, θ , we obtain

E[D(X,Y )2] = ‖h‖2
hs −

1(n
2

) ∑
1≤i<j≤n

〈h,aij 〉2hs +O(r3)

=
(

1 − 1(n
2

))‖h‖2
hs +O(r3)

=
(

1 − 1(n
2

))r2 +O(r3),

which is the desired bound.
To finish the proof, we apply our result on local-to-global couplings, Theorem 3.

We have shown that the Markov transition kernel P = K for Kac’s random walk
is locally C-Lipschitz for

C =
(

1 − 1(n
2

))1/2

, 1 ≤ p ≤ 2.

The remaining assumptions of Theorem 3 are trivially verified since SO(n) has a
bounded diameter. We conclude that

∀μ,η ∈ Pr(SO(n)), WD,p(μK,νK)≤
√

1 − 1(n
2

)WD,p(μ, ν). �
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4.4. Mixing time upper bound. We now prove Theorem 1.

PROOF OF THEOREM 1. We shall apply Corollary 1 with M = SO(n), d =D

and P = K . According to Lemma 1, we can take C =
√

1 − 1/
(n

2

) ≤ (1 − κ) for

κ = 1/n2.
We need an estimate for the diameter of SO(n) under D. Let a, b ∈ SO(n).

Then D(a,b)=D(c, id) with c = ab† ∈ SO(n). It is well known that any such c is
a product of two-dimensional rotations on orthogonal subspaces; that is equivalent
to saying that (after a change of basis of R

n) one can write

c =
k∏

i=1

R(2i − 1,2i, θi)

for k = �n/2� and −π ≤ θi ≤ π without loss of generality. Notice that one can
rewrite this as [cf. (14)]

c =
k∑

i=1

[cos θi(d2i−1 + d2i )+ sin θia2i−1,2i].

Thus, the curve

γ (t)≡
k∑

i=1

[cos tθi(d2i−1 + d2i )+ sin tθia2i−1,2i], 0 ≤ t ≤ 1,

connects id to c in SO(n). Moreover, for all 0 ≤ t ≤ 1,

γ ′(t)≡
k∑

i=1

θi[cos(tθi + π/2)(d2i−1 + d2i )+ sin(tθi + π/2)a2i−1,2i]

and one can easily see that

‖γ ′(t)‖2
hs = 2

k∑
i=1

|θi |2 = 2kπ2 ≤ π2n (since k ≤ n/2).

We deduce that

∀a, b ∈ SO(n), D(a, b)=D(ab†, id)≤
∫ 1

0
‖γ ′(t)‖hs dt ≤ π

√
n.

Thus, diamD(SO(n))≤ π
√

n and we deduce from the corollary that

τD,2(ε)≤
⌈
n2 ln

(
π
√

n

ε

)⌉
. �

5. Mixing bounds for other random walks. In this section we briefly discuss
the two random walks related to Kac’s random walk mentioned in the introduction.
Both proofs follow the previous one very closely and will be only sketched.
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5.1. Kac’s walk with nonuniform angles. Recall the definitions in Section 4.1.
In this section we let ρ : [0,2π ] → R

+ be a density and define a variant K(ρ) of
Kac’s random walk on SO(n) as follows:

K(ρ)
x (S)≡ 1(n

2

) ∑
1≤i<j≤n

∫ 2π

0
δR(i,j,θ)x(S)ρ(θ) dθ

[x ∈ SO(n), S ⊂ SO(n) measurable].
K(ρ) corresponds to picking the rotation angle with density ρ. One can check that
K(ρ) is a valid Markov transition kernel for any density ρ and that the original
process corresponds to ρ ≡ 1/2π . We will prove the following:

THEOREM 4. Suppose

ρmin ≡ min
θ∈[0,2π ]ρ(θ) > 0.

Then the L2 transportation cost mixing time of K(ρ) satisfies

τD,2(ε)≤
⌈

n2

2πρmin
ln
(

π
√

n

ε

)⌉
, ε > 0.

PROOF SKETCH. The main step is to show that K(ρ) is√
1 − 2πρmin(n

2

) -contracting.

We do this as in Lemma 1, showing that for any x, y ∈ SO(n) with D(x,y) = r ,
there exists a coupling (X,Y ) of (K

(ρ)
x ,K

(ρ)
y ) with

E[D(X,Y )2] ≤
(

1 − 2πρmin(n
2

) )
r2 +O(r3).

To do this, we first note that 0 ≤ 2πρmin ≤ 1 and write ρ as a mixture:

ρ = 2πρming + (1 − 2πρmin)h,

where g ≡ 1/2π is the uniform density and

h(θ)= ρ(θ)− ρmin

1 − 2πρmin

is another density. We will set X = R(i, j, θ), Y = R(i, j, θ ′) as in the proof of
Lemma 1, choosing 1 ≤ i < j ≤ n uniformly at random. The choices of θ, θ ′ will
be made as follows:

1. with probability 2πρmin, we pick θ from the uniform density g and set θ ′ =
(θ − α)mod 2π as in the previous proof;
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2. with probability 1 − 2πρmin, we pick θ with density h and set θ ′ = θ .

Using the notation and reasoning in the previous proof, we immediately see that in
the first case D(X,Y )2 = ‖h‖2

hs − 〈h,aij 〉2hs +O(r3), whereas in the second case
D(X,Y )2 = r . It follows that

E[D(X,Y )2] = 2πρmin

{
‖h‖2

hs −
1(n
2

) ∑
1≤i<j≤n

〈h,aij 〉2hs

}

+ (1 − 2πρmin)r
2 +O(r3)

=
(

1 − 2πρmin(n
2

) )
r2 +O(r3). �

5.2. A random walk on unitary matrices. In this section we consider a ran-
dom walk on unitary matrices. To define it properly, we need a set of definitions
analogous to that in Section 4.1, which we briefly state below.

M(n,C) is the set of all complex n× n matrices. In the present setting a∗ is the
conjugate transpose of a ∈ M(n,C) and we can define the Hilbert–Schmidt inner
product (and corresponding norm) via

〈a, b〉hs ≡ Tr(ab∗), a, b ∈M(n,C).

With this inner product, M(n,C) is isomorphic to C
n2

with the Euclidean inner
product. Call a ∈ M(n,C) unitary if aa∗ = a∗a = id, the identity matrix. The set
U(n) ⊂ M(n,C) of all n× n unitary matrices is a smooth, compact submanifold
of M(n,C), which is also a Lie group. The metric D in this case is the Riem-
manian metric induced on U(n) by the Hilbert–Schmidt inner product on the am-
bient space M(n,C), which is again invariant by multiplication. Moreover, there
exists a multiplication-invariant probability measure on U(n) which we again de-
note by the Haar measure H .

Let e1, . . . , en be the canonical basis for C
n. For each 1 ≤ i < j ≤ n fix a (linear)

isometry Iij : span{ei, ej } → C
2. If u ∈ U(2), we let uij ∈ U(n) be the unitary

operator that acts as I−1
ij ◦u◦Iij on span{ei, ej } and as the identity on span{ei, ej }⊥

(that is, uij acts “like” u on ei, ej ). Our random walk is defined by the kernel S

given by

Lx(S)≡ 1(n
2

) ∑
1≤i<j≤n

∫
U(2)

δRij x(S) dH(R),

where H is the Haar measure on U(2). Thus, X =L Lx is obtained from x by first
choosing i, j uniformly at random, then picking R ∈ U(2) from the (2 × 2) Haar
measure independently from i, j and then letting Rij act over the two-dimensional
subspace span{ei, ej }.

Our main goal will be to prove an analogue of Theorem 1 in this setting.
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THEOREM 5. Let τD,2(·) denote the L2 transportation-cost mixing time for
(M,d)= (U(n),D) and P = L as just defined. Then

τD,2(ε)≤
⌈
n2 ln

(
π
√

n

ε

)⌉
, ε > 0.

PROOF SKETCH. According to Corollary 1, we need two ingredients: a π
√

n

bound on the diameter of U(n) and a “local contraction” estimate for (Lx,Ly) akin
to Lemma 1. The diameter bound is easily obtained. Any u ∈U(n) has orthogonal
eigenvectors with eigenvalues of the form e

√−1θi for θi ∈ [−π,π ], 1 ≤ i ≤ n.
For all t ∈ [0,1], ut ∈ U(n) is a matrix with the same eigenbasis and eigenvalues
e
√−1tθ , hence, ut ∈U(n) always. The curve t �→ ut (t ∈ [0,1]) has constant speed

equal to √√√√ n∑
i=1

|θi |2 ≤ π
√

n

and connects id to u; any x, y can be connected by the curve t �→ (yx∗)tx, which
also has length ≤ π

√
n, hence, D(x,y)≤ π

√
n for all x, y ∈U(n), as desired.

We now provide a local contraction estimate. The key realization is that the
tangent space of U(n) at the identity is

T = Tid(U(n))= {h ∈M(n,C) :h=−h∗}.
This means that if x, y ∈U(n) and D(x,y)= r ,

‖yx∗ − id−h‖hs =O(r2) for h=�T (yx∗ − id),

�T being the orthogonal projector of M(n,C) onto T (as in the previous proof).
Moreover, the estimates in Section 4.2 carry over to our current setting.

Suppose x, y as above are given. We choose 1 ≤ i < j ≤ n uniformly at random,
R ∈ U(2) from the Haar measure and will set R′ = Rv for some v = v(i, j, x, y)

in U(2) to be chosen, so that R′ is also Haar distributed on U(2), independently
of i, j, x, y. This implies that

(X,Y )= (Rij x,R′
ij y)

is a valid coupling of (Lx,Ly). Moreover,

D(X,Y )=D(vij , yx∗).
We will now define an orthonormal basis for M(n,C). For k, � ∈ {1, . . . , n}, let
uk→� be the unique linear operator that maps ek to e� and et to 0 for all t �= k. The
matrices {uk→�}1≤k�≤n form a orthogonal basis of M(n,C). Since h∗ = −h, one
can check that

h=
n∑

k=1

√−1h(k, k)uk→k +
∑

1≤k<�≤n

(
h(k, �)uk→� − h(k, �)u�→k

)
,
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with h(k, k) ∈ R and h(k, �) ∈ C. By orthogonality, we have

‖h‖2
hs =

n∑
k=1

h(k, k)2 + 2
∑

1≤k<�≤n

|h(k, �)|2.

We will make a choice of v such that

vij = I−1
ij ◦ v ◦ Iij = ehij with

hij ≡ (√−1
(
h(i, i)+ h(j, j)

)+ h(i, j)ui→j − h(i, j)uj→i

)
.

Indeed, since h∗ij =−hij , vij ∈U(n). Moreover, since ehij et = et for t �= i, j , this

ehij acts nontrivially only on span{ei, ej } and one can easily see that this implies
the existence of the desired v. Finally, this v only depends on i, j and x, y [through
h=�T (yx∗− id)], therefore, it is a valid choice for the coupling construction of R

and R′ =Rv.
One can check that ‖vij − id‖hs = O(r), that ‖v − id−hij‖hs = O(r2) and,

therefore,

D(X,Y )2 = D(vij , yx∗)2

= ‖vij − yx∗‖2
hs +O(r3)

= ‖hij − h‖2
hs +O(r3)

(expand hij − h) = ‖h‖2
hs − h(i, i)2 − h(j, j)2 − 2h(i, j)2.

Averaging over the choices of u, i and j , we get

E[D(X,Y )2] = ‖h‖2
hs −

2

n

n∑
i=1

h(i, i)2 − 1(n
2

) ∑
1≤i<j≤n

2h(i, j)2 +O(r3)(18)

≤
(

1 − 1(n
2

))r2 +O(r3).(19)

This implies that the chain L is√
1 − 1(n

2

) -locally contracting,

which implies the desired result via Theorem 3. �

6. Lower bounds for mixing times. In this section we prove a general mixing
time lower bound for random walks induced by group actions. Again, let (M,d)

be a metric space.

ASSUMPTION 1. M is compact (hence Polish). There exists a group G acting
isometrically on M on the left. That means that there exists a mapping taking
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(g, x) ∈ G × M to gx ∈ M such that for all g,h ∈ G, g(hx) = (gh)x and for all
g ∈ G, x, y ∈ M , d(gx, gy) = d(x, y). We also assume that there is a metric d̃ on
G such that (G, d̃) is compact and

∀g,h ∈G, d̃(g,h)≥ sup
x∈M

d(gx,hx).

Finally, a Markov transition kernel P on M is defined via a probability measure α

on G as follows:

∀x ∈M, Px ≡
∫
G

δhx dα(h).

That is, to sample X =L Px , one samples h=L α and sets X = hx.

One can check P is indeed a Markov transition kernel; indeed, this follows from
the fact that x �→ Px is 1-Lipschitz as a map from (M,d) to (Pr(M),Wd,1).

It is well known that compactness of (M,d) and (G, d̃) imply the following (we
will use ∼ to denote all quantities related to the metric d̃):

• For all r > 0 and H ⊂G, H can be covered by finitely many open balls of radius
r in G; the minimal number of balls in such a covering is called the r-covering
number of H and denoted by C̃H (r).

• For all r > 0, there exists a number NM(r), called the r-packing number
of M , which is the largest cardinality of a subset S ⊂M with d(s, s ′) > r for all
distinct s, s′ ∈ S (we call such an S maximally r-sparse).

We can now state our general lower bound result.

THEOREM 6. Under Assumption 1, suppose that there exists a measure μ∗ ∈
Pr(M) and numbers τ ∈ N, ε > 0 and p ≥ 1 such that

∀x ∈M, Wd,p(P τ
x ,μ∗)≤ ε.

Then

τ ≥ lnNM(8ε)− ln 2

ln C̃H (ε/τ)
,

where H is the support of α.

To understand Theorem 6, it is a good idea to consider the special case M = G

is a finite-dimensional Lie group (acting on itself by left-multiplication), μ∗ is a
Haar measure on G, P t

x → μ∗ for all x ∈ G as t →+∞ and τ = τd,p(ε) is the
ε-mixing time. Since G is a Lie group, thus a smooth manifold that is locally
Euclidean, one would expect that

lnNG(r)≈ (dimension of G) ln(1/r), 0 < r � 1.
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Similarly, if H has a dimension (in some loosely defined sense), we expect that

ln C̃H (r)≈ (dimension of H) ln(1/r), 0 < r � 1.

Thus, for small enough ε, one would have

τd,p(ε)≥ (dimension of G)

(dimension of H)
,

at least up to constant factors. The upshot is that a “small” (low-dimensional) set
of generators H cannot generate a “large” (high-dimensional) group G in time less
than the ratio of the dimensions.

Of course, the reasoning we just presented is not a rigorous proof. In the par-
ticular case of Kac’s walk, we will need to have bounds on C̃H (ε) and NG(ε) that
work for a fixed ε, not for ε → 0.

Let us now prove the general theorem (the bound for Kac’s walk is proven
subsequently).

PROOF OF THEOREM 6. Let c = C̃H (ε/τ). By assumption, H can be covered
by c open balls of radius ε/τ according to d̃ , which we represent with B̃:

H ⊂ B̃(h1, ε/τ)∪ · · · ∪ B̃(hc, ε/τ).

Define the sets S̃1 = B̃(h1, ε/τ) ∩ H and S̃i = B̃(hi, ε/τ) ∩ H \⋃i−1
j=1 B̃(hj ,

ε/τ). These sets form a partition of H , hence, the following sum defines a proba-
bility measure supported on {h1, . . . , hc}:

β ≡
c∑

i=1

α(S̃i)δhi
.

In fact, β is the image of α under the map � that maps the elements of S̃i to hi , for
each i ∈ {1, . . . , c}. This map satisfies d̃(�(h),h) < ε/τ because S̃i ⊂ B̃(hi, ε/τ)

by construction. One may check that this implies W
d̃,p

(α,β) < ε/τ .
Let Q be the Markov transition kernel corresponding to β in the same way

that P corresponds to α; that is,

∀x ∈M, Qx =
∫
{h1,...,hc}

δhx dβ(h)=
c∑

i=1

α(S̃i)δhix.

For any x ∈ M , if the random pair (A,B) is a coupling of (α,β) with E[d̃(A,

B)p]1/p < ε/τ , (Ax,Bx) is a coupling of (Px,Qx) with

Wd,p(Px,Qx)≤ E[d(Ax,Bx)p]1/p ≤ E[d̃(A,B)p]1/p < ε/τ.

Hence,

∀x ∈M, Wd,p(Px,Qx) < ε/τ.



1224 R. I. OLIVEIRA

A simple calculation implies

∀x ∈M, Wd,p(Qτ
x,P

τ
x ) < ε.

For any x ∈M , the definition of τ implies Wd,p(μ∗,P τ
x )≤ ε, so that

Wd,p(Qτ
x,μ∗)≤Wd,p(P τ

x ,μ∗)+Wd,p(P τ
x ,Qτ

x) < 2ε.

Thus, the p-optimal coupling (Xx,Y ) of (Qτ
x,μ∗) achieves

E[d(Xx,Y )p]1/p < 2ε.

Now let S ⊂ M be a maximal 8ε-sparse subset of M . Notice that the cardinal-
ity of S is � ≡ NM(8ε), by definition of the latter quantity. One may define ran-
dom variables {Xx}x∈S, Y on the same probability space such that, for each x ∈ S,
(Xx,Y ) is a coupling of (Qτ

x,μ∗) achieving the above bound (this follows, e.g.,
from the Gluing lemma in the Introduction of Villani’s book [15]). Hence, if

Ix = χ{d(Xx,Y )≥4ε} (x ∈ S),

Markov’s inequality implies that

P(Ix = 1) < 1/2

and

E

[∑
x∈S

Ix

]
<

�

2
.

It follows that there exists a realization of {Xx}x∈S, Y such that d(Xx,Y ) < 4ε for
all x in a subset S′ ⊂ S of cardinality ≥ �/2.

We fix such a realization. For each x ∈ S, the support of the measure Qx is
contained in the finite set {h1x, . . . , hcx}. A simple inductive argument shows that
Xx = vxx for some

vx ∈ Vτ ≡ {
hi1hi2 · · ·hiτ : i1, i2, . . . , iτ ∈ {1,2, . . . , c}}.

Now notice that, on the one hand, for all x, x′ ∈ S′,
d(Xx,Xx′)≤ d(Xx,Y )+ d(Xx′, Y ) < 4ε + 4ε = 8ε.

On the other hand, for distinct x, x′ ∈ S, if vx = vx′ , then d(Xx,Xx′) =
d(vxx, vxx

′) = d(x, x′) ≥ 8ε since S is 8ε-sparse and d is invariant by left multi-
plication. We deduce that

∀x, x′ ∈ S′, x �= x′ ⇒ vx �= vx′ .

This implies that

�/2 ≤ cardinality of S′ ≤ cardinality of Vτ

and the latter quantity is clearly upper bounded by cτ . We deduce that

�/2 ≤ cτ ⇒ τ ≥ ln�− ln 2

ln c
.

The proof is finished once we recall that �=NM(8ε) and c = C̃H (ε/τ). �
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6.1. The lower bound for Kac’s random walk (Theorem 2). We now show that
Theorem 2 follows from the general lower bound.

PROOF OF THEOREM 2. We will freely use the notation introduced in Sec-
tion 4. In particular, we take M = G = SO(n), d = hs, P = K , μ∗ = H , τ =
τd,p(ε) and

H = ⋃
1≤i<j≤n

{R(i, j, θ) : θ ∈ [0,2π ]}(20)

and

α = 1(n
2

) ∑
1≤i<j≤n

∫ 2π

0
δR(i,j,θ) dθ.

Notice that d is right-invariant and that we may take d̃ = d in this case.
We now upper bound C̃H (r). Equation (20) shows that H is the union of

(n
2

)
sets. Each of those is an isometric image of the unit circle in the intrinsic metric D

of SO(n). Since hs is dominated by D, we have

∀0 < r ≤ 2π, C̃H (r)≤ 2π

(
n

2

)
r−1 ≤ πn2r−1.(21)

We must also lower bound NM(r). A maximal r-packing S ⊂ SO(n) has to
satisfy mins∈S d(x, s) < r for all x ∈ SO(n) (an x violating the bound could be
added to S, which violates maximality). This implies that

SO(n)= ⋃
s∈S

B(s, r) ⇒ ∑
s∈S

H(B(s, r))≥ 1

(22)

⇒ (Inv) NM(r)= |S| ≥ 1

H(B(id, r))
.

[Implication (Inv) uses the invariance of H , which implies that all balls of radius r

have the same measure.]
We now make the following claim:

CLAIM 1. There exist constants φ,ψ > 0 such that, for all n ≥ 10 and 0 <

r <
√

n/10,

H(B(id, r))≤
(

eφr√
n

)ψn2

.

The restrictions on n, r are by no means sharp, but they give us some room to
spare in what follows.
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Before proving the claim, we show how the theorem follows from it. Given
n≥ 10, assume τ = τd,p(ε)≤ n3/π . We see that, for 0 < ε < 1,

τ ln C̃H (ε/τ) ≤ (
ln τ + 2 lnn+ lnπ + ln(1/ε)

)
τ

≤ (
5 lnn+ ln(1/ε)

)
τ (use τ ≤ n3/π);

lnNM(8ε) ≥− lnH(id,8ε) [via (21)]

≥ ψn2
(

lnn

2
+ ln(1/8ε)− φ

)
.

This implies that, for ε ≡ e−φ/8 < 1, one can use the bound in Theorem 6 to see
that

τ ≥ ψ/2n2 lnn

5 lnn+ φ + ln 8
≥ cn2

for some c > 0 not depending on n. Of course, if τ > n3/π , τ > cn2 for a (possibly
smaller) c > 0, so the inequality presented above actually implies the theorem for
n≥ 10. Since there is only a finite set of remaining values of n, one may finish the
proof by picking a smaller c, if necessary.

It remains to prove the claim. We will do so via probabilistic reasoning, using
some rough upper estimates and known results for spheres in an arbitrary dimen-
sion. As a preliminary, consider x ∈ SO(n) and let xi ∈ R

n denote its ith column.
One has

‖x − id‖2
hs =

n∑
i=1

|xi − ei |2.

The columns of x are orthonormal, hence, |xi | = |ei | = 1 and

‖x − id‖2
hs = 2

n∑
i=1

(1 − xi.ei).

Hence,

‖x − id‖hs < r ⇒ 1

n

n∑
i=1

(1 − xi.ei) <
r2

2n
.

One can now use Markov’s inequality to deduce that

‖x − id‖hs < r ⇒ ∃I ⊂ {1, . . . , n} with |I | = !n/2" such that
(23)

∀i ∈ I, xi .ei > 1 − r2

n
.
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Thus, if X =L H is a random variable, defined on some probability space
(�,F ,P) and with values in SO(n),

H(B(id, r)) = P(‖X − id‖< r)

≤ ∑
I⊂{1,...,n} : |I |=!n/2"

P

(
∀i ∈ I,Xi.ei > 1 − r2

n

)

(L(Xi :i∈I ) is the same for all I )(24)

=
(

n

!n/2"
)

P

(
∀1 ≤ i ≤ !n/2",Xi.ei > 1 − r2

n

)

≤ 2n
P

(
∀1 ≤ i ≤ !n/2",Xi.ei > 1 − r2

n

)
.

Now consider the orthogonal projection maps:

�i =�i(X) : z ∈ R
n �→ z−

i−1∑
k=1

(Xk, z)Xk,

with �1 is the identity operator. Clearly, 0 < �iei < 1 for all 1 ≤ i ≤ !n/2" with
probability 1. Xi belongs to the range of �i , a self-adjoint operator. Hence, outside
of a null set,

Xi.ei =�iXi.ei =Xi.�iei > 1 − r2

n
⇒ Xi.

�iei

|�iei | > 1 − r2

n
.

This implies the bound

P

(
∀1 ≤ i ≤ !n/2",Xi.ei > 1 − r2

n

)
≤ P

(!n/2"⋂
i=1

Ei

)

(
with Ei ≡

{
Xi.

�iei

|�iei | > 1 − r2

n

})
.

Let F0 = {∅,�} be the trivial σ -field on � and, for 1 ≤ j ≤ n, Fj be the σ -field
generated by X1, . . . ,Xj . These σ -algebras form an increasing sequence. We omit
the proof of the following three facts, valid for each 1 ≤ i ≤ !n/2":

1. Ei is Fi -measurable;
2. �iei/|�iei | Fi−1-measurable;
3. conditioned on Fi−1, Xi is uniform on the (n − i)-dimensional unit sphere of

the subspace of R
n corresponding to the range of �i , and �iei/|�iei | is a point

on that same sphere.

Let Vn−i be the (normalized) uniform measure on Sn−i . The above considerations,
together with the rotational invariance of Vn−i , imply that

∀1 ≤ i ≤ !n/2", P(Ei |Fi−1)=Vn−i

(
Cn−i(1 − r2/n)

)
a.s.,
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where, for a given τ ∈ R, Cn−i(τ ) is the spherical cap

Cn−i(τ )≡ {v ∈ Sn−i :v.e1 > τ }.
A simple inductive argument with conditional expectations then shows that

P

(!n/2"⋂
i=1

Ei

)
= E

[
P
(
E!n/2" |F!n/2"−1

)
χ⋂!n/2"−1

i=1 Ei

]

= Vn−!n/2"
(
Cn−!n/2"(1 − r2/n)

)
P

(!n/2"−1⋂
i=1

Ei

)

= (· · ·)

=
!n/2"∏
i=1

Vn−i

(
Cn−i(1 − r2/n)

)
.

We now apply known bounds on the volume of spherical caps [2], Lemma 2.1:

∀m ∈ N \ {0,1},∀τ ∈ [
2/
√

m,1
]
,

(25)
(1 − τ 2)(m−1)/2

6τ
√

m
≤Vm(Cm(τ))≤ (1 − τ 2)(m−1)/2

2τ
√

m
.

We need the upper bound for n− !n/2" ≤m≤ n− 1 and

τ = 1 − r2

n
, which ∈

[√
2

m
,1
]

for n≥ 10, r ≤√
n/10.

Moreover, we know that in this case 2τ 2 > 2 − 4r2/n > 1, so

P

(!n/2"⋂
i=1

Ei

)
≤

!n/2"∏
i=1

Vn−i

(
Cn−i(1 − r2/n)

)≤ !n/2"∏
i=1

(2r2)(n−i)/2
√

n− i
≤
(

eφ0r√
n

)ψn2

,

for some constants φ0,ψ > 0 not depending on n≥ 10 or r ≤√
n/10. Using (24),

we deduce that

H(B(id, r))≤ 2n
P

(!n/2"⋂
i=1

Ei

)
≤
(

eφr√
n

)ψn2

,

with φ > 0 another constant. The claim and the theorem are finally proven. �

7. Final remarks.

• The most obvious problem left open in the present paper is a sharp characteri-
zation of the mixing time of Kac’s walk. We conjecture that our upper bound is
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tight for all ε ∈ (0, ε0); that is, that there exist constants c, ε0 > 0 such that, for
all n≥ 3 and ε ∈ (0, ε0),

τhs,1(ε)≥ cn2 ln
(

cn

ε

)
.

Notice that the restriction to n ≥ 3 is necessary, as for n = 2 the walk mixes
perfectly in one single step.

The quantity n2 lnn in the conjectured lower bound immediately suggests
a “coupon-collector phenomenon.” For instance, one is tempted to guess that
the walk cannot mix before 2-dimensional rotations have been applied to all
possible pairs ei, ej of canonical basis vectors. The difficulty with this idea is
that two rows of X(t) may “interact” without ever being changed in the same
step of the walk.

• The simple lower bound method in Section 6 cannot go farther than �(n2), even
if ε → 0 with n. It would be interesting to derive better lower bounds at this level
of generality.

• Going back to the application of Ailon and Chazelle [1], O(n2 lnn) mixing is
still too large for n big, which is precisely when dimensionality reduction is the
most useful. However, that application only requires that certain projections be-
have as they should, which is a less stringent requirement than approximating
the Haar measure. It is thus natural to ask whether better bounds might be avail-
able for that specific application. More precisely, let Yk(t) = �kX(t)†, where
X(t) is a realization of Kac’s walk and �k is the projection onto the first k

canonical basis vectors. Clearly, {Yk(t)}+∞
t=0 corresponds to a Markov chain on

the Stiefel manifold:

Vk(R
n)≡ {(v1, . . . , vk) ∈ (Rn)k :∀1 ≤ i, j ≤ k, vi.vj = δij }.

One can adapt the proof of Theorem 2 to show that this walk cannot mix in less
than �(nk) time.

We conjecture that Yk(t) mixes in �(nk lnn) steps. Recall that for dimension
reduction we need k =O(ln |S|). Our conjecture would imply great time savings
for n# ln |S|.

• Theorem 3 on local-to-global coupling can be used to reprove some known
results. Consider, for instance, a Riemannian manifold M with dimension n,
distance d and Ricci curvature lower bounded by K ∈ R. Let P = P (ε) cor-
respond to the ball walk on M where a step from x consists of choosing X

uniformly from the ball B(x, ε). Using a simple, “strictly local” variant of [17],
Lemma 2, and our Theorem 3, one can very easily show that μ �→ μP (ε) is
(1 − Kε2/2(n + 2) + o(ε2))-Lipschitz (thus contracting when K > 0 and ε is
small enough). By “strictly local,” we mean that we do not need to have control
Wd,1(Px,Py) uniformly over all pairs of nearby points in the manifold: we just
need that for each fixed x ∈M , as y → x,

Wd,p

(
P (ε)

y ,P (ε)
x

)≤ (
ξ + o(1)

)
d(x, y)
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for the appropriate ξ > 0.
We expect that checking the local Lipschitz condition in other applications

will oftentimes be much simpler than proving a global contraction estimate.
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