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CAPACITIVE FLOWS ON A 2D RANDOM NET

BY OLIVIER GARET

Institut Élie Cartan Nancy

This paper concerns maximal flows on Z
2 traveling from a convex set

to infinity, the flows being restricted by a random capacity. For every com-
pact convex set A, we prove that the maximal flow �(nA) between nA and
infinity is such that �(nA)/n almost surely converges to the integral of a de-
terministic function over the boundary of A. The limit can also be interpreted
as the optimum of a deterministic continuous max-flow problem. We derive
some properties of the infinite cluster in supercritical Bernoulli percolation.

1. Introduction. The problem of finding the maximum flow in a capacitive
network is undoubtedly the most known problem in the theory of operational re-
search. We know since Ford and Fulkerson that the search of a maximum capaci-
tive flow and that of the minimal cutset in a graph are two sides of the same coin. In
the applications, the problems can come under a form or another. Thus, this duality
allows to choose the formulation which is the most adapted to the mathematical
treatment.

In the last decade, the min-cut formulation has been shown to be a practical and
useful tool for image segmentation (see Xiaodong [16] or Estrada and Jepson [7],
for instance). It is not surprising since image segmentation is precisely running the
scissors along the line of cut. Let us assume for instance that we have a picture of
a person and that we want to cut around the face in such a way that the background
is rather white along the break: if ηx represents the blackness of the point x, then
one can try to minimize the “cost”

∑
x∈C ηx , where C is a curve, which separates

the face of the person (beforehand identified) from the rest of the photograph.
We give in the present article a probabilistic treatment of this kind of cutset

problem: the darkness of the points is given here by a collection of identically
distributed random variables, and we want to know to what extent the cost of the
minimal cutset is determined by the geometry of the form to be encircled. If we
reformulate the problem using the max-flow min-cut duality, we have random ca-
pacities on the bonds of Z

2 and we study the maximum flow that can be carried
from the boundary of a given set to infinity. To be more specific, we fix a com-
pact convex subset A ⊂ R

2 and study the asymptotic behavior of the maximal
flow �(nA) between nA and infinity, which is also the cost of a minimal cutset
separating nA from infinity. We will see that the maximal flow �(nA) between
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nA and infinity is such that �(nA)/n almost surely converges to the integral of a
deterministic function over the boundary of A.

2. Notation and results.

Flows. Formally, let
−→
E

2 = {(x, y) ∈ Z
2 × Z

2 :‖x − y‖1 = 1} and E
2 =

{{x, y} ∈ Z
2 ×Z

2 :‖x−y‖1 = 1}, where ‖·‖1 is the �1-norm: ‖(a, b)‖1 = |a|+|b|.
As usual, we denote by L

2 = (Z2,E
2) the unoriented square lattice.

We say that a map f :
−→
E

2 → R is a flow if f (x, y) = −f (y, x) holds for each

edge (x, y) ∈ −→
E

2
.

Let (te)e∈E2 be a family of positive numbers.
We say that f is a capacitive flow from A to infinity if it satisfies{

|f (x, y)| ≤ t{x,y}, for each bond (x, y) ∈ −→
E

2
,

Divf (x) = 0, for x ∈ Z
2\A,

(1)

where Div j (x) = ∑
y∈Z2;‖x−y‖1=1 j (x, y).

We denote by Capflow(A,∞) the set of capacitive flows from A to infinity. The
aim is to study the maximal flow from a convex set A to infinity, that is,

max

{ ∑
x∈A∩Z2

Div j (x); j ∈ Capflow(A,∞)

}
,(2)

when the (te)e∈E2 are given by some collection of independent identically dis-
tributed random variables.

Links with first passage percolation. The efficiency of methods coming from
first passage percolation in studying the maximum flow through a randomly capac-
itated network was initially pointed out by Grimmett and Kesten [12]: precisely,
they gave the asymptotic behavior of the maximum flow through the bottom of a
rectangle to its top as an application of their advances in first-passage percolation.

As already mentioned, the point is the use of the max-flow min-cut theorem [8].
In the current setting, we can prove that

max

{∑
x∈A

Div j (x); j ∈ Capflow(A,∞)

}
= Mincut(A,∞) a.s.,(3)

where Mincut(A,∞) is the minimum of the quantity
∑

e∈C te, where C is taken
among the subsets of E

2 that separate A from infinity, or more precisely that are
such that every infinite path in L

2 starting from A meets C. Such a set is called a
cutset (relative to A). With this definition, we can write

Mincut(A,∞) = min

{∑
e∈C

te;C ⊂ E
2 and C is a cutset relative to A

}
.(4)
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The cutsets of L
2 can be characterized as follows: Let Z

2∗ = Z
2 + (1/2,1/2),

E
2∗ = {{a, b};a, b ∈ Z

2∗ and ‖a − b‖1 = 1} and L
2∗ = (Z2∗,E

2∗). It is easy to see that
L

2∗ is isomorphic to L
2.

For each bond e = {a, b} of L
2 (resp. L

2∗), let us denote by s(e) the only subset
{i, j} of Z

2∗ (resp. Z
2) such that the quadrangle aibj is a square in R

2. s is clearly
an involution, and it is not difficult to see that s is a one-to-one correspondence
between the cutsets in L

2 and the sets in E
2∗ that contain a closed path surround-

ing A. If C is minimal for inclusion, then s(C) is just a path surrounding A, so
the quantity

∑
e∈e te can be interpreted as the length of the path in a first-passage

percolation setting on Z
2∗.

This leads us to recall a basic result in first-passage percolation:
Assume that m is a probability measure on [0,+∞), such that

m(0) < 1/2 and ∃c > 0,

∫
[0,∞)

exp(cx) dm(x) < +∞.(5)

Let � = [0,+∞)E
2

and consider the probability measure P = m⊗E
2

on �. For
e ∈ E

2, we define te(ω) = ωe, thus the variables (te)e∈E2 are independent identi-
cally distributed random variables with common law m.

For each γ ⊂ E
2, we define l(γ ) = ∑

e∈γ te. We denote by d(a, b) the length of
the shortest path from a to b, that is,

d(a, b) = inf{l(γ );γ contains a path from a to b}.
Then by the Cox–Durrett shape theorem [5], there exists a norm μ on R

2 such that

lim‖x‖1→+∞
d(0, x)

μ(x)
= 1 a.s.(6)

We can also define l∗ by l∗(A) = l(s(A)) and a (random) distance d∗ on Z
2∗×Z

2∗
by

d∗(a, b) = inf{l∗(γ );γ contains a path from a to b}.
Since L

2∗ is isomorphic to L
2, it is easy to see that d∗(·, ·) enjoys the same

asymptotic properties as d(·, ·) does.

Main results. We first recall some common notation: H1 is the 1-dimensional
normalized Hausdorff measure, λ2 is the 2-dimensional Lebesgue measure, div is
the usual divergence operator, and C1

c (R2,E) is the set of compactly supported C1

vector functions from R
2 to E. Let A ⊂ R

2 be a Caccioppoli set. We denote by
∂A its boundary and by ∂∗A its reduced boundary, that is constituted by the points
x ∈ ∂A, where ∂A admits an unique outer normal, which is denoted by νA(x).

The main goal of the paper is the following theorem.



644 O. GARET

THEOREM 2.1. We suppose that m(0) < 1/2 and that∫
[0,∞)

exp(cx) dm(x) < +∞

for some c > 0. Then for each bounded convex set A ⊂ R
2 with 0 in the interior,

we have

lim
n→+∞

Mincut(nA,∞)

n
=

∫
∂∗A

μ(νA(x)) dH1(x).

Equivalently,

lim
n→+∞

1

n
max

{ ∑
x∈nA∩Z2

Div j (x); j ∈ Capflow(nA,∞)

}

= sup
{∫

A
divf dλ2(x);f ∈ C1

c (R2,Wμ)

}
,

where

Wμ = {x ∈ R
2 : 〈x,w〉 ≤ μ(w) for all w}.

Note that Wμ is sometimes called the Wulff crystal associated to μ.
If we observe the last equality, we can see that the optimal value of a discrete

random max-flow problem converges (after a suitable renormalization) to the op-
timum of a deterministic continuous max-flow problem.

In fact, we even have exponential bounds for the fluctuations around

I(A) = sup
{∫

A
divf dλ2(x);f ∈ C1

c (R2,Wμ)

}
.(7)

Indeed, we prove the following theorem.

THEOREM 2.2. Under the assumptions of Theorem 2.1, it holds that for each
ε > 0, there exist constants C1,C2 > 0, depending on ε and m, such that

∀n ≥ 0 P

(
Mincut(nA,∞)

nI(A)
/∈ (1 − ε,1 + ε)

)
≤ C1 exp(−C2n).(8)

With the help of Menger’s theorem, we obtain the following corollaries.

COROLLARY 2.3. We consider supercritical Bernoulli percolation on the
square lattice, where the edges are open with probability p > pc(2) = 1/2. Then
for each bounded convex set A ⊂ R

2 with 0 in the interior, the maximal number
dis(A) for a collection of disjoint open paths from A to infinity satisfies

∃C1,C2 > 0 ∀n ≥ 0 P

(
dis(nA)

nI(A)
/∈ (1 − ε,1 + ε)

)
≤ C1 exp(−C2n),(9)

where I(A) is the quantity defined in (7), the law m of passage times being the
Bernoulli distribution (1 − p)δ0 + pδ1.
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This corollary has itself an easy and pleasant consequence.

COROLLARY 2.4. We consider supercritical Bernoulli percolation on the
square lattice. For each integer k, there almost surely exist k disjoint open bi-
infinite paths.

Note, however, that this amusing corollary is not really new; indeed, it can
be obtained as a consequence of Grimmett and Marstrand [10]—see also Grim-
mett [11], page 148, Theorem 7.2.(a).

The paper is organized as follows. In Section 3, we recall some basic properties
in first-passage percolation and prove some useful properties of the functional I.
Next, the proof of Theorem 2.2 naturally falls into two parts: Section 4 deals with
the upper large deviations appearing in the Theorem, whereas Section 5 is about
the lower ones. We complete the proof of Theorem 2.1 and establish the corollaries
in Section 6. In the final section, we discuss the possibility of an extension to higher
dimensions.

3. Preliminary results.

NOTATION. We denote by 〈·, ·〉 the natural scalar product on R
2 and by ‖ · ‖2

the associated norm. S is the Euclidean unit sphere: S = {x ∈ R
2 :‖x‖2 = 1}.

3.1. First-passage percolation. Let us introduce some notation and results re-
lated to first passage percolation. As previously, we suppose that (5) is satisfied
and write μ for the norm given by (6).

It will be useful to use

μmax = sup{μ(x); ‖x‖1 = 1} and μmin = inf{μ(x); ‖x‖1 = 1}.
Of course, 0 < μmin ≤ μmax < +∞ and we have

∀x ∈ R
2 μmin‖x‖1 ≤ μ(x) ≤ μmax‖x‖1.

The speed of convergence in equation (6) can be specified:

PROPOSITION 3.1 (Large deviations, Grimmett–Kesten [12]). For each ε > 0,
there exist C3,C4 > 0 such that

∀x ∈ Z
2

P
(
d(0, x) ∈ [(1 − ε)μ(x), (1 + ε)μ(x)]) ≥ 1 − C3 exp(−C4‖x‖1).

Note that in [12], the proof of this result is only written in the direction of
the first axis, that is, for x = ne1. Nevertheless, it applies in any direction and
computations can be followed in order to preserve a uniform control, whatever
direction one considers. See, for instance, Garet and Marchand [9] for a detailed
proof in an analogous situation. The control of P(d(0, x) > (1 + ε)μ(x)) could
also be obtained as a byproduct of the foregoing Lemma 4.2.



646 O. GARET

3.2. Properties of I. Since μ is a norm, it is obviously a convex function that
does not vanish on the Euclidean sphere S. So, it follows from Proposition 14.3 in
Cerf [3] that the identity ∫

∂∗A
μ(νA(x)) dH1(x) = I(A)(10)

holds for every Cacciopoli set, and particularly for compact convex sets and poly-
gons.

From equation (7), it is easy to see that

I(λA) = λI(A)(11)

holds for each Borel set A and each λ > 0.

LEMMA 3.2. I(A) > 0 for each convex set A with nonempty interior.

PROOF. For each x ∈ ∂∗A, μ(νA(x)) ≥ μmin‖νA(x)‖1 ≥ μmin‖νA(x)‖2 =
μmin, so it follows from (10) that I(A) ≥ μminH

1(∂A). �

The next lemma clarifies the connection between I(A) and μ when A is a poly-
gon. Loosely speaking, I(A) is simply the μ-length of the polygon.

LEMMA 3.3. Let A be a polygon whose sides are [s0, s1], [s1, s2], . . . , [sne−1,

sne ], with sne = s0. We have

I(A) =
ne−1∑
i=0

μ(si − si+1).

PROOF. For each x = (a, b) ∈ Z
2, define x⊥ = (−b, a). The map R

Z
2 → R

Z
2

that maps (tx,y){x,y}∈E2 to (t−y,x){x,y}∈E2 leaves m⊗E
2

invariant, so it follows
from (6) that μ(z) = μ(z⊥) holds for each z ∈ Z

2. Since μ is homogeneous and
continuous, the formula μ(z) = μ(z⊥) also holds for each z ∈ R

2. We have∫
∂∗A

μ(νA(x)) dH1(x) =
ne−1∑
i=0

‖si − si+1‖2μ

((
si − si+1

‖si − si+1‖2

)⊥)

=
ne−1∑
i=0

‖si − si+1‖2μ

(
si − si+1

‖si − si+1‖2

)

=
ne−1∑
i=0

μ(si − si+1). �

The next property of I will be decisive in the proof of lower large deviations.
Basically, it says that the shortest path surrounding a convex polygon is the frontier
of the polygon itself.



CAPACITIVE FLOWS ON A 2D RANDOM NET 647

LEMMA 3.4. Let A, B be two polygons with B ⊂ A. We suppose that B is
convex. Then I(B) ≤ I(A).

PROOF. We proceed by induction on the number n(A,B) of vertices of B

which do not belong to ∂A. When n = 0, we just apply the triangle inequal-
ity. When n > 1, we build a polygon A′ with B ⊂ A′ ⊂ A, I(A′) ≤ I(A) and
n(A′,B) < n(A,B) as follows: let z be a vertex of B which is not in ∂A. Since
B is convex, there exists an affine map ϕ with ϕ(z) = 0 and ϕ(x) < 0 for x in
B\{z}. Let D be the connected component of z in A ∩ {x ∈ R

2 : ϕ(x) ≥ 0}. D is
a polygon which has a side F in {x ∈ R

2 : ϕ(x) ≥ 0}. Note A′ = A\D. Denote
by sa and sb the ends of F and define μ(F) = μ(sb − sa). We have I(A) =
(I(A′) − μ(F)) + (I(D) − μ(F)). By the triangle inequality μ(F) ≤ I(D)/2,
so I(A′) ≤ I(A). �

We will also need convenient approximations of a convex set by convex poly-
gons. This is the goal of the next lemma.

LEMMA 3.5. Let A be a bounded convex set with 0 in the interior of A. For
each ε > 0, there exist convex polygons P and Q such that

0 ∈ P ⊂ A ⊂ Q and I(Q) − ε ≤ I(A) ≤ I(P ) + ε.

PROOF. A proof of the existence of Q can be found in Lachand–Robert and
Oudet [14] in a more general setting. The existence of P is simpler: let (Ap)p≥1
such that:

• for each p ≥ 1, Ap is a convex polygon,
• for each p ≥ 1, Ap ⊂ A,
• 0 ∈ Ap for large p,
• limp→+∞ λ2(A\Ap) = 0.

(e.g., take Ap as the convex hull of x1, . . . , xp , where (xp)p≥1 is dense in ∂A: this
ensures that

⋃
p≥1 Ap ⊃ A\∂A.) For fixed f ∈ C1

c (R2,Wμ), A �→ ∫
A divf dλ2(x)

is continuous with respect to the L1 convergence of Borel sets, so A �→ I(A) is
lower semicontinuous. Then I(A) ≤ limp→+∞I(Ap), so there exists p ≥ 1 with
I(A) ≤ I(Ap) + ε and 0 ∈ Ap . �

4. Upper large deviations.

THEOREM 4.1. For each ε > 0, there exist constants C5,C6 > 0, such that

P
(
Mincut(nA,∞) ≥ nI(A)(1 + ε)

) ≤ C5 exp(−C6n).(12)

The proof naturally falls into three parts:
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1. Approximate nA by a polygon.
2. Parallel outside nA (but close to nA) the boundary of the polygon: it creates a

new polygon.
3. Hope that successive vertices of the newly created polygon can be joined by a

path which is short enough and does not enter in nA.

Therefore, we need a lemma that would roughly say that one can find a path
from x to y that has length smaller than (1 + ε)μ(x − y) and is not far from a
straight line. To this aim, we introduce some definitions:

Let y, z ∈ R
2, x̂ ∈ S, and R,h > 0. We define

d(y,Rx̂) = ‖y − 〈y, x̂〉x̂‖2

(the Euclidean distance from y to the line Rx̂),

Cylz(x̂,R,h) = {y ∈ Z
2 :d(y − z,Rx̂) ≤ R and 0 ≤ 〈y − z, x̂〉 ≤ h},

For R > 0 and z, z′ ∈ R
2 with z �= z′, we also define

C̃yl(z, z′,R) = Cylz

(
z′ − z

‖z′ − z‖2
,R,‖z − z′‖2

)
.

LEMMA 4.2. Let z ∈ R
2, x̂ ∈ S, h ≥ 1 and r ≥ 1. We can define s0 (resp. sf )

to be the integer point in Cylz(x̂, r, h) which is the closest to z (resp. z + hx̂).
We also define the longitudinal crossing time tlong(Cylz(x̂, h, r)) of the cylinder
Cylz(x̂, r, h) as the minimal time needed to cross it from s0 to sf , using only edges
inside the cylinder.

Then for each ε > 0 and each function f : R+ → R+ with limr→+∞ f (r) =
+∞, there exist two strictly positive constants C7 and C8 such that

∀z ∈ R
2, ∀x̂ ∈ S, ∀h > 0

P
(
tlong(Cylz(x̂, f (h), h)) ≥ μ(x̂)(1 + ε)h

) ≤ C7 exp(−C8h).

PROOF. For x ∈ Z
2 and t ≥ 0, let

Bx(t) = {y ∈ Z
2 :μ(x − y) ≤ t}.

For x, y ∈ Z
2 denote by Ix,y the length of the shortest path from x to y which is

inside Bx(1,25μ(x − y)) ∩ By(1,25μ(x − y)). Since Ix,y as the same law than
I0,x−y , we simply define Ix = I0,x . We begin with an intermediary lemma.

LEMMA 4.3. For each ε ∈ (0,1], there exists M0 = M0(ε) such that for each
M ≥ M0 there exist c = c(ε,M) < 1 and t = t (ε,M) > 0 with

‖x‖ ∈ [M/2,2M] �⇒ E exp
(
t
(
Ix − (1 + ε)μ(x)

)) ≤ c.
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PROOF. Let Y be a random variable with law m and let γ > 0 be such that
Ee2γ Y < +∞. First, equation (6) easily implies the following almost sure conver-
gence:

lim‖x‖→+∞
Ix

μ(x)
= 1.

By considering a deterministic path from 0 to x with length ‖x‖, we see that Ix is
dominated by a sum of ‖x‖ independent copies of Y denoted by Y1, . . . , Y‖x‖, and
thus Ix/‖x‖ is dominated by

1

‖x‖
‖x‖∑
k=1

Yi.

This family is equi-integrable by the law of large numbers. So (Ix/‖x‖)x∈Z2\{0}
and then (Ix/μ(x))x∈Z2\{0} are also equi-integrable families, which implies that

lim‖x‖→+∞
EIx

μ(x)
= 1.(13)

Note that for every y ∈ R and t ∈ (0, γ ],

ety ≤ 1 + ty + t2

2
y2et |y| ≤ 1 + ty + t2

γ 2 e2γ |y|.

Let Ĩx = Ix − (1 + ε)μ(x) and suppose that t ∈ (0, γ ]. Then since |Ĩx | ≤ Ix +
2μ(x), the previous inequality implies that

etĨx ≤ 1 + t Ĩx + t2

γ 2 e4γμ(x)e2γ Ix .

Since μ(x) ≤ ‖x‖μmax and Ix ≤ Y1 +· · ·+Y‖x‖, we can define ρ = e4γμmaxEe2γ Y ,

and thus obtain

EetĨx ≤ 1 + t

[
EĨx + t

γ 2 ρ‖x‖
]
.

Considering equation (13), let M0 be such that ‖x‖ ≥ M0/2 implies EIx

μ(x)
≤ 1 +

ε/3. For x such that ‖x‖ ≥ M0, we have EĨx ≤ −2
3εμ(x), so

EetĨx ≤ 1 + t

[
−2

3
εμ(x) + t

γ 2 ρ‖x‖
]

≤ 1 + t

[
−2

3
εμmax + t

γ 2 ρ‖x‖
]
.

Therefore, we can take t = t (ε,M) = min(γ, γ 2μmax
ε
3ρ−2M) and c = c(ε,M) =

1 − 1
3εμmaxt (ε,M). �
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Let us come back now to the proof of Lemma 4.2. Let ε ∈ (0,1) and consider
the integer M0 = M0(ε/3) given by the previous lemma. Let M1 = M1(ε) be an
integer greater than M0 and such that

(1 + ε/3)

(
1 + μmax

μmin

2

M1

)
≤ 1 + ε/2.(14)

Let N be the smallest integer which is greater than h/M1 and, for each i ∈
{0, . . . ,N}, denote by xi the integer point in the cylinder which is the closest to
z + ihx̂

N
. Note that (

1 − 1

N

)
M1 ≤ h

N
≤ M1.

1. Let i0 be an integer with i0 ≥ max(1,25(2+M1)
√

2
μmin

,2). There exists a deter-

ministic path inside the cylinder from x0 to xi0 (resp. xN−i0 to xN ) which uses less
than 2i0h/N edges: we denote by Lstart (resp. Lend) the random length of this path.
Markov’s inequality easily gives

P

(
Lstart >

ε

4
μ(x̂)h

)
+ P

(
Lend >

ε

4
μ(x̂)h

)
(15)

≤ 2(Ee2γ Y )2i0M1 exp
(
−γ ε

2
hμmin

)
≤ C′e−C5h.(16)

2. For each i, j ∈ {0, . . . ,N − 1}, we have |μ(xi − xj ) − |j − i|hμ(x̂)/N | ≤
2μmax. Thus, if h is larger than some h0, then Bxi

(1,25μ(xi − xi+1)) ∩
Bxj

(1,25μ(xj − xj+1)) = ∅ as soon as |j − i| ≥ 2.
Let h1 = h1(ε, f ) ≥ h0 be such that ∀h ≥ h0, f (h) ≥ i0. If we take h larger than

h1, then the whole set

N−i0−1⋃
i=i0

Bxi

(
1,25μ(xi − xi+1)

)
stays inside the cylinder. So, provided that h ≥ h1, we have inside the cylinder a
path from x0 to xN with length

Lstart +
N−i0−1∑

i=i0

Ixi,xi+1 + Lend.

Let

Sodd = ∑
2≤i≤N−3

i odd

Ixi,xi+1 and Seven = ∑
2≤i≤N−3

i even

Ixi,xi+1 .
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By the definition of (xi)1≤i≤N , we have∑
2≤i≤N−3

i odd

μ(xi+1 − xi) ≤ ∑
2≤i≤N−3

i odd

hμ(x̂)

N
+ 2μmax

≤ N − 3

2

(
hμ(x̂)

N
+ 2μmax

)

≤ N

2

hμ(x̂)

N
+ (N − 1)

μmax

μmin
μ(x̂)

≤ hμ(x̂)

2

(
1 + 2

μmax

μmin

1

M1

)
Then using (14), we can write, for each t ≥ 0,

P

(
Sodd ≥ hμ(x̂)

2
(1 + ε/2)

)

≤ P

(
Sodd ≥ (1 + ε/3)

∑
2≤i≤N−3

i odd

μ(xi+1 − xi)

)

≤ P

( ∑
2≤i≤N−3

i odd

Ixi,xi+1 − (1 + ε/3)μ(xi+1 − xi) ≥ 0

)

≤ P

(
exp

(
t

∑
2≤i≤N−3

i odd

Ixi,xi+1 − (1 + ε/3)μ(xi+1 − xi)

)
≥ 1

)

≤ E exp

(
t

∑
2≤i≤N−3

i odd

Ixi,xi+1 − (1 + ε/3)μ(xi+1 − xi)

)

≤ ∏
2≤i≤N−3

i odd

E exp
(
tIxi ,xi+1 − (1 + ε/3)μ(xi+1 − xi)

)
.

We take now t = t (ε/3,M1(ε)) and ρ = ρ(ε/3,M1(ε)). For each i, we have
μ(xi − xi+1) ∈ [M1/2,2M1], thus we can apply the previous lemma and get

P

(
Sodd ≥ hμ(x̂)

2
(1 + ε/2)

)
≤ ρ(N−5)/2

≤ ρhM1(ε)/2−3/2 = A exp(−Bh)

with A = ρ−3/2 and B = − 1
2M1(ε)

lnρ.
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Similarly, P(Seven ≥ hμ(x̂)
2 (1 + ε/2)) ≤ A exp(−Bh), so it suffices to put the

pieces together to conclude the proof. �

PROOF OF THEOREM 4.1. We first consider the case where A is a convex
polygon. Let us denote by s0, s1, . . . , sne the vertices of A, with sne = s0. We sup-
pose that the vertices are in trigonometric order. For each i ∈ {0, ne − 1}, let vi be
such that 〈vi, si+1 − si〉 = 0 and 〈vi, si〉 = 1. For x ∈ R

2, define ϕi(x) = 〈vi, x〉.
With our conventions

nA =
ne−1⋂
i=0

{x ∈ R
2 :ϕi(x) ≤ n}.

For z ∈ R
2, we define Int(z) as the only x ∈ Z

2∗ such that z ∈ x +[−1/2,1/2)×
[−1/2,1/2). Let ε > 0. For i ∈ {0, . . . , ne}, let yi = Int(n(1 + ε)si).

Our goal is to build for each i a path from yi to yi+1 which does not enter nA

and is short enough. Define M = max{‖vi‖2;0 ≤ i ≤ ne − 1} and S = max{μ(si −
si+1);0 ≤ i ≤ ne − 1}.

It is easy to see that

∀r ≥ 0 ϕi ≥ n(1 + ε) − M

(√
2

2
+ r

)
on C̃yl(yi, yi+1, r).

Moreover, for each i ∈ {0, . . . , ne − 1}, we have

M

(√
2

2
+ ε

4MS
‖yi − yi+1‖2

)
≤ M

(√
2

2
+ ε

4MS

(
nS + √

2
)) ≤ nε

2
,

provided that n is large enough. Therefore, it follows that ϕi ≥ (1 + ε/2)n on

C̃yl(yi, yi+1,
ε

4MS
‖yi − yi+1‖2), which means that this set is off nA.

Since μ(yi − (1 + ε)nsi) ≤ μmax, we know that∑
i∈{0,...,ne}

μ(yi − yi+1) ≤ n(1 + ε)I(A) + 2neμmax ≤ n(1 + ε)2I(A)

provided that n is large enough.
Then one can see that for n greater than some (deterministic) integer n0, the

event

An = ⋂
i∈{0,...,ne−1}

{
tlong

(
C̃yl

(
yi, yi+1,

ε

4MS
‖yi − yi+1‖2

))

< (1 + ε)μ(yi+1 − yi)

}
satisfies

An ⊂ {Cut(nA) ≤ n(1 + ε)3I(A)}
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We are now ready to apply Lemma 4.2 with f (h) = ε
4MSh. It comes that

P
(
Cut(nA) > n(1 + ε)3I(A)

) ≤ P(Ac
n)

≤
ne−1∑
i=0

C7 exp(−C8‖yi − yi+1‖2)

≤
ne−1∑
i=0

C7e
C8

√
2 exp(−C8‖si − si+1‖2n),

≤ c1 exp(−c2n),

with c1 = neC7e
C8

√
2 and c2 = C8 mini ‖si − si+1‖2.

Since ε is arbitrary, the theorem follows when A is a polygon.
Let us go to the general case: By Lemma 3.5, there exists a convex polygon Q

with Q ⊃ A and (1 + ε)I(A) ≤ (1 + ε/2)I(Q).

By its very definition, Mincut(nA,∞) ≤ Mincut(nQ,∞). Then

P
(
Mincut(nA,∞) ≥ nI(A)(1 + ε)

) ≤ P
(
Mincut(nQ,∞) ≥ nI(A)(1 + ε)

)
≤ P

(
Mincut(nQ,∞) ≤ nI(Q)(1 + ε/2)

)
.

Hence, the result follows from the polygonal case. �

5. Lower large deviations.

THEOREM 5.1. For each ε > 0, there exist constants C9,C10 > 0, such that

∀n ≥ 1 P
(
Mincut(nA,∞) ≤ nI(A)(1 − ε)

) ≤ C9 exp(−C10n).(17)

The choice of a strategy for the proof of lower large deviations is more difficult
than for the upper ones. An important point is that it is hopeless to consider the
sides of the polygon separately.

Indeed, consider the following picture on Figure 1: the red curve and the green
one surround the black triangle. Of course, it is expected that the minimal cutset
looks like the green triangle rather than like the red ones. However, the red path
from A′ to H is shorter than the green one from A′ to B ′. But this advantage is lost
on the next side because the red path from H to C′ is much longer than the green
one from B ′ to C′. So, it appears that we must think globally, using the perimeter
of surrounding curves. To this aim, Lemma 3.4 will be particularly useful.

PROOF OF THEOREM 5.1. Again, we first deal with the case, where A is
a convex polygon whose sides are [s0, s1], [s1, s2], . . . , [sne−1, sne ], with sne =
s0. We denote by Ln,i the points x ∈ Z

2∗ that touch a bond which intersects
[1,+∞)nsi .
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FIG. 1. Surrounding the polygon.

LEMMA 5.2. For each ε > 0, there exist C11 = C11(ε),C12 = C12(ε), such
that

P
(∃i ∈ {0, ne − 1}∃(x, y) ∈ Ln,i × Ln,i+1 d(x, y) ≤ (1 − ε)μ(x − y)

)
≤ C11 exp(−C12n).

PROOF. Since {0, . . . , ne −1} is finite, it is sufficient to prove that for each i, j

with 0 ≤ i < j < ne, there exists C11(i, j) > 0 and C12(i, j) > 0 with

P
(∃(x, y) ∈ Ln,i ×Ln,j d(x, y) ≤ (1 − ε)μ(x − y)

) ≤ C11(i, j) exp(−C12(i, j)n).

Thanks to Proposition 3.1, we can write

P
(∃(x, y) ∈ Ln,i × Ln,j d(x, y) ≤ (1 − ε)μ(x − y)

)
≤ ∑

(x,y)∈Ln,i×Ln,j

P
(
d(x, y) ≤ (1 − ε)μ(x − y)

)
≤ ∑

(x,y)∈Ln,i×Ln,j

C3 exp(−C4‖x − y‖2)

≤ C3

+∞∑
p=0

|Ap| exp(−C4p),

where

Ap = {(x, y) ∈ Ln,i × Ln,j ; ‖x − y‖2 ∈ [p,p + 1)}.
Let α = d2([1,+∞)si, [1,+∞)sj ) and θ = arccos 〈si ,sj 〉

‖si‖2‖sj‖2
. We can see that:

• |Ap| = 0 for p ≤ nα − 3.
• |Ap| ≤ 2000

sin2 θ
(1 + p)2 for each p ≥ 0.
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The first point is clear. Let us prove the second point: for each k ∈ {i, j}, let s′
k =

sk/‖sk‖2. Obviously, Ap ⊂ Bp × B ′
p , where Bp = {x ∈ Ln,i;d2(x,Rs′

j ) ≤ p + 3}
and B ′

p = {y ∈ Ln,j ;d2(x,Rs′
i) ≤ p + 3}.

For r ∈ R, define

f (r) = ∑
x∈Bp

1{|rs′
i−x|≤√

2}.

Since d2(x,Rsi) ≤ 1 for each x ∈ Ln,i , it follows that∫
R

f (r) dr ≥ 2|Bp|.
For a given r , the sum defining f (r) has at most 9 nonvanishing terms, thus we
have

f (r) ≤ 91{d2(rs
′
i ,Rsj )≤p+3+√

2}.

Then

|Bp| ≤ 1

2

∫
R

f (r) dr ≤ 9 × 1

βi,j

(
p + 3 + √

2
) ≤ 9(3 + √

2)

βi,j

(p + 1),

where βi,j = |s′
i − 〈s′

i , s
′
j 〉s′

j | =
√

1 − 〈s′
i , s

′
j 〉2.

Similarly, |B ′
p| ≤ 9(3+√

2)
βi,j

(p + 1). Finally, |Ap| ≤ 2000
sin2 θ

(1 + p)2.

Let K ′ be such that 2000
sin2 θ

C3(1 + p)2 ≤ K ′ exp(C4
2 p) holds for each p ≥ 0: we

have

P
(∃(x, y) ∈ Ln,i × Ln,j :d(x, y) ≤ (1 − ε)μ(x − y)

)
≤

+∞∑
p=Int(nα−3)

K ′ exp
(
−C4

2
p

)
≤ K ′e2C4

1 − exp(−C4/2)
exp

(
−C4α

2
n

)
,

which completes the proof of the lemma. �

We go back to the proof of Theorem 5.1.
Suppose that Mincut(nA,∞) < (1 − ε)nI(A). Then we can find in the dual

lattice a closed path γ that surrounds nA and whose length l(γ ) is smaller than
(1 − ε)nI(A). γ necessarily cuts the half-lines ([1,+∞)nsi)0≤i≤ne−1 in some
points y0, y1, . . . , yne−1. We also define ye = y0. The points can be numbered in
such a way that γ visits the (yi)0≤i≤ne in the natural order. Let xi the point in Ln,i

which is such that ‖yi − xi‖1 ≤ 1/2. Obviously,

ne−1∑
i=0

d(xi, xi+1) ≤ l(γ ) ≤ (1 − ε)nI(A).(18)
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Let B be the polygon determined by the yi : we have

I(B) =
ne−1∑
i=0

μ(yi − yi+1) ≤
ne−1∑
i=0

(
μ(xi − xi+1) + μmax

)
nA is convex and contained in B , so by Lemma 3.4, I(B) ≥ I(nA). It follows that

ne−1∑
i=0

d(xi, xi+1) ≤ (1 − ε)nI(A) ≤ (1 − ε)I(B)

≤
ne−1∑
i=0

(1 − ε)
(
μ(xi − xi+1) + μmax

)

≤
ne−1∑
i=0

(1 − ε/2)μ(xi − xi+1),

provided that n ≥ 1
α
(1 + 2

ε
μmax
μmin

).
So, for large n, the event {Mincut(nA,∞) < (1 − ε)} implies the existence of

i ∈ {0, . . . , ne − 1}, xi ∈ Ln,i and xi+1 ∈ Ln,i+1 with

d(xi, xi+1) ≤ (1 − ε/2)μ(xi − xi+1).

Then we have

P
(
Mincut(nA,∞) < (1 − ε)nI(A)

)
≤ P

(∃i ∈ {0, . . . , �= −1},
∃(x, y) ∈ Ln,i × Ln,i+1 d(x, y) ≤ (1 − ε/2)μ(x − y)

)
≤ C11(ε/2) exp(−C12(ε/2)n),

thanks to Lemma 5.2. This ends the proof in the case, where A is a polygon.
Let us go to the general case: By Lemma 3.5, there exists a convex polygon P

with 0 ∈ P , P ⊂ A and (1 − ε)I(A) ≤ (1 − ε/2)I(P ).

By its very definition, Mincut(nA,∞) ≥ Mincut(nP ). Then

P
(
Mincut(nA,∞) ≤ nI(A)(1 − ε)

)
≤ P

(
Mincut(nP ) ≤ nI(A)(1 − ε)

)
≤ P

(
Mincut(nP ) ≤ nI(P )(1 − ε/2)

)
,

which has just been proved to decrease exponentially fast with n. �
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6. Final proofs.

6.1. Proof of the theorems. Obviously, Theorems 4.1 and 5.1 concur to get
Theorem 2.2. Since I(A) = ∫

∂∗A μ(νA(x)) dH1(x), the first equality in Theo-
rem 2.1 directly follows from Theorem 2.2 with the help of the Borel–Cantelli
lemma.

It is worth saying a word about equation (3), because the Ford–Fulkerson theo-
rem is initially concerned with finite graphs. Let us recall a version of this theorem.

PROPOSITION 6.1 (Ford–Fulkerson). For each finite graph G = (V ,E) and
every disjoint subsets A and B of V , we have

max

{∑
x∈A

Div j (x); j ∈ Capflow(A,B)

}
= Mincut(A,B),(19)

where

Mincut(A,B) = min

{∑
x∈C

tx; every path in G from A to B meets C

}
(20)

and Capflow(A,B) is the set of flows j that satisfy |j (x, y)| ≤ t{x,y} for each
{x, y} ∈ E and Div j (x) = 0 for x ∈ V \(A ∪ B).

In fact, in the initial paper [8] and in most books, A and B are just singletons.
The reduction to this case is easy. Because of the antisymmetry property, the con-
tribution of edges inside A to

∑
x∈A Div j (x) is null; so we neither change the

max-flow nor the min-cut if we identify the points that are in A. Obviously, the
max-flow and the min-cut are not changed either when we identify the points that
are in B .

Now let Gn = (Vn,En) be the restriction of L
2 to Vn = {x ∈ Z

2; ‖x‖1 ≤ n} and
denote by Bn the boundary of Vn.

Let f be a flow from A to infinity; particularly, f is a flow from A to Bn, so∑
x∈A Div j (x) ≤ Mincut(A,Bn). By the definition of a cutset, a minimal cutset

from A to infinity is the external boundary of a finite connected set containing A.
In particular, a minimal cutset is finite. It follows that infn≥1 Mincut(A,Bn) =
Mincut(A,∞). Then sup{∑x∈A Div j (x); j ∈ Capflow(A,∞)} ≤ Mincut(A,∞).
Conversely, let jn be a flow that realizes max{∑x∈A Div j (x); j ∈ Capflow(A,Bn)}.
We can extend jn to �Ed by putting jn(e) = 0 outside En. Obviously, jn ∈∏

e∈�Ed [−te,+te], thus the sequence (jn)n≥1 admits a subsequence (jnk
)k≥1 con-

verging to some j ′ ∈ ∏
e∈�Ed [−te,+te] in the product topology. Easily, j ′ is anti-

symmetric.∑
x∈A

Div j ′(x) = lim
k→+∞

∑
x∈A

Div jnk
(x)

= lim
k→+∞ max

{∑
x∈A

Div j (x); j ∈ Capflow(A,Bk)

}
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= lim
k→+∞ Mincut(A,Bnk

)

= inf
n≥1

Mincut(A,Bn) = Mincut(A,∞).

For each x ∈ Z
2\A, there exists k0 such that x ∈ Vn\(Bnk

∪ A) for k ≥ k0; then
Div jnk

(x) = 0 for k ≥ k0, which ensures that Div j ′(x) = 0. It is now easy to
see that j ′ is a capacitive flow from A to infinity, which completes the proof of
equation (3) and, therefore, the proof of Theorem 2.1.

6.2. Proof of the corollaries. Let us now recall Menger’s theorem (see, for
instance, Diestel [6] for a proof).

PROPOSITION 6.2 (Menger’s theorem). Let G = (V ,E) be a finite graph and
A,B ⊂ V . Then the minimum number of vertices separating A from B is equal to
the maximum number of disjoint paths from A to B .

We can now prove Corollary 2.3.

PROOF OF COROLLARY 2.3. Consider the probability space (�,B,P), with
� = {0,1}E

2
and P = Ber(p)⊗E

2
. As usual, e is said to be open if ωe = 1

and closed otherwise. Let R = {e ∈ E
2 :ωe = 1} and define Vn and En as pre-

viously. Let Hn = (Vn,En ∩ R). It is easy to see that the minimum number
of vertices separating A from Bn is equal to Mincut(A,Bn), where the capac-
ity flow is defined by te = 1 − ωe. Then by Menger’s theorem, the maximum
number of disjoint paths from A to Bn is Mincut(A,Bn). By a classical com-
pactness argument, the maximum number of disjoint paths from A to infinity is
the limit of the maximum number of disjoint paths from A to Bn. Therefore,
dis(A) = limn→+∞ Mincut(A,Bn) = Mincut(A,∞). The variables (te)e∈E2 are
independent Bernoulli variables with parameter 1 − p. Note m for their common
distribution. Since p > pc(2) = 1/2, m(0) = 1 − p < 1/2, and we can apply The-
orem 2.2 to complete the proof of Corollary 2.3. �

We finally prove Corollary 2.4.

PROOF OF COROLLARY 2.4. Let us denote by Ik the event: “there exist k

disjoint open biinfinite paths.” Ik is obviously translation-invariant, so by the er-
godic theorem, its probability is null or full. Let A = [−1,1]2 and Sn = {dis(An) ≥
nI(A)/2}. For large n, we have nI(A)/2 > 2k and P(Sn) > 1/2. Now consider the
event Tn: “all edges inside nA are open.” It is not difficult to see that Tn ∩ Sn ⊂ Ik

but Tn and Sn are independent, so P(Ik) ≥ P(Tn∩Sn) = P(Tn)P (Sn) > 0. Finally,
P(Ik) = 1. �
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7. Perspectives. It is to be expected that these results still hold in higher di-
mensions. In fact, we make the following conjecture:

CONJECTURE 7.1. We suppose that m(0) < 1 − pc(Z
d) and that∫

[0,∞)
exp(cx) dm(x) < +∞

for some c > 0. Then there exists a map μ on the unit sphere such that for each
convex set A with 0 in the interior, we have

lim
n→+∞

Mincut(nA,∞)

nd−1 =
∫
∂∗A

μ(νA(x)) dHd−1(x).

Equivalently,

lim
n→+∞

1

nd−1 max

{ ∑
x∈nA∩Zd

Div j (x); j ∈ Capflow(nA,∞)

}

= sup
{∫

A
divf dλd(x);f ∈ C1

c (Rd,Wμ)

}
,

where

Wμ = {x ∈ R
d : 〈x,w〉 ≤ μ(w) for all w}.

Of course, the situation is more complicated when d ≥ 3 because cutsets are not
paths; therefore, the capacities can not be interpreted in term of first-passage per-
colation. In a seminal paper [13], Kesten put the basis of a generalization of first-
passage percolation which seems to be the appropriate tool for the problem con-
sidered here. Basically, he studies the minimal cut between opposite sides of a par-
allelepiped with (e1, e2, e3) as axes. This allows to define a quantity ν which is a
good candidate for μ(e1). Later, Boivin [2] extended some of Kesten’s results. Par-
ticularly, he defined a function on the unit sphere of R

3 which may be convenient
for our purpose. The condition m(0) < 1 − pc is coherent with some previous re-
sults; indeed, Zhang [17] proved that ν = 0 for m(0) ≥ 1−pc whereas Chayes and
Chayes [4] had proved (at least in the Bernoulli case) that ν > 0 for m(0) ≥ 1 −pc

using a result of Aizenman, Chayes, Chayes, Fröhlich and Russo [1]. Note that
Théret [15] recently proved some results that give an independent proof of this
fact. So, m(0) < 1 − pc seems to be a natural assumption for the conjecture. This
is also coherent with the expected domain of validity for the d-dimensional ver-
sion of Corollary 2.3. Of course, this conjecture is at present far from being solved
because some of the quantities that are used in the present proof do not have an
obvious equivalent in higher dimensions. However, we think that the conjecture
presented here is a good motivation to continue the study initiated in Kesten [13].
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