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THE CALCULATION OF EXPECTATIONS FOR CLASSES OF
DIFFUSION PROCESSES BY LIE SYMMETRY METHODS

BY MARK CRADDOCK AND KELLY A. LENNOX

University of Technology, Sydney

This paper uses Lie symmetry methods to calculate certain expectations
for a large class of Itô diffusions. We show that if the problem has suf-
ficient symmetry, then the problem of computing functionals of the form

Ex(e−λXt−∫ t
0 g(Xs) ds) can be reduced to evaluating a single integral of

known functions. Given a drift f we determine the functions g for which
the corresponding functional can be calculated by symmetry. Conversely,
given g, we can determine precisely those drifts f for which the transition
density and the functional may be computed by symmetry. Many examples
are presented to illustrate the method.

1. Introduction. Suppose that a stochastic process X = {Xt : t ≥ 0} is a solu-
tion of the Itô SDE

dXt = a(Xt , t) dt + b(Xt , t) dWt, X0 = x.(1.1)

Here W = {Wt : t ≥ 0} is a standard Wiener process. We would like to compute the
expectations

ξλ,g(Xt) = E
(
e−λXt−∫ t

0 g(Xs) ds |X0 = x
)
.(1.2)

These types of functionals have numerous applications. For example, if λ = 0,
g(x) = x, then the expectation gives the price of a zero coupon bond in finan-
cial mathematics. If g(Xt) = μh(Xt) and h(Xt) does not depend on μ, then
the expectation is the two dimensional Laplace transform of the joint density of
(Xt ,

∫ t
0 h(Xs) ds).

Most cases must be handled numerically, but recently considerable attention has
been devoted to the problem of finding classes of diffusions for which the transition
density and expectations such as (1.2) may be determined exactly. The papers [4,
5, 7, 8, 14] provide some details.

By the Feynman–Kac formula, if the solution of the Cauchy problem

ut = σxγ uxx + f (x)ux − g(x)u, x > 0,
(1.3)

u(x,0) = ϕ(x), x ∈ � = [0,∞),
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is unique, then it is given by

u(x, t) = Ex

(
e− ∫ t

0 g(Xs) dsϕ(Xt )
)
,(1.4)

where Xt satisfies the SDE dXt = f (Xt) dt +
√

2σX
γ
t dWt . We will use Lie sym-

metry methods to solve (1.3) by finding an explicit fundamental solution of the
PDE as a function of the drift. We have a number of results which do this. The first
is Theorem 3.1 below.

The Cauchy problem (1.3) does not usually have a unique solution unless we
impose certain extra conditions (see, e.g., Part 4 of [18]). In fact, our methods
actually yield more than one fundamental solution for the operator in (1.3). See
Section 3. The selection of the correct fundamental solution for the purposes of
computing the expectation must therefore be treated with care.

The plan is as follows. In Section 2, for a given function g, we show that the
drift f must satisfy one of a family of Riccati equations if the PDE is to have non-
trivial Lie symmetries. We also show how to explicitly solve the Riccati equations.
In Section 3, we derive classes of generalized Laplace transforms of our funda-
mental solutions. Our methods require a time independent solution of the PDE
and we show how to obtain these. Sections 4 and 5 contain examples and gen-
eral formulae for the fundamental solutions. We also use group invariant solution
methods to compute the precise form of the fundamental solutions in cases where
the transforms are difficult to invert.

In the final section, given a drift f , we determine those functions g for which
the Cauchy problem (1.3) can be solved by symmetry and the expectation ξλ,g(Xt)

can computed.
Each method for determining exact solutions has its own unique strengths and

weaknesses. Specific techniques work well for particular class of problems, but
may fail when we move outside that class. For example, methods which use eigen-
function expansions and stochastic analysis have been exploited successfully for
many years. The literature is enormous, but see [14] for some recent work. How-
ever useful descriptions of the necessary eigenfunctions are only available for lim-
ited classes of PDEs and typically the eigenfunction expansion of a solution cannot
be explicitly summed. Eigenfunction methods also become more difficult when we
move to higher dimensions.

Lie symmetry methods have natural advantages. They are easy to use, cover a
broad range of cases and one can develop very simple tests to decide whether or
not a PDE is amenable to symmetry analysis. The major limitation is that many
important PDEs do not have any useful symmetries.

However, for the rich class of PDEs amenable to Lie group analysis, the tech-
nique is extremely effective. We obtain explicit closed form expressions for the
fundamental solutions in terms of the drift and do not need any changes of vari-
ables or measure. A major advantage is that the method can be extended to higher
dimensions. An understanding of Lie techniques in one dimension is essential if
we wish to apply them in higher dimensional problems.
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2. Calculating the Lie symmetries. A symmetry of a differential equation
is a transformation which maps solutions to solutions. In the 1880s Lie devel-
oped a technique for systematically determining all groups of point symmetries for
systems of differential equations.1 Olver’s book [15], is a fine modern account of
Lie’s theory of symmetry groups as are the texts by Bluman and Kumei [2], Hydon
[12] and Ovsiannikov [16]. For a survey of some recent work on Lie symmetries,
see [6].

In [7] Craddock and Lennox proved that if a PDE of the form ut = σxγ uxx +
f (x)ux −μxnu has nontrivial symmetries, then there is always a symmetry arising
from an action of SL(2,R) that is a classical integral transform of a fundamental
solution. We generalize the results of Craddock and Lennox and apply them to
problems in stochastic calculus.

We will work with PDEs of the form (1.3). We observe that every PDE of the
form (1.3) possesses time translation symmetries as well as scaling symmetries
in u. That is, u(x, t + ε) is a solution if u(x, t) is and so is cu(x, t) for any con-
stant c. We term these trivial symmetries. We require that the PDE have nontrivial
symmetries.

PROPOSITION 2.1. If γ �= 2, the PDE (1.3) has a nontrivial Lie symmetry
group if and only if f is a solution of one of the following families of drift equa-
tions.

Lf = Ax2−γ + B,(2.1)

Lf = Ax2−γ + Bx1−γ /2 − 3

8(2 − γ )
σ 2,(2.2)

where

Lf = σxγ

(
x1−γ f (x)

2σ(2 − γ )

)′′
+ f (x)

(
x1−γ f (x)

2σ(2 − γ )

)′
+ g(x) + xg′(x)

2 − γ
.(2.3)

If γ = 2 then the PDE has a nontrivial Lie group of symmetries if and only if

Uf = A,(2.4)

Uf = A lnx + B.(2.5)

With v(x) = f (x) lnx
x

we have

Uf = x2

4
v′′(x) + f (x)

4σ
v′(x) − f (x)

4x
+ xg′(x) lnx

2
+ g(x).

1There also exist so called generalized symmetries, but we will not consider them.
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PROOF. The proof of this result is textbook, so we just summarize it for the
γ �= 2 case. By Lie’s method, we look for infinitesimal symmetries of the form

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u,(2.6)

where we employ the convention ∂
∂x

= ∂x etc. We seek to determine conditions
on ξ, τ and φ which guarantee that v generates a symmetry of the PDE. Standard
arguments show that τ can only depend on t and ξ can only depend on x and t .
Further, φ must be linear in u. Lie’s Theorem says that v generates a local group of
symmetries if and only if pr2v[ut − (σxγ uxx + f (x)ux − g(x)u)] = 0 whenever
u is a solution of (1.3). Here pr2v is the second prolongation of v. (See Chapter 2
of [15] for the explicit prolongation formula for a vector field.) If γ �= 2, this leads
to the conditions

ξ(x, t) = x

2 − γ
τt + xγ/2ρ, φ(x, t, u) = α(x, t)u + β(x, t),(2.7)

α(x, t) = −x2−γ

2σ(2 − γ )2 τtt − x1−γ /2

σ(2 − γ )
ρt +

(
γ

4
xγ/2−1 − x−γ /2

2σ
f (x)

)
ρ

(2.8)

− x1−γ

2σ(2 − γ )
f (x)τt + η.

Here τ, ρ, η are functions of t only and satisfy

−x2−γ

2σ(2 − γ )2 τttt − x1−γ /2

σ(2 − γ )
ρtt + ηt = −(1 − γ )

2(2 − γ )
τtt − Lf τt + Kfρ,(2.9)

with Kf = σxγ (
γ
4 xγ/2−1 − x−γ /2

2σ
f (x))′′ + f (x)(

γ
4 xγ/2−1 − x−γ /2

2σ
f (x)). The

function β(x, t) is an arbitrary solution of (1.3). The proof is completed when
we compare the corresponding powers of x and recognize that τ will only be a
nontrivial function of t if f is a solution of one of the given equations. The γ = 2
case is similar. �

2.1. Solving the drift equations. If we set h(x) = x1−γ f (x) then the ODE
Lf = Ax2−γ + B is equivalent to the Riccati equation

σxh′ − σh + 1
2h2 + 2σx2−γ g(x) = σAx4−2γ + 2σBx2−γ + C.(2.10)

Similarly for the second of this pair of drift equations. These Riccati equations can
be linearized by the change of variables h = 2σxy′/y.

We point out that it is natural to consider two different cases with equa-
tion (2.10), namely A = 0,A �= 0, because the Lie symmetries of the PDE take
a quite different form if A = 0.

Finding solutions of the drift equations in the γ = 2 case is simplified by the
substitution H(lnx) = f (x) lnx

x
− σ lnx. Under which, for example, Uf = A be-

comes

σξH ′ − σH + 1

2
H 2 + 2σξ2g(ξ) =

(
2A + σ

2

)
ξ2 + B.
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Thus we have precisely the same form of Riccati equation.

2.2. The γ = 1 case. If γ = 1 the drift equations are

σxf ′ − σf + 1
2f 2 + 2σxg(x) = Ax + B,(2.11)

σxf ′ − σf + 1
2f 2 + 2σxg(x) = 1

2Ax2 + Bx + C,(2.12)

σxf ′ − σf + 1
2f 2 + 2σxg(x) = 1

2Ax2 + 2
3Bx3/2 + Cx − 3

8σ 2.(2.13)

Here A,B,C are arbitrary constants. The factors of 1
2 and 2

3 multiplying A and B

are a notational convenience. We will concentrate in this paper on the first two
Riccati equations, which we treat separately. The third case is harder and will be
discussed elsewhere.

3. Applications of the symmetries. Symmetries map solutions to solutions.
If the symmetry group is sufficiently rich, then one can construct extremely com-
plex solutions of a given PDE from trivial solutions. We are able to obtain an in-
tegral transform of the fundamental solution by applying a symmetry to a suitable
stationary solution. We begin with the A = 0 case.

THEOREM 3.1. Suppose that h(x) = x1−γ f (x) is a solution of the Riccati
equation

σxh′ − σh + 1
2h2 + 2σx2−γ g(x) = 2σAx2−γ + B.(3.1)

Then the PDE

ut = σxγ uxx + f (x)ux − g(x)u, x ≥ 0,(3.2)

has a symmetry of the form

Uε(x, t) = 1

(1 + 4εt)(1−γ )/(2−γ )
exp

{−4ε(x2−γ + Aσ(2 − γ )2t2)

σ (2 − γ )2(1 + 4εt)

}

× exp
{

1

2σ

(
F

(
x

(1 + 4εt)2/(2−γ )

)
− F(x)

)}

× u

(
x

(1 + 4εt)2/(2−γ )
,

t

1 + 4εt

)
,

where F ′(x) = f (x)/xγ and u is a solution of the PDE. That is, Uε is a solution
of (3.2) whenever u is. If u(x, t) = u0(x) with u0 an analytic, stationary solution
then there is a fundamental solution p(t, x, y) of (3.2) such that∫ ∞

0
e−λy2−γ

u0(y)p(t, x, y) dy = Uλ(x, t).(3.3)

Here Uλ(x, t) = U(1/4)σ (2−γ )2λ.
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Equation (3.3) is a generalized Laplace transform. We may recover the funda-
mental solution by inverting the transform and dividing by u0(y). Before proceed-
ing to the proof we need a technical result.

PROPOSITION 3.2. The solution Uλ(x, t) in Theorem 3.1 is the Laplace trans-
form of a distribution.

PROOF. This follows from the observation that Uλ(x, t) can be written as a
product of λν for some value ν and an analytic function G(1/λ). Any function
which is analytic in 1/λ is a Laplace transform. Further λν is the Laplace transform
of a distribution. The product of two Laplace transforms is a Laplace transform.
Hence Uλ(x, t) is a Laplace transform. See the table in [19], page 348 for the
inverse Laplace transform of λν for different values of ν and Chapter 10 for general
results on when a distribution can be represented as an inverse Laplace transform.

�

Now we prove Theorem 3.1.

PROOF OF THEOREM 3.1. Lie’s method shows that (3.2) has an infinitesimal
symmetry of the form

v = 8xt

2 − γ
∂x + 4t2∂t −

(
4x2−γ

σ (2 − γ )2 + 4x1−γ tf (x)

σ (2 − γ )
+ βt + 4At2

)
u∂u,(3.4)

where β = 4(1−γ )
2−γ

. Exponentiating this symmetry and applying it to a solution

u(x, t) yields Uε . The idea is that a solution Uλ(x, t) of the PDE should be ob-
tained as

Uλ(x, t) =
∫ ∞

0
Uλ(y,0)p(t, x, y) dy.

The symmetry solution has the property that Uλ(x,0) = e−λx2−γ
u0(x). Thus we

should have ∫ ∞
0

e−λy2−γ

u0(y)p(t, x, y) dy = Uλ(x, t).

But this is the generalized Laplace transform of u0p. We thus need to show that
Uλ is a generalized Laplace transform of some distribution u0p. Since∫ ∞

0
e−λy2−γ

u0(y)p(t, x, y) dy

=
∫ ∞

0
e−λzu0

(
z1/(2−γ ))p(

t, x, z1/(2−γ ))z1/(2−γ )−1 dz

2 − γ
,

we must show that Uλ is the Laplace transform of some distribution u0p. This
follows from Proposition 3.2.
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To see that p is a fundamental solution of the PDE, observe that if we integrate
a test function ϕ(λ) with sufficiently rapid decay against Uλ then the function
u(x, t) = ∫ ∞

0 Uλ(x, t)ϕ(λ) dλ is a solution of (3.2). We also have

u(x,0) =
∫ ∞

0
Uλ(x,0)ϕ(λ) dλ =

∫ ∞
0

u0(x)e−λx2−γ

ϕ(λ) dλ = u0(x)�(x),

where � is the generalized Laplace transform of ϕ. Next observe that by Fubini’s
Theorem∫ ∞

0
u0(y)�(y)p(t, x, y) dy =

∫ ∞
0

∫ ∞
0

u0(y)ϕ(λ)p(t, x, y)e−λy2−γ

dλdy

=
∫ ∞

0

∫ ∞
0

u0(y)ϕ(λ)p(t, x, y)e−λy2−γ

dy dλ

=
∫ ∞

0
ϕ(λ)Uλ(x, t) dx = u(x, t).

We know that u(x,0) = u0(x)�(x). Thus integrating initial data u0� against p

solves the Cauchy problem for (3.2), with this initial data. Hence p is a fundamen-
tal solution. �

COROLLARY 3.3. If g = 0 in (1.3), then there is a fundamental solution
p(t, x, y) with the property that∫ ∞

0
e−λy2−γ

p(t, x, y) dy

= 1

(1 + 4εt)(1−γ )/(2−γ )
exp

{−4ε(x2−γ + Aσ(2 − γ )2t2)

σ (2 − γ )2(1 + 4εt)

}
(3.5)

× exp
{

1

2σ

(
F

(
x

(1 + 4εt)2/(2−γ )

)
− F(x)

)}
,

and
∫ ∞

0 p(t, x, y) dy = 1. Here ε = 1
4σ(2 − γ )2λ.

PROOF. Since g(x) = 0 we may take u0(x) = 1 in Theorem 3.1. Observe that
U0(x, t) = 1. Thus

∫ ∞
0 p(t, x, y) dy = 1. �

For the γ = 2 case we have a similar result.

THEOREM 3.4. Suppose that

x2

4

(
f (x) lnx

x

)′′
+ f (x)

4σ

((
f (x) lnx

x

)′
− σ

x

)
+ x lnxg′(x)

2
+ g(x) = A.(3.6)

Let u0(x) be a stationary solution of

ut = σx2uxx + f (x)ux − g(x)u(3.7)
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analytic near zero. Then there is a fundamental solution of (3.7) such that∫ ∞
0

e−(ε/σ )(lny)2
p(t, x, y)u0(y) dy = Uε(x, t),(3.8)

where

Uε(x, t) = 1√
1 + 4εt

exp
{
−ε((lnx)2 + 2σ t lnx + (4A + σ)σ)t2)

σ (1 + 4εt)

}
(3.9)

× exp
{

1

2σ

(
F

(
lnx

1 + 4εt

)
− F(x)

)}
u0

(
x1/(1+4εt))

and F ′(x) = e−xf (x).

PROOF. The proof is similar to the previous result. If the drift f satisfies (3.6),
then the PDE has an infinitesimal symmetry of the form

v = 4xt lnx
∂

∂x
+ 4t2 ∂

∂t
(3.10)

−
(

(lnx)2

σ
+ lnx2

(
f (x)

σx
− 1

)
t + 2t + (4A + σ)t2

)
u

∂

∂u
.

Exponentiating v and applying it to u0 produces Uε(x, t). This has the initial value
Uε(x,0) = u0(x)e−(ε/σ )(lnx)2

. The proof follows the same lines as previously. �

3.1. Finding stationary solutions. For γ �= 2, to obtain a stationary solu-
tion u0(x) given h we need to solve σxγ uxx + f (x)ux − g(x)u = 0. We di-
vide by xγ−1 to rewrite this as σxuxx + h(x)ux − x1−γ g(x)u = 0. If u(x) =
ũ(x)e−(1/(2σ))

∫
h(x)/x dx , then 2σ 2x2ũ′′(x) − (2σAx2−γ + B)ũ(x) = 0. Finally,

the substitution z = x2−γ , ũ(x) = w(x2−γ ) reduces this ODE to

2σ 2(2 − γ )2z2w′′(z) + 2σ 2(2 − γ )(1 − γ )zw′(z) − (2σAz + B)w(z) = 0.

This equation has Bessel function solutions. Thus, given f and g we can always
determine the integral transform (3.3) and hence express the fundamental solution,
at least up to a Laplace inversion integral.

3.2. Finding different fundamental solutions. Different choices of u0 will in
general lead to different fundamental solutions. In fact we may sometimes extract
two fundamental solutions from a single choice of u0. We illustrate the first situa-
tion with an example involving a squared Bessel process of dimension 3. The PDE
ut = 2xuxx +3ux has two stationary solutions, u0(x) = 1 and u0(x) = 1/

√
x. The

choice u0(x) = 1 leads to∫ ∞
0

e−λyp(t, x, y) dy = 1

(1 + 2λt)3/2 exp
(
− λx

1 + 2λt

)
,(3.11)
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which is easily inverted giving

p(t, x, y) = 1√
2πtx

e−(x+y)/(2t) sinh
(√

xy

t

)
.(3.12)

This is the transition density for the squared Bessel process of dimension 3. If we
use the second stationary solution we get∫ ∞

0

1√
y

e−λyp2(t, x, y) dy = 1√
x(1 + 2λt)

exp
(
− λx

1 + 2λt

)
.(3.13)

From which we obtain a second fundamental solution

p2(t, x, y) = 1√
2πtx

e−(x+y)/(2t) cosh
(√

xy

t

)
.(3.14)

This is not a transition density. Whereas
∫ ∞

0 p(t, x, y) dy = 1 we have

∫ ∞
0

p2(t, x, y) dy =
√

2t

πx
e−x/(2t) + erf

(√
x

2t

)
.(3.15)

The function (3.15) is a solution of ut = 2xuxx + 3ux which satisfies
limt→0 u(x, t) = 1 for all x > 0, but it is not continuous at the origin. All solu-
tions generated by p2(t, x, y) have this feature. They solve the Cauchy problem
for the PDE on any domain [ε,∞), ε > 0, but are not continuous at the origin.

Next consider the equation

ut = xuxx +
(

3 − 4b

b + ax2

)
ux, x > 0.(3.16)

An application of Corollary 3.3 yields the existence of a fundamental solution
p(t, x, y) satisfying∫ ∞

0
e−λyp(t, x, y) dy = ax2 + b(1 + λt)4

(b + ax2) (1 + λt)3 exp
{
− λx

1 + λt

}
.(3.17)

We take a, b positive. To invert this Laplace transform requires the introduction
of distributions. (A complete discussion of the inversion of the Laplace transforms
which require distribution theory is found in [9].) Inverting the Laplace transform
produces the fundamental solution

p(t, x, y) = x

yt

b + ay2

b + ax2 e−(x+y)/t I2

(
2
√

xy

t

)
(3.18)

+ b(x + t)e−(x+y)/t

t (b + ax2)
δ(y) + bte−x/t

b + ax2 δ′(y).

Here δ′(y) is derivative of the Dirac delta function, Iν is the modified Bessel
function of the first kind. It is easy to show that

∫ ∞
0 p(t, x, y) dy = 1. If
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q(t, x, y) = p(t, x, y) − bte−x/t

b+ax2 δ′(y), then q is also a fundamental solution and∫ ∞
0 q(t, x, y) dy = 1 as well, since δ′ acts by

∫ ∞
0 φ(y)δ′(y) dy = −φ′(0). Indeed

we may also take r(t, x, y) = x
yt

b+ay2

b+ax2 e−(x+y)/t I2(
2
√

xy

t
) and this is a fundamental

solution with ∫ ∞
0

r(t, x, y) dy = 1 − e−x/t b(t + x)

t (b + ax2)
= l(x, t).(3.19)

Now l(x, t) → 1 as t → 0 for all x ≥ 0. Thus (3.16) with the data u(x,0) = 1
does not have a unique solution. If we wish to interpret p(t, x, y) and q(t, x, y)

as probabilities we are faced with a situation in which we have two densities aris-
ing from the same generator that define the same null set and probabilities, but
because of the terms involving generalized function they do not define the same
expectations.

The drift function f has the property that −1 ≤ f (x) < 3. This means that
if we consider in a formal sense the SDE dXt = f (Xt) dt + √

2Xt dWt we are
in a situation where Xt may become negative because of the drift and hence the
diffusion Xt may then become complex valued. It is not obvious how to interpret
this. The more natural SDE dXt = f (Xt) dt + √

2|Xt |dWt leads to the PDE ut =
2|x|uxx + f (x)ux , but our theory does not cover a PDE of this form, though one
can also analyse PDEs of this type by symmetry. A full discussion of the problem
of trying to associate a diffusion with a PDE of the form (1.3) covered by our
methods is beyond the scope of this paper. But it is clear that our techniques allow
us to construct very general classes of PDEs which have very complex behavior.

For our purposes we will restrict attention to problems where the interpretation
of the fundamental solutions as densities is clear. That is, we will look at generators
which arise from well behaved SDEs with positive drifts and/or unique strong, real
valued solutions. We will include examples of fundamental solutions with delta
function terms, but our examples will be more straightforward than the above.
A full investigation of the phenomenon we have described here will be considered
elsewhere.

This leaves the question of which choice of u0 we take in order to use the
Feynman–Kac formula to compute expectations. The examples we give will show
how this choice is made.

EXAMPLE 3.1. Consider the Bessel process X = {Xt : t ≥ 0} where

dXt = a

Xt

dt + dWt, X0 = x.(3.20)

Bessel processes are well studied and the transition density for this process is
known. Here σ = 1/2, γ = 0 and f (x) = a

x
. We will require a > 1

2 for simplicity.
So h(x) = a and we easily see that A = 0 in the Riccati equation. Set g(x) = μ

4x2 .
We want a fundamental solution of

ut = 1

2
uxx + a

x
ux − μ

4x2 u, μ > 0.
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If we are to calculate Ex(e
−(μ/4)

∫ t
0

ds

X2
s φ(Xt)) then we require a fundamental solu-

tion that reduces to the known transition density of the process at μ = 0.
A stationary solution is given by solving 2x2u′′ + 4axu′ − μu = 0. We take the

solution u0(x) = xd where d = 1
2 − a +

√
μ
2 + (a − 1

2)2. Observe that as μ → 0,

u0(x) → 1. Setting ε = λσ = λ
2 in (3.3) gives∫ ∞

0
e−λy2

ydp(t, x, y) dy = xd

(1 + 2λt)ν
exp

(
− λx2

1 + 2λt

)
,(3.21)

with ν = d + a + 1
2 . This is a Laplace transform if we let y2 = z. Inverting the

transform yields

p(t, x, y) = y

t

(
y

x

)a−1/2

exp
(
−x2 + y2

2t

)
Iν−1

(
xy

t

)
.(3.22)

If μ = 0, this reduces to the well known transition density of a Bessel process. We

can now write Ex(e
−λXt−(μ/4)

∫ t
0

ds

X2
s ) = ∫ ∞

0 e−λyp(t, x, y) dy.
This gives the Laplace transform of the joint density of (Xt ,

∫ t
0

ds
X2

s
). We cannot

evaluate this integral. However

Ex

(
e
−λX2

t −(μ/4)
∫ t

0
ds

X2
s
) =

∫ ∞
0

e−λy2
p(t, x, y) dy

= e−x2/(2t)

(
x2

2t

)(2ν−2a−1)/4

× �(α)1F1(α, ν, x2/(2t + 4t2λ))

�(ν)(1 + 2tλ)α
,

where α = 1+2a+2ν
4 and 1F1(a, b, z) is Kummer’s confluent hypergeometric func-

tion.
There is another solution xd2 with d2 = 1

2 − a −
√

μ
2 + (a − 1

2)2. We observe

that as μ → 0 xd2 → xν where ν = 1
2 − a − |a − 1

2 | which is nonconstant. So the
fundamental solution coming from this stationary solution does not reduce to the
necessary density. This situation is typical of these problems.

NOTE. There are many Laplace transforms which can be computed by other
methods. However our methods often yield different representations of these quan-
tities than can be found in much of the literature. For a Bessel process of index ξ

there is a well known alternative representation

Ex

(
e
−λX2

t −(μ2/2)
∫ t

0
ds

X2
s
)

(3.23)

= xγ−ξ

�(p)

∫ ∞
0

vp−1 exp(−x2(v + λ)/(1 + 2(v + λ)t))

(1 + 2(v + λ)t)1+γ
dv,
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where p = 1
2(γ − ξ) and γ 2 = ξ2 + μ2. This is proved using the absolute conti-

nuity law P
(ξ)
x |Ft = (Xt

x
)ξ e

−(μ2/2)
∫ t

0
ds

X2
s P

(0)
x |Ft . However we have never seen the

integral (3.23) explicitly evaluated. Our representation allows for the explicit eval-
uation of the integral from tables. Moreover to obtain the joint density, we only
have to invert a one dimensional Laplace transform rather than a two dimensional
Laplace transform, since we already know the inverse Laplace transform in the λ

variable.

EXAMPLE 3.2. Now we turn to the Bessel process with drift. The SDE is

dXt =
(

a + 1/2

Xt

+ bIa+1(bXt)

Ia(bXt)

)
dt + dWt, a > −1.

These processes arise from the radial part of d-dimensional Brownian motion with
drift and were studied by Pitman and Yor in [17]. Here σ = 1

2 and h = xf satisfies
1
2xh′ − 1

2h+ 1
2h2 = b2

2 x2 + 1
8(4a2 − 1). So A = 1

2b2. Using the stationary solution
u0(x) = 1 we obtain∫ ∞

0
e−λy2

p(t, x, y) dy = Ia(bx/(1 + 2λt))

(1 + 2λt)Ia(bx)
exp

(
−λ(x2 + b2t2)

1 + 2λt

)
.(3.24)

We convert this to a Laplace transform by setting y2 = z. Inverting the Laplace
transform gives the transition density

p(t, x, y) = y

t

Ia(by)

Ia(bx)
exp

(
−x2 + y2

2t
− b2

2
t

)
Ia

(
xy

t

)
.(3.25)

Since Ia(by)
Ia(bx)

→ (
y
x
)a as b → 0, this reduces to the transition density of a Bessel

process as b → 0. Now consider the problem of computing Ex(e
−λXt−μ

∫ t
0

ds

X2
s ).

We require a stationary solution of the PDE

ut = 1

2
uxx +

(
a + 1/2

x
+ bIa+1(bx)

Ia(bx)

)
ux − μ

x2 u.(3.26)

We look for a solution of the form u0(x) = e−F(x)v(x) where F ′ = f . We see
that

4x2v′′(x) + 4(1 − 4a2 − 4b2x2 − 8μ)v(x) = 0.

Since F(x) = ln(
√

xIa(bx)), we obtain the stationary solution u
μ
0 (x) =

I√
a2+2μ

(bx)

Ia(bx)
. Note that as μ → 0, u

μ
0 → 1. Theorem 3.1 tells us that there is a

fundamental solution q(t, x, y) of (3.26) such that∫ ∞
0

e−λy2
u

μ
0 (y)q(t, x, y) dy

(3.27)

=
e−λ(b2t2+x2)/(1+2tλ)I√

a2+2μ
(bx/(1 + 2tλ))

(1 + 2tλ)Ia(bx)
.
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Inversion gives the fundamental solution

q(t, x, y) = y

t

Ia(by)

Ia(bx)
exp

(
−x2 + y2

2t
− b2

2
t

)
I√

a2+2μ

(
xy

t

)
.(3.28)

Clearly this reduces to the transition density at μ = 0. Obviously

Ex(e
−λXt−μ

∫ t
0

ds

X2
t ) = ∫ ∞

0 e−λyq(t, x, y) dy, but we have not been able to evaluate
this integral. However to find the joint density, we only need to invert the Laplace
transform q(t, x, y) in μ. This can be done numerically.

The procedure we have is now clear. We begin with an SDE which possesses
a unique solution and compute a transition density for it. This can be done by
our methods. We choose the fundamental solution of (1.3) which reduces to this
density when g → 0. From this we may compute the desired expectations.

4. Laplace transforms of joint densities. As is clear from Example 3.1, it is
possible to use the techniques we have developed here to compute Laplace trans-
forms of joint densities very easily. We will focus attention on the γ = 1 case and
do an example of the γ = 0 case below. It should be clear that we may prove similar
results for any γ . If γ = 1, g(x) = μxn, with n = ±1 and n = 1

2 , then we can find
drift functions which do not depend on μ. It is possible to easily compute Laplace
transforms of the joint densities of (Xt ,

∫ t
0 Xs), (Xt ,

∫ t
0

ds
Xs

) and indeed we can also

find the Laplace transform of the joint density of (Xt ,
∫ t

0 Xs ds,
∫ t

0
ds
Xs

). The four

dimensional Laplace transforms of the law of (Xt ,
∫ t

0 Xs ds,
∫ t

0
ds
Xs

,
∫ t

0
√

Xs ds) can
be computed for certain classes of diffusions, but this is more complicated and will
be treated elsewhere.

EXAMPLE 4.1. Let X = {Xt : t ≥ 0} be a squared Bessel process, where

dXt = ndt + 2
√

Xt dWt, X0 = x.

To compute u(x, t) = Ex(e
−μ

∫ t
0

ds
Xs h(Xt)), we require a fundamental solution for

the PDE

ut = 2xuxx + nux − μ

x
u.(4.1)

This is the case when σ = 2, γ = 1, g(x) = μ/x in Theorem 2.1. The stationary

solutions are u0(x) = xd , d± = 1
4(2 − n ±

√
(n − 2)2 + 8μ). We take d = d+,

as xd− diverges near zero and does not tend to the constant solution as μ → 0.
Applying the symmetry we have∫ ∞

0
ydp(t, x, y)e−λy dy = xd

(1 + 2λt)2d+n/2 exp
{ −λx

1 + 2λt

}
.(4.2)
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This Laplace transform may immediately be inverted to give

p(t, x, y) = 1

2t

(
x

y

)(1−n/2)/2

I2d+n/2−1

(√
xy

t

)
exp

{
−(x + y)

2t

}
.(4.3)

From this we obtain the two dimensional Laplace transform of the joint density
of (Xt ,

∫ t
0

1
Xs

ds).

∫ ∞
0

e−λyp(t, x, y) dy = e−x/2t

(
x

2t

)d �(α)1F1(α,β, x/(2t + 4t2λ))

�(β)(1 + 2λt)α
,

with α = d + n
2 , β = 2d + n

2 .
We have not been able to invert this Laplace transform. It is interesting to com-

pare this result when λ = 0 with the famous Hartman–Watson law for a squared

Bessel process which gives the conditional expectation Ex(e
−(μ2/2)

∫ t
0

ds
Xs |Xt =

y) = I√
μ2+ν2 (

√
xy/t)

Iν(
√

xy/t)
, where ν = 1 − 1

2n.

EXAMPLE 4.2. Now we turn to the SDE

dXt = aXt

1 + aXt/2
dt + √

2Xt dWt, X0 = x, a > 0.(4.4)

For the PDE ut = xuxx + ax
1+ax/2ux − μ

x
u we have two stationary solutions

u1(x) = x(1+√
1+4μ)/2

2+ax
and u2(x) = x(1−√

1+4μ)/2

2+ax
, neither of which is equal to 1 at

μ = 0. However, the linear combination 2u2 + au1 does satisfy the desired condi-

tion, so we use the stationary solution u0(x) = x(1−√
1+4μ)/2(2+ax

√
1+4μ

2+ax
). Letting

d± = 1
2(1 ± √

1 + 4μ) we obtain

Uλ(x, t) = 1

2 + ax

(
axd+

(1 + λt)2d+ + 2xd−

(1 + λt)2d−

)
exp

(
− λx

1 + λt

)
.(4.5)

Inverting the Laplace transform yields the fundamental solution

p(t, x, y) = 1

t

2 + ay

2 + ax

√
x

y

ayd+

2yd+ + ayd+ I2d+−1

(
2
√

xy

t

)
e−(x+y)/t

+ 2 + ay

t2d−(2 + ax)

2xd−

2yd+ + ayd+(4.6)

× e−(x+y)/t
∫ y

0
I0

(
2
√

xξ

t

)
νμ(ξ − y)dξ.

Here νμ(ξ) = L−1[λ
√

1+4μ]. This inverse Laplace transform is a right sided distri-
bution. See [19] for a table of these inverse Laplace transforms. We must be careful
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when taking the limit, however a rather laborious calculation shows that as μ → 0
this reduces to the fundamental solution

p(t, x, y) = e−(x+y)/t

(2 + ax)t

[√
x

y
(2 + ay)I1

(
2
√

xy

t

)
+ tδ(y)

]
,(4.7)

which is the transition density for the process Xt . From (4.6) we may calculate

Ex(e
−λXt−μ

∫ t
0

ds
Xs ). The integral can be evaluated exactly, but we leave this to the

reader.

We may readily establish more general results. We present an example shortly.
First however, we need a lemma.

LEMMA 4.1. The PDE ut = σxuxx + f (x)ux − μ
x
u, with f a solution of the

Riccati equation σxf ′ − σf + 1
2f 2 = Ax + B has a stationary solution u

μ
0 (x)

which has the property that u0
0(x) = 1.

PROOF. This is a direct calculation. Setting f = 2σx
y′
y

reduces the Ric-

cati equation to 2σx2y′′ − (Ax + B)y = 0 which has general solution y =√
x(c1Iα(

√
2Ax) + c2Kα(

√
2Ax)), where α = 1

σ

√
2B + σ 2 and Kα is the usual

modified Bessel function. Now a stationary solution of the PDE is given by solving
σxu′′ − f (x)u′ − μ

x
u = 0. The substitution u0(x) = e−F(x)/(2σ)v(x) leads to the

ODE 2σ 2x2v′′ − (Ax + B + 2μσ)v = 0, where F ′(x) = f (x)/x. Thus there is a
stationary solution of the PDE

u
μ
0 (x) = c1Iν(

√
2Ax) + c2Kν(

√
2Ax)

c1Iα(
√

2Ax) + c2Kα(
√

2Ax)
,(4.8)

where ν = 1
σ

√
2B + σ 2 + 4μσ . Clearly u0

0(x) = 1. �

THEOREM 4.2. Suppose that f is a solution of the Riccati equation σxf ′ −
σf + 1

2f 2 = Ax + B with A > 0. Then the PDE

ut = σxuxx + f (x)ux − μ

x
u, 2B + σ 2 + 4μσ > 0

has fundamental solution

p(t, x, y) =
√

x

σ t
e−F(x)/2σ−(x+y)/(σ t)−(A/(2σ)t) 1

u
μ
0 (y)

×
(
c1Iν

(
2
√

xy

σ t

)
Iν

(√
Ay

σ

)
(4.9)

+ c2I−ν

(
2
√

xy

σ t

)
I−ν

(√
Ay

σ

))
,
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where F ′(x) = f (x)/x, u
μ
0 (x) is as above and ν = 1

σ

√
2B + σ 2 + 4μσ satisfies

|ν| < 1. From which we may calculate E(e
−λXt−μ

∫ t
0

ds
Xs ) by

Ex

(
e
−λXt−μ

∫ t
0

ds
Xs

) =
∫ ∞

0
e−λyp(t, x, y) dy.(4.10)

PROOF. Let f (x) = 2σxy′/y where y(x) = √
x(c1Iα(

√
2Ay
σ

) + c2I−α(
√

2Ay
σ

).
(Since α is not an integer Kα(z) = Iα(z).) To obtain a stationary solution of the
PDE we use as in the previous lemma the substitution u0(x) = e−F(x)/(2σ)v(x) in
the equation σxu′′ +f (x)u′ −μ/xu = 0. Then v must satisfy 2σx2v′′(x)− (Ax +
B + 2σμ)v(x) = 0, which has solutions

√
xI±ν(

√
2Ax
σ

). Set

u
μ
0 (x) = √

xe−F(x)/(2σ)

(
c1Iν

(√
2Ax

σ

)
+ c2I−ν

(√
2Ax

σ

))
.

We then have u0
0(y) = 1. Now∫ ∞

0
e−λyu

μ
0 (y)p(t, x, y) dy

=
√

xe−F(x)/(2σ)−λ(x+At2/2)/(1+λσ t)

1 + λσ t
(4.11)

×
[
c1Iν

( √
2Ax

σ(1 + λσ t)

)
+ c2I−ν

( √
2Ax

σ(1 + λσ t)

)]
.

We use the fact that

L−1
[

1

λ
exp

(
m2 + n2

λ

)
Id

(
2mn

λ

)]
= Id

(
2m

√
y
)
Id

(
2n

√
y
)
, d > −1.

Inverting the Laplace transform gives the fundamental solution. The expectation
follows from the Feynman–Kac formula. �

For μ outside the range of the theorem, the inversion of the Laplace transform
will in general involve right sided distributions. Techniques for inverting these
transforms are discussed in [9].

5. The other Riccati equations. Suppose that the drift f is such that h =
x1−γ f satisfies a Riccati equation of the form

σxh′ − σh + 1
2h2 + 2σxg(x) = Ax4−2γ + Bx2−γ + C, A �= 0,

then we do not get Laplace type transforms of the fundamental solution, except
in some special cases. Instead we get a more general integral transform of the
fundamental solution, known as a Whittaker transform. A similar situation arises
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with the final Riccati equation, but we will consider that elsewhere as there are
some technical issues which need to be carefully discussed.

The reason for the difference is that the Lie symmetries for these Riccati equa-
tions are different in form to the symmetries in the previous case. Consider the
γ = 1 case. Craddock and Lennox proved in [7] that if f is a solution of the sec-
ond class of Riccati equations with A �= 0 and u0(x) is a stationary solution of
ut = σxuxx + f (x)ux − μxru, then so is

Uε(x, t) = e−Bt/(2σ) exp
{ −√

Axε

2σ(e
√

At − ε)
+ 1

2σ

(
F

(
xe

√
At

e
√

At − ε

)
− F(x)

)}
(5.1)

× (
e
√

At − ε
)B/(2σ

√
A)

u0

(
xe

√
At

e
√

At − ε

)
.

In general this does not reduce to the necessary form for a Laplace transform
when we set t = 0. Moreover, for certain stationary solutions, the action is trivial.
However, there are special cases when it is a Laplace transform. We present an
example.

EXAMPLE 5.1. Consider the PDE

ut = xuxx + ax

1 + ax/2
ux − μxu.

The drift is a solution of the Riccati equation σxf ′ −σf + 1
2f 2 +2μx2 = 1

2Ax2 +
Bx + C, with A = 4μ,B = C = 0. There are two stationary solutions, u±

0 (x) =
e±√

μx(ax + 2)−1. The symmetry (5.1) leaves u+
0 unchanged. However for the

other solution we have

Uε(x, t) = e−√
μx

2 + ax
exp

(
− 2

√
μεx

e2
√

μt − ε

)
.(5.2)

By our general argument, with λ = 2
√

με

1−ε
we can find a fundamental solution

p(t, x, y) such that∫ ∞
0

e−λy e−√
μy

2 + ay
p(t, x, y) dy

(5.3)

= e−√
μx

2 + ax
exp

( −2λ
√

μx

λ(e2
√

μt − 1) + 2
√

μe2
√

μt

)
.

Inverting the Laplace transform yields the fundamental solution

p(t, x, y) = 2 + ay

2 + ax

e
√

μy

e
√

μx
exp

{−2
√

μ(x + ye2
√

μt )

e2
√

μt − 1

}

×
(√

μx

y

I1(2
√

μxy/ sinh(
√

μt))

sinh(
√

μt)
+ δ(y)

)
.
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Letting μ → 0 gives the transition density for the process X with dXt =
aXt

1+aXt/2 dt + √
2Xt dWt . Consequently we can compute the Laplace transform of

the joint density of the processes (Xt ,
∫ t

0 Xs ds). Formula 6.621.3 of [11] and the
Feynman–Kac formula give

Ex

(
e−λXt−μ

∫ t
0 Xs ds) = e−√

μx−2
√

μx/(e2
√

μt−1)

2 + ax

×
(

2 +
√

μx(e(β2/4α)(4/β + aβ/(2α2)) − 4/β)

sinh(
√

μt)

)
.

Here α = λ − √
μ + 2

√
μe2

√
μt

e2
√

μt−1
and β = 2

√
xμ cosech(

√
μt).

Although we have recovered the necessary fundamental solution by inverting
a Laplace transform, for these classes of Riccati equations we in general have to
deal with a transform involving Whittaker functions.2

DEFINITION 5.1 (The Whittaker transform). The Whittaker transform of a
suitable function φ is defined by

�(λ) =
∫ ∞

0
(λy)−k−1/2e−λy/2Wk+1/2,ν(λy)φ(y) dy.(5.4)

An inversion theorem for this transform is known. For a suitable constant ρ we
have, in the principal value sense

φ(y) = 1

2πi

�(1 + ν − k)

�(1 + 2ν)

∫ ρ+i∞
ρ−i∞

(λy)−k−1/2eλy/2Mk−1/2,ν(λy)�(λ)dλ.

The functions Wk+1/2,ν and Mk−1/2,ν are the Whittaker functions given in 13.1
of [1]. For a discussion of the transform, see [3], page 110. Special cases of the
Whittaker transform include the Laplace transform and Hankel transforms.

In [7] the following result is established for the γ = 1, g(x) = μxr case. The
proof of the following result is identical to the case in [7].

THEOREM 5.2. Let f be a solution of the Riccati equation

σxf ′ − σf + 1
2f 2 + 2σxg(x) = 1

2Ax2 + Bx + C.

2The transform is due to Meijer and is often called a Meijer transform. However there are several
other integral transforms which are also called Meijer transforms in the literature and this nomencla-
ture can be somewhat confusing.
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Let η = B

2σ
√

A
− 1

2β , β = 1 +
√

1 + 2C
σ 2 , ν = 1

2

√
1 + 2C/σ 2 and k + 1

2 = − B

2σ
√

A
.

Let U√
A/λσ−1(x, t) be given by setting ε →

√
A

λσ
− 1 in

Uε(x, t) = e−(Bt)/(2σ)(e√
At − ε

)B/(2σ
√

A)−β/2
xβ/2e−F(x)/(2σ)

(5.5)

× exp
{−√

Ax(e
√

At + ε)

2σ(e
√

At − ε)

}
�

(
α,β,

√
Axe

√
At

σ (e
√

At − ε)

)
,

where �(α,β, z) is the Tricomi confluent hypergeometric function and F ′(x) =
f (x)/x. Suppose that λB/(σ

√
A)U√

A/(λσ)−1(x, t) is the Whittaker transform of a

function h̃μ(t, x, y). Then this function h̃μ is given by

h̃μ(t, x, y) =
(√

A

σ

)η

yk+1/2e(
√

Ay−F(y))/(2σ)pμ(t, x, y),

where pμ is a fundamental solution of the PDE ut = σxuxx + f (x)ux − g(x)u.

Similar results can be proved for the general case when γ �= 1. The Whittaker
transform is analytic, thus one can in principle invert a Whittaker transform as a
series expansion, since the Whittaker transform of yn is of the form Cλ−n+1 where
C is a constant depending on n and the parameters in the transform. Unfortunately,
tables of Whittaker transforms tend to be very sparse, so in practice, these trans-
forms are really only invertible in the special cases where they reduce to Laplace
or Hankel transforms. Further, theorems guaranteeing that a given distribution is
a Whittaker transform are available only for limited parameter ranges. At present
therefore, these results are of mainly theoretical interest.

There are some other issues that arise when we try to calculate expecta-
tions of the form Ex(e

−λXt−μ
∫ t

0 Xs ds). The stationary solutions of the PDE ut =
σxγ uxx + f (x)ux − μxu do not necessarily have the property that a linear com-
bination tends to the constant solution when μ → 0. See Example 5.1. Conversely
both of the linearly independent stationary solutions may converge to a constant
when we take the limit. We thus need a different criterion for deciding which fun-
damental solution to use.

An alternative approach to the construction of the necessary fundamental solu-
tions is to use group invariant solutions. A group invariant solution is a solution
which is left invariant under the action of a group transformation. Chapter three of
Olver’s book [15] contains a detailed discussion of group invariant solutions. See
also the material in [6]. We will construct the general form of the fundamental so-
lutions and determine the necessary one by examining the integrability properties.

The following result, which combines two theorems in Bluman and Kumei’s
text [2] is the key to our method.
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THEOREM 5.3. Consider the nth order boundary value problem P(x,

Dαu) = 0 subject to the conditions Bj(x,u,u(n−1)) = 0 on the surface ωj(x) = 0.
A vector field v is admitted by the BVP if:

(1) prnv[P(x,Dαu)] = 0 when P(x,Dαu) = 0.
(2) v(ωj (x)) = 0 when ωj (x) = 0.
(3) prn−1v[Bj(x,u,u(n−1))] = 0 when Bj(x,u,u(n−1)) = 0 on the surface

ωj(x) = 0.

Suppose that a BVP admits a vector field v. Then the solution of the BVP is a group
invariant solution with respect to the symmetries generated by v.

We prove several results as an illustration of the technique. We concentrate on
the case A > 0, leaving the case A < 0 to the interested reader.

THEOREM 5.4. Suppose that f is a solution of the Riccati equation σxf ′ −
σf + 1

2f 2 + 2σμx2 = 1
2Ax2 + Bx + C,A > 0. Then there is a fundamental solu-

tion of the PDE

ut = σxuxx + f (x)ux − μxu, x ≥ 0,

of the form

p(t, x, y)

=
√

Axye−(F (x)−F(y))/(2σ)

2σ sinh(
√

At/2)
exp

(
−Bt

2σ
−

√
A(x + y)

2σ tanh(
√

At/2)

)
(5.6)

×
(
C1(y)Iν

( √
Ayx

σ sinh(
√

At/2)

)
+ C2(y)I−ν

( √
Ayx

σ sinh(
√

At/2)

))
,

where ν =
√

σ 2+2C
σ

and we interpret I−ν(z) to be Kν(z) if ν is an integer.

PROOF. Lennox proved in [13] that if the drift f satisfies the given Riccati
equation, then the PDE has a Lie algebra of symmetries spanned by

v1 = ∂t , v2 = xe
√

At∂x + e
√

At

√
A

∂t − 1

2σ

(√
Ax + f (x) + B√

A

)
e
√

Atu∂u,

v3 = −xe−√
At∂x + e−√

At

√
A

∂t − 1

2σ

(√
Ax − f (x) + B√

A

)
e−√

Atu∂u,

v4 = u∂u, v = β(x, t)∂u.

Here β is an arbitrary solution of the PDE. The symmetries vβ corresponding
to adding a solution β to the original solution. Plainly these cannot give group
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invariant solutions. We will solve

ut = σxuxx + f (x)ux − μxu, x ≥ 0,
(5.7)

u(x,0) = δ(x − y).

We look for symmetries of the form v = ∑4
k=1 ckvk which preserve the bound-

ary conditions. We require the boundary x = 0 to be preserved by the action of v.
That is v(x) = 0 when x = 0. We also require the boundary t = 0 to be preserved,
which means that v(t) = 0 when t = 0. Finally u(x,0) = δ(x − y) must be pre-
served, which requires v(u − δ) = 0 when u(x,0) = δ(x − y). These conditions
are satisfied if and only if c2 = c3, c1 = − 2√

A
c2 and c4 = 2 (Ay+B)

σ
√

A
c2. This gives

the form of the symmetry we need.
We then compute the invariants for the action of

v = c1

(
− 2√

A
v1 + v2 + v3 + 2

(Ay + B)

σ
√

A
v4

)
.

Invariants of the action are given by solving the equation v(η) = 0. They are readily
found by the method of characteristics and we may take the invariants to be η and v

where

η = x

4 sinh2(
√

At/2)
,(5.8)

u = exp
(
−(Bt + F(x) − F(y))

2σ
−

√
A(x + y)

2σ tanh(
√

At/2)

)
(5.9)

× v

(
x

4 sinh2(
√

At/2)

)
.

Now v(η) must satisfy 2σ 2η2v′′(η)− (C + 2Ayη)v(η) = 0 if u is a solution of the
PDE. Hence

v(η) = √
yη

(
C1(y)Iν

(
2
√

Ayη

σ

)
+ C2(y)I−ν

(
2
√

Ayη

σ

))
.

Since the solution of our initial value problem is a group invariant solution for
the action generated by v the result follows from substitution of v and η into the
expression for u. �

NOTE. The symmetries used in the proof are actually symmetries for any
PDE ut = σxuxx + f (x)ux − g(x)u when σxf ′ − σf + 1

2f 2 + 2σxg(x) =
1
2Ax2 + Bx + C. So we may use the same technique to construct the form of
the fundamental solutions for any PDE of this type. We will present the case when
g(x) = μ

x
below.
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5.1. The functions C1(y),C2(y) and transition densities. The functions
C1,C2 will depend upon the initial and boundary conditions we may wish to im-
pose on the PDE . The Bessel function I−ν(y) is not integrable near zero for
ν ≥ 1, so if we require a fundamental solution which defines solutions of the
Cauchy problem for constant initial data, then we will have C2 = 0. It is also this
choice with C1 = 1 which is needed if we are to recover the transition density
as we let μ → 0. In the general case, C1,C2 can be found from the condition
that u(x, t) = ∫ ∞

0 φ(y)p(t, x, y) dy solves the PDE with u(x,0) = φ(x). For most
cases, one may simply take φ(x) = 1, φ(x) = x for the initial data, from which we
may identify C1 and C2.

Recovering a transition density needs care however. Though our expression for
the fundamental solutions are very general, it is possible to have fundamental so-
lutions for the types of PDEs we have been considering which involve terms with
delta functions. We have seen such a situation in Example 5.1.

In all save one of the examples we present below, we do indeed obtain the tran-
sition density by letting μ → 0 in the fundamental solution we obtain from The-
orem 5.4. However in general, letting μ = 0 will produce a fundamental solution
of ut = σxuxx + f (x)ux , but there is no guarantee that this fundamental solution
will be the transition density for the diffusion. We need to be careful to incorporate
the behavior at the boundary y = 0.

One can usually produce a density from the fundamental solutions provided
by Theorem 5.4. Suppose that pμ(t, x, y) is the fundamental solution we obtain
from an application of Theorem 5.4. We then have

∫ ∞
0 φ(y)pμ(t, x, y) dy →

φ(x) as t → 0. Now introduce the function hμ(t, x) = ∫ ∞
0 pμ(t, x, y) dy. If

limμ→0 hμ(t, x) = 1, then pμ will reduce to a density at μ = 0, since an appli-
cation of Lebesgue’s dominated convergence theorem gives

∫ ∞
0 limμ→0 pμ(t, x,

y) dy = 1. If limμ→0 hμ(t, x) �= 1 then to produce a density, we let p(t, x, y) =
limμ→0 pμ(t, x, y) and h(t, x, y) = limμ→0 hμ(t, x). Then p(t, x, y) + (1 −
h(t, x, y))δ(y) is a density.

In this case to calculate the expectations we want, we will have to incorporate
additional terms involving generalized functions to produce a fundamental solution
that reduces to the necessary density. Consider the symmetry solution (5.1), where
we choose a stationary solution not left invariant by the symmetry. We make the
following observation: limt→0 U1(x, t) = 0. This follows from the fact that the
stationary solutions of the PDE (5.7) are of the general form

u0(x) = xβ/2e−(F (x)−√
Ax)/(2σ)

(5.10)

×
(
c11F1

(
α,β,

√
Ax

σ

)
+ c2�

(
α,β,

√
Ax

σ

))

with α = 1
2σ

( B√
A

+ σ(1 +
√

1 + 2C/σ 2)), β = 1 +
√

1 + 2C/σ 2. The estimates

1F1(a, b, z) = �(b)
�(a)

ezza−b(1 + O(|z|−1)) and �(a, b, z) = z−a(1 + O(|z|−1))



DENSITIES AND FUNCTIONALS 149

for large |z| with z > 0 give the result. (See page 504 of [1].) Thus if qμ =
pμ(t, x, y) + U1(x, t)δ(y), then∫ ∞

0
φ(y)qμ(t, x, y) dy =

∫ ∞
0

φ(y)pμ(t, x, y) dy + φ(0)U1(x, t) → φ(x)

as t → 0. Hence qμ is also a fundamental solution.
We apply this to the diffusion in Example 5.1. An application of Theorem 5.4

leads to the fundamental solution

pμ(t, x, y) = 2 + ay

2 + ax

e
√

μy

e
√

μx
exp

{−2
√

μ(x + ye2
√

μt )

e2
√

μt − 1

}

×
√

μx

y

I1(2
√

μxy/ sinh(
√

μt))

sinh(
√

μt)
.

If we add U1(x, t)δ(y) to this we obtain the necessary fundamental solution found
in Example 5.1. We do not have a proof that this method works in all cases, but
similar procedures will always allow us to construct the necessary fundamental
solutions so that we can compute the desired expectations.

COROLLARY 5.5. For n ≥ 2 a fundamental solution of the PDE

ut = 2xuxx + nux − b2

2
u, x ≥ 0,

is

p(t, x, y) = b

2 sinh(bt)

(
y

x

)n/4−1/2

(5.11)

× exp
(
− b(x + y)

2 tanh(bt)

)
I(n−2)/2

(
b
√

xy

sinh(bt)

)
.

PROOF. We simply need to check that f satisfies the Riccati equation and
determine A,B,C. We choose C1 = 1,C2 = 0. We further note that as b → 0,
the fundamental solution converges to the transition density for an n dimensional
squared Bessel process. One may find other fundamental solutions which do not
reduce to the transition density. �

We now have a very easy proof of a well known result for squared Bessel
processes, which is usually proved using martingale methods.

COROLLARY 5.6. Let X = {Xt : t ≥ 0} be a squared Bessel processes, where

dXt = ndt + 2
√

Xt dWt, n ≥ 2.
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Then

Ex

(
e−λXt−(b2/2)

∫ t
0 Xs ds)

(5.12)

= exp(−(xb/2)(1 + 2λb−1 coth(bt))/(coth(bt) + 2λb−1))

(cosh(bt) + 2λb−1 sinh(bt))n/2 .

PROOF. The expectation is given by

Ex

(
e−λXt−(b2/2)

∫ t
0 Xs ds) =

∫ ∞
0

e−λyp(t, x, y) dy,(5.13)

where

p(t, x, y) = b

2 sinh(bt)

(
y

x

)n/4−1/2

(5.14)

× exp
(
− b(x + y)

2 tanh(bt)

)
I(n−2)/2

(
b
√

xy

sinh(bt)

)
.

Evaluation of the integral is routine. See the tables in section 6.6 of [11]. �

5.2. The zero coupon bond price in the CIR model. Using our results, it is
easy to compute the well-known zero coupon bond price in the CIR model. We
have A = b2 + 4μσ,B = −ab,C = 1

2a2 − aσ . With C1(y) = 1,C2(y) = 0 and
F(x) = a lnx − bx we recover the necessary fundamental solution. We leave this
to the reader. Let us now consider an example where we have to include a delta
function term.

EXAMPLE 5.2. We are interested in the process X where

dXt = 2Xt tanh(Xt) dt + √
2Xt dWt, X0 = x.

Using the symmetry (5.1), one may check that the transition density of this process
is

q(t, x, y) = 1

sinh t

coshy

coshx
exp

{
−x + y

tanh t

}(√
x

y
I1

(
2
√

xy

sinh t

)
+ sinh tδ(y)

)
.(5.15)

Using our results we find a fundamental solution of

ut = xuxx + 2x tanh(x)ux − μxu(5.16)

is

p(x, y, t) = 1

sinh kt

coshy

coshx
exp

{
−k(x + y)

tanh kt

}√
kx

y
I1

(
2
√

kxy

sinhkt

)
.(5.17)

Here k = √
1 + μ. This does not reduce to the transition density as μ → 0. How-

ever, u0(x) = e−√
1+μx sechx is a stationary solution of this PDE. If we apply the



DENSITIES AND FUNCTIONALS 151

symmetry (5.1) to this solution, we find a new solution Uε(x, t) which has the
property that U1(x, t) = 1

coshx
exp{− kx

tanh kt
}.

Now q(x, y, t) = p(x, y, t) + δ(y)U1(x, t) is also a fundamental solution and
this does reduce to the transition density. From which we may compute

Ex

(
e−λXt−μ

∫ t
0 Xs ds)

=
∫ ∞

0
e−λyq(x, y, t) dy

= U1(x, t) + e−x/ tanh(kt)

2

(
ekx Csch(kt)/(cosh(kt)+(−1+λ) sinh(kt))

+ ekx Csch(kt)/(cosh(kt)+(1+λ) sinh(kt)) − 2
)
.

5.3. Calculating expectations of the form Ex(e
−λXt−μ

∫ t
0

ds
Xs ). In Section 3 we

calculated the expectation ξλ,μ/x(Xt) for the case when γ = 1 and σxf ′ − σf +
1
2f 2 = Ax + B,A ≥ 0. We now show how to compute these expectations when f

satisfies (2.11).

THEOREM 5.7. Suppose that σxf ′ − σf + 1
2f 2 = 1

2Ax2 + Bx + C, A > 0.
Then the PDE

ut = σxuxx + f (x)ux − μ

x
u, μ ≥ 0,(5.18)

has a fundamental solution of the form

p(t, x, y)

=
√

Ae(F(y)−F(x))/(2σ)

2σ sinh(
√

At/2)

√
x

y
exp

{
−Bt

2σ
−

√
A(x + y)

2σ tanh(
√

At/2)

}
(5.19)

×
(
C1(y)Iν

( √
Axy

σ sinh(
√

At/2)

)
+ C2(y)I−ν

( √
Axy

σ sinh(
√

At/2)

))
,

in which F ′(x) = f (x)/x and ν =
√

2C+4μσ+σ 2

σ
and we interpret I−ν(z) to be

Kν(z) if ν is an integer.

PROOF. The proof is similar to the previous result. The invariants are the
same, but the PDE in this case reduces to the ODE

4σ 2η2v′′(η) − (2C + 4Ayη + 4μσ)v(η) = 0. �

The following result for Cox–Ingersoll–Ross process is an easy corollary.
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COROLLARY 5.8. The PDE ut = σxuxx + (a − bx)ux − μ
x
u with μ ≥ 0,

a, b > 0 has a fundamental solution

p(t, x, y) = b

2σ sinh(bt/2)

(
y

x

)a/(2σ)−1/2

× exp
(

b

2σ

(
at + (x − y) − x + y

tanh(bt/2)

))
(5.20)

× Iν

(
b
√

xy

σ sinh(bt/2)

)
.

Here ν = 1
σ

√
(a − σ)2 + 4μσ .

COROLLARY 5.9. Let

k = a

2σ
, α = b

2σ

(
1 + coth

(
bt

2

))
+ λ, β = b

√
x

2σ sinh(bt/2)
.

and Ms,r(z) be the Whittaker functions of the first kind. For the CIR process dXt =
(a − bXt) dt + √

2σXt dWt we have

Ex

(
e
−λXt−μ

∫ t
0

ds
Xs

) = �(k + ν/2 + 1/2)

�(ν + 1)
βx−k

× exp
(

b

2σ

(
at + x − x

tanh(bt/2)

))
(5.21)

× 1

βαk
eβ2/(2α)M−k,ν/2

(
β2

α

)
.

PROOF. Observe that the fundamental solution in Corollary 5.8 reduces to the
transition density of a CIR process as μ → 0. So we have

Ex

(
e
−λXt−μ

∫ t
0

ds
Xs

) =
∫ ∞

0
e−λyp(t, x, y) dy.(5.22)

The result follows from the fact that∫ ∞
0

yk−1/2e−αyI2γ

(
2β

√
y
)
dy = γ (k + γ + 1/2)

�(2γ + 1)

1

βαk
eβ2/(2α)M−k,γ

(
β2

α

)
,

which is formula 6.643.2 of [11]. �

5.4. Laplace transforms of joint densities for (Xt ,
∫ t

0 Xs ds,
∫ t

0
ds
Xs

). By similar
means to the above, we may find fundamental solutions of the PDE ut = σxuxx +
f (x)ux − ( ν

x
+ μx)u.
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THEOREM 5.10. Suppose that f is a solution of the Riccati equation σxf ′ −
σf + 1

2f 2 + 2σν + 2σμx2 = 1
2Ax2 + Bx + C,A > 0. Then the PDE

ut = σxuxx + f (x)ux −
(

ν

x
+ μx

)
u, μ > 0, ν > 0,(5.23)

has a fundamental solution of the form

p(t, x, y) =
√

Axy

2σ sinh(
√

At/2)
e−(Bt+√

A(x+y) coth((
√

At/2))+F(x)−F(y))/(2σ)

×
(
C1(y)I√

σ 2+2C/σ

( √
Axy

σ sinh(
√

At/2)

)
(5.24)

+ C2(y)I−
√

σ 2+2C/σ

( √
Axy

σ sinh(
√

At/2)

))
.

As usual F ′(x) = f (x)/x and I−d(z) = Kd(z) if d is an integer.

PROOF. The proof is similar to the previous cases, with the PDE having the
same infinitesimal symmetries and invariants. �

Again, we will normally have C1 = 1, C2 = 0.

EXAMPLE 5.3. We consider a squared Bessel process of dimensions n. We
apply the previous result with A = 4b2, B = 0, C = 4ν − 2n + 1

2n2, C1 = 1,

C2 = 0. The PDE ut = 2xuxx + nux − (b2

2 x + ν
x
)u has a fundamental solution

p(t, x, y) = b

2 sinh(bt)
e−b(x+y)/(2 tanh(bt))

(
y

x

)(n−2)/4

I√
(n−2)2+8ν/2

(
b
√

xy

sinh(bt)

)
.

This reduces to the necessary density and we find

Ex

(
e
−λXt−(b2/2)

∫ t
0 Xs ds−ν

∫ t
0

ds
Xs

)
=

∫ ∞
0

e−λyp(t, x, y) dy

= e−bx/(2 tanhbt) �(α)

�(β)

ba/2(xebt )γ (e2bt − 1)−γ

(coshbt + (2λ/b) sinhbt)δ

× 1F1

(
α,β,

b2x csch(bt)

2b cosh(bt) + 4λ sinh(bt)

)
,

where a = √
(n − 2)2 + 8ν, δ = 1

4(2+a +n), γ = 1
4(2+a −n), α = 1

4(a +n+2)

and β = a+2
2 .
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5.5. An example in the γ = 0 case. We prove the following result.

THEOREM 5.11. Let f be a solution of the Riccati equation σf ′ + 1
2f 2 =

C
x2 + B

2 + 1
8(A − 16μσ)x2,A > 0. Then the PDE

ut = σuxx + f (x)ux − μx2u, x > 0,(5.25)

has a fundamental solution of the form

p(t, x, y) =
√

Axy

2 sinh(
√

At/2)

× exp
(
−Bt

4σ
+ F(y) − F(x)

2σ
−

√
A(x2 + y2)

8σ tanh(
√

At/2)

)
(5.26)

×
(
C1(y)Iβ

( √
Axy

4σ sinh(
√

At/2)

)

+ C1(y)I−β

( √
Axy

4σ sinh(
√

At/2)

))
.

Here F ′ = f , β = 1
2

√
1 + 2C/σ 2 and we interpret I−β to be Kβ if β is an integer.

PROOF. Applying Lie’s algorithm shows that if f satisfies the given Ric-
cati equation, then the finite dimensional part of the Lie algebra of symmetries
is spanned by v1 = ∂t ,v4 = u∂u,

v2 =
√

A

2
xe

√
At∂x + e

√
At∂t −

(
A

8σ
x2 +

√
A

4σ
xf (x) + m

)
e
√

Atu∂u,

v3 = −
√

A

2
xe−√

At∂x + e−√
At∂t −

(
A

8σ
x2 −

√
A

4σ
xf (x) − n

)
e−√

Atu∂u,

m =
√

A+B/σ
4 , n =

√
A−B/σ

4 . Proceeding as previously, we find that the fundamen-
tal solution has the form

p(t, x, y) = e−2Bt+√
A(x2+y2) coth(

√
At/2)+4σ ln(sinh(

√
At/2))/(8σ)v

(
x

sinh(
√

At/2)

)
.

Where 16η2σ 2v′′(η) − (Ay2η2 + 8C)v(η) = 0. The result follows. �

As previously, we will normally take C1 = 1, C2 = 0.

EXAMPLE 5.4. We consider a radial Ornstein–Uhlenbeck process. The SDE
is dXt = ( a

Xt
+ bXt) + √

2dWt , X0 = x. For simplicity we take a > 1/2. The
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fundamental solution is found by the previous theorem to be

p(t, x, y) = y

(
y

x

)ν−1 α

sinh(αt)
(5.27)

× e−νt−α(x2+y2)/(4 tanh(αt))−(b/4)(x2−y2)Iν−1

(
αxy

2 sinh(αt)

)
,

α =
√

b2 + 4μ and ν = 1
2(a +1). Note that as μ → 0, this reduces to the transition

density for a radial Ornstein–Uhlenbeck process. (See [9] and [10].) From which
we find for example that

Ex

(
e−λX2

t −μ
∫ t

0 X2
s ds) =

∫ ∞
0

e−λy2
p(t, x, y) dy

= 2e−bx2/4+α(α−(b−4λ) coth(tα))x2/(4(b−4λ−α coth(tα)))−νt

×
(

cosh(tα) − (b − 4λ) sinh(tα)

α

)−ν

.

6. Computable functionals for a given drift. Observe that the roles of g(x)

and f (x) can be swapped in the sense that we can allow f (x) to be a fixed drift and
we can then determine the functions g for which the PDEs (1.3) has a nontrivial
Lie group of symmetries. Thus, even though we cannot determine the transition
density for all drifts f , we can always compute specific functionals ξλ,g(Xt) for a
given drift.

EXAMPLE 6.1. A simple example illustrates the essential idea. Consider the
drift f (x) = a − b

√
x. Suppose σ = γ = 1. We take A,B to be arbitrary, but for

simplicity we assume that A > 0,B > 0. If xf ′ − f + 1/2f 2 + 2xg(x) = Ax + B

then clearly the function g must be of the form

g(x) = A − b2/2

2
+ a − a2/2 + B

2x
+ ab − b/2

2
√

x
.

From the stationary solution u0(x) = x(1−a)/2ebx/2I√
1+2B(

√
2Ax) we find that

Uλ(x, t) = x1/2−a/2

1 + λt
exp

{
1

2
bx − λ(x + At2/2)

1 + λt

}
I√

1+2B

( √
2Ax

(1 + λt)

)
(6.1)

is a solution of the PDE ut = xuxx + (a − b
√

x)ux − g(x)u. Inverting the Laplace
transform to obtain the fundamental solution gives

p(t, x, y) = 1

t

(
x

y

)(1−a)/2

exp
{
b(x − y) − At

2
− x + y

t

}
(6.2)

× I√
1+2B

(
2
√

xy

t

)
.
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One can check that this is the correct fundamental solution and so that if the diffu-
sion Xt satisfies the SDE dXt = (a − b

√
Xt) dt + √

2Xt dWt , then

Ex

(
e−λXt+∫ t

0 g(Xs) ds)
= 2a(2xt)(μ+1−a)/2e(−At+(b−2/t)x)/2(

2 + t (b + 2λ)
)(−1−a−μ)/2

× �((1 + a + μ)/2)

�(1 + μ)
1F1

(
1 + a + μ

2
,1 + μ,

2x

t (2 + t (b + 2λ))

)
,

where μ = √
1 + 2B . This is not enough to deduce the transition density except in

the case a = 1
2 . However these calculations can be carried out for any one dimen-

sional diffusion and can be potentially quite useful.
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