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GAUSSIAN PERTURBATIONS OF CIRCLE MAPS:
A SPECTRAL APPROACH

BY JOHN MAYBERRY

Cornell University

In this work, we examine spectral properties of Markov transition op-
erators corresponding to Gaussian perturbations of discrete time dynamical
systems on the circle. We develop a method for calculating asymptotic ex-
pressions for eigenvalues (in the zero noise limit) and show that changes to
the number or period of stable orbits for the deterministic system correspond
to changes in the number of limiting modulus 1 eigenvalues of the transition
operator for the perturbed process. We call this phenomenon a λ-bifurcation.
Asymptotic expressions for the corresponding eigenfunctions and eigenmea-
sures are also derived and are related to Hermite functions.

1. Introduction. Studies of mechanical and biological oscillators have sug-
gested that the eigenvalues of Markov transition operators can be used to ana-
lyze bifurcation behavior in random perturbations of deterministic systems (see
[3, 9–11]). In particular, numerical observations in these papers show that bifur-
cations in the underlying deterministic system often correspond to changes in the
number of eigenvalues with modulus close to 1 when the perturbation size is small.
In this paper, we follow up on these numerical observations by providing a rigor-
ous example in which this phenomenon occurs.

To this end, we consider Gaussian perturbations of dynamical systems on the
circle exhibiting stable periodic behavior. We will provide a method for calculating
limiting eigenvalues (as ε → 0) of the transition operator for the system

Xε
n+1 = f (Xε

n) + εσ(Xε
n)χn mod 2π,(1)

where f is a sufficiently smooth circle map with a finite number of periodic orbits
that attract all other orbits of xn+1 = f (xn), {χn}∞n=0 is a family of i.i.d. standard
normal random variables and σ is sufficiently smooth and positive. Our main re-
sults are described in Section 2 and basically state that the limiting eigenvalues
of T ε are determined by the derivative of f along periodic orbits while the cor-
responding limiting eigenvectors are related to hermite functions. To illustrate our
methods, Sections 3–5 give a detailed analysis of the case when f has one stable
fixed point xs and one unstable fixed point xu. Section 3 describes the setup and
basic results in this setting and develops our primary tool: a block decomposition
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of the transition operator which allows us to calculate spectral properties by fo-
cusing on the “local” action of the transition operator near the fixed points of f .
Sections 4 and 5 then contain details of the local analysis and extensions to general
periodic orbits are derived in Section 6.

Before moving on to the body of our work, we note that our basic model (1)
can be used as an approximate heuristic for studying the dynamics of sequences
of firing phases in integrate-and-fire models with a white noise component which
provides some connection between our results and the numerical observations in
[9–11]. This connection will be further developed in the paper [1]. We also leave
it to the reader to check that many of our results concerning eigenvalues of T ε

remain true if we replace the χn in (1) with some other sequence of i.i.d., finite
moment generating function random variables. We focus here on the Gaussian case
since the calculations then yield particularly interesting formulas for eigenvectors
in terms of hermite functions. An interesting question for future research would be
extensions to the case when the asymptotic behavior of the deterministic system
xn+1 = f (xn) is chaotic although this is likely to require different techniques (see,
e.g., [7]).

2. General heuristic. In this section, we describe our setting and main re-
sults. Throughout, we shall assume that S1 = R/(2πZ), B(S1) is the set of all
bounded, (Borel) measurable functions from S1 to R, ‖ · ‖∞ is the correspond-
ing sup-norm and M(S1) is the set of all (Borel) probability measures on S1. In
a slight abuse of notation, we shall also use ‖ · ‖∞ to denote the induced operator
norm on L(S1) = the set of all bounded, linear functions T :B(S1) → B(S1).

Suppose that f is a smooth map on S1 and define the deterministic system

xn+1 = f (xn).(2)

(The smoothness assumptions are stronger than necessary—see Remark 1.) We are
interested in the dynamics of the perturbed system

Xε
n+1 = f (Xε

n) + εσ(Xε
n)χn mod 2π,(3)

where χn is a family of i.i.d. standard normal random variables and σ ∈ C∞(S1).
We assume there exist positive constants σlb, σub so that σlb < σ(x) < σub, ∀x ∈
S1 and write P

x for the probability law of (3) given that Xε
0 = x. It is easy to see

that Xε
n forms a (time homogeneous) Markov Chain on S1 with transition operator

T ε :B(S1) → B(S1) given by

T εφ(x) = E
x[φ(Xε

1)] = E
[
φ

(
f (x) + εσ(x)χ

)] =
∫
S1

φ(y)p̃ε(x, y) dy(4)

for any φ ∈ B(S1) and x ∈ S1 where

p̃ε(x, y) := ∑
n∈Z

pε(x, y + 2πn),

pε(x, y) := 1√
2πεσ(x)

e−(y−f (x))2/(2σ 2(x)ε2).
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Since p̃ε is smooth in both variables and S1 is compact, T ε is a compact opera-
tor on B(S1) for any ε > 0 and hence, its spectrum, which we denote by σ(T ε),
consists of a countable number of eigenvalues with 0 as the only possible limit
point. The fact that ‖T ε‖∞ = 1 of course implies that σ(T ε) ⊂ {λ ∈ C : |λ| ≤ 1}.
Moreover, inf{p̃ε(x, y) :x, y ∈ S1} > 0 so that Xε

n has a unique, stationary distrib-
ution με and for any x ∈ S1, P x(Xn ∈ ·) converges to με(·) in total variation (see
for instance, [4], Section 5.6). Therefore, T ε always has a simple eigenvalue at 1
and all other eigenvalues are strictly less than 1 in modulus. Our first result gives us
asymptotic expressions for lower order eigenvalues. In what follows, f p denotes
the pth iterate of f .

THEOREM 1. Suppose f has a finite number of stable periodic orbits Pi

of period pi , i = 1,2, . . . ,ms and unstable periodic orbits Qi of period qi ,
i = 1,2, . . . ,mu. Let cs,i = (f pi )′(xi) for some xi ∈ Pi and cu,i = (f qi )′(yi) for
some yi ∈ Qi . Assume in addition that

lim
n→∞f n(x) ∈

ms⋃
i=1

Pi

for all x ∈ S1 \(
⋃mu

i=1 Qi). Then for all r > 0, we can decompose T ε = T ε
up +T ε

lp so
that for small ε > 0, we have ‖T ε

lp‖∞ < r and any eigenvalue of T ε
up with modulus

greater than r is of the form λ + O(ε) with:

(i) λ = (c
j
s,i)

1/pi for some i = 1,2, . . . ,ms and j ≥ 0
or

(ii) λ = (|cu,i |−1c
−j
u,i )

1/qi for some i = 1,2, . . . ,mu and j ≥ 0.

Note that we include all branches of the pi th and qi th root in (i) and (ii).
Theorem 1 is really a statement about the limiting pseudoeigenvalues of T ε .

Recall that λ is a r-pseudoeigenvalue of a compact operator T if λ ∈ σ(T +E) for
some bounded linear operator E with ‖E‖ < r ([12], page 31). We also note that
for any compact T , σ(T ) = ⋂

r>0 σr(T ) where σr(T ) is the set of all r-pseudo-
eigenvalues of T ([12], Theorem 4.3), but in this paper, we do not address the issue
of taking double limits as ε → 0 and r → 0. Instead, for the remainder of this
paper, we will say that λ is a limiting eigenvalue of the operator T ε if ∀r > 0, T ε

has a sequence of r-pseudoeigenvalues which converge to λ as ε → 0. Therefore,
Theorem 1 states that T ε has limiting eigenvalues given by (i) and (ii) above.

We illustrate the results of Theorem 1 with a concrete example by taking f (x) =
x + 1 − b sinx in the well-studied family of sine-circle maps (see, e.g., [5]). If
b > 1, then f has two fixed points xu, xs ∈ (−π,π) with cu = f ′(xu) > 1 for all
b > 1 and cs = f ′(xs) ∈ (−1,1) if and only if b < bc := √

5 ≈ 2.23. f has no other
periodic orbits for b < bc. Therefore, if 1 < b < bc, Theorem 1 tells us that T ε has
limiting eigenvalues cn

s and c
−(n+1)
u for n ≥ 0 (see Figure 1).
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FIG. 1. Modulus of the top limiting eigenvalues of T ε as given by Theorem 1 plotted against b up
to the first period doubling bifurcation point at b = √

5 ≈ 2.23. The solid lines are powers of cs while
the dashed lines are negative powers of cu.

When b = bc, f ′(xs) = −1 so that (2) undergoes a period doubling bifurcation
with the appearance of a stable period two orbit. Figure 2 shows contributions to
the spectrum of T ε coming from its two unstable fixed points xs and xu and stable
period two orbit P = {x1, x2}. The contributions from the fixed point are of the
form |cs |−1c−n

s or |cu|−1c−n
u where cs,u = f ′(xs,u) and the contributions from P

are of the form
√

cn where c = f ′(x1)f
′(x2) and we take both branches of the

square root. This leads to the appearance of pairs of equal modulus eigenvalues
in the bottom half of Figure 2. The quantitative change in the limiting eigenvalues
of T ε near the deterministic bifurcation point bc motivates the following definition.

DEFINITION 1. We call any change to the number of limiting eigenvalues
of T ε with modulus 1 (as b is varied) a λ-bifurcation.

Therefore, a λ-bifurcation occurs at bc with the appearance of a limiting eigen-
value at −1. As b ↗ 2.71, c ↘ −1 and a second period doubling occurs in the
deterministic system with the appearance of a stable period four orbit. Since a
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FIG. 2. Modulus of the top limiting eigenvalues of T ε as ε → 0 as given by Theorem 1 plotted
against b between the first period doubling bifurcation point at b = √

5 ≈ 2.23 and the second near
b ≈ 2.71.

stable period four orbit yields four limiting eigenvalues which approach the unit
circle as ε → 0, another λ-bifurcation will occur near b ≈ 2.71 as well. Figure 3
illustrates the complete λ-bifurcation scenario up to this second period doubling
point.

Our second result deals with eigenvectors. We use the notation Hn to denote the
nth Hermite polynomial (see [8] for definitions) and hn(x) = e−x2

Hn(x) for the
corresponding Hermite function.

THEOREM 2. If P = {x1, . . . , xp} is a stable periodic orbit of f with cs =
(f p)′(x1), then the eigendensities of T ε corresponding to the limiting eigenvalue
(cn

s )1/p are of the form

p∑
j=1

ajφs,n,j (x) + O(ε)

for some constants aj where φs,n,j (x) = hn(αj (x − xj )/ε) with αj an explicit
constant depending on ci = f ′(xi), i �= j and σ(xi), i = 1,2, . . . , p. If Q =
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FIG. 3. Illustration of λ-bifurcation scenario for f (x) = x + 1 − b sinx, 1.8 < b < 2.71. See also
Figures 1 and 2.

{y1, . . . , yq} is an unstable periodic orbit with cu = (f q)′(y1), then the eigenfunc-
tions corresponding to the limiting eigenvalue (|cu|−1c−n

u )1/q are of the form
q∑

j=1

bjφu,n,j (x) + O(ε)

for some constants bj where φu,n,j (x) = hn(βj (x − yj )/ε) and βj is an explicit
constant depending on ci = f ′(xi), i �= j , and σ(xi) for i = 1,2, . . . , p.

See Theorem 3 in Section 3 and Theorem 8 in Section 6 for more details in
the period one and two case, including formulas for αj and βj . Figure 4 illus-
trates the limiting invariant densities (n = 0 eigendensities) from Theorem 2 for
two different parameter values in the sine-circle example discussed above. If we
take b just past the second period doubling bifurcation point (when the determin-
istic system has stable period 4 behavior), the amount of “humps” in the limiting
invariant density for the perturbed system will again double. Therefore, we can see
that the shape of the invariant density is greatly affected by the number of limiting
eigenvalues near the unit circle. Qualitative changes to the shape of invariant den-
sities are often called P -bifurcations (see [2] for examples). Further connections
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FIG. 4. Approximations from Theorem 2 for the limiting invariant densities of (3) in the case when
f (x) = x + 1 − b sinx. In the top, we take b = 2.2 so that f has stable fixed point xs ≈ 0.47 and in
the bottom, we take b = 2.3 so that f has stable period two orbit P ≈ {0.14,0.82}.

between λ-bifurcations and P -bifurcations may also be an interesting question for
future work.

The reason we are only able to calculate eigendensities for one set of eigenval-
ues and eigenfunctions for the other is a direct consequence of the structure of T ε .
We now move on to discuss this structure and give a detailed proof of our results
in the stable period one case, returning to the general case in Section 6.

3. One stable and one unstable fixed point: basic setup and main results.
Throughout this section, we assume that f has two fixed points xs, xu satisfy-
ing cs := f ′(xs) ∈ (−1,1) and cu := f ′(xu) /∈ [−1,1] with the property that
f n(x) → xs as n → ∞, ∀x ∈ S1, x �= xu. This corresponds to studying pertur-
bations of (2) in a regime of stable period one behavior. We set σs = σ(xs),

σu = σ(xu), α =
√

(1 − c2
s )/(2σ 2

s ) and β =
√

(c2
u − 1)/(2σ 2

u ). Hn and hn are is
in Theorem 2. In the language of Section 2, the following result says that T ε has
limiting eigenvalues c

j
s and |cu|−1c

−j
u .
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THEOREM 3. Suppose that f is a smooth map on S1 with stable fixed point xs

and unstable fixed point xu. In addition, assume that f n(x) → xs for all x ∈ S1 \
{xu}. Then for any r > 0, ∃εr ,Lr,Kr > 0, so that ∀ε < εr , we can write T ε =
T ε

up + T ε
lp where

‖T ε
lp‖∞ < r

and any λ ∈ σ(T ε
up) with |λ| > r is a simple eigenvalue of one of the two forms:

(i) λ = c
j
s + λε

s,j,1ε

or
(ii) λ = |cu|−1c

−j
u + λε

u,j,1ε

for some j ≥ 0 with cs = f ′(xs), cu = f ′(xu), and max(|λε
s,j,1|, |λε

u,j,1|) ≤ Lr . All
eigendensities corresponding to λ as in (i) are multiples of[

hj

(
α(x − xs)

ε

)
+ εψε

s,j

(
x − xs

ε

)]
1V3(x),(5)

where V3 is a neighborhood of xs and ψε
s,j has the property that

sup
x∈R

(|ψε
s,j (x)|ekx2

) < Kr

for some k > 0. All eigenfunctions corresponding to λ as in (ii) are multiples of[
hj

(
β(x − xu)

ε

)
+ εψε

u,j

(
x − xu

ε

)]
1V1(x)(6)

with V1 a neighborhood of xu and

sup
x∈R

(|ψε
u,j (x)|ekx2

) < Kr.

REMARK 1. We assume f is smooth only for convenience. In fact, if as long
as f ∈ Cn+1 for some n ≥ 1 in a neighborhood of each fixed point (and possibly
discontinuous elsewhere), it can be shown that ∃λs,j,k ∈ C, k = 1,2, . . . , n − 1
such that the eigenvalues in (i) have asymptotic expansions

λ = c
j
s,j +

n−1∑
k=2

εkλs,j,k + λε
s,j,nε

n

with |λε
s,j,n| ≤ Lr , ∀ε < εr and similarly for the eigenvalues in (ii). We leave the

details to the reader. The key is in getting higher order terms out of Lemma 6. See
also Remark 5.

REMARK 2. The coefficients λs,j,k in Remark 1 can be calculated if σ is con-
stant using standard properties of Hermite polynomials (see [8] for a list of some
of these properties). In particular, it can be shown that in this case, λs,j,1 = 0 so
that convergence is in fact of order ε2.
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The starting point for the proof of Theorem 3 is Proposition 1 below which gives
us a way of splitting up the circle into regions determined by the different actions
of f . In what follows, d denotes the standard quotient metric on S1 induced by the
Euclidean metric on R and Bδ(x) = {y ∈ S1 :d(x, y) < δ}, δ > 0.

PROPOSITION 1. There exist neighborhoods V1 := Bδu(xu), V3 := Bδs (xs),
and constants η > 0, N ∈ N such that:

(i) d(f (x),V1) > η for every x /∈ V1.
(ii) d(f (x),V c

3 ) > η for every x ∈ V3.
(iii) For every x ∈ V2 := S1 \ (V1 ∪ V3), we have f n(x) ∈ V3, ∀n ≥ N .

PROOF. To prove (i), we first choose δ′ > 0 so that d(f (x), xu) > γud(x, xu),
∀x ∈ Bδ′(xu) with γu > 1 and let K = S1 \ Bδ′(xu). K is compact so that f (K)

is compact and therefore, we can find a δu ∈ (0, δ′) so that f (K) ⊂ S1 \ B2δu(xu).
Then if x /∈ Bδu(xu) =: V1 either: x ∈ K , in which case d(f (x), xu) ≥ 2δu or x ∈
Bδ′ \ Bδu(xu), in which case d(f (x), xu) > γud(x, xu) > γuδu. This implies that
d(f (x),V1) > η1 for every x /∈ V1 with η1 := min(γu − 1,1)δu. (ii) follows from
a similar argument and the fact that |f ′(xs)| < 1 while (iii) follows directly from
the assumption that f n(x) → xs as n → ∞, ∀x ∈ V2, and the compactness of V2.

�

Motivated by the above proposition, we write φ ∈ B(S1) as φ = φ1 + φ2 + φ3
where φi = φ1Vi

, i = 1,2,3, and then decompose T ε into operators T ε
ij :B(Vj ) →

B(Vi) defined by

T ε
ijφ(x) = 1Vi

(x)E
[
(φ1Vj

)
(
f (x) + εσ(x)χ

)] =
∫

φ(y)p̃ε
ij (x, y) dy,(7)

where

p̃ε
ij (x, y) := 1Vi

(x)p̃ε(x, y)1Vj
(y).

We can think of T ε acting on φ ∈ B(S1) via matrix multiplication:

T εφ(x) ⇔
⎡
⎣T ε

11 T ε
12 T ε

13
T ε

21 T ε
22 T ε

23
T ε

31 T ε
32 T ε

33

⎤
⎦

⎡
⎣φ1

φ2
φ3

⎤
⎦ (x).

(This can be made precise by use of inclusion/restriction operators.) Recalling
that T ε is the transition operator for (3), (7) implies that we can informally think
of T ε

ij as providing information about movement from Vi to Vj .
If we take ε = 0, we obtain the deterministic system (2). Furthermore, Proposi-

tion 1 implies that the transition operator T 0φ(x) = φ(f (x)) has the “upper trian-
gular” decomposition

T 0 =
⎡
⎣T 0

11 T 0
12 T 0

13
0 T 0

22 T 0
23

0 0 T 0
33

⎤
⎦
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with the additional property that (T 0
22)

n = 0, ∀n ≥ N . With noise in the system,
we cannot hope for such good fortune as there is always a small probability of
movement between regions. We can, however, obtain bounds on the probabilities
of such events, as the next three lemmas illustrate. At this point, we also introduce
the notation B(U,V ) = set of all bounded measurable functions from U ⊂ S1 to
V ⊂ S1 and B(U) = B(U,U). Let ‖ · ‖∞,U,V denote the corresponding sup-norm.
We will simply write ‖φ‖∞ when the domain and range of φ are clear. We shall
use the same notation and caveats when referring to the induced operator norm
on L(B(U),B(V )) = set of all bounded linear, operators from B(U) to B(V )

[with L(B(U)) = L(B(U),B(U))]. For instance, In the following lemmas, we
have T ε

ij :B(Vj ) → B(Vi) so we write ‖T ε
ij‖∞ for ‖T ε

ij‖∞,Vj ,Vi
.

LEMMA 1. There exist constants M,K > 0 so that

‖T ε
ij‖∞ ≤ Mεe−K/ε2

for every i > j .

PROOF. Clearly, ‖T ε
ij‖∞ = supx∈Vi

P(f (x) + εσ(x)χ ∈ Vj ). If x ∈ V3 and
j = 1,2, then (ii) in Proposition 1 implies that

P
(
f (x) + εσ(x)χ ∈ Vj

) ≤ P
(
d
(
f (x) + εσ(x)χ,f (x)

)
> η

)
.

Similarly, if x ∈ V2 and j = 1, (i) in Proposition 1 implies that

P
(
f (x) + εσ(x)χ ∈ V1

) ≤ P
(
d
(
f (x) + εσ(x)χ,f (x)

)
> η

)
.

The result is then a direct consequence of the next lemma. �

LEMMA 2. For any a, ε > 0 and x ∈ S1,

P
(
d
(
f (x) + εσ(x)χ,f (x)

)
> a

) ≤
√

2σub

πa2 εe−a2/(2σ 2
ubε

2).

PROOF. Follows from standard normal distribution tail estimates. �

LEMMA 3. There exist positive constants MN,KN such that

‖(T ε
22)

N+1‖∞ ≤ MNεe−KN/ε2
,

where N is the same constant as in (iii) of Proposition 1.

PROOF. From (iii) in Proposition 1 we know that f N(x) ∈ V3, ∀x ∈ V2 so that
d(f N+1(x),V2) > η by (ii). Therefore,

‖(T ε
ij )

N+1‖∞ ≤ sup
x∈V2

P
x(

d
(
Xε

N+1, f
N+1(x)

)
> η

)
.
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Since

d(Xε
N+1, f

N+1(x)) ≤
N∑

i=0

LN−id(Xε
i+1, f

i(x)),

where L = sup |f ′(x)|, the result then follows from independence and Lem-
ma 2. �

With these results in hand, we are ready to give the following:

PROOF OF THEOREM 3. For any ε > 0, we can write T ε = T ε
up + T ε

lp where

T ε
up :=

⎡
⎣T ε

11 T ε
12 T ε

13
0 T ε

22 T ε
23

0 0 T ε
33

⎤
⎦

and

T ε
lp :=

⎡
⎣ 0 0 0

T ε
21 0 0

T ε
31 T ε

32 0

⎤
⎦ .

If ε is sufficiently small, then Lemma 1 implies that ‖T ε
lp‖∞ ≤ Mεe−K/ε2

< r .
Since T ε

up is upper triangular, its spectrum is included in the union of the spec-
tra of the diagonal operators T ε

ii , i = 1,2,3. But by Lemma 3 and the fact that
‖T ε

22‖∞ ≤ 1, the spectral radius of T ε
22 can be made less than r by shrinking ε

if necessary so that any eigenvalue of T ε with modulus greater than r must be in
σ(T ε

11) or σ(T ε
33). Furthermore, because of the upper triangular structure, we know

that if φ3 is an eigendensity of T ε
33, then

φ(x) :=
{

φ3(x), x ∈ V3,
0, x /∈ V3,

is an eigendensity of T ε
up and similarly, the eigenfunctions of T ε

11 yields eigen-
functions of T ε

up . Therefore, the proof of Theorem 3 will be complete if we can
show that all eigenvalues of T ε

33 with modulus larger than r are of the form (i) with
corresponding eigendensities (5) and all eigenvalues of T ε

11 with modulus larger
than r are of the form (ii) with corresponding eigenfunctions (6). Calculating the
spectra of these operators turns out to be a difficult task and is of interest in its own
right. We therefore, dedicate the next two sections to this analysis and note that
Theorems 4 and 6 in Sections 4 and 5, respectively, give the results necessary for
the completion of this proof. �

4. The local story near a stable fixed point. The essential conclusions from
our work in this section are contained in the following theorem which provides us
with the necessary information we need about the action of T ε near a stable fixed
point of f .
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THEOREM 4. For any r > 0, ∃εs,r ,Ls,r > 0 so that ∀ε < εs,r , any eigenvalue
of T ε

33 in B(V3) is a simple eigenvalue of the form

λε
s,j = cj

s + ελε
s,j,1

for some j ≥ 0 with |λε
s,j,1| ≤ Ls,r , ∀j ≥ 0, ε < εs,r . Furthermore, ∃Ks,r > 0 such

that the eigendensities of T ε
33 corresponding to λε

s,j are multiples of[
hj

(
α(x − xs)

ε

)
+ εψε

s,j

(
x − xs

ε

)]
1V3(x)

with hj ,α as in Theorem 3 and

sup
x∈R

(|ψε
s,j (x)|ekx2

) ≤ Ks,r

for all ε < εs,r and some k > 0.

Before delving into the details of the proof [which are rather complicated due
to the singular nature of the perturbation in (3)], we first provide some motivation.
We identify S1 with [−π/2, π/2) and xs with 0 so that V3 = (−δs, δs), f (0) = 0,
cs = f ′(0), and T ε

33 :B((−δs, δs)) → B((−δs, δs)). As we will be working on R

for the remainder of this section, we will now set Bδ(x) := {y ∈ R : |x − y| < δ}.
We can informally think of (3) as a Markov Chain on R [with f (0) = 0] and

re-scale space near the origin. In other words, we look at the chain Y ε
n := Xε

n/ε.
Then

Y ε
n+1 = Xε

n+1/ε = ε−1f (Xε
n) + σ(Xε

n)χn = f ε(Y ε
n ) + σε(Y ε

n )χn,

where f ε(x) = ε−1f (εx) and σε(x) = σ(εx). Since f ε(x) → csx and σε(x) →
σ(0) as ε → 0, we expect that the dynamics of Y ε

n should be closely approximated
by the dynamics of

Yn+1 = csYn + σ(0)χn

for small values of ε.
This limit is nondegenerate and describes a simple autoregressive scheme. It can

easily be verified that Yn has an invariant measure μ defined by μ(dx) = ρs(x) dx

where

ρs(x) := α√
π

e−(αy)2

with α =
√

(1 − c2
s )/(2σ 2

0 ). Therefore, the space L2(μ) provides a natural setting
for investigating the spectrum of the transition operator, Ts , for Yn defined by

Tsφ(x) =
∫

φ(y)ps(x, y) dy with ps(x, y) = 1√
2πσ(0)

e−(y−csx)2/(2σ 2(0)).

For the following results, we write ‖ · ‖2 for ‖ · ‖L2(μ).
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LEMMA 4. Ts acts as a bounded, self-adjoint operator on L2(μ) with
‖Ts‖2 = 1.

PROOF. Apply the Cauchy–Schwarz inequality and note that

ρs(x)ps(x, y) = ρs(y)ps(y, x)(8)

for all x, y ∈ R. �

Since Ts is a self-adjoint operator on L2(μ), we know that we can find a com-
plete, orthonormal set (CONS) of eigenfunctions for Ts in L2(μ). The following
lemma identifies these functions.

LEMMA 5. The eigenvalues of Ts in L2(μ) are given by cn
s , n ≥ 0 and the

corresponding eigenfunctions are multiples of φs,n(x) = Hn(αx) where Hn is the
nth Hermite polynomial.

PROOF. Using the generating function definition of Hermite polynomials as
the functions satisfying

∞∑
n=0

Hn(x)zn

n! = e−z2+2xz

and the fact that E(etχ ) = et2/2 for any t ∈ R when χ is standard normal, we obtain

Ts

( ∞∑
n=0

Hn(αx)

n! zn

)
=

∞∑
n=0

Hn(αx)

n! (csz)
n.(9)

Since ∫
Hn(αx)Hm(αx)dμ(x) = δn,m2nn!,

the partial sums SN(x) := ∑N
n=0

Hn(αx)zn

n! form a Cauchy sequence in L2(μ) and
hence, (9) and the continuity of Ts imply that the cn

s are in fact eigenvalues with
corresponding eigenfunctions φs,n. Since the Hn form a CONS in L2(ν) where ν

is defined by ν(dx) =
√

2
π
e−x2

dx (see [8]), the φn form a CONS in L2(μ), which
proves the result. �

REMARK 3. For any (Borel) measure m, define the measure mTs(A) =∫
Ts1A(x)m(dx) = ∫ ∫

A ps(x, y) dy m(dx) for all (Borel) measurable sets A. If
we let φ∗

s,n(dx) = φs,n(x)μ(dx), then by (8) and Lemma 5, a quick calculation
shows that ∀A ∈ B, φ∗

s,nTs(A) = cnφ∗
s,n. Therefore, Ts has eigenmeasures φ∗

s,n

and eigendensities φs,n(x)ρs(x) = hn(αx).

Lemma 5 explains the limits in Theorem 4. The next two subsections give the
technical arguments.
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4.1. Expansion of the transition operator. Instead of directly extending T ε
33 to

an operator on B(R), we first define the family of weighted sup-norms:

‖φ‖A,k = sup
x∈A

|φ(x)|
vk(x)

(10)

with vk(x) = ekx2
and let WA,k = {φ ∈ B(A) :‖φ‖A,k < ∞} where B(A) denotes

the set of all (Borel) measurable functions on A. It is easy to show that for any
set A, WA,k along with the ‖ · ‖A,k norm is a Banach space [if k = 0, WA,k = B(A)

and ‖ · ‖A,k is just the sup-norm]. When A = R, we drop the A dependence and
write ‖ · ‖k and Wk for ‖ · ‖A,k and WA,k , respectively. Again in slight abuse of
notation, we shall use ‖ · ‖k to refer to the operator norm on L(Wk) = set of all
bounded linear operators on Wk as well.

Since V3 is bounded, the ‖ · ‖V3,k norms are equivalent for all k and hence, the
spectrum of T ε

33 will not depend on our use of norm. Therefore, we let k > 0 and
use the norm ‖ · ‖V3,k/ε2 on B(V3). Re-scaling can be done by applying the opera-
tor Uε :B(V ε

3 ) → B(V3), V ε
3 := (−δs/ε, δs/ε), defined by Uεφ(x) := φ(x/ε) and

setting T ε
3 := (Uε)−1 ◦ T ε

33 ◦ Uε . Then

T ε
3 φ(x) =

∫
φ(y/ε)p̃ε

i,j (εx, y) dy

(11)
= 1V ε

3
(x)

∫
V ε

3

φ(y)εp̃ε(εx, εy) dy

and the spectrum of T ε
3 in WV ε

3 ,k will be the same as the spectrum of T ε
33 in

WV3,k/ε2 . Finally, we can extend T ε
3 to an operator on R via (11) and consider the

spectrum of the resulting operator, T ε
s :Wk → Wk . Note that if T ε

s φ(x) = λφ(x)

for some φ ∈ Wk and λ �= 0, then φ̂ := φ|V ε
3

∈ Wk,V ε
3

satisfies T ε
3 φ̂(x) = λφ̂(x).

Conversely, if T ε
3 φ̂(x) = λφ̂(x) for some φ̂ ∈ Wk,V ε

3
and λ �= 0, then we can ex-

tend φ̂ to a function φ ∈ Wk such that T ε
s φ(x) = λφ(x) by setting φ(x) = φ̂(x)

for all x ∈ V ε
3 and φ(x) = 0, ∀x /∈ V ε

3 . Therefore, the nonzero part of the spectrum
of T ε

3 will not be affected by this extension.
The Wk spaces are large enough to include the eigenfunctions φs,n of Ts and

hence, are a good candidate space for studying the convergence of T ε
s to Ts . In

fact, we can show that:

THEOREM 5. There exists a ks > 0 so that T ε
s = Ts + O(ε) in L(Wk) for all

k ∈ (0, ks).

The essential ideas in the proof are the expansion of the main part of εp̃ε(ε·, ε·)
about ps(·, ·) and the use of the weight functions vk(·) to control the growth of
error terms. We begin with an expansion for the transition densities. Recall that

T ε
s φ(x) =

∫
φ(y)1V3(εx)1V3(εy)εp̃ε(εx, εy) dy,
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where

εp̃ε(εx, εy) = ∑
n∈Z

1√
2πσ(εx)

e−(y+2πn/ε−f ε(x))2/(2σ 2(εx))

and f ε(x) = ε−1f (εx). We write

pε
m(x, y) := εpε(εx, εy) = 1√

2πσ(εx)
e−(y−f ε(x))2/(2σ 2(εx))

for the main part of the transition density for T ε
s . Since f ε(x) → csx and σ(εx) →

σ(0) as ε → 0, we have

pε
m(x, y) → 1√

2πσ(0)
e−(y−csx)2/(2σ 2(0)) = ps(x, y)

pointwise as ε → 0. We also note that

pε
m(x, y) ≤ σub

σlb

p̄ε
m(x, y)(12)

for all x, y ∈ R where

p̄ε
m(x, y) = 1√

2πσub

e−(y−f ε(x))2/(2σ 2
ub).

LEMMA 6. Let ε > 0 and U be a bounded subset of R. Then ∀x ∈ U/ε and
y ∈ R, we have

pε
m(x, y) = ps(x, y) + εg1(x, y)ps(x, y) + ε2Rε(x, y),

where g1 is a polynomial in x, y while

|Rε(x, y)| ≤ gε
r (x, y)

(
p̄ε

m(x, y) + ps(x, y)
)

(13)

with gε
r a polynomial in ε, y, and x.

PROOF. If we take a second order Taylor expansion of g(z) = e−z about z =
z0, we obtain

e−z = e−z0 − e−z0(z − z0) + R(z, z0)

2
(z − z0)

2

with |R(z, z0)| ≤ max{e−z, e−z0} ≤ e−z + e−z0 , ∀z ∈ R. Letting z = (y−f ε(x))2

2σ 2(εx)
,

z0 = (y−csx)2

2σ 2(0)
, using the Taylor expansions of f and σ−1 about 0, and apply-

ing (12) then yields the result. �

We will also need to establish some bounds on growth rates in Wk . To this end,
define the linear operator

T ε
mφ(x) = 1V ε

3
(x)

∫
V ε

3

φ(y)pε
m(x, y) dy

for φ ∈ Wk . Let Iδ := (−δ, δ), I ε
δ = (−δ/ε, δ/ε), and Mδ := supx∈Iδ

{|f ′(x)|}.
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LEMMA 7. For any k < 1
2σ 2

ub

and j ∈ N, we have

∫
|y|j vk(x)ps(x, y) dy ≤ q(x)elkc

2
s x

2

for all x ∈ R and ∫
|y|j vk(x)p̄ε

m(x, y) dy ≤ q̃(x)elkM
2
δ x2

for all x ∈ I ε
δ where q, q̃ are polynomials of degree j and lk = k/(1 − 2σ 2

ubk).

The proof uses simple complete the square arguments along with standard prop-
erties of Gaussian kernels and is omitted. Applying Lemma 7 with j = 0 yields:

PROPOSITION 2. Let k < 1
2σ 2

ub

. Then Ts is a bounded linear operator from Wk

into Wlkc
2
s

and for any δ > 0, T ε
m is a bounded linear operator from WIε

δ ,k to

WIε
δ ,m(k,δ) with lk as in Lemma 7 and m(k, δ) := lkM

2
δ .

REMARK 4. Note that Lemmas 6 and 7 (and hence, Proposition 2) do not rely
on |cs | < 1 and hold equally well if in fact |cs | ≥ 1.

With the help of Proposition 2, we can establish a number of useful bounds
on growth rates in Wk . The key point is that since |cs | < 1, if k is positive, but
sufficiently small, we can make lkc

2
s < k. We use the notation

Si,jφ(x) =
∫

φ(y)|x|i |y|jps(x, y) dy

and

Sε
i,jφ(x) =

∫
φ(y)|x|i |y|j p̄ε

m(x, y) dy

for φ ∈ Wk and x ∈ R.

COROLLARY 1. For any 0 < k <
1−c2

s

2σ 2
ub

=: kc and n,m ∈ N, there exist positive

constants K1,L1 > 0 depending only on k, cs, n,m so that

|Si,jφ(x)|
vk(x)

≤ K1‖φ‖ke
−L1x

2

∀i ≤ m,j ≤ n, x ∈ R, and φ ∈ X.

PROOF. Let φ ∈ Wk and k′ > k. Then gφ ∈ Wk′ for any polynomial g and
‖gφ‖k′ ≤ ‖g‖k′−k‖φ‖k so Proposition 2 implies that

|Si,jφ(x)|
vk(x)

≤ K ′
1|x|i‖φ‖ke

(lk′c2
s −k)x2
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for some K ′
1 > 0. Letting k′ ↘ k and noting that 0 < k < kc implies lkc

2
s < k, we

obtain the result. �

We also have the analogous result for Sε
i,j . The proof is again a direct conse-

quence of Proposition 2.

COROLLARY 2. Suppose that Mδ < 1. Then if 0 < k < kδ := 1−M2
δ

1−2σ 2
ubk

and

m,n ∈ N, we can find positive constants K2,L2 depending only on k,n,m and Mδ

such that

|Sε
i,jφ(x)|
vk(x)

≤ K2‖φ‖e−L2x
2

∀i ≤ m,j ≤ n, ε > 0, x ∈ I ε
δ , and φ ∈ Wk .

Proposition 2 and its corollaries are most useful when |x| is large since the
bounds we obtain are then exponentially small. The purposes of the next proposi-
tion will be to control the size of Tsφ(x) when |x| is small, but the support of φ

does not contain x, and to control the size of T ε
s − T ε

m. We prove the result in a
general form that will also be useful in Section 6.1. We set Uε := U/ε for U ⊂ R.

PROPOSITION 3. Suppose g ∈ B(U) for some U ⊂ R and there exists V ⊂ R

and γ > 0 such that d(g(x),V ) > γ for all x ∈ U . Let ε > 0, gε(x) = ε−1g(εx),
and let Y be a N(gε(x), σ 2

ε (x)) random variable with σε ∈ B(R,R
+) satisfying

0 < σlb < σε(x) < σub for all x ∈ R, ε > 0 and some constants σlb, σub. Then there
exists a kγ > 0 so that if k ∈ (0, kγ ) and φ ∈ Wk we have

E[(φ1V ε)(Y )] ≤ K̄ε

γ
elk(g

ε(x))2‖φ‖ke
−L̄γ 2/ε2

for all x ∈ Uε and some constants K̄, L̄ > 0 depending on k, σub, and σlb with
lk = k/(1 − 2σ 2

ubk) as in Proposition 2.

PROOF. If k < 1/(2σ 2
ub), x ∈ Uε and φ ∈ Wk ,

E[(φ1V ε)(Y )] ≤ K1‖φ‖k

∫
V ε

eky2
e−(y−gε(x))2/(2σ 2

ub) dy

= K1‖φ‖ke
lk(g

ε(x))2
∫
V ε

e−(y−gε(x)/(1−2σ 2
ubk))2/(2σ̄ 2) dy

= K2‖φ‖ke
lk(g

ε(x))2
P

(
gε(x)

1 − 2σ 2
ubk

+ σ̄ χ ∈ V ε

)
,

where σ̄ 2 = σ 2
ub/(1 − 2σ 2

ubk) and χ is standard normal. But from our assumptions
on g, we have d(gε(x),V ε) > γ/ε so that since 1/(1 − 2σ 2

ubk) → 1 as k ↘ 0, we
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can choose k small enough so that d(gε(x)/(1−2σ 2
ubk),V ε) > γ/(2ε). Therefore,

E[(φ1V ε)(Y )] ≤ K2‖φ‖ke
lk(g

ε(x))2
P

(
σ̄ |χ | > γ/(2ε)

)
and the result follows from standard normal distribution tail estimates. �

Using (ii) in Proposition 1 to apply the last result with g(x) = csx, σε = σ ,
U = V3, V = V c

3 and γ = η yields:

COROLLARY 3. For all k sufficiently small, ∃K3,L3 > 0 depending on
cs, δs, η, and k such that

|Ts(φ1(V ε
3 )c )(x)|

vk(x)
≤ εK3‖φ‖e−L3/ε

2

∀x ∈ V ε
3 , and φ ∈ Wk .

At last, we are ready to conclude this section with the desired proof.

PROOF OF THEOREM 5. Without loss of generality, we assume that Mδs < 1.
Choose ks small enough to apply Corollaries 1–3, let k < ks and write

Tmφ(x) = 1V ε
3
(x)

∫
V ε

3

φ(y)ps(x, y) dy.

(It is true that the right-hand side of this equation depends on ε through the cutoff
functions, but we do not include this in our notation to make it clear that Tm is
related to the limit Ts .) We first show that T ε

m = Ts + O(ε). To this end, write

T ε
m − Ts = (T ε

m − Tm) + (Tm − Ts).

Then Lemma 6 implies that pε
m(x, y) = ps(x, y) + εRε(x, y) with the remainder

term Rε satisfying the inequality

|Rε(x, y)| ≤ gε
r (x, y)

(
p̄ε

m(x, y) + ps(x, y)
)

for any x, y ∈ R where gε
r a polynomial in x, y and ε. Therefore, using Corollar-

ies 1 and 2 to control
∫
V ε

3
φ(y)Rε(x, y) dy, we have

|(T ε
m − Tm)(φ)(x)|

vk(x)
≤ O(ε)‖φ‖k(14)

for all φ ∈ Wk , |x| < δs/ε. Furthermore, Corollary 3 implies that

|Ts(φ1(V ε
3 )c )(x)|

vk(x)
≤ O(e−L3/ε

2
)‖φ‖k(15)

for all φ ∈ Wk , |x| < δs/ε and Corollary 1 yields

|Tsφ(x)|
vk(x)

≤ O(e−L1δ
2/ε2

)‖φ‖k(16)
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for all φ ∈ Wk , |x| ≥ δs/ε. Combining (15) and (16), we have

|(Tm − Ts)(φ)(x)|
vk(x)

≤ O(e−L/ε2
)‖φ‖k(17)

for all x ∈ R, φ ∈ Wk and some constant L > 0. (14) and (17) together imply that
T ε

m = Ts + O(ε) in Wk so the proof Theorem 5 will be complete if we can show
that

|(T ε
s − T ε

m)(φ)(x)|
vk(x)

≤ O(e−L/ε2
)‖φ‖k(18)

for all φ ∈ Wk , x ∈ R. (18) can be obtained by applying Proposition 3 multiple
times with g(x) = f (x), σ 2

ε (x) = σ 2(εx), U = V3, and V = V3 +2πn for different
n ∈ Z\{0}, and noting that d(f (x),V3 +2πn) > η+2π(|n|−1) whenever x ∈ V3
(provided δ3 ≤ π ). �

REMARK 5. Note that we did not use the full force of the expansion for pε
m

in Lemma 6; however, we have stated the stronger result anyways to suggest how
one can calculate higher order terms in the expansion of T ε

s . To further explore this
idea, we suggest the reader look at the difference between T ε

m and Ts + εT1 in Wk

where

T1φ(x) :=
∫

φ(y)g1(x, y)ps(x, y) dy

and g1 is the polynomial appearing in Lemma 6.

4.2. Expansions of eigenvalues. With Theorem 5 in hand, we can now apply
classical results from Kato’s perturbation theory for linear operators (see Chap-
ters 2 and 3 of [6]) to obtain asymptotic expansions for the eigenvalues and eigen-
vectors of T ε

s . In order to apply these results, we need to establish the compactness
of our operators in L(Wk) and identify the spectrum of Ts is Wk . This is done in
the following two results.

LEMMA 8. Ts and T ε
s , ε > 0 are compact operators on Wk for all k suffi-

ciently small.

PROOF. An elementary (but somewhat lengthy) calculation using Corollary 2
shows that if k < kδs , then {T ε

s φn(x)} is equicontinuous and equibounded for any
sequence of functions φn ∈ Wk with ‖φn‖k = 1 and all x ∈ (−δs/ε, δs/ε). There-
fore, by the Arzela–Ascoli theorem, there exists a subsequence nj and a con-
tinuous function φ defined on (−δs/ε, δs/ε) such that T ε

s φnj
→ φ uniformly on

[−δs/ε, δs/ε]. If we extend φ to a function defined on all of R by setting φ(x) = 0
for |x| > δ/ε, then T ε

s φnj
→ φ in Wk as nj → ∞ since T ε

s φ(x) = 0 if |x| > δs/ε.
Therefore, T ε

s is compact, for ε > 0. A similar argument applies to Ts with the
additional use of Corollary 1 in the final step to control the size of Tsφnj

(x) for
large x. �
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LEMMA 9. σWk
(Ts) = {cn

s }n≥0 ∪{0} for any k sufficiently small. Furthermore,
each cn

s is a simple eigenvalue with corresponding eigenfunctions φs,n and eigen-
measures φ∗

s,n.

PROOF. Follows from Lemmas 5 and 8, and the fact that Wk ⊂ L2(μ) for all
k < α2. �

In the end our hard work pays off and we can finish with the following:

PROOF OF THEOREM 4. Theorem 5 and Remark 3 along with the classical
results on perturbation theory for linear operators (see [6], Chapters 2 and 3) and
Lemma 9 imply that for any given r > 0 and k sufficiently small (without loss of
generality, we can assume k < α2), ∃εs,r ,Ls,r ,Ks,r > 0 so that for all ε < εs,r ,
any eigenvalue of T ε

s in Wk with modulus greater than r is a simple eigenvalue

of the form λε
s,j = c

j
s + ελε

s,j,1 for some j ≥ 0 with |λε
s,j,1| ≤ Ls,r and the cor-

responding eigendensities are multiples of φε
s,j (x) := (hj (αx) + εψε

s,j (x))1V ε
3
(x)

with ‖ψε
s,j‖k−α2 ≤ Ks,r . Assuming without loss of generality that k < α2 yields

the appropriate bound for ψε
s,j . We have already argued that the nonzero eigen-

values of T ε
s in Wk are the same as the nonzero eigenvalues of T ε

33 in B(V3) and
the eigendensities for T ε

33 can be obtained from the eigendensities of Ts by apply-
ing Uε . After re-identifying [−π/2, π/2) with S1 and 0 with xs , we obtain the
result. �

This completes our analysis of the operator near the stable fixed point and ex-
plains the first set of eigenvalues appearing in (i) of Theorem 3. We now move
to the study of the operator in a neighborhood of the unstable fixed point, which
thankfully turns out to be essentially the same.

5. The local story near an unstable fixed point. Our main result for this
case is:

THEOREM 6. For any r > 0, ∃εu,r ,Lu,r > 0 so that ∀ε < εu,r , any eigenvalue
of T ε

11 in B(V1) with modulus greater than r is a simple eigenvalue of the form

λε
u,j = |cu|−1c−j

u + ελε
u,j,1

for some j ≥ 0 with |λε
u,j,1| ≤ Lu,r , ∀j ≥ 0, ε < εu,r . Furthermore, ∃Ku,r > 0

such that the eigenfunctions of T ε
11 corresponding to λε

u,j are multiples of[
hj

(
β(x − xu)

ε

)
+ εψε

u,j

(
x − xu

ε

)]
1V1(x)

with hj ,β as in Theorem 3 and

sup
x∈R

(|ψε
u,j (x)|ekx2

) ≤ Ku,r
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for all ε < εu,r and some k > 0.

To motivate the proof, we identify S1 with [−π/2, π/2) by identifying xu with 0
(so that V1 = (−δu, δu), f (0) = 0 and cu = f ′(0) /∈ [−1,1]) and as in Section 4
consider the chain Y ε

n = Xε
n/ε. The limit as ε → 0 is now the transient chain

Yn+1 = cuYn + σ0χn

and if we let Tu denote the corresponding transition operator, a simple complete
the square calculation reveals that

Tu(vβ2φ)(x) = 1

|cu|vβ2(x)E
[
φ

(
x/cu + (σ0/cu)χ

)]

∀φ ∈ B if β =
√

(c2
u − 1)/2σ0. Therefore,

|cu|
vβ2(x)

Tu(vβ2φ)(x) = E
[
φ

(
x/cu + (σ0/cu)χ

)]
∀φ ∈ B,x ∈ R. Notice that the right-hand side is the transition operator for the
autoregressive chain

Zn+1 = c−1
u Zn + (σ0/cu)χn

and Lemma 9 implies its eigenvalues are c−n
u with corresponding eigenfunctions

φn(x) = Hn(

√
(1 − c−1

u )/(2σ0c
−1
u )x) = Hn(βx). Therefore, Tu will have eigen-

values |cu|−1c−n
n with corresponding eigenfunctions φn(x)/vβ2(x) = hn(βx) as

required.
The argument that these are the appropriate limits for the eigenvalues/eigenfunc-

tions of T ε
11 can be made rigorous by following the arguments used in Section 4.

To this end, we define T ε
11 :Wk,V1 → Wk,V1 , re-scale as in Section 4, and extend

the resulting operator to Wk . We call the extended operator T ε
u to make clear the

analogy with the stable case. From Proposition 2 (see also Remark 4) T ε
u maps

WV ε
1 ,k to WV ε

1 ,m(k,δu) for all k but since |cu| > 1, we can check that m(k, δu) < k

only if k < 0. From our work in Section 4, this suggests that we should look at the
limiting behavior of T ε

u in Wk for some k < 0. The next theorem shows that this
suggestion is a good one.

THEOREM 7. There exists ku < 0 such that T ε
u = Tu + O(ε) in L(Wk) for all

k ∈ (ku,0).

PROOF. Consider the operators T̂ ε
u := |cu|V −1 ◦ T ε

u ◦ V and T̂u := |cu|V −1 ◦
Tu ◦ V where V :Wk−β2 → Wk is defined by V φ(x) = vβ2(x)φ(x). From the pre-
ceding dialogue, we have

T̂uφ(x) =
∫

φ(y)p̂u(x, y)
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for all φ ∈ Wk where

p̂u(x, y) = 1√
2πσ0|cu|−1

e−(y−c−1
u x)2/(2σ 2

0 c−2
u )

and a similar calculation reveals that

T̂ ε
u φ(x) = 1V ε

1
(x)hε(x)E

[
(φ1V ε

1
)
(
Fε

u (x) + c−1
u σ (εx)χ

)]
,

= 1V ε
1
(x)

∫
V ε

1

φ(y)hε(x)p̂ε
u(x, y) dy,

where Fε
u (x) = f ε

u (x)/c2
u, hε(x) = eβ2[x2−(f ε

u (x)/cu)2], and

p̂ε
u(x, y) = ∑

n∈Z

cu√
2πσ(εx)

e−c2
u(y+2πn/ε−Fε

u (x))2/(2σ 2(εx)).

Since (F ε
u )′(0) = c−2

u (f ε
u )′(0) = c−1

u ∈ (−1,1), and hε(x) ≈ 1 for small x, p̃ε
u

has the same basic form as the transition density εp̃(ε·, ε·) for the operator T ε
s dis-

cussed in the previous section. We leave it to the reader to check if k′ is sufficiently
small and positive, (14)–(18) from the proof of Theorem 5 hold if we replace the
pair T ε

s , Ts with T̂ ε
u , T̂ ε

u (and pε
m with the corresponding main part of p̂ε

u) which
implies that T̂ ε

u = T̂u + O(ε) in Wk′ for k′ > 0 small. Applying V and V −1 to this
equation yields the result with ku = k′ − β2. �

Theorem 6 then follows from Kato’s perturbation theory (see the proof of The-
orem 4).

6. General periodic orbits. Having completed our analysis in the case f has
only two fixed points, we move on to discuss the issues involved in dealing with
general periodic orbits.

6.1. Stable period two orbit. We consider the behavior of (3) when f again
has two fixed points xs, xu but now f ′(xs), f

′(xu) /∈ [−1,1] so that xs and xu are
both unstable. In addition to these two fixed points, we suppose f also has a sta-
ble period two orbit P = {x1, x2} with (f 2)′(x1) = (f 2)′(x2) = f ′(x1)f

′(x2) ∈
(−1,1) and assume that all orbits of xn+1 = f (xn) converge to P if x0 /∈ {xs, xu}.
The reader will notice in Theorem 8 below that the eigenvalues in (ii) below
also appeared in Theorem 3 as contributions from the unstable fixed point(s). The
eigenvalues in (i) are the new contributions from the period two orbit.

THEOREM 8. For any r > 0, we can decompose T ε = T ε
lp + T ε

up so that ∀ε

sufficiently small, ‖T ε
lp‖∞ < r and any eigenvalue of T ε

up with modulus greater
than r is of the form λε = λ + O(ε) where:

(i) λ = √
(c1c2)j for some j ≥ 0 and some branch of

√·
or
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(ii) λ = |ck|−1c
−j
k for some j ≥ 0 with k = s or k = u.

The eigenfunctions corresponding to the limiting eigenvalue in (ii) are of the form

a1hn

(
β(x − xk)

ε

)
+ O(ε)

for some constant a1 with β =
√

(ck − 1)2/(2σ 2(xk)), k = s or k = u. The eigen-
densities corresponding to the limiting eigenvalues in (i) are of the form

2∑
i=1

aihn

(
αi(x − xi)

ε

)
+ O(ε)

for some constants ai with αi = α/σi , i = 1,2, α =
√

(1 − c1c2)2/2, σ1 =√
c2

2σ
2(x1) + σ 2(x2), and σ2 =

√
c2

1σ
2(x2) + σ 2(x1).

For more information on the O(ε) terms in the eigenvector expansions see The-
orem 3. Note that the difference in the scaling factors αj imply that the limiting
eigendensities corresponding to (i) will have different spread near x1 and x2 (see
Figure 4 in Section 2).

The basic form of the proof of Theorem 8 closely resembles the proof of The-
orem 3 and the remainder of this section is dedicated to an outline of the steps
involved. The main difference comes in the analysis of the part of T ε near the sta-
ble period two orbit. First, we have the following analog to Proposition 1 which
allows us to break up the circle into regions determined by the different actions
of f .

PROPOSITION 4. There exist neighborhoods V1 := Bδu(xu), V2 := Bδs (xs),
U1 := Bδ1(x1), U2 := Bδ2(x2), and constants η > 0, N ∈ N such that:

(i) d(f (x),Vi) > η for every x /∈ Vi , i = 1,2.
(ii) f (U1) ⊂ U2, f (U2) ⊂ U1 with d(f 2(x),Uc

i ) > η, and d(f (x),Uc
j ) > η

for every x ∈ Ui , i, j = 1,2, j �= i.
(iii) f n(x) ∈ V4 =: U1 ∪U2 for every x ∈ V3 := S1 \ (V1 ∪V2 ∪V4) and n ≥ N .

The proof is similar to the proof of Proposition 1 and is omitted. This splitting
leads to the decomposition T ε = (T ε

ij )
4
i,j=1, with T ε

ij :B(Vj ) → B(Vi) given by (7)

for i, j = 1,2,3,4. Proposition 4 then tells us that T 0 has a block decomposition
of the form

T 0 =

⎡
⎢⎢⎢⎣

T 0
11 0 T 0

13 T 0
14

0 T 0
22 T 0

23 T 0
24

0 0 T 0
33 T 0

34
0 0 0 T 0

44

⎤
⎥⎥⎥⎦
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with T n
33 = 0 for all n ≥ N . Furthermore, from property (ii) of Proposition 4,

we can further decompose T 0
44 with respect to V4 = U1 ∪ U2 into operators

T4ij :B(Uj ) → B(Ui) so that

T 0
44 =

[
0 T 0

412
T 0

421 0

]
.

Lemma 2 can then be used to show that if ε > 0, all the 0 terms in the above
decompositions will be replaced in the corresponding decompositions of T ε and
T ε

44 by terms that are O(εe−K/ε2
) as ε → 0, yielding the appropriate T ε

lp and T ε
up

terms in Theorem 8. The existence of the eigenvalues in (ii) and the form of the
corresponding eigenfunctions then follows directly from Theorem 6 in Section 5.
Therefore, our analysis will be complete once we show the eigenvalues of

T ε
4 :=

[
0 T ε

412
T ε

421 0

]

correspond to (i) with the appropriate eigendensities. Note that since this operator
has a 0 diagonal, its eigenvalues will be given by

√
λ where λ is an eigenvalue

of Sε := T ε
412T

ε
421 :B(U1) → B(U1) and

√· denotes the multivalued complex root
function and the corresponding eigendensities will be linear combinations of the
eigendensities for Sε and S̃ε = T ε

421T
ε
412 :B(U2) → B(U2).

To determine the spectrum of Sε , we map S1 to [−π/2, π/2) in such a way
that x1 ↔ 0 [and hence, x2 ↔ f (0) with f (x2) = 0]. By definition, Sεφ(x) is zero
unless Xε

0 ∈ U1, Xε
1 ∈ U2, and Xε

2 ∈ U1 so to calculate its spectrum, we alternate
our re-scaling and look at the chain Y ε

n defined by: Y ε
0 := Xε

0/ε,

Y ε
2n−1 := Xε

2n−1 − f (0)

ε
= f ε

1
(
Y ε

2(n−1)

) + σε
1 (Y ε

2(n−1))χ0,

Y ε
2n := Xε

2n

ε
= f ε

2 (Y ε
2n−1) + σε

2 (Y ε
2n−1)χ1

with f ε
1 (x) := ε−1(f (εx) − f (0)) → f ′(0)x, f ε

2 (x) := ε−1f (εx + f (0)) →
f ′(f (0))x, σε

1 := σ(εx) → σ(0), and σε
2 (x) := σ(εx + f (0)) → σ(f (0)) as

ε → 0. Therefore, if ε is small, the corresponding re-scaled version of Sε should
be close to the two-step transition operator for the linear chain

Y2n−1 := c1Y2(n−1) + σ(0)χ0,

Y2n := c2Y2n−1 + σ(f (0))χ1,

where c1 = f ′(0) and c2 = f ′(f (0)). But

Y2n+2 = c1c2Y2n + (
c2σ(0)χ2n + σ(f (0))χ2n+1

) d= c1c2Y2n + σ1χ̃2n

with σ 2
1 = c2

2σ
2(0) + σ 2(f (0)) and χ̃2n a family of i.i.d. standard normal random

variables, which we recognize as the autoregressive scheme previously encoun-
tered in Section 4. Since |c1c2| < 1, Lemma 9 implies the transition operator for
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this chain has eigenvalues (c1c2)
n, n ≥ 0. Therefore, the eigenvalues of Sε should

also be close to (c1c2)
n for small ε yielding the eigenvalues (ii) in Theorem 8.

To make this argument rigorous, we again make use of the weighted sup-norm
spaces Wk defined in Section 4. In the next result, we shall use Sε to denote the
two-step transition operator for the re-scaled chain Y ε

n and S to denote the two step
transition operator of the limiting chain Yn.

THEOREM 9. For any sufficiently small k > 0, we have Sε = S + O(ε) in Wk .

PROOF. We assume σ is constant for notational purposes and leave the general
case to the reader. Write pε

1(x, y) := εpε(εx, εy + f (0)),pε
2(x, y) := εpε(εx +

f (0), εy) for the main parts of the transition densities for Y ε
2n−1, Y

ε
2n and p1,p2

for the transition densities of Y2n−1 and Y2n, respectively. Define

Sε
i φ(x) := 1Uε

i
(x)

∫
Uε

j

pε
i (x, y) dy

and

Siφ(x) := 1Uε
i
(x)

∫
Uε

j

pi(x, y) dy

for i, j = 1,2, i �= j where here Uε
i := (−δi/ε, δi/ε). Finally, let Sε

m := Sε
2Sε

1 and
Sm = S2S1.

As in the proof of Theorem 5, we will show that Sε
m = S + O(ε) by bounding

Sε
m − Sm and Sm − S and then show that Sε − Sε

m is small. Our first task will be
proving

|Sε
mφ(x) − Smφ(x)|

vk(x)
≤ O(ε)‖φ‖k(19)

for all φ ∈ Wk, |x| < δ1/ε, the natural analog of (14).
To prove (19) let k > 0, x ∈ Uε

1 and φ ∈ Wk . Then

|Sε
mφ(x) − Smφ(x)| =

∣∣∣∣
∫
Uε

1

∫
Uε

2

φ(z)
(
p1(x, y)p2(y, z) − pε

1(x, y)pε
2(y, z)

)
dy dz

∣∣∣∣.
Using

p1(x, y)p2(y, z) − pε
1(x, y)pε

2(y, z) = (
p1(x, y) − pε

1(x, y)
)
p2(y, z)

+ pε
1(x, y)

(
p2(y, z) − pε

2(y, z)
)
,

we have

|Sε
mφ(x) − Smφ(x)| ≤ |(S1 − Sε

1)[S2φ](x)| + |Sε
1[(S2 − Sε

2)φ](x)|.(20)

Since f ε
1 (y) → c1y and f ε

2 (y) → c2y as ε → 0, Lemma 6 implies that

|p1(x, y) − pε
1(x, y)| ≤ O(ε)gε

r,1(x, y)
(
p1(x, y) + pε

1(x, y)
)
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and

|p2(y, z) − pε
2(y, z)| ≤ O(ε)gε

r,2(y, z)
(
p2(y, z) + pε

2(y, z)
)
,

where gε
r,1 and gε

r,2 are polynomials in ε, x, y and ε, y, z, respectively. Applying
these bounds to (20) and dividing by vk(x), we have

|Sε
mφ(x) − Smφ(x)|

vk(x)
≤ O(ε)

[ |Sr,1(S2φ)(x)|
vk(x)

+ |Sε
r,1(S2φ)(x)|

vk(x)

]
(21)

+ O(ε)

[ |Sε
1(Sr,2φ)(x)|

vk(x)
+ |Sε

1(Sε
r,2φ)(x)|

vk(x)

]
,

where the Sε
r,i are defined as

Sε
r,iφ(x) :=

∫
Uε

j

φ(y)gr,i(x, y)pε
i (x, y) dy

for i, j = 1,2, j �= i and similarly for Sr,i , i = 1,2.
To bound the four integrals on the right of (21), we appeal to Proposition 2

in Section 4. For instance, S2 :Wk → Wl1 with l1 = l1(k) = c2
2k/(1 − 2σ 2k) and

S1 :Wl1 → Wl2 where l2 = c2
1l1/(1 − 2σ 2l1) so that S1S2 :Wk → Wlk where

lk = c2k/[(1 − 2σ 2k)(1 − 2σ 2l1)] = c2k/(1 − 2σ 2
1 k) > 0

provided 0 < k < (1 − c2)/(2σ 2
1 ). Furthermore, since |c| < 1, we have lk < k for

this same range of k values so that we can apply the argument used in Corollary 1
to bound the first term on the right-hand side of (21). Bounds for the other terms
follows in a similar manner, completing the proof of (19).

Our next task is to look at the difference between Sm and S. Since S has the
same form as Ts in Section 4 (with c = c1c2 replacing cs ), Proposition 2 and the
argument from Corollary 1 imply that if k < (1 − c2)/(2σ 2

1 ) and |x| ≥ δ1/ε,

|(Sm − S)φ(x)|
vk(x)

= |Sφ(x)|
vk(x)

≤ O(e−L1δ
2
1/ε2

)‖φ‖k(22)

for all φ ∈ Wk . Furthermore, if |x| < δ1/ε, we can write

|(S − Sm)(φ)(x)| = ∣∣Ex[
φ(Y2)

(
1 − 1Uε

1
(Y2)1Uε

2
(Y1)

)]∣∣
≤ E

x[|φ(Y2)|(1 − 1Uε
2
(Y1)

)]
+ E

x[|φ(Y2)|(1 − 1Uε
1
(Y2)

)
1Uε

2
(Y1)

]
(23)

= E
x[

E
Y1[|φ(Y2)|](1 − 1Uε

2
(Y1)

)]
+ E

x[
E

Y1
[|φ(Y2)|(1 − 1Uε

1
(Y2)

)]
1Uε

2
(Y1)

]
.

Now from (ii) in Proposition 4, we can assume without loss of generality that
d(c1x, I c

δ2
) > η if x ∈ Iδ1 where as before Iδ = (−δ, δ). Therefore, to control the
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first term on the right of (23), we use Lemma 7 to bound EY1[φ(Y2)] and then apply
Proposition 3 with g(x) = c1x, σε = 1, U = Iδ1 , and V = I c

δ2
. Similarly, to control

the second term on the right of (23), we apply Proposition 3 with g(x) = c2x,
σε = 1, U = Iδ2 , and V = I c

δ1
and then use Lemma 7 to bound the expectation.

These bounds for the two terms on the right of (23) yield the inequality

|Sφ(x) − Smφ(x)|
vk(x)

≤ O(e−L/ε2
)‖φ‖k(24)

for all φ ∈ Wk, |x| < δ1/ε and some L > 0 provided k is sufficiently small. (19),
(22) and (24) complete that proof that Sε

m = S + O(ε). We leave it to the reader to
check that

|Sεφ(x) − Sε
mφ(x)|

vk(x)
≤ O(e−L/ε2

)‖φ‖k

for φ ∈ Wk and x ∈ R as well, which then yields Theorem 9. �

Theorem 9 (along with the perturbation theory arguments used to derive Theo-
rem 4) tells us that for small ε, the top eigenvalues of Sε will be (c1c2)

n +O(ε) and
the corresponding eigendensities will be hn(

α(x−x1)
εσ1

) + O(ε). [We have absorbed
the cut-off functions that appear in the eigendensity formulas from Theorem 4 in
the O(ε) term since hn(

α(x−x1)
εσ1

) is concentrated near x1 for small ε anyways.]
We can then apply the off-diagonal structure of T ε

4 to yield the appropriate lim-
iting eigenvalues and corresponding eigendensities (see the discussion following
Proposition 4).

6.2. Notes on the general case. The general case described in Section 2 can
be handled in the same way as the specific cases we have dealt with in Sections 3
and 6.1 although the details are more tedious. We conclude this paper by remarking
on some of the differences.

• The starting point is, as before, to split the circle into regions describing the
different actions of f . The notation is more complicated, but the end result is
the same: we can split the circle into neighborhoods of the different periodic
orbits for f and label sets in such a way that T ε has an “almost” upper triangular
decomposition with respect to the splitting (see Propositions 1 and 4).

• We already know how to deal with the local behavior of the operator near fixed
points and stable period two orbits. For stable periodic orbits P of period p > 2,
we simply note that for small ε, the block corresponding to P in the decompo-
sition of T ε is approximately of the form:⎡

⎢⎢⎢⎢⎢⎢⎣

0 T ε
12 0 · · · 0

... 0 T ε
23

. . .
...

. . .
. . . 0

0 · · · 0 T ε
(p−1)p

T ε
p1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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when ε is small. One can readily check that any such operator has eigenvalues
λ1/p where λ is an eigenvalue of T ε

12T
ε
23 · · ·T ε

(p−1)pT ε
p1. A similar argument to

the one in Section 6.1 can be used to show that this p-step chain has eigenvalues
close to cn where c is equal to the derivative of f along P which yields the
eigenvalues (cn)1/p as desired.

• For an unstable period two orbit Q, we identify S1 with R so that Q = {0, f (0)}
and again apply the re-scaling argument from Section 6.1 to the block of T ε cor-
responding to Q. The limiting two step chain is of the form Yn+2 = cYn + σ1χ

where c = f ′(0)f ′(f (0)) is the derivative along the period two orbit and
σ 2

1 = c2
2σ

2(0) + σ 2(f (0)) with c2 = f ′(f (0)). Since |c| > 1, our work in Sec-
tion 5 implies that this chain has eigenvalues |c|−1c−n and hence, it seems rea-
sonable to believe that the block of T ε corresponding to Q has eigenvalues near
(|c|−1c−n)1/2. To prove this rigorously, we let Sε and S be as in Section 6.1 and
prove Sε = S + O(ε) in Wk for some k < 0 (see Theorem 7). Note that this will
require pre and post-multiplying functions by vβ2 where β2 = (c2 − 1)/(2σ 2

1 ).
Extensions to the case when Q has period q > 2 are similar.
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