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Georgia Institute of Technology and Northwestern University
.

We consider a class of stochastic processing networks. Assume that the
networks satisfy a complete resource pooling condition. We prove that each
maximum pressure policy asymptotically minimizes the workload process
in a stochastic processing network in heavy traffic. We also show that, under
each quadratic holding cost structure, there is a maximum pressure policy that
asymptotically minimizes the holding cost. A key to the optimality proofs is
to prove a state space collapse result and a heavy traffic limit theorem for
the network processes under a maximum pressure policy. We extend a frame-
work of Bramson [Queueing Systems Theory Appl. 30 (1998) 89–148] and
Williams [Queueing Systems Theory Appl. 30 (1998b) 5–25] from the multi-
class queueing network setting to the stochastic processing network setting to
prove the state space collapse result and the heavy traffic limit theorem. The
extension can be adapted to other studies of stochastic processing networks.

1. Introduction. This paper is a continuation of Dai and Lin (2005), in which
maximum pressure policies are shown to be throughput optimal for a class of sto-
chastic processing networks. Throughput optimality is an important, first-order
objective for many networks, but it ignores some key secondary performance mea-
sures like queueing delays experienced by jobs in these networks. In this paper we
show that maximum pressure policies enjoy additional optimality properties; they
are asymptotically optimal in minimizing a certain workload or holding cost of a
stochastic processing network.

Stochastic processing networks have been introduced in a series of three papers
by Harrison (2000, 2002, 2003). In Dai and Lin (2005) and this paper we consider
a special class of Harrison’s model. This class of stochastic processing networks
is much more general than multiclass queueing networks that have been a subject
of intensive study in the last 20 years; see, for example, Harrison (1988), Williams
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(1996) and Chen and Yao (2001). The added features in a stochastic processing
network allow one to model skills-based routing in call centers [Gans, Koole and
Mandelbaum (2003)], operator-machine interactions in semiconductor wafer fab-
rication facilities [Kumar (1993)], and combined input- and output-queued data
switches [Chuang et al. (1999)] in data networks.

For this general class of stochastic processing networks, Dai and Lin (2005) pro-
pose a family of operational policies called maximum pressure policies and prove
that they are throughput optimal. For a given vector α > 0, the maximum pressure
policy associated with the parameter α is specified in Section 3 of Dai and Lin
(2005) and will be specified again in Definition 1 of this paper. In this paper, for a
stochastic processing network that satisfies a complete resource pooling condition
and a heavy traffic condition, we first show in Theorem 2 that a certain workload
process is asymptotically minimized under any maximum pressure policy. When
the holding cost rate is a quadratic function of the buffer contents, we show then in
Theorem 3 that there is a maximum pressure policy that asymptotically minimizes
the holding cost. Our maximum pressure policies do not solve the linear holding
cost optimization problem for stochastic processing networks. However, following
an approach in Stolyar (2004), one can find a maximum pressure policy that is as-
ymptotically ε-optimal under the linear holding cost structure. Section 9 elaborates
the ε-optimality of maximum pressure policies.

In Theorem 2, except for some nonnegativity requirements, the parameter α

that is used to define a maximum pressure policy can be chosen arbitrarily. In The-
orem 3, to minimize a given quadratic holding cost rate, one has to choose the
parameter α to be the vector of coefficients that define the quadratic holding cost
rate function. In both cases, the parameter can be chosen to be independent of net-
work data like arrival or processing rates. Thus, these maximum pressure policies
do not depend on the arrival rates. This feature is attractive in some applications
when network data like arrival rates are sometimes difficult or impossible to be
estimated accurately. The maximum pressure policies in Section 9 do depend on
the arrival rates of the network.

Our asymptotic region is when the stochastic processing network is in heavy
traffic; at least one server has to be 100% busy in order to handle all the in-
put. A key assumption on our network is that a complete resource pooling con-
dition is satisfied. Roughly speaking, the complete resource pooling condition re-
quires enough overlap in the processing capabilities of bottleneck servers that these
servers form a single, pooled resource or “super server.” As will be discussed fully
in Section 3, the complete resource pooling condition is articulated by the dual
problem of a linear program (LP) called the static planning problem. For a network
satisfying the complete resource pooling condition, the corresponding dual LP has
a unique optimal solution and the workload process is defined by this unique opti-
mal solution. Ata and Kumar (2005) develop a discrete-review policy and prove its
asymptotic optimality in minimizing the linear holding cost for a class of unitary
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stochastic processing networks that satisfy the complete resource pooling condi-
tion and the balanced heavy traffic condition. The latter condition requires every
server in the network to be heavily loaded. This balanced load requirement, com-
bined with the complete resource pooling assumption, rules out some well-known
networks such as multiclass queueing networks, which have been used to model
semiconductor fabrication lines [Kumar (1993)]. Our definition of heavy traffic
condition is less restrictive than those in Ata and Kumar (2005); our stochas-
tic processing networks include those multiclass queueing networks that have a
unique bottleneck server. Note that the nonbottleneck stations may not disappear
in a heavy traffic diffusion limit in a multiclass queueing network operating under a
nonidling service policy such as first-come–first-serve; see, for example, Bramson
(1994). Even under an asymptotically optimal maximum pressure policy studied in
this paper, the non-bottleneck stations may not disappear; see the example below
Theorem 4 in Section 5.

The major part of our optimality proof of the maximum pressure policies is a
heavy traffic limit theorem. The theorem asserts that when the network is oper-
ated under a maximum pressure policy, (a) the one-dimensional workload process
converges to a reflecting Brownian motion in diffusion limit, and (b) the multidi-
mensional buffer content process is a constant multiple of the workload process
in diffusion limit. The latter result is a form of state space collapse for network
processes, and its proof is the key to the proof of the limit theorem. We choose to
extend a framework of Bramson (1998) and Williams (1998b), from the multiclass
queueing network setting to the stochastic processing network setting, to prove the
heavy traffic limit theorem. We first show that all solutions to a critically loaded
fluid model operating under a maximum pressure policy exhibit some form of state
space collapse. Then we translate the state space collapse to the diffusion scal-
ing following Bramson (1998), proving the state space collapse in diffusion limit.
Once we have the state space collapse result, we invoke a theorem of Williams
(1998b) for perturbed Skorohod problems to establish the heavy traffic limit theo-
rem for our stochastic processing network operating under the maximum pressure
policy.

Stolyar (2004) proves that MaxWeight policies asymptotically minimize the
workload processes in heavy traffic for a generalized switch model that belongs
to one-pass systems in which each job leaves the system after being processed at
one processing step. Our Theorem 2 greatly generalizes Stolyar (2004) from one-
pass systems to stochastic processing networks. Except for Ata and Kumar (2005)
that was discussed earlier in this introduction, most other works that are closely
related to our work have focused on parallel server systems. These systems be-
long to a special class of one-pass systems. All these works assume heavy traffic
and complete resource pooling conditions. For a parallel server system that has 2
buffers, 2 processors and 3 activities, Harrison (1998) develops a “discrete-review”
policy via the BIGSTEP procedure that was first described in Harrison (1996) for
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multiclass queueing networks. Furthermore, he proves that the discrete-review pol-
icy asymptotically minimizes the expected discounted, cumulative linear holding
cost under the restrictive assumption of Poisson arrival processes and determinis-
tic service times. Harrison and López (1999) then use the BIGSTEP procedure to
produce a family of policies for general parallel systems, but they have not proved
the optimality of these policies. For the same 2 buffer, 3 processor and 3 activity
parallel server system, but with general arrival processes and service time distri-
butions, Bell and Williams (2001) develop simple form, buffer priority policies
with thresholds and prove their asymptotic optimality under linear holding cost.
Since the threshold values are constantly monitored, these policies are termed as
“continuous-review” policies. They further generalize their policies to general par-
allel server systems in Bell and Williams (2005) and prove that they are asymp-
totically optimal. While all these works deal with the holding cost objective, the
proposed asymptotically optimal policies in the literature exploit the special net-
work structures and critically depend on the network data, particularly the arrival
rates. Mandelbaum and Stolyar (2004) propose a generalized cμ policy for parallel
server systems. The policy does not use any arrival rate information. They prove
that it is asymptotically optimal in minimizing a strictly convex holding cost.

When a network has multiple bottlenecks so that the complete resource pooling
condition is not satisfied, finding an asymptotically optimal policy remains a diffi-
cult, open problem in general. Shah and Wischik (2006) study the fluid and diffu-
sion limits under MaxWeight policies for input-queued switches that do not satisfy
the complete resource pooling condition. They propose a policy that is believed to
be asymptotically optimal. However, they do not provide a proof for the optimality.
Harrison and Wein (1989) study a two-station multiclass queueing network known
as crisscross network. They propose a threshold type policy and demonstrate its
near-optimal performance through simulations. For the same crisscross network,
but with exponentially distributed interarrival and service times, Martins, Shreve
and Soner (1996) and Budhiraja and Ghosh (2005) prove the asymptotic optimal-
ity of certain nested threshold policies when the network data is in various heavy
traffic regimes.

All asymptotic optimality proofs in the literature involve proving a heavy traffic
limit theorem and some form of state space collapse, either explicitly or implic-
itly. Ata and Kumar (2005) and Bell and Williams (2001, 2005) prove the state
space collapse results directly without going through fluid models. Stolyar (2004)
and Mandelbaum and Stolyar (2004) mimic the general framework of Bramson
(1998) and Williams (1998b). They start with showing a state space collapse result
for fluid models, and then prove the optimality directly without proving the state
space collapse in diffusion limit as an intermediate step. By choosing to extend
Bramson and Williams’ framework in this paper, we are able to provide an opti-
mality proof that is clean and hopefully easy to follow. We expect our extension
can be adapted to other studies of stochastic processing networks. Our proof of
asymptotic optimality requires that the service times have finite 2 + ε moments, as
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in Ata and Kumar (2005). This moment assumption is weaker than the exponen-
tial moment assumption that is usually assumed in the literature; see, for example,
Harrison (1998) and Bell and Williams (2001, 2005).

Harrison pioneered Brownian control models as a framework to find asymptot-
ically optimal service policies for networks in heavy traffic. The framework was
first proposed for multiclass queueing networks in Harrison (1988), and later was
extended for stochastic processing networks in Harrison (2000). In his framework,
a corresponding Brownian control problem of a stochastic processing network is
first solved, and then the solution to the Brownian problem is used to construct ser-
vice policies for the original stochastic processing network. Finally, these policies
are shown to be asymptotically optimal for the stochastic processing network un-
der a heavy traffic condition. A key step to solving the Brownian control problem
is to have an equivalent workload formulation of the Brownian control problem
as explained in Harrison and Van Mieghem (1997). The “workload process” of
the Brownian control model corresponding to the stochastic processing network
in this paper, as well as in Ata and Kumar (2005), Stolyar (2004), and Bell and
Williams (2001, 2005), is one-dimensional. Thus, the Brownian control problem
has a simple solution. Our maximum pressure policies, at least under a special
linear holding cost structure, can be considered as another “interpretation” of the
solution to the Brownian control problem, although this interpretation is not as di-
rect as those in Bell and Williams (2005) and Ata and Kumar (2005). Our paper,
together with these papers in the literature, demonstrates that the interpretation
of the Brownian solution is not unique, proving the optimality of the interpreted
policies can be difficult.

Maximum pressure type of policies were pioneered by Tassiluas and his co-
authors under various names including back-pressure policies; see, for example,
Tassiluas and Ephremides (1992, 1993), Tassiulas (1995) and Tassiulas and Bhat-
tacharya (2000). The work of Tassiulas and Bhattacharya (2000) represents a sig-
nificant advance in finding efficient operational policies for a wide class of net-
works, and is closely related to Dai and Lin (2005). Readers are referred to Dai
and Lin (2005) for an explanation of the major differences of these two works.
We note that, contrary to the description in Dai and Lin (2005), Tassiluas and
Ephremides (1992, 1993) and Tassiulas (1995) do cover network models, not just
one-pass systems. For a recent survey of these policies and their applications to
wireless networks, see Georgiadis, Neely and Tassiulas (2006).

The remainder of the paper is organized as follows. In Section 1.1 we collect
some of the notation used in this paper. In Section 2 we describe a class of stochas-
tic processing networks, and introduce the maximum pressure service policies. We
then define the workload process of a stochastic processing network in Section 3,
where we also introduce the complete resource pooling condition. The main re-
sults of this paper are stated in Section 4. The proofs of the main theorems are
outlined in Section 5. A key to the proofs of these theorems is a state space col-
lapse result of the diffusion-scaled network processes under a maximum pressure
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policy. In Section 6 each fluid model solution under a maximum pressure policy
is shown to exhibit a state space collapse. Section 7 applies Bramson’s approach
[Bramson (1998)] to prove the state space collapse of the diffusion-scaled network
processes. The state space collapse result is converted into a heavy traffic limit the-
orem in Section 8. The limit theorem is used in Section 5 to complete the proofs of
the main theorems. In Section 9 we discuss the ε-optimality of maximum pressure
policies. A number of technical lemmas as well as Theorem 1 are proved in the
Appendix A.

1.1. Notation. We use R
d to denote the d-dimensional Euclidean space. Vec-

tors in R
d are envisioned as column vectors unless indicated otherwise. The trans-

pose of a vector v will be denoted as v′. For v,w ∈ R
d , v · w denotes the dot

product, and v × w denotes the vector (v1w1, . . . , vdwd)′. The max norm in R
d is

denoted as |·|, and for a matrix A, we use A to denote the maximum absolute value
among all components. The Euclidean norm ‖·‖ in R

d is defined by ‖v‖ = √
v · v.

For r1, r2 ∈ R, we use r1 ∨ r2 and r1 ∧ r2 to denote the maximum and minimum of
r1 and r2, respectively.

We use D
d [0,∞) to denote the set of functions f : [0,∞) 	→ R

d that are right
continuous on [0,∞) having left limits in (0,∞). For f ∈ D

d [0,∞), we let

‖f ‖t = sup
0≤s≤t

|f (s)|.

We endow the function space D
d [0,∞) with the usual Skorohod J1-topology

[Ethier and Kurtz (1986)]. A sequence of functions {fr} ⊂ D
d [0,∞) is said to

converge to an f ∈ D
d [0,∞) uniformly on compact (u.o.c.) sets, denoted as

fr(·) → f (·), if for each t ≥ 0, limr→∞ ‖fr − f ‖t = 0. For a sequence of sto-
chastic processes {Xr} taking values in D

d [0,∞), we use Xr ⇒ X to denote that
Xr converges to X in distribution.

2. Stochastic processing networks. In this section we describe a general
stochastic processing network proposed by Dai and Lin (2005). We follow the
notation of Dai and Lin (2005). The network is assumed to have I + 1 buffers,
J activities and K processors. Buffers, activities and processors are indexed by
i = 0, . . . , I, j = 1, . . . ,J and k = 1, . . . ,K, respectively. For notational conve-
nience, we define I = {1, . . . , I} the set of buffers excluding buffer 0,
J = {1, . . . ,J} the set of activities and K = {1, . . . ,K} the set of processors. Each
buffer, with infinite capacity, holds jobs or materials that await service. Buffer 0
is a special one that is used to model the outside world, where an infinite number
of jobs await. Each activity can simultaneously process jobs from a set of buffers.
It may require simultaneous possession of multiple processors to be active. Jobs
departing from a buffer will go next to other buffers with certain probabilities that
depend on the current activity taken.
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2.1. Resource consumption. Each activity needs one or more processors avail-
able to be active. For activity j , Akj = 1, if activity j requires processor k, and
Akj = 0 otherwise. The K × J matrix A = (Akj ) is the resource consumption ma-
trix. Each activity may be allowed to process jobs in multiple buffers simultane-
ously. For activity j , we use the indicator function Bji to record whether buffer
i can be processed by activity j . (Bji = 1 if activity j processes buffer i jobs.)
The set of buffers i with Bji = 1 is said to be the constituency of activity j . It
is denoted by Bj . The constituency is assumed to be nonempty for each activity
j ∈ J, and may contain more than one buffer. When a processing requirement of
an activity is met, a job departs from each one of the constituent buffers. For each
activity j , we use uj (�)/μj to denote the �th activity j processing requirement,
where uj = {uj (�), � ≥ 1} is an i.i.d. sequence of random variables, defined on
some probability space (�,F ,P), and μj is a strictly positive real number. We set
σ 2

j = var(uj (1)), and assume that σj < ∞ and uj is unitized, that is, E[uj (1)] = 1,
where E is the expectation operator associated with the probability measure P. It
follows that 1/μj and σj are the mean and coefficient of variation, respectively,
for the processing times of activity j .

An activity j is said to be an input activity if it processes jobs only from buffer
0, that is, Bj = {0}. An activity j is said to be a service activity if it does not
process any job from buffer 0, that is, 0 /∈ Bj . We assume that each activity is
either an input activity or a service activity. We further assume that each processor
processes either input activities only or service activities only. A processor that
only processes input activities is called an input processor, and a processor that
only processes service activities is called a service processor. The input processors
process jobs from buffer 0 (outside) and generate the arrivals for the network. We
denote JI to be the set of input activities, JS the set of service activities, KI the
set of input processors, and KS the set of service processors.

2.2. Routing. Buffer i jobs, after being processed by activity j , will go next
to other buffers or leave the system. Let e0 be the I-dimensional vector of all 0’s,
and for i ∈ I, ei is the I-dimensional vector with the ith component 1 and other
components 0. For each activity j ∈ J and each constituent buffer i ∈ Bj , we

use an I-dimensional binary random vector φ
j
i (�) = (φ

j

ii′(�), i
′ ∈ I) to denote the

routing vector of the �th buffer i job processed by activity j , where φ
j
i (�) = ei′ if

the �th buffer i job processed by activity j goes next to buffer i ′, and φ
j
i (�) = e0

if the job leaves the system. We assume that the sequence φ
j
i = {φj

i (�), � ≥ 1}
is i.i.d., defined on the same probability space (�,F ,P), for each activity j ∈ J

and i ∈ Bj . Set P
j

ii′ = E[φj

ii′(1)]. Then P
j

ii′ is the probability that a buffer i job
processed by activity j will go next to buffer i′.

For each j ∈ J, i ∈ Bj , the cumulative routing process is defined by the sum

�
j
i (�) =

�∑
n=1

φ
j
i (n),
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and �
j

ii′(�) denotes the number of jobs that will go next to buffer i′ among the first
� buffer i jobs that are processed by activity j .

The sequences

(uj ,φ
j
i : i ∈ Bj , j ∈ J)

are said to be the primitive increments of the network. We assume that they are
mutually independent and all are independent of the initial state of the network.

2.3. Resource allocations. Because multiple activities may require usage of
the same processor, not all activities can be simultaneously undertaken at a 100%
level. Unless stated otherwise, we assume that each processor’s service capacity
is infinitely divisible, and processor-splitting of a processor’s service capacity is
realizable. We use a nonnegative variable aj to denote the level at which processing
activity j is undertaken. When aj = 1, activity j is employed at a 100% level.
When aj = 0, activity j is not employed. Suppose that the engagement level of
activity j is aj , with 0 ≤ aj ≤ 1. The processing requirement of an activity j job
is depleted at rate aj . (The job finishes processing when its processing requirement
reaches 0.) The activity consumes ajAkj fraction of processor k’s service capacity
per unit time. The remaining service capacity, 1 − ajAkj , can be used for other
activities.

We use a = (aj ) ∈ R
J+ to denote the corresponding J-dimensional allocation

(column) vector, where R+ denotes the set of nonnegative real numbers. Since
each processor k can decrease processing requirements at the rate of at most 1 per
unit of time, we have∑

j∈J

Akjaj ≤ 1 for each processor k.(2.1)

In vector form, Aa ≤ e, where e is the K-dimensional vector of ones. We assume
that there is at least one input activity and that the input processors never idle.
Namely, ∑

j∈J

Akjaj = 1 for each input processor k.(2.2)

We use A to denote the set of allocations a ∈ R
J+ that satisfy (2.1) and (2.2).

Each a ∈ A represents an allowable allocation of the processors working on
various activities. We note that A is bounded and convex. Let E = {a1, . . . , aE}
be the set of extreme points of A, where the total number E of extreme points is
finite.

REMARK. Harrison (2002) does not have the concept of input processor and
input activity for his stochastic processing networks. The input processors and
activities in our network model allow us to capture the dynamic routing decisions
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for external arrivals. (Note that in our model the dynamic routing decision of a job
is made not at the time of its arrival, but at the arrival time of the previous job.)
However, if we restrict ourselves to the networks without these routing decisions,
Harrison’s network models are broader than ours; Harrison describes his models
through first-order network data only, leaving the underlying stochastic primitives
and system dynamics unspecified. In this sense, our network models are a special
class of Harrison’s, which include some stochastic processing networks where the
service requirements for jobs from different buffers can be different even if they are
processed simultaneously by a single activity. The latter networks are not covered
in this paper.

2.4. Service policies. Each job in a buffer is assumed to be processed by one
activity in its entire stay at the buffer. A processing of an activity can be preempted.
In this case, each in-service job is “frozen” by the activity. The next time the ac-
tivity is made active again, the processing is resumed from where it was left off. In
addition to the availability of processors, a (nonpreempted) activity can be made
active only when each constituent buffer has jobs that are not in service or frozen.
We assume that within each buffer jobs are queued in the order of their arrivals
to the buffer, and head-of-line policy is used. When a (nonpreempted) activity be-
comes active with a given engagement level, the leading job in each buffer that is
not in service or frozen is processed. If multiple activities are actively working on
a buffer, there are multiple jobs in the buffer that are in service. For an allocation a,
if there is an activity j with aj > 0 that cannot be made active, the allocation is
infeasible. At any given time t , we use A(t) to denote the set of allocations that
are feasible at that time. A service policy specifies which allocation is being un-
dertaken at each time t ≥ 0, and we use π = {π(t) : t ≥ 0} to denote such a policy.
Under the policy π , allocation π(t) ∈ A(t) will be employed at time t .

Dai and Lin (2005) propose a family of service policies called maximum pres-
sure policies that are throughput optimal for a large class of stochastic processing
networks. To describe these policies for our network, for each buffer i = 1, . . . , I
and each activity j = 1, . . . ,J, we define

Rij = μj

(
Bji − ∑

i′∈Bj

P
j

i′i

)
.(2.3)

The I × J matrix R = (Rij ) is called the input-output matrix in Harrison (2002).
One interprets Rij as the average amount of buffer i material consumed per unit
of activity j , with a negative value being interpreted to mean that activity j is
a net producer of material in buffer i. Define E(t) = E ∩ A(t) to be the set of
feasible extreme allocations at time t . Denote Z = {Z(t), t ≥ 0} to be the buffer
level process with Zi(t) being the buffer level of buffer i at time t , including those
in service or “frozen” at time t . Now we are ready to define maximum pressure
service policies for our stochastic processing network. Each maximum pressure
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policy is associated with a vector α ∈ R
I with αi > 0 for each i ∈ I. Recall that for

two vectors x, y ∈ R
d , x × y denotes the vector (x1y1, . . . , xdyd)′.

DEFINITION 1 (Maximum pressure policies). Given a vector α ∈ R
I with

αi > 0 for i ∈ I, a service policy is said to be a maximum pressure policy as-
sociated with parameter α if at each time t , the network chooses an allocation
a∗ ∈ arg maxa∈E(t) pα(a,Z(t)), where pα(a,Z(t)) is called the network pressure
with parameter α under allocation a and buffer level Z(t) and is defined as

pα(a,Z(t)) = (
α × Z(t)

) · Ra.(2.4)

When more than one allocation attains the maximum pressure, a tie-breaking
rule is used. Our results are not affected by how ties are broken. However, for
concreteness, one can order the extreme allocation set E , and always choose the
maximum-pressure allocation with the smallest index. In general, a maximum
pressure policy can be an idling policy; namely, some processors may idle even
if there are jobs that they can process.

In Section 4 we are going to show that every maximum pressure policy asymp-
totically minimizes a certain workload process, and when the stochastic processing
network incurs a certain quadratic holding cost rate, there is a maximum pressure
policy that is asymptotically optimal.

REMARK. Dai and Lin (2005) associate two parameters, α and β , with each
maximum pressure policy and define the network pressure as pα,β(a,Z(t)) = (α×
Z(t)−β) ·Ra. It turns out that the second parameter β disappears in both fluid and
diffusion limits and will have no impact on the asymptotic performance. Thus, for
notational convenience, we set in this paper β = 0 and associate each maximum
pressure policy with one parameter α.

3. Workload process and complete resource pooling. We define the work-
load process through a linear program (LP) called the static planning problem and
its dual problem. For a stochastic processing network with input-output matrix
R and capacity consumption matrix A, the static planning problem is defined as
follows: choose a scalar ρ and a J-dimensional column vector x so as to

minimize ρ(3.1)

subject to Rx = 0,(3.2) ∑
j∈J

Akjxj = 1 for each input processor k,(3.3)

∑
j∈J

Akjxj ≤ ρ for each service processor k,(3.4)

x ≥ 0.(3.5)
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For each optimal solution (ρ,x) to (3.1)–(3.5), the vector x is said to be a process-
ing plan for the stochastic processing network, where component xj is interpreted
as the long-run fraction of time that activity j is undertaken. Since one of the
constraints in (3.4) must be binding for a service processor, ρ is interpreted as
the long-run utilization of the busiest service processor under the processing plan.
With this interpretation, the left-hand side of (3.2) is interpreted as the long-run
net flow rates from the buffers. Equality (3.2) demands that, for each buffer, the
long-run input rate to the buffer is equal to the long-run output rate from the buffer.
Equality (3.3) ensures that input processors never idle, while inequality (3.4) re-
quires that each service processor’s utilization not exceed that of the busiest ser-
vice processor. The objective is to minimize the utilization of the busiest service
processor. For future references, the optimal objective value ρ is said to be the
traffic intensity of the stochastic processing network.

The dual problem of the static planning problem is the following: choose an
I-dimensional vector y and a K-dimensional vector z so as to

maximize
∑

k∈KI

zk,(3.6)

subject to
∑
i∈I

yiRij ≤ − ∑
k∈KI

zkAkj for each input activity j(3.7)

∑
i∈I

yiRij ≤ ∑
k∈KS

zkAkj for each service activity j,(3.8)

∑
k∈KS

zk = 1,(3.9)

zk ≥ 0 for each service processor k.(3.10)

Recall that KI is the set of input processors, and KS is the set of service proces-
sors. Each pair (y, z) that satisfies (3.7)–(3.10) is said to be a resource pool.
Component yi is interpreted as the work dedicated to a unit of buffer i job by
the resource pool, and zk is interpreted as the relative capacity of processor k,
measured in fractions of the service capacity of the resource pool; for each in-
put processor k, the relative capacity zk is the amount of work generated by input
processor k per unit of time. Equality (3.9) ensures that the service capacity of the
resource pool equals the sum of service capacities of all service processors. Con-
straint (3.8) demands that no service activity can accomplish more work than the
capacity it consumes. Recall that −Rij is the rate at which input activity j gener-
ates buffer i jobs. For each input activity j , constraint (3.7), which can be written
as

∑
i∈I yi(−Rij ) ≥ ∑

k∈KI
zkAkj , ensures that the work dedicated to each unit of

the activity is no less than that which it generates. The objective is to maximize∑
k∈KI

zk , which is the total amount of work generated from outside by the input
processors per unit of time. A service processor k is said to be in the resource pool
(y, z) if zk > 0. Constraint (3.9) is an equality instead of an inequality because
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we do not pose a nonnegativity constraint on the variable ρ in the primal LP; the
nonnegativity of ρ is guaranteed from constraint (3.4) and the nonnegativity of
A and x.

A bottleneck pool is defined to be an optimal solution (y∗, z∗) to the dual
LP (3.6)–(3.10). Let (ρ∗, x∗) be an optimal solution to the primal LP, the static
planning problem (3.1)–(3.5). From the basic duality theory,

∑
j Akjx

∗
j = ρ∗ for

any service processor k with z∗
k > 0. It says that all service processors in the bot-

tleneck pool (y∗, z∗) are the busiest servers under any optimal processing plan x∗.
For a bottleneck pool (y∗, z∗), let W(t) = y∗ · Z(t) for t ≥ 0. Then, W(t)

represents the average total work of this bottleneck pool embodied in all jobs
that are present at time t in the stochastic processing network. The process
W = {W(t), t ≥ 0} is called the workload process of this bottleneck pool. Al-
though the workload process of a nonbottleneck resource pool (y, z) can also be
defined by y · Z(t), we will focus on the workload processes of bottleneck pools
because bottleneck pools become significantly more important in heavy traffic. In
general, the bottleneck pool is not unique. However, we assume all the stochas-
tic processing networks considered in this paper have a unique bottleneck pool;
namely, they satisfy the following complete resource pooling condition.

DEFINITION 2 (Complete resource pooling condition). A stochastic process-
ing network is said to satisfy the complete resource pooling condition if the cor-
responding dual static planning problem (3.6)–(3.10) has a nonnegative, unique
optimal solution (y∗, z∗).

For a processing network that satisfies the complete resource pooling condition,
we define the bottleneck workload process, or simply the workload process, of the
stochastic processing network to be the workload process of its unique bottleneck
pool.

The (bottleneck) workload process defined here is different from the workload
process defined in Harrison and Van Mieghem (1997). Their workload process
is multi-dimensional, with some components corresponding to the nonbottleneck
pools; it is defined in terms of what they call “reversible displacements.” For the
networks where their workload process has dimension one, these two definitions
of the workload process are consistent.

REMARK. Under certain assumptions including a heavy traffic assumption
that requires all servers in the network be critically loaded, Harrison (2000)
proposes a “canonical” representation of the workload process for a stochastic
processing network through a dual LP that is similar to (3.6)–(3.10). There, basic
optimal solutions to the dual LP were chosen as rows of the workload matrix which
was used to define the workload process. Without his heavy traffic assumption, his
“canonical” choice of workload matrix would exclude those nonbottleneck servers.
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In this case, it is not clear how to define a “canonical” representation of the work-
load process to include those nonbottleneck servers. Although for some network
examples like multiclass queueing networks we can define the workload matrix
such that its rows are the basic solutions to the dual LP, more analysis is required
for general stochastic processing networks.

4. Asymptotic optimality and the main results. The behavior of the buffer
level process and the workload process for a stochastic processing network under
any policy is complex. In particular, deriving closed form expressions for perfor-
mance measures involving these processes is not possible in general. Therefore,
we perform an asymptotic analysis for stochastic processing networks operating
under maximum pressure policies. Our asymptotic region is when the network is
in heavy traffic; that is, the offered traffic load is approximately equal to the sys-
tem capacity. Formally, we consider a sequence of stochastic processing networks
indexed by r = 1,2, . . . ; as r → ∞, the traffic intensity ρr of the r th network
goes to one. We assume that these networks all have the same network topology
and primitive increments. In other words, the matrices A and B , and the sequences
(uj ,φ

j
i : j ∈ J, i ∈ Bj ) do not vary with r . However, we allow the processing rates

to change with r , and use μr
j to denote the processing rate of activity j in the r th

network. Thus, the traffic intensity ρr for the r th network is the optimal objec-
tive value of the static planning problem (3.1)–(3.5) with the input-output matrix
Rr = (Rr

ij ) given by Rr
ij = μr

j (Bji −∑
i′∈Bj

P
j

i′i ). We assume the following heavy
traffic assumption throughout this paper.

ASSUMPTION 1 (Heavy traffic assumption). There exists a constant μj > 0
for each activity j ∈ J such that, as r → ∞,

μr
j → μj ,(4.1)

and, setting R = (Rij ) as in (2.3) with μj being the limit values in (4.1), the static
planning problem (3.1)–(3.5) with parameter (R,A) has a unique optimal solution
(ρ∗, x∗) with ρ∗ = 1. Furthermore, as r → ∞,

r(ρr − 1) → θ(4.2)

for some constant θ .

We define the limit network of the network sequence to be the network that has
the same network topology and primitive increments as networks in the sequence,
and has processing rates equal to the limit values μj , given in (4.1). Assumption 1
basically means that in the limit network there exists a unique processing plan
x∗ that can avoid inventory buildups over time, and the busiest service proces-
sor is fully utilized under this processing plan. Condition (4.2) requires that the
networks’ traffic intensities approach to 1 at rate r−1 or faster.
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The heavy traffic assumption is now quite standard in the literature; see, for ex-
ample, Bramson and Dai (2001), Chen and Zhang (2000), Dai and Kurtz (1995)
and Williams (1996, 1998a) for heavy traffic analysis of queueing networks and
Ata and Kumar (2005), Harrison (2000), Harrison and López (1999), Harrison and
Van Mieghem (1997) and Williams (2000) for heavy traffic analysis of stochastic
processing networks. However, heavy traffic assumptions in the literature usually
assume that, in addition to Assumption 1, all service processors are fully utilized.
The latter assumption, together with a complete resource pooling assumption to be
introduced later in this section, rules out some common networks such as multi-
class queueing networks. In our heavy traffic assumption, only the busiest service
processor is required to be critically loaded, and some other service processors are
allowed to be under-utilized.

The optimal processing plan x∗ given in Assumption 1 is referred to as the
nominal processing plan. We use Tj (t) to denote the cumulative amount of activity
j processing time in [0, t] for the limit network; let T (t) be the corresponding
J-dimensional vector. Then T (t)/t is the average activity levels over the time span
[0, t]. To avoid a linear buildup of jobs over time in the limit network, the long-run
average rate (or activity level) that activity j is undertaken needs to equal x∗

j , that
is,

lim
t→∞T (t)/t = x∗ almost surely.(4.3)

There should be no linear buildup of jobs under a reasonably “good” policy. A pol-
icy is said to be efficient for the limit network if (4.3) holds for the network oper-
ating under the policy. Since we consider a sequence of networks, we would like
to define an analogous notion of a “good” or efficient policy for the sequence. One
can imagine that under a reasonably “good” policy, when r is large, the average
activity levels over long time spans must be very close to the nominal processing
plan x∗. To be specific, we define the notion of asymptotic efficiency as follows.
Let T r

j (t) be the cumulative amount of activity j processing time in [0, t] for the
r th network and T r(t) be the corresponding J-dimensional vector.

DEFINITION 3 (Asymptotic efficiency). Consider a sequence of stochastic
processing networks indexed by r = 1,2, . . . , where Assumption 1 holds. A pol-
icy π is said to be asymptotically efficient if and only if under policy π , with
probability 1, for each t ≥ 0,

T r(r2t)/r2 → x∗t as r → ∞.(4.4)

Equation (4.4) basically says that, under an asymptotically efficient policy, the
average activity levels over a time span of order r2 are very close to the nominal
processing plan, so that no linear buildup of jobs will occur over the time span of
this order.
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Asymptotic efficiency is closely related to the throughput optimality as defined
in Dai and Lin (2005). Fluid models have been used to prove throughput optimality
of stochastic processing networks operating under a policy. Similarly, the fluid
model corresponding to the limit network can be used to prove the asymptotic
efficiency of a policy for the sequence of networks that satisfies Assumption 1.
In particular, one can prove that a policy π is asymptotically efficient if the fluid
model of the limit network operating under π is weakly stable. To introduce the
first result of this paper, we first define the extreme-allocation-available (EAA)
condition for a stochastic processing network.

DEFINITION 4 (EAA condition). A stochastic processing network is said to
satisfy the EAA condition if, for any vector q ∈ R

I+, there exists an extreme al-
location a∗ ∈ E such that Ra∗ · q = maxa∈E Ra · q , and for each buffer i with∑

j a∗
j Bji > 0, buffer level qi is positive.

Readers are referred to Section 6 of Dai and Lin (2005) for a detailed discussion
on the EAA condition; there a class of networks is shown to satisfy the EAA
condition and a network example is shown not to satisfy the EAA condition.

THEOREM 1. Consider a sequence of stochastic processing networks that sat-
isfies Assumption 1. If the limit network satisfies the EAA condition, then for any
α ∈ R

I with α > 0, the maximum pressure policy with parameter α is asymptoti-
cally efficient.

Using a fluid model, Dai and Lin (2005) prove in their Theorem 2 that, for a
stochastic processing network satisfying the EAA condition, a maximum pressure
policy is throughput optimal. The proof of Theorem 1 uses a fluid model that will
be introduced in Section 6 and is almost identical to that of Theorem 2 in Dai and
Lin (2005). It will be outlined in Appendix B.

Asymptotic efficiency helps to identify reasonably “good” policies, but it is not
very discriminating. We would like to demonstrate a certain sense of optimality
for maximum pressure policies in terms of secondary performance measures. For
this, we will introduce two notions of asymptotic optimality. Before giving their
definitions, we make the following assumption on the sequence of networks.

ASSUMPTION 2 (Complete resource pooling). All networks in the sequence
and the limit network satisfy the complete resource pooling condition defined in
Section 3. Namely, the dual static planning problem (3.6)–(3.10) of the r th net-
work has a nonnegative, unique optimal solution (yr , zr), and the dual static plan-
ning problem of the limit network also has a nonnegative, unique optimal solution
(y∗, z∗).

LEMMA 1. Assume Assumptions 1 and 2. Then (yr , zr) → (y∗, z∗) as r →
∞.
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The proof of Lemma 1 will be provided in Appendix B.

REMARK. In Assumption 2 we assume all networks in the sequence satisfy
the complete resource pooling condition so that the workload processes Wr can
be uniquely defined as in Section 3 by the first order network data (Rr,Ar). This
assumption can be removed if one defines the workload process of a network with
multiple bottleneck pools to be the workload process of an arbitrarily chosen but
prespecified bottleneck pool (with yr being any given optimal solution to the dual
problem). On the other hand, the complete resource pooling condition for the limit
network is crucial for our results to hold.

The first notion of asymptotic optimality is in terms of the workload process
introduced in Section 3. Under Assumption 2, we can define the one-dimensional
workload process of the r th network as

Wr(t) = yr · Zr(t),(4.5)

where Zr = {Zr(t), t ≥ 0} is the buffer level process of the r th network.
Define the diffusion-scaled workload and buffer level processes of the r th net-

work Ŵ r = {Ŵ r(t), t ≥ 0} and Ẑr = {Ẑr (t), t ≥ 0} via

Ŵ r(t) = Wr(r2t)/r, Ẑr (t) = Zr(r2t)/r.

Clearly, Ŵ r(t) = yr · Ẑr (t) for t ≥ 0.

DEFINITION 5. Consider a sequence of stochastic processing networks in-
dexed by r . An asymptotically efficient policy π∗ is said to be asymptotically
optimal for workload if for any t > 0,w > 0, and any asymptotically efficient pol-
icy π ,

lim sup
r→∞

P
(
Ŵ r

π∗(t) > w
) ≤ lim inf

r→∞ P
(
Ŵ r

π (t) > w
)
,(4.6)

where Ŵ r
π∗(·) and Ŵ r

π (·) are the diffusion-scaled workload processes under poli-
cies π∗ and π , respectively.

The second notion of asymptotic optimality is in terms of a quadratic holding
cost structure for the sequence of stochastic processing networks. Let h = (hi : i ∈
I) be a constant vector with hi > 0 for i ∈ I. For the r th network, the diffusion-
scaled holding cost rate at time t is

Ĥ r(t) = ∑
i∈I

hi(Ẑ
r
i (t))

2.(4.7)

DEFINITION 6. Consider a sequence of stochastic processing networks in-
dexed by r . An asymptotically efficient policy π∗ is said to be asymptotically opti-
mal for the quadratic holding cost if for any t > 0, η > 0, and any asymptotically
efficient policy π ,

lim sup
r→∞

P
(
Ĥ r

π∗(t) > η
) ≤ lim inf

r→∞ P
(
Ĥ r

π (t) > η
)
,(4.8)
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where Ĥ r
π∗(t) and Ĥ r

π (t) are the diffusion-scaled total holding cost rates at time t

under policies π∗ and π , respectively.

To state our main theorems, we make two more assumptions on the sequence
of networks. One is a moment assumption on the unitized service times uj (�) and
the other is an assumption on the initial buffer level processes.

ASSUMPTION 3. There exists an εu > 0 such that, for all j ,

E[(uj (1))2+εu] < ∞.(4.9)

ASSUMPTION 4 (Initial condition). As r → ∞,

Ẑr (0) = Zr(0)/r → 0 in probability.(4.10)

Assumption 3 requires that the unitized service times have finite 2 + εu mo-
ments. It was used by Ata and Kumar (2005) and it is stronger than some stan-
dard regularity assumptions such as in Bramson (1998). Assumption 3 will be
used in Section 7 to prove a state space collapse result for stochastic processing
networks operating under maximum pressure policies. Assumption 4 holds if the
initial buffer levels of the networks are stochastically bounded, namely,

lim
τ→∞ lim sup

r→∞
P

(|Zr(0)| > τ
) = 0.

Clearly, Assumption 4 implies that, as r → ∞,

Ŵ r(0) → 0 in probability.(4.11)

THEOREM 2. Consider a sequence of stochastic processing networks. Assume
Assumptions 1–4 and that the limit network satisfies the EAA condition. Each max-
imum pressure policy is asymptotically optimal for workload.

THEOREM 3. Consider a sequence of stochastic processing networks where
Assumptions 1–4 hold and the limit network satisfies the EAA condition. The max-
imum pressure policy with parameter α = h is asymptotically optimal for the
quadratic holding cost in (4.7).

Theorem 2 says that, at every time t , asymptotically, the diffusion-scaled work-
load under any maximum pressure policy π∗ is dominated by that under any other
asymptotically efficient policy π in the sense of stochastic ordering. Theorem 3
says that, given a quadratic holding cost rate structure with coefficient vector h,
the quadratic holding cost rate at every time t under the maximum pressure policy
with parameter α = h is asymptotically dominated by that under any other efficient
policy in the sense of stochastic ordering.
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The proofs of Theorems 2 and 3 will be outlined in Section 5. Throughout this
paper, we shall assume Assumptions 1–4 and that the limit network satisfies the
EAA condition.

When the objective is to minimize a linear holding cost, our maximum pres-
sure policies do not achieve the asymptotic optimality. However, some maximum
pressure policies are asymptotically near optimal. In Section 9 we introduce the
notion of ε-optimality and identify a set of maximum pressure policies that are
asymptotically ε-optimal in terms of minimizing the linear holding cost.

5. An outline of the proofs. This section outlines the proofs of our main
theorems, Theorems 2 and 3. We first derive an asymptotic lower bound on the
workload processes under asymptotically efficient policies. Then we state a heavy
traffic limit result in Theorem 4, which implies that this asymptotic lower bound is
achieved by the workload process under any maximum pressure policy. The heavy
traffic limit theorem also implies the optimality of a certain maximum pressure
policy under the quadratic holding cost structure in Theorem 3. At the end we out-
line a proof for the heavy traffic limit theorem. The key to the proof is a state space
collapse result to be stated in Theorem 5.

We first derive an asymptotic lower bound on the workload processes under
asymptotically efficient policies. That is, we search for a process W ∗ such that,
under any asymptotically efficient policy,

lim inf
r→∞ P

(
Ŵ r(t) > w

) ≥ P
(
W ∗(t) > w

)
for all t and w.

As before, we assume that the sequence of stochastic processing networks satisfies
Assumption 2. Hence, the one dimensional workload process Wr is well defined
by (4.5) for each r .

We begin the analysis by defining a process Y r = {Y r(t), t ≥ 0} for the r th
network via

Y r(t) = (1 − ρr)t − yr · RrT r(t).(5.1)

Since ρr is interpreted as the traffic intensity of the bottleneck pool, for each t ≥ 0,
ρr t is interpreted as the average total work contributed to the bottleneck pool from
the exogenous arrivals in [0, t], and (1 − ρr)t represents the average total work
that could have been depleted by time t if the bottleneck pool never idles. Because
of the randomness of the processing times, the bottleneck pool will almost surely
incur idle time over time, particularly when the system is not overloaded. Under
a service policy and its corresponding activity level process T r , the average total
work that has been depleted by time t is given by

yr · RrT r(t) = ∑
j∈JS

T r
j (t)

∑
i∈I

yr
i R

r
ij − ∑

j∈JI

T r
j (t)

∑
i∈I

yr
i (−Rr

ij ).

Note that, as in Section 3, for each service activity j ∈ JS ,
∑

i∈I yr
i R

r
ij is the

average work accomplished per unit of activity j , and that for each input activ-
ity j ∈ JI ,

∑
i∈I yr

i (−Rr
ij ) is the average work generated per unit of activity j .
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Therefore, Y r(t) represents the deviation of the workload depletion in [0, t] from
that under the “best” policy. The following lemma says that this deviation does not
decrease over time.

LEMMA 2. Consider a sequence of networks satisfying Assumption 2. For
each r and each sample path, the process Y r defined in (5.1) is a nondecreasing
function with Y r(0) = 0.

We leave the proof to Appendix B.

REMARK. Some special stochastic processing networks, such as multi-
class queueing networks [Harrison (1988)] and unitary networks [Bramson and
Williams (2003)], have no control on the input activities. Then, T r

j (t) is fixed for
all j ∈ JI under different policies, and

∑
j∈JI

T r
j (t)

∑
i∈I yr

i (−Rr
ij ) = ρr t . For

these networks, one gets

Y r(t) = t − ∑
j∈JS

T r
j (t)

∑
i∈I

yr
i R

r
ij ,

and Y r(t) is interpreted as the cumulative idle time of the bottleneck pool by time t .
For each activity j , we define the process Sr

j = {Sr
j (t), t ≥ 0} by

Sr
j (t) = max

{
n :

n∑
�=1

uj (�) ≤ μr
j t

}
.

Under a head-of-line service policy, Sr
j (t) is the number of activity j processing

completions in t units of activity j processing time for the r th network. Then we
can describe the system dynamics of the r th network by the following equation:

Zr
i (t) = Zr

i (0) + ∑
j∈J

∑
i′∈Bj

�
j

i′i (S
r
j (T

r
j (t)))

(5.2)
− ∑

j∈J

Sr
j (T

r
j (t))Bji for each t ≥ 0 and i ∈ I.

Since quantity T r
j (t) is the cumulative amount of activity j processing time in

[0, t], Sr
j (T

r
j (t)) is the number of activity j processings completed by time t ,

and
∑

j∈J Sr
j (T

r
j (t))Bji is the total number of jobs that depart from buffer i ∈

I ∪ {0} in [0, t]. For each activity j ,
∑

i′∈Bj
�

j

i′i (S
r
j (T

r
j (t))) is the total number

of jobs sent to buffer i by activity j from its constituent buffers by time t , so∑
j∈J

∑
i′∈Bj

�
j

i′i (S
r
j (T

r
j (t))) is the total number of jobs that go to buffer i by

time t . Equation (5.2) says that the number of jobs in buffer i at time t equals the
initial number plus the number of arrivals minus the number of departures.
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From (5.2), we can write the workload process Wr = yr · Zr as

Wr(t) = Wr(0) + ∑
i∈I

yr
i

∑
j∈J

( ∑
i′∈Bj

�
j

i′i (S
r
j (T

r
j (t))) − BjiS

r
j (T

r
j (t))

)
.

Let Xr(t) = Wr(t) − Y r(t) for each t ≥ 0. Then

Xr(t) = Wr(0) + ∑
i∈I

yr
i

∑
j∈J

( ∑
i′∈Bj

�
j

i′i (S
r
j (T

r
j (t))) − BjiS

r
j (T

r
j (t))

)

− (1 − ρr)t + yr · RrT r(t).

We define the following diffusion-scaled processes:

Ŝr
j (t) = r−1[Sr

j (r
2t) − μr

j r
2t] for each j ∈ J,(5.3)

�̂
j,r

i′i (t) = r−1[�j

i′i (�r2t�) − P
j

i′ir
2t]

(5.4)
for each j ∈ J, i′ ∈ Bj and i ∈ I,

X̂r (t) = r−1Xr(r2t),(5.5)

Ŷ r (t) = r−1Y r(r2t).(5.6)

In (5.4) �t� denotes the greatest integer number less than or equal to the real num-
ber t .

Then the diffusion-scaled workload process Ŵ r can be written as a sum of two
processes

Ŵ r(t) = X̂r (t) + Ŷ r (t),(5.7)

and

X̂r (t) = Ŵ r(0) + ∑
i∈I

yr
i

∑
j∈J

( ∑
i′∈Bj

�̂
j,r

i′i (Sr
j (T

r
j (t)))

+
( ∑

i′∈Bj

P
j

i′i − Bji

)
Ŝr

j (T
r
j (t))

)
(5.8)

− r(1 − ρr)t,

where
¯̄T r

j (t) = r−2T r
j (r2t) and Sr

j (t) = r−2Sr
j (r

2t).

The process X̂r depends on the policy only through the fluid-scaled process T r . In
fact, from Lemma 4.1 of Dai (1995) and (4.4), it follows that, under any asymp-
totically efficient policy, T r → x∗(·) u.o.c. almost surely, where x∗(t) = x∗t and
x∗ is the optimal solution to the static planning problem (3.1)–(3.5) of the limit
network. As a consequence, X̂r converges in distribution to a one-dimensional
Brownian motion that is independent of policies.
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LEMMA 3. Consider a sequence of stochastic processing networks operating
under an asymptotically efficient policy. Assume Assumptions 1–4. Then X̂r ⇒ X∗,
where X∗ is a one-dimensional Brownian motion that starts from the origin, has
drift parameter θ given in (4.2), and has variance parameter

σ 2 = (y∗)′
(∑

j∈J

x∗
j μj

∑
i∈Bj

ϒj,i

)
y∗ + ∑

i∈I

∑
j∈J

(y∗
i )2R2

ij x
∗
j μjσ

2
j

with ϒj,i, j ∈ J, i ∈ Bj , defined by

ϒ
j,i
i1,i2

=
{

P
j
i,i1

(1 − P
j
i,i2

), if i1 = i2,

−P
j
i,i1

P
j
i,i2

, if i1 �= i2.

PROOF. First, Lemma 4.1 of Dai (1995) and (4.4) implies that ¯̄T r
(·) →

x∗(·) almost surely under any asymptotically efficient policy. Then, the result in
the lemma follows from (5.8), the functional central limit theorem for renewal
processes [cf. Iglehart and Whitt (1970)] the random time change theorem [cf.
Billingsley (1999), (17.9)], and the continuous mapping theorem [cf. Billingsley
(1999), Theorem 5.1]. Deriving the expression for σ 2 is straightforward but te-
dious; the derivation is outlined in Harrison (1988) for multiclass queueing net-
works, so we will not repeat it here. �

We define the one-dimensional reflection mapping ψ : D[0,∞) → D[0,∞)

such that, for each f ∈ D[0,∞) with f (0) ≥ 0,

ψ(f )(t) = f (t) − inf
0≤s≤t

(
f (s) ∧ 0

)
.

Applying diffusion scaling to Lemma 2, we know that Ŷ r (·) is a nonnegative,
nondecreasing function, so, from (5.7) and the well-known minimality of the so-
lution of the one-dimensional Skorohod problem [cf. Bell and Williams (2001),
Proposition B.1],

Ŵ r(t) ≥ ψ(X̂r)(t) for every t and every sample path;

namely, ψ(X̂r)(t) is a pathwise lower bound on Ŵ r . It then follows that

lim inf
r→∞ P

(
Ŵ r(t) > w

) ≥ lim inf
r→∞ P

(
ψ(X̂r)(t) > w

)
for all t and w.

Define

W ∗ = ψ(X∗).(5.9)

Then W ∗ is a one-dimensional reflecting Brownian motion associated with X∗.
Because X̂r ⇒ X∗, by the continuous mapping theorem, we have

ψ(X̂r) ⇒ W ∗.
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Because W ∗(t) has continuous distribution for each t , we have

lim
r→∞P

(
ψ(X̂r)(t) > w

) = P
(
W ∗(t) > w

)
.

Therefore,

lim inf
r→∞ P

(
Ŵ r(t) > w

) ≥ P
(
W ∗(t) > w

)
for each t and w.(5.10)

So far, we have shown that W ∗ is an asymptotic lower bound on the workload
processes under asymptotically efficient policies. The following heavy traffic limit
theorem ensures that the workload processes under any maximum pressure policy
converge to W ∗. This completes the proof of Theorem 2.

THEOREM 4. Consider a sequence of stochastic processing networks operat-
ing under a maximum pressure policy with parameter α > 0. Assume Assumptions
1–4 and that the limit network satisfies the EAA condition. Then

(Ŵ r , Ẑr ) ⇒ (W ∗,Z∗,α) as r → ∞,(5.11)

where W ∗ is given by (5.9) and

Z∗,α = ζ α W ∗,(5.12)

with ζ α being defined as

ζ α
i = y∗

i /αi∑
i′(y

∗
i′)

2/αi′
.(5.13)

An outline for proving Theorem 4 will be presented at the end of this section.
The full proof of Theorem 4 will be completed in Section 8. Theorem 4 is known
as a heavy traffic limit theorem. It states that the scaled buffer level process and the
scaled workload process jointly converge in heavy traffic as displayed in (5.11),
and the limit processes exhibit a form of state space collapse: in diffusion limit,
the I-dimensional buffer level process is a constant vector multiple of the one-
dimensional workload process as displayed in (5.12). Because buffers at nonbot-
tleneck pools may also contribute to the workload process (at the bottleneck pool),
the diffusion-scaled buffer level processes in these buffers do not go to zero in
heavy traffic limit, due to the idling nature of our maximum pressure policies. For
example, consider a network of two stations in series, known as the tandem queue
network. Suppose that the second station is critically loaded and the first station
is underloaded. Under any maximum pressure policy, by Theorem 4, the diffusion
limit for the buffer level process at the first station is a one-dimensional reflecting
Brownian motion. This result is in sharp contrast to the ones in Chen and Mandel-
baum (1991), in which they prove buffers at nonbottleneck stations in a single-class
network disappear in heavy traffic diffusion limit under the first-come–first-serve
nonidling policy.
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With Theorem 4, we now give the proof of Theorem 3.

PROOF OF THEOREM 3. We first derive an asymptotic lower bound on the
quadratic holding cost rate process under any asymptotically efficient policy. Con-
sider the following quadratic optimization problem:

gr(w) = min
q≥0

∑
i∈I

hiq
2
i(5.14)

s.t.
∑
i∈I

yr
i qi = w.(5.15)

The problem (5.14)–(5.15) can be solved easily. The optimal solution is given by

qr
i = (yr

i /hi)
/(∑

i′∈I

(yr
i′)

2/hi′

)
for i ∈ I,

and the optimal objective value is given by

gr(w) = w2
/(∑

i′∈I

(yr
i′)

2/hi′

)
.

Then under any policy, for all r , we have

Ĥ r(t) = ∑
i∈I

hi(Ẑ
r
i (t))

2 ≥ gr(Ŵ r(t)) = (Ŵ r(t))2
/(∑

i′∈I

(yr
i′)

2/hi′

)
.

For any asymptotically efficient policy π ,

lim inf
r→∞ P

(
Ĥ r

π (t) > η
) ≥ lim inf

r→∞ P

(
(Ŵ r

π (t))2
/(∑

i′∈I

(yr
i′)

2/hi′

)
> η

)

≥ P
(
g∗(W ∗(t)) > η

)
,

where g∗(w) = w2/(
∑

i′∈I(y∗
i′)

2/hi′). The second inequality follows from (5.10)
and the fact that yr → y∗ as r → ∞.

Now consider the maximum pressure policy π∗ having the parameter α = h.
From Theorem 4, we have

Ĥ r
π∗ ⇒ ∑

i∈I

hi(Z
∗,h
i )2 as r → ∞.

Because ∑
i

hi(Z
∗,h
i (t))2 = ∑

i

hi(ζ
h
i W ∗(t))2 = g∗(W ∗(t)),

we have

lim
r→∞ P

(
Ĥ r

π∗(t) > η
) = P

(
g∗(W ∗(t)) > η

)
,
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thus proving inequality (4.8). �

The key to the proof of Theorem 4 is the following state space collapse result.

THEOREM 5 (State space collapse). Consider a sequence of stochastic
processing networks operating under the maximum pressure policy with para-
meter α. Assume Assumptions 1–4 and that the limit network satisfies the EAA
condition. Then, for each T ≥ 0, as r → ∞,

‖Ẑr (·) − ζ αŴ r(·)‖T → 0 in probability.(5.16)

Recall that ‖·‖T is the uniform norm over [0, T ]. [The readers should not confuse
the symbols T and T (·) with one another. We will always include “(·)” when
dealing with the cumulative activity level process T (·).] Theorem 5 states a form
of state space collapse for the diffusion-scaled network process: for large r , the
I-dimensional diffusion-scaled buffer level process is essentially a constant vector
multiple of the one-dimensional workload process.

The proof of Theorem 5 is lengthy. To prove it, we generalize a framework
of Bramson (1998) from the multiclass queueing network setting to the stochastic
processing network setting. The framework consists of two steps that we will fol-
low in the next two sections: First, in Section 6 we will show that any fluid model
solution for the stochastic processing networks under a maximum pressure policy
exhibits some type of state space collapse, which is stated in Theorem 6 in that sec-
tion. Then, in Section 7 we will follow Bramson’s approach to translate the state
space collapse of the fluid model into a state space collapse result under diffusion
scaling, and thus prove Theorem 5.

Once we have Theorem 5, we apply a perturbed Skorohod mapping theorem
from Williams (1998b) to complete the proof of Theorem 4 in Section 8.

6. The fluid model. In this section we first introduce the fluid model of a
sequence of stochastic processing networks operating under a maximum pressure
policy. We then show that any fluid model solution under a maximum pressure
policy exhibits a form of state space collapse.

The fluid model of a sequence of stochastic processing networks that satisfies
Assumption 1 is defined by the following equations: for all t ≥ 0,

Z̄(t) = Z̄(0) − RT̄ (t),(6.1)

Z̄(t) ≥ 0,(6.2) ∑
j∈J

Akj

(
T̄j (t) − T̄j (s)

) = t − s(6.3)

for each 0 ≤ s ≤ t and each input processor k,
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j∈J

Akj

(
T̄j (t) − T̄j (s)

) ≤ t − s(6.4)

for each 0 ≤ s ≤ t and each processor k,

T̄ is nondecreasing and T̄ (0) = 0.(6.5)

Equations (6.1)–(6.5) define the fluid model under any given service policy. Any
quantity (Z̄, T̄ ) that satisfies (6.1)–(6.5) is a fluid model solution to the fluid model
that operates under a general service policy. Following its stochastic processing
network counterparts, each fluid model solution (Z̄, T̄ ) has the following interpre-
tations: Z̄j (t) the fluid level in buffer i at time t and T̄j (t) the cumulative amount
of activity j processing time in [0, t].

Under a specific service policy, there are additional fluid model equations. For
a given parameter α > 0, we are to specify the fluid model equation associated
with the maximum pressure policy with parameter α. To motivate the fluid model
equation, we note that for each fluid model solution (Z̄, T̄ ), it follows from equa-
tions (6.3)–(6.4) that T̄ , and hence Z̄, is Lipschitz continuous. Thus, the solution
is absolutely continuous and has derivatives almost everywhere with respect to
the Lebesgue measure on [0,∞). A time t > 0 is said to be a regular point of
the fluid model solution if the solution is differentiable at time t . For a function
f : R+ → R

d , where d is some positive integer, we use ḟ (t) to denote the deriva-
tive of f at time t when the derivative exists. From (6.3)–(6.4), one has ˙̄T (t) ∈ A
at each regular time t . Thus,

R ˙̄T (t) · (
α × Z̄(t)

) ≤ max
a∈A

Ra · (
α × Z̄(t)

) = max
a∈E

Ra · (
α × Z̄(t)

)
.

Assume that the limit network satisfies the EAA condition. The fluid model equa-
tion associated with the maximum pressure policy with parameter α takes the fol-
lowing form:

R ˙̄T (t) · (
α × Z̄(t)

) = max
a∈E

Ra · (
α × Z̄(t)

)
(6.6)

for each regular time t .
Each fluid model equation will be justified through a fluid limit procedure.

Two types of fluid limits are considered in this paper. One will be introduced in
Section 7 and the other in Appendix B. They both satisfy the fluid model equa-
tions (6.1)–(6.6). Equation (6.6) says that, under the maximum pressure policy
with parameter α, the instantaneous activity allocation ˙̄T (t) in the fluid model
maximizes the network pressure, Ra · (α × Z̄(t)), at each regular time t . Any
fluid model solution that satisfies fluid model equations (6.1)–(6.6) is called a fluid
model solution under the maximum pressure policy with parameter α.

THEOREM 6. Let (Z̄, T̄ ) be a solution to the fluid model equations (6.1)–(6.6),
where α > 0, and (R,A) is the first order network data for the limit network that
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satisfies Assumptions 1 and 2. Suppose |Z̄(0)| ≤ 1. Then there exists some finite
τ0 > 0, which depends on just α, I, R and A, such that,

|Z̄(t) − ζαW̄ (t)| = 0 for all t ≥ τ0,(6.7)

where W̄ = y∗ · Z̄ is the workload process of the fluid model and ζ α is given
by (5.13). Furthermore, if

|Z̄(τ1) − ζ αW̄ (τ1)| = 0 for some τ1 ≥ 0,

then

|Z̄(t) − ζ αW̄ (t)| = 0 for all t ≥ τ1.

Theorem 6 says that the fluid model under the maximum pressure policy ex-
hibits a form of state space collapse: after some finite time τ0, the I-dimensional
buffer level process Z̄ equals a constant vector multiple of the one-dimensional
workload process W̄ ; if this happens at time τ1, it happens at all times after τ1. In
particular, if Z̄(0) = ζ αW̄ (0), then Z̄(t) = ζ αW̄ (t) for all t ≥ 0.

The rest of this section is devoted to the proof of Theorem 6. We first define

Z̄∗(t) = ζ αW̄ (t),

and we shall prove Z̄(t)− Z̄∗(t) = 0 for t large enough. The following lemma will
be used in the proof.

LEMMA 4. For any t ≥ 0, (
Z̄(t) − Z̄∗(t)

) · y∗ = 0,(6.8) (
Z̄(t) − Z̄∗(t)

) · (
α × Z̄∗(t)

) = 0,(6.9)

and for each regular time t ,(
Z̄(t) − Z̄∗(t)

) · (
α × ˙̄Z∗

(t)
) = 0.(6.10)

PROOF. Equality (6.8) follows because

Z̄∗(t) · y∗ = W̄ (t)ζ α · y∗ = W̄ (t) = Z̄(t) · y∗.
Because Z̄∗(t) = ζ αW̄ (t),

α × Z̄∗(t) = W̄ (t)y∗/(∑
i∈I

(y∗
i )2/αi

)
.(6.11)

Then equality (6.9) follows from (6.8).
Finally, equality (6.10) follows immediately from (6.9). �

Define V = {Ra :a ∈ A}. Recall that A is the set of all possible allocations and
the vector Ra is the average rate at which material is consumed from all buffers
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under allocation a, so V is the set of all possible flow rates out of buffers in the limit
network. It is obvious that V is a polytope containing the origin because Rx∗ = 0,
where, as before, x∗ is the optimal solution to the static planning problem of the
limit network. Furthermore, Corollary A.1 in Appendix A, applied to the limit
network, implies that

max
v∈V

y∗ · v = 0.(6.12)

Since y∗ · Ra is the rate at which the workload is reduced under allocation a,
therefore, (6.12) says that no feasible allocation can reduce the system workload
for the limit network, which is not surprising because the limit network is in heavy
traffic.

Define a (I − 1)-dimensional hyperplane

V o = {v ∈ R
I :y∗ · v = 0}.(6.13)

The hyperplane V o is a supporting hyperplane of V . Let V ∗ = V ∩ V o. Then
from (6.12) and (6.13), V ∗ = arg maxv∈V y∗ ·v; namely, V ∗ is the set of all possible
flow rates that maximize y∗ · v. Since the origin is in both V and V o, V ∗ is not
empty. Moreover, the following lemma says that V ∗ contains a certain (I − 1)-
dimensional neighborhood of the origin.

LEMMA 5. There exists some δ > 0 such that {v ∈ V o :‖v‖ ≤ δ} ⊂ V .

We provide a proof of Lemma 5 in Appendix B. A key to the proof is the com-
plete resource pooling assumption for the limit network; namely, the dual static
planning problem (3.6)–(3.10) has a unique optimal solution. The uniqueness of
y∗ ensures that the origin lies in the relative interior of one of the facets of V .

PROOF OF THEOREM 6. Let (Z̄, T̄ ) be a solution to the fluid model equa-
tions (6.1)–(6.6). We consider the Lyapunov function

f (t) = (
α × (

Z̄(t) − Z̄∗(t)
)) · (

Z̄(t) − Z̄∗(t)
)
.

Let v(t) = R ˙̄T (t); for each buffer i, vi(t) can be interpreted as the net flow rate out
of buffer i at time t (total departure rate minus total arrival rate). Then it follows
from (6.1) that ˙̄Z(t) = −v(t), and we have

ḟ (t) = 2
(
α × (

Z̄(t) − Z̄∗(t)
)) · ( ˙̄Z(t) − ˙̄Z∗

(t)
)

(6.14)
= 2

(
α × (

Z̄(t) − Z̄∗(t)
)) · (−v(t)).

The second equality in (6.14) follows from (6.10) in Lemma 4.
Because ˙̄T (t) ∈ A, we have v(t) ∈ V . Thus, y∗ · v(t) ≤ 0. This, together with

(6.11), implies that (α × Z̄∗(t)) · v(t) ≤ 0. Furthermore, the fluid model equa-
tion (6.6) implies that(

α × Z̄(t)
) · v(t) = max

v∈V

(
α × Z̄(t)

) · v.
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Therefore, the last term in (6.14) is bounded from above as follows:

2
(
α × (

Z̄(t) − Z̄∗(t)
)) · (−v(t)) ≤ −2

(
α × Z̄(t)

) · v(t)
(6.15)

= −2 max
v∈V

(
α × Z̄(t)

) · v.

Since V ∗ ⊂ V , we have

max
v∈V

(
α × Z̄(t)

) · v ≥ max
v∈V ∗

(
α × Z̄(t)

) · v
(6.16)

= max
v∈V ∗

(
α × (

Z̄(t) − Z̄∗(t)
)) · v.

The second equality in (6.16) holds because of (6.11) and the fact that y∗ · v = 0
for all v ∈ V ∗.

If f (t) > 0, let

v∗ = δ(Z̄(t) − Z̄∗(t))
‖Z̄(t) − Z̄∗(t)‖ .

Then ‖v∗‖ = δ and y∗ · v∗ = 0. The latter fact follows from (6.8). Pick δ as in
Lemma 5 and it follows from Lemma 5 that v∗ ∈ V ∗. Therefore,

max
v∈V ∗

(
α × (

Z̄(t) − Z̄∗(t)
)) · v ≥ (

α × (
Z̄(t) − Z̄∗(t)

)) · v∗

(6.17)
= δf (t)/‖Z̄(t) − Z̄∗(t)‖.

Combining (6.14)–(6.17), we have

ḟ (t) ≤ −2δf (t)/‖Z̄(t) − Z̄∗(t)‖ ≤ −2δ
√

min
i∈I

αi

√
f (t).(6.18)

Therefore,
f (t) = 0 for t ≥ √

f (0)/(δ
√

mini∈I αi). Set τ0 = √
I maxi∈Iαi

/(δ
√

mini∈I αi).
Then f (t) = 0 for t ≥ τ0, because

f (0) = α × (
Z̄(0) − Z̄∗(0)

) · (
Z̄(0) − Z̄∗(0)

) = α × (
Z̄(0) − Z̄∗(0)

) · Z̄(0)

≤ max
i∈I

αi‖Z̄(0)‖2 ≤ I max
i∈I

αi.

Here τ0 depends only on α, R, A and I, because the set V is completely determined
by R and A and so is δ.

Equation (6.18) also implies that for any τ1, if f (τ1) = 0, then f (t) = 0 for
all t ≥ τ1. �
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7. State space collapse. In this section we translate the state space collapse
result of the fluid model into a state space collapse result under the diffusion scal-
ing, thus proving Theorem 5. We apply Bramson’s approach [Bramson (1998)] to
prove that, for each T ≥ 0, as r → ∞,

‖Ẑr (·) − ζαŴ r(·)‖T → 0 in probability.

In Bramson’s approach, the following fluid scaling plays an important role in con-
necting Theorem 6 with Theorem 5: For each r = 1,2, . . . , and m = 0,1, . . . ,

S
r,m
j (t) = 1

ξr,m

(
Sr

j (rm + ξr,mt) − Sr
j (rm)

)
for each j ∈ J,

�
j,r,m
i (t) = 1

ξr,m

(
�

j
i

(
Sr

j (rm) + �ξr,mt�) − �
j
i (S

r
j (rm))

)
for each j ∈ J, i ∈ Bj ,

T
r,m
j (t) = 1

ξr,m

(
T r

j (rm + ξr,mt) − T r
j (rm)

)
for each j ∈ J,

Z
r,m
i (t) = 1

ξr,m

Zr
i (rm + ξr,mt) for each i ∈ I,

where ξr,m = |Zr(rm)| ∨ r . Recall that �t� denotes the integer part of t .
Here scaling the processes by ξr,m ensures |Zr,m(0)| ≤ 1, which is needed for

compactness reasons. Using index (r,m) allows the time scale to expand; we will
examine the processes over [0,L] for m = 0,1, . . . , �rT � − 1, where L > 0 and
T > 0 are fixed. Thus, the diffusion-scaled time [0, T ] is covered by �rT � fluid
scaled time pieces, each with length L. Here �t� denotes the smallest integer
greater than or equal to t . For future references, we assume that L > τ0 ∨ 1, where
τ0 is the time when state space collapse occurs in the corresponding fluid model as
determined in Theorem 6.

We outline the proof of Theorem 5 as follows. First, in Proposition 1 below,
we give a probability estimate on the upper bound of the fluctuation of the sto-
chastic network processes X

r,m(·) = (T r,m(·),Zr,m(·)). The estimates on the ser-
vice processes S

r,m
j (·) and the routing processes �

j,r,m
i (·) are also given. From

Proposition 1, a so-called “good” set Gr of sample paths can be defined, where the
processes X

r,m perform nicely for r large enough. On this “good” set, for large
enough r , the processes X

r,m can be uniformly approximated by so-called Lip-
schitz cluster points. These cluster points will be shown to be fluid model solutions
under the maximum pressure policy. Since the state space collapse result holds for
the fluid model under the maximum pressure policy by Theorem 6, the network
processes X

r,m asymptotically have the state space collapse. The latter result will
be translated into the state space collapse result for diffusion-scaled processes X̂

r

as r approaches infinity.
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Note that in Theorem 6 the state space collapse of the fluid model does not hap-
pen instantaneously after time 0 if the initial state does not exhibit a state space
collapse. The fluid-scaled processes X

r,m start from time rm in the original net-
work processes. Hence, for m ≥ 1, X

r,m do not automatically have the state space
collapse at the initial point. Such collapse can only be expected to occur in the
interval [τ0,L]. However, for m = 0, the state space collapse happens at time 0
because of the initial condition (4.10), therefore, the collapse remains in the whole
interval [0,L]. For this reason, we separate the proof into two parts according
to the two intervals in the diffusion-scaled time: [0,Lξr,0/r2] and [τ0ξr,0/r2, T ].
Note that the two intervals overlap because of our assumption on the choice of L;
if τ0ξr,0/r2 > T , the second interval disappears and the first interval covers the
whole interval [0, T ].

Propositions 2–5 develop a version of state space collapse for the interval
[τ0ξr,0/r2, T ]. Proposition 2 shows that, on Gr , the scaled processes X

r,m(·) are
uniformly close to Lipschitz cluster points for large r . Proposition 3 shows that the
above cluster points are solutions to the fluid model equations. In Proposition 4 we
use Propositions 2 and 3 and Theorem 6 to prove the state space collapse of the
fluid scaled processes X

r,m(·) in the time interval [τ0,L] on the “good” set Gr . The
result in Proposition 4 is then translated into diffusion scaling in Proposition 5 to
give a version of state space collapse for the diffusion-scaled process X̂

r (t) in the
interval [τ0ξr,0/r2, T ].

In Propositions 6–8, we show that the state space collapse occurs for the
diffusion-scaled process X̂

r (t) in the interval [0,Lξr,0/r2]. The basic idea is the
same as the one described in the preceding paragraph except that now we only con-
sider the scaled processes with m = 0. The corresponding network processes start
from time 0, and by assuming the state space collapse happens at time 0 in As-
sumption 4, we have a stronger result for these types of processes: the state space
collapse holds during the whole time interval [0,L] instead of just in [τ0,L]. In
fact, the scaled processes X

r,0(·) are proved to be uniformly close to some cluster
points for which the state space collapse starts at time 0. These facts are stated
in Propositions 6 and 7. In Proposition 8 we summarize the state space collapse
result for the fluid-scaled process X

r,0(·) on [0,L] and translate it into a result for
the diffusion-scaled process in [0,Lξr,0/r2].

The results to be obtained in Propositions 5 and 8 are actually a multiplica-
tive state space collapse, as called in Bramson (1998). To obtain the state space
collapse result stated in Theorem 5, we will prove that ξr,m/r are stochastically
bounded at the end of this section.

7.1. Probability estimates. In this section we give probability estimates on the
service processes S

r,m
j (·), the routing processes �

j,r,m
i (·) and the upper bound of

the fluctuation of the stochastic network processes X
r,m(·).
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PROPOSITION 1. Consider a sequence of stochastic processing networks
where the moment assumption, Assumption 3, is assumed. Fix ε > 0, L and T .
Then, for large enough r ,

P

(
max
m<rT

‖Sr,m
j (T

r,m
j (t)) − μr

jT
r,m
j (t)‖L > ε

)
≤ ε(7.1)

for each j ∈ J,

P

(
max
m<rT

‖�j,r,m
i (S

r,m
j (T

r,m
j (t))) − P

j
i μr

j (T
r,m
j (t))‖L > ε

)
≤ ε(7.2)

for each j ∈ J and i ∈ Bj ,

P

(
sup

0≤t1≤t2≤L

|Xr,m(t2) − X
r,m(t1)| > N |t2 − t1| + ε for some m < rT

)
≤ ε,(7.3)

where N = J(1 + |R|).

Recall that |R| = maxij Rij . The following lemma is essential to the proof of
Proposition 1.

LEMMA 6. Assume that the moment assumption, Assumption 3, holds. Then
for given T , and each j ∈ J,

u
r,T ,max
j /r → 0 as r → ∞ with probability 1,(7.4)

where u
r,T ,max
j = max{uj (�) : 1 ≤ � ≤ Sr

j (r
2T ) + 1}. Furthermore, for any

given ε > 0,

P
(‖�j

i (�) − P
j
i �‖n ≥ εn

) ≤ ε/n(7.5)

for each j ∈ J and i ∈ Bj , and large enough n,

and for large enough t ,

P
(‖Sr

j (τ ) − μr
j τ‖t ≥ εt

) ≤ ε/t for all j ∈ J, and all r.(7.6)

We delay the proof of Lemma 6 to Appendix B, and we now prove Proposi-
tion 1.

PROOF OF PROPOSITION 1. The proof here essentially follows the same rea-
soning as in Propositions 5.1 and 5.2 of Bramson (1998). We first investigate the
processes with index m, and then multiply the error bounds by the number of
processes in each case, �rT �. We start with (7.1).

Fix a j ∈ J, and pick any ε1 ∈ (0,1]. Let τ be the time that the first activity j

service completion occurs after time rm. We consider two cases. First suppose that
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τ > rm + ξr,mT
r,m
j (t). Then ξr,mT

r,m
j (t) < τ − rm ≤ u

r,T ,max
j /μr

j and Sr
j (rm +

ξr,mT
r,m
j (t)) = Sr

j (rm). Thus,∥∥Sr
j

(
rm + ξr,mT

r,m
j (t)

) − Sr
j (rm) − μr

j ξr,mT
r,m
j (t)

∥∥
L ≤ u

r,T ,max
j .

Or if τ ≤ rm + ξr,mT
r,m
j (t), then by restarting the process Sr

j at time τ , we have,
by (7.6), that for large enough r ,

P
(∥∥Sr

j

(
rm + ξr,mT

r,m
j (t)

) − Sr
j (τ ) − μr

j

(
rm + ξr,mT

r,m
j (t) − τ

)∥∥
L ≥ ε1Lξr,m

)
≤ ε1/(Lr);

we use the fact that T
r,m
j (t) ≤ t and ξr,m ≥ r . Because Sr

j (τ ) = Sr
j (rm) + 1 and

τ − rm ≤ u
r,T ,max
j /μr

j , we have

P
(∥∥Sr

j

(
rm + ξr,mT

r,m
j (t)

)
−Sr

j (rm) − μr
j ξr,mT

r,m
j (t)

∥∥
L≥ |1 − u

r,T ,max
j | + ε1Lξr,m

)
≤ ε1/(Lr).

In both cases we have, for large enough r ,

P
(∥∥Sr,m

j (T
r,m
j (t)) − μr

jT
r,m
j (t)

∥∥
L ≥ (1 + u

r,T ,max
j )/ξr,m + ε1L

)
(7.7)

≤ ε1/(Lr).

From (7.4), we have, for large enough r ,

P(u
r,T ,max
j /r ≥ ε1) ≤ ε1.(7.8)

Let Mr denote the complement of the events in (7.8). Then, for large enough r ,

P(Mr ) ≥ 1 − ε1.(7.9)

Then we have, for large enough r ,

P
[(‖Sr,m

j (T
r,m
j (t)) − μr

jT
r,m
j (t)‖L ≥ (L + 2)ε1

) ∩ Mr]
≤ P

[(‖Sr,m
j (T

r,m
j (t)) − μr

jT
r,m
j (t)‖L(7.10)

≥ (1 + u
r,T ,max
j )/ξr,m + ε1L

) ∩ Mr ].
In (7.10) we let r be large enough so that 1/ξr,m ≤ ε1 and, hence, (1 + u

r,T ,max
j )/

ξr,m ≤ 2ε1 for all events in Mr .
It then follows from (7.7) and (7.10) that

P
[(‖Sr,m

j (T
r,m
j (t)) − μr

jT
r,m
j (t)‖L ≥ (L + 2)ε1

) ∩ Mr ] ≤ ε1/(Lr).(7.11)



MAXIMUM PRESSURE POLICIES 2271

Inequality (7.11) holds for m = 1, . . . , �rT �. It then follows that

P

[(
max
m≤rT

‖Sr,m
j (T

r,m
j (t)) − μr

jT
r,m
j (t)‖L ≥ (L + 2)ε1

)
∩ Mr

]
≤ �rT �ε1/(Lr) ≤ ε1T .

Then we have

P

(
max
m≤rT

‖Sr,m
j (T

r,m
j (t)) − μr

jT
r,m
j (t)‖L ≥ (L + 2)ε1

)
≤ ε1T + (

1 − P(Mr )
) ≤ (T + 1)ε1.

Since ε1 can be chosen arbitrarily, we let ε1 = 1 ∧ ε/((L + 2) ∨ (T + 1)). Then
(7.1) follows.

Let μmax be an upper bound on |μr |. Then from (7.11), for large enough r ,

P
[(

S
r,m
j (T

r,m
j (L)) ≥ (μmaxL + L + 2)

) ∩ Mr ] ≤ ε1/(Lr).

From (7.5), replacing n by (μmaxL + L + 2)ξr,m, we have for each i ∈ Bj ,

P
[(‖�j,r,m

i (S
r,m
j (T

r,m
j (t))) − P

j
i S

r,m
j (T

r,m
j (t))‖L

> ε1(μ
maxL + L + 2)

) ∩ Mr ](7.12)

≤ ε1/
(
(μmaxL + L + 2)r

) + ε1/(Lr).

Let P max = maxj∈J,i∈Bj
P

j
i . Then from (7.11), we have

P
[(‖P j

i S
r,m
j (T

r,m
j (t)) − P

j
i μr

jT
r,m
j (t)‖L ≥ P max(L + 2)ε1

)∩Mr]
(7.13)

≤ ε1/(Lr).

It follows from (7.12) and (7.13) that

P
[(‖�j,r,m

i (S
r,m
j (T

r,m
j (t))) − P

j
i μr

j (T
r,m
j (t))‖L

> ε1(P
max + μmax + 1)(L + 2)

) ∩ Mr]
≤ 5ε1/(2Lr).

This inequality holds for m = 1, . . . , �rT �, so setting ε1 = 1 ∧ ε/

[((P max + μmax + 1)(L + 2)) ∨ (5T + 1)], one gets

P

[(
max
m≤rT

‖�j,r,m
i (S

r,m
j (T

r,m
j (t))) − P

j
i μr

j (T
r,m
j (t))‖L > ε

)
∩ Mr

]
≤ 5T ε1.

Thus, (7.2) follows.
Now we are going to show (7.3). First, it is easy to see that, for each j ∈ J and

each r ,

T r
j (t) − T r

j (s) ≤ t − s for 0 ≤ s ≤ t



2272 J. G. DAI AND W. LIN

along any sample path. Therefore, the bounds in (7.3) on components Tj are ob-
tained with N = 1. For components Zi, i ∈ I, scaling (5.2) and applying (7.1)
and (7.2) gives that for any ε2 > 0 and large enough r ,

P

(
sup

0≤t1≤t2≤L

|Zr,m
i (t2) − Z

r,m
i (t1)|

>
∑
j∈J

(|Rr
ij |)|T r,m

j (t2) − T
r,m
j (t1)| + 2J(I + 2)ε2 for some m ≤ rT

)
(7.14)

≤ 2J(I + 2)ε2.

Since Rr → R as r → ∞, we can choose r large enough so that |Rr | ≤ |R| + 1.
Then, setting ε2 = ε/(2J(I + 2)) in (7.14) and N = J(1 + |R|), one gets (7.3). �

Let rmin > 0 be the minimum r such that (7.1)–(7.3) are satisfied for some ε > 0.
Now for each r > rmin, we let ε(r) be the smallest ε such that (7.1)–(7.3) are
satisfied. By Proposition 1, it is easy to see that

lim
r→∞ ε(r) = 0.

With ε(r) replacing ε, we call each of the events in (7.1)–(7.3) a “bad” event. We
let Gr denote the intersection of the complements of these “bad” events, and the
events in Gr are referred to as “good” events in the rest of this section. Obviously,

lim
r→∞ P(Gr ) = 1.

7.2. State space collapse on [ξr,0τ0/r2, T ]. Again, let L > 1 ∨ τ0 and T > 0
be fixed. We divide the diffusion-scaled time interval [0, T ] into two overlapping
intervals: [0, ξr,0L/r2] and [ξr,0τ0/r2, T ]. In this section we show a state space
collapse result on the time interval [ξr,0τ0/r2, T ]. The state space collapse on
[0, ξr,0L/r2] will be presented in the next section.

In order to connect the fluid-scaled processes with the fluid model, we first intro-
duce the notion of cluster point. Let F = D

d [0,L] be the space of right continuous
functions with left limits from [0,L] to R

I+J, where d = I + J. Let C = {Fr} be a
sequence of subsets of F . A point f in F is said to be a cluster point of C if for
each ε > 0 and r0 > 0, there exist r ≥ r0 and g ∈ Fr such that f − gL < ε. The
sequence {Fr} is said to be asymptotically Lipschitz if there exist a constant κ > 0
and a sequence of positive numbers {ε(r)} with ε(r) → 0 as r → ∞ such that for
each r all elements f ∈ Fr satisfy both

|f (0)| ≤ 1(7.15)

and

|f (t2) − f (t1)| ≤ κ|t2 − t1| + ε(r) for all t1, t2 ∈ [0,L].(7.16)
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Let F ′ denote those f ∈ F satisfying both (7.15) and

|f (t2) − f (t1)| ≤ κ|t2 − t1| for all t1, t2 ∈ [0,L].(7.17)

The following lemma is due to Bramson (1998). We state it here for complete-
ness.

LEMMA 7 [Bramson (1998), Proposition 4.1]. Assume that C is asymptoti-
cally Lipschitz. For each ε > 0, there exists an r0, so that for each r ≥ r0 and
g ∈ Fr , one has ‖f − g‖L < ε for some cluster point f of C with f ∈ F ′.

Lemma 7 says that the cluster points are “rich”: for large r , all elements in Fr

can be uniformly approximated by cluster points.
We set

F r
g = {Xr,m(·,ω), m < rT ,ω ∈ Gr} for each r

and

Fg = {F r
g }.(7.18)

From the choice of our fluid scale ξr,m and the definition of T r,m(·), it follows that

|Xr,m(0)| ≤ 1.

It follows from (7.3) in Proposition 1 that the sequence of sets of scaled stochastic
processing network processes X

r,m(·) is asymptotically Lipschitz. Lemma 7 im-
mediately implies the following proposition which says that, for large r , X

r,m(·)
are uniformly close to cluster points that are Lipschitz continuous.

PROPOSITION 2. Fix ε > 0, L and T , and choose r large enough. Then, for
ω ∈ Gr and any m < rT ,

‖X
r,m(·,ω) − X̃(·)‖L ≤ ε

for some cluster point X̃(·) of Fg with X̃(·) ∈ F ′.

The next proposition says that if the stochastic processing networks operate
under a maximum pressure policy, then each cluster point of Fg satisfies fluid
model equations (6.1)–(6.6), and thus is a fluid model solution to the fluid model
operating under the maximum pressure policy.

PROPOSITION 3. Consider a sequence of stochastic processing networks op-
erating under a maximum pressure policy. Assume Assumptions 1 and 3 and that
the limit network satisfies the EAA condition. Fix L > 0 and T > 0. Then all clus-
ter points of Fg are solutions to the fluid model equations (6.1)–(6.6) on [0,L],
and they are all in F ′.
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PROOF. The idea is to approximate each cluster point of Fg with some X
r,m

on Gr and show that the equations (6.1)–(6.6) are asymptotically satisfied by X
r,m.

We will only demonstrate equations (6.1) and (6.6); the others are quite straight-
forward and can be verified similarly. Let X̃ = (Z̃, T̃ ) be a cluster point. We first
verify equation (6.1). For any ε > 0 and all r that are large enough, there are ω ∈ Gr

and m < rT such that

‖Sr,m
j (T

r,m
j (t)) − μr

jT
r,m
j (t)‖L ≤ ε for each j ∈ J,(7.19)

‖�j,r,m
i (S

r,m
j (T

r,m
j (t))) − P

j
i μr

jT
r,m
j (t)‖L ≤ ε(7.20)

for each j ∈ J, i ∈ Bj ,

‖Z̃(·) − Zr,m(·)‖L ≤ ε,(7.21)

‖T̃ (·) − T r,m(·)‖L ≤ ε,(7.22)

|Rr − R| ≤ ε.(7.23)

Scaling (5.2) and plugging in the bounds in (7.19) and (7.21), we have

|Zr,m(t) − Zr,m(0) + RrT r,m(t)| ≤ 2ε for all t ∈ [0,L].
From (7.22) and (7.23), we have, for each t ∈ [0,L],

|RrT r,m(t) − RT̃ (t)| ≤ ∣∣Rr(T r,m(t) − T̃ (t)
)∣∣ + |(Rr − R)T̃ (t)|

≤ NJε + εNLJ.

Recall that N ≥ supr |Rr |. It then follows that, for each t ≤ L,

|Z̃(t) − Z̃(0) + RT̃ (t)| ≤ |Z̃(t) − Zr,m(t)| + |Zr,m(0) − Z̃(0)|
+ |RrT r,m(t) − RT̃ (t)|
+ |Zr,m(t) − Zr,m(0) + RrT r,m(t)|

≤ (4 + NLJ + NJ)ε.

Thus, equation (6.1) is satisfied by X̃ because ε can be arbitrarily small.
To show equation (6.6), first observe that, for any allocation a ∈ A,

|pα(a, Z̃(t)) − pr
α(a,Zr,m(t))| = |α × Z̃(t) · Ra − α × Zr,m(t) · Rra|

≤ |α|(|Z̃(t) · (Ra − Rra)|
+ ∣∣(Z̃(t) − Zr,m(t)

) · Rra
∣∣)(7.24)

≤ |α|((NL + 1)IJε + εIJN
)

= (NL + N + 1)|α|IJε.

In (7.24), pr
α(a, q) ≡ (α × q) · Rra is the network pressure for the r th network,

associated with the parameter α, under allocation a when the queue length is q .
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Denote E∗ = arg maxa∈E pα(a, Z̃(t)) as the set of maximum extreme alloca-
tions under buffer size Z̃(t). Because the limit network satisfies the EAA condi-
tion, we can choose an a∗ ∈ E∗ such that Z̃i(t) > 0 for each constituent buffer i

of a∗. Denote I(a∗) the set of constituent buffers. Namely,

I(a∗) =
{
i :

∑
j

a∗
j Bji > 0

}
.

Then Z̃i(t) > 0 for all i ∈ I(a∗).
Suppose a ∈ E \ E∗. Then pα(a, Z̃(t)) < maxa′∈E pα(a′, Z̃(t)). Since

pα(a∗, Z̃(t)) = max
a′∈E

pα(a′, Z̃(t))

and mini∈I(a∗) Z̃i(t) > 0, by the continuity of X̃(·), there exist ε1 > 0 and δ > 0
such that, for each τ ∈ [t − δ, t + δ] and i ∈ I(a∗),

pα(a, Z̃(τ )) + ε1 ≤ pα(a∗, Z̃(τ )) and Z̃i(τ ) ≥ ε1.(7.25)

For sufficiently large r , we can choose ε small enough such that (NL + N + 1) ×
|α|IJε ≤ ε1/3. It follows from (7.21), (7.24) and (7.25) that, for all τ ∈ [t − δ, t +
δ],

pr
α(a,Zr,m(τ )) + ε1/3 ≤ pr

α(a∗,Zr,m(τ )),

Z
r,m
i (τ ) ≥ ε1/2 for each i ∈ I(a∗).

Choosing r > 2J/ε1, for each τ ∈ [rm + ξr,m(t − δ), rm + ξr,m(t + δ)], we have

pr
α(a,Zr(τ )) < pr

α(a∗,Zr(τ )),(7.26)

Zr
i (τ ) ≥ J for each i ∈ I(a∗).(7.27)

Condition (7.27) implies that a∗ is a feasible allocation at any time τ ∈ [rm +
ξr,m(t −δ), rm+ξr,m(t +δ)], that is, a∗ ∈ E(τ ). Following (7.26) and the definition
of a (preemptive-resume) maximum pressure policy, the allocation a will not be
employed during time interval [rm + ξr,m(t − δ), rm + ξr,m(t + δ)]. Therefore,
only the allocations in E∗ will be employed during this interval.

For each a ∈ E , denote (T a)r(t) to be the cumulative amount of time alloca-
tion a has been employed by time t . Because only allocations in E are employed
under a maximum pressure policy, we have that, for each r and all t ≥ 0, under a
maximum pressure policy, ∑

a∈E

(T a)r(t) = t.

Furthermore, since the employment of allocation a for one unit of time contributes
to aj unit of activity j processing time, we have

T r(t) = ∑
a∈E

a(T a)r(t).
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Then it follows that(
α × Z̃(t)

) · (
R

[
T r(rm + ξr,m(t + δ)

) − T r(rm + ξr,m(t − δ)
)])

= (
α × Z̃(t)

) ·
(
R

[∑
a∈E

a
(
(T a)r

(
rm + ξr,m(t + δ)

)

− (T a)r
(
rm + ξr,m(t − δ)

))])

= ∑
a∈E

((
α × Z̃(t)

) · Ra
)[

(T a)r
(
rm + ξr,m(t + δ)

)
− (T a)r

(
rm + ξr,m(t − δ)

)]
= ∑

a∈E∗

((
α × Z̃(t)

) · Ra
)[

(T a)r
(
rm + ξr,m(t + δ)

)
(7.28)

− (T a)r
(
rm + ξr,m(t − δ)

)]
=

(
max
a∈E

(
α × Z̃(t)

) · Ra

) ∑
a∈E∗

[
(T a)r

(
rm + ξr,m(t + δ)

)
− (T a)r

(
rm + ξr,m(t − δ)

)]
=

(
max
a∈E

(
α × Z̃(t)

) · Ra

) ∑
a∈E

[
(T a)r

(
rm + ξr,m(t + δ)

)
− (T a)r

(
rm + ξr,m(t − δ)

)]
= 2ξr,mδ

(
max
a∈E

(
α × Z̃(t)

) · Ra

)
.

The second and fourth equalities in (7.28) hold because only allocations in E∗ will
be employed during [rm + ξr,m(t − δ), rm + ξr,m(t + δ)]; the third holds because
every allocation a ∈ E∗ has the same network pressure equal to maxa∈E (α×Z̃(t)) ·
Ra. From (7.28), we have(

α × Z̃(t)
) · R(

T r,m(t + δ) − T r,m(t − δ)
)
/2δ = max

a∈E

(
α × Z̃(t)

) · Ra.

Because ε in (7.22) can be arbitrarily small, we have(
α × Z̃(t)

) · R(
T̃ (t + δ) − T̃ (t − δ)

)
/2δ = max

a∈E

(
α × Z̃(t)

) · Ra,

and by letting δ → ∞, (6.6) is verified.
Since X̃ and X

r,m are uniformly close and X
r,m satisfies (7.15) and (7.16), it

is straightforward to verify that X̃ satisfies both (7.15) and (7.17), thus showing
X̃ ∈ F ′. �
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Since every fluid model solution under the maximum pressure policy satisfies
(6.7) by Theorem 6, Proposition 3 implies that any cluster point X̃ of Fg satisfies
(6.7). That is,

|Z̃(t) − ζ αW̃ (t)| = 0 for t ≥ τ0,

where W̃ (t) = y∗ · Z̃(t). Define

Wr,m = yr · Zr,m.

Because the fluid-scaled stochastic processing network processes can be uniformly
approximated by cluster points, it leads to the following proposition.

PROPOSITION 4. Fix L > τ0, T > 0 and ε > 0. For r large enough,

|Zr,m(t) − ζ αWr,m(t)| ≤ ε for all 0 ≤ m ≤ rT , τ0 ≤ t ≤ L,ω ∈ Gr .

PROOF. From Proposition 2, for each ε > 0, large enough r , and each
0 ≤ m ≤ rT and ω ∈ Gr , we can find a cluster point X̃ such that

‖Z̃(·) − Zr,m(·)‖L ≤ ε.

From Proposition 3 and Theorem 6, we have

|Z̃(t) − ζαW̃ (t)| = 0 for t ≥ τ0.

Then, for each t ≥ τ0,

|Zr,m(t) − ζ αWr,m(t)| ≤ |Zr,m(t) − Z̃(t)| + |ζ αW̃ (t) − ζαWr,m(t)|.(7.29)

Because yr → y∗ as r → ∞, for large enough r ,

|yr − y∗| < ε.

Let κ = (supr |yr |) ∨ |ζα| < ∞. Then we have

|W̃ (t) − Wr,m(t)| ≤ |y∗ · Z̃(t) − yr · Z̃(t)| + |yr · Z̃(t) − yr · Zr,m(t)|
≤ I

(
ε|Z̃(t)| + κε

) ≤ (NL + 1 + κ)Iε.

The last inequality follows from the fact that Z̃(t) ≤ NL + 1 for all t ≤ L. Note
that Z̃(t) ∈ F ′ and thus satisfies (7.17). One also gets W̃ (t) ≤ κ(NL + 1) since
|y∗| ≤ κ . From (7.29), we have

|Zr,m(t) − ζ αWr,m(t)| ≤ ε + κ(NL + 1 + κ)Iε.

The proposition follows by rechoosing ε. �

We need to translate the results in Proposition 4 into the state space collapse
results for diffusion-scaled processes. First we can express Zr,m(t) by Ẑr via

Zr,m(t) = r

ξr,m

Ẑr

(
tξr,m + rm

r2

)
= 1

ξ̄r,m

Ẑr

(
t ξ̄r,m + m

r

)
,
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where ξ̄r,m = ξr,m/r . The time interval [τ0,L] for the fluid-scaled process Zr,m

corresponds to the time interval [(m+ ξ̄r,mτ0)/r, (m+ ξ̄r,mL)/r] for the diffusion-
scaled process Ẑr . Proposition 4 immediately leads to the following.

PROPOSITION 5. Fix L > τ0, T > 0 and ε > 0. For r large enough and each
m < rT ,

|Ẑr (t) − ζ αŴ r(t)| ≤ ξ̄r,mε
(7.30)

for all (m + ξ̄r,mτ0)/r ≤ t ≤ (m + ξ̄r,mL)/r, ω ∈ Gr .

Proposition 5 gives estimates on each small interval for |Ẑr (t) − ζ αŴ r(t)|.
We shall obtain the estimate on the whole time interval [0, T ], and then show
that ξ̄r,m are stochastically bounded. The following lemma ensures that for large
enough L, in particular, for L ≥ 3Nτ0 + 1, the small intervals in Proposition 5 are
overlapping, and therefore, the estimate on [ξ̄r,0τ0/r, T ] is obtained.

LEMMA 8. For a fixed T > 0 and large enough r ,

ξ̄r,m+1 ≤ 3Nξ̄r,m

for ω ∈ Gr and m < rT , where N is chosen as in Proposition 1.

PROOF. By the definition of Gr ,

|Zr,m(t2) − Zr,m(t1)| ≤ N |t2 − t1| + 1

for t1, t2 ∈ [0,L] and m < rT . Setting t1 = 0 and t2 = 1/ξ̄r,m, we have∣∣Ẑr((m + 1)/r
)∣∣ − |Ẑr (m/r)| ≤ N + ξ̄r,m.(7.31)

From the definition of ξ̄r,m+1, we have

ξ̄r,m+1 = ∣∣Ẑr((m + 1)/r
)∣∣ ∨ 1

≤ (|Ẑr (m/r)| + N + ξ̄r,m

) ∨ 1

≤ N + 2ξ̄r,m ≤ 3Nξ̄r,m.

The first inequality follows from (7.31), and the second inequality follows from
the definition of N and ξ̄r,m. �

7.3. State space collapse on [0, ξr,0L/r2]. Now we shall estimate |Ẑr (t) −
ζ αŴ r(t)| on the interval [0, ξ̄r,0L/r] = [0, ξr,0L/r2]. This will be given by the
initial condition (4.10) and the result in the second part of Theorem 6.

Condition (4.10) implies that

Zr,0(0) → 0 in probability.
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Then, for each r > 0, we let

ε1(r) = min
{
ε : P

(
Zr,0(0) > ε

) ≤ ε
}
.(7.32)

It follows from (7.32) that

lim
r→∞ ε1(r) → 0.

Now let Lr be the intersection of Gr and the event

Zr,0(0) ≤ ε1(r).

Obviously, limr→∞ P(Lr ) = 1.
We define

Fo = {F r
o }

with

F r
o = {Xr,0(·,ω),ω ∈ Lr}.

Parallel to Proposition 2, we have the following proposition which states that
Fo can be asymptotically approximated by cluster points of Fo.

PROPOSITION 6. Fix ε > 0, L > 0 and T > 0, and choose r large enough.
Then, for ω ∈ Lr ,

‖X
r,0(·,ω) − X̃(·)‖L ≤ ε

for some cluster point X̃(·) of Fo with X̃(·) ∈ F ′.

PROOF. Since both (7.15) and (7.16) are satisfied by X
r,0, the result follows

from Lemma 7. �

PROPOSITION 7. Fix L > 0. Then for any cluster point X̃(·) of Fo,

Z̃(t) = ζ αW̃ (t) for t ∈ [0,L].
PROOF. Since any cluster point of Fo is automatically a cluster point of Fg ,

therefore, it satisfies all the fluid model equations. It suffices to show that

|Z̃(0) − ζ αW̃ (0)| = 0,(7.33)

which, together with Theorem 6, implies the result. In fact, we have Z̃(0) = 0,
since for any given δ > 0, one can choose r large enough and ω ∈ Lr such that
|Z̃(0) − Zr,0(0)| ≤ δ, and Z

r,0(0) ≤ δ. �

Propositions 6 and 7 immediately lead to the following proposition, which is
parallel to Propositions 4 and 5.

PROPOSITION 8. Fix L and ε > 0. For large enough r ,

|Zr,0(t) − ζ αWr,0(t)| ≤ ε for all 0 ≤ t ≤ L,ω ∈ Lr

and

|Ẑr (t) − ζ αŴ r(t)| ≤ ξ̄r,0ε for all 0 ≤ t ≤ ξ̄r,0L/r,ω ∈ Lr .(7.34)
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7.4. Proof of Theorem 5. Propositions 5 and 8 together give the multiplicative
state space collapse of the stochastic processing network processes. To prove the
state space collapse result stated in Theorem 5, it is enough to prove that ξ̄r,m are
stochastically bounded. We first give an upper bound on ξ̄r,m in terms of Ŵ r .

LEMMA 9. If |Ẑr (m/r)− ζ αŴ r(m/r)| ≤ 1, there exists some κ ≥ 1 such that

ξ̄r,m ≤ κ
(
Ŵ r(m/r) ∨ 1

)
.

PROOF. Because ξr,m = |Zr(rm)| ∨ r , we have

ξ̄r,m = |Ẑr (m/r)| ∨ 1 ≤ |ζ α|Ŵ r(m/r) + 1 ≤ 2
(|ζ α|Ŵ r(m/r) ∨ 1

)
.

The result then follows by choosing κ = 2(|ζ α| ∨ 1). �

The following proposition will be used to derive an upper bound on the oscilla-
tion of Ŵ r .

PROPOSITION 9. Consider a sequence of stochastic processing networks op-
erating under the maximum pressure policy with parameter α. There exists ε0 > 0
such that, for large enough r , and any 0 ≤ t1 < t2, if Ŵ r(t) ≥ J/(rε0) and
|Ẑr (t)/Ŵ r(t) − ζ α| ≤ ε0 for all t ∈ [t1, t2], then

Ŷ r (t2) = Ŷ r (t1).

PROOF. First, we can choose 0 < ε0 ≤ min{ζ α
i /2 : ζ α

i > 0} so that for all i

with ζ α
i > 0 and all t ∈ [t1, t2], we have

Ẑr
i (t) ≥ Ŵ r(t)(ζ α

i − ε0) ≥ Ŵ r(t)ε0 ≥ J/r.

That is, for all i with ζ α
i > 0,

Zr
i (τ ) ≥ J for all τ ∈ [r2t1, r

2t2].(7.35)

Define

E∗ = arg max
a∈E

y∗ · Ra = arg max
a∈E

(α × ζ α) · Ra.

The second equality follows from the fact that α × ζα = y∗/∑
i∈I((y∗

i )2/αi).
We now show that at least one of the allocations in E∗ is feasible during

[r2t1, r
2t2]. Define I(a) = {i ∈ I :

∑
j Bjiaj > 0} to be the constituency buffers of

the allocation a. One sufficient condition for an allocation a to be feasible at time
t is that Zr

i (t) ≥ J for all i ∈ I(a). Because the limit network satisfies the EAA
condition, replacing q by y∗ in Definition 4 implies that there exists an allocation
a∗ ∈ E∗ such that y∗

i > 0 for each i ∈ I(a∗); namely, all constituency buffers of
a∗ have positive y∗

i ’s. Since y∗
i > 0 implies ζ α

i > 0, it follows from (7.35) that
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Zr
i (τ ) ≥ J for all τ ∈ [r2t1, r

2t2] and i ∈ I(a∗). This implies that a∗ is a feasible
allocation during [r2t1, r

2t2].
Next, we will show that if ε0 is chosen sufficiently small, only allocations in E∗

can be employed under a maximum pressure policy during [r2t1, r
2t2]. Let

ε1 =
(
y∗ · Ra∗ − max

a∈E\E∗ y∗ · Ra

)
> 0.

Set

κ0 = sup
r

max
a∈E

|Rra| and κ1 = ∑
i∈I

(
(y∗

i )2/αi

)
.

Choose r large enough such that |(y∗)′(Rr − R)| ≤ ε0. Then for each allocation
a ∈ E \ E∗ and each τ ∈ [r2t1, r

2t2],((
α × Zr(τ)

) · Rra∗ − (
α × Zr(τ)

) · Rra
)
/Wr(τ )

=
(

α × Zr(τ)

Wr(τ )
− α × ζα

)
· Rra∗

+ (y∗ · Rra∗ − y∗ · Ra∗)/κ1 + (y∗ · Ra∗ − y∗ · Ra)/κ1
(7.36)

+ (y∗ · Ra − y∗ · Rra)/κ1 +
(
α × ζ α − α × Zr(τ)

Wr(τ )

)
· Rra

≥ −|α|ε0κ0I − ε0J/κ1 + ε1/κ1 − ε0J/κ1 − |α|ε0κ0I

= (
ε1 − 2(|α|κ0κ1I + J)ε0

)
/κ1.

Thus,

pr
α(a∗,Zr(τ )) − pr

α(a,Zr(τ )) ≥ Wr(τ)
(
ε1 − 2(|α|κ0κ1I + J)ε0

)
/κ1.

Set ε0 = ε1/(3(|α|)κ0κ1I + J)) ∧ mini∈I{ζ α
i /2 : ζ α

i > 0}, then

pr
α(a∗,Zr(τ )) − pr

α(a,Zr(τ )) > 0.(7.37)

Obviously, ε0 depends only on α,R and A. Equation (7.37) implies that the pres-
sure under allocation a∗ is strictly larger than that under allocation a. It follows
that only the allocations in E∗ can be employed during [r2t1, r

2t2]. Therefore, for
large enough r ,

yr · Rr(T r(r2t2) − T r(r2t1)
) = ∑

a∈E

yr · Rra
(
(T a)r(r2t2) − (T a)r(r2t1)

)
= ∑

a∈E∗
yr · Rra

(
(T a)r(r2t2) − (T a)r(r2t1)

)
(7.38)

= ∑
a∈E∗

(1 − ρr)
(
(T a)r(r2t2) − (T a)r(r2t1)

)
= (1 − ρr)(r2t2 − r2t1),
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where the third equality follows from Lemma 10 below. Equations (7.38) and (5.1)
imply that Ŷ r (t2) − Ŷ r (t1) = 0. �

LEMMA 10. For each a∗ ∈ E∗ = arg maxa∈E y∗ · Ra and large enough r ,

yr · Rra∗ = max
a∈E

yr · Rra = 1 − ρr .

The proof of Lemma 10 will be provided in Appendix B. We now complete the
proof of Theorem 5.

PROOF OF THEOREM 5. We only need to show that ξ̄r,m are stochastically
bounded. We first fix an ε > 0. Because Ŵ r(0) is stochastically bounded, there
exists a κ1 such that, for r large enough,

P
(
Ŵ r(0) ≤ κ1

) ≥ 1 − ε.

Recall that the process X∗, defined in Lemma 3, is a Brownian motion, so it has
continuous sample path almost surely. Therefore, there exists a κ2 such that

P
(
Osc(X∗, [0, T + L]) ≤ κ2/2

) ≥ 1 − ε/2,

where

Osc(f, [0, t]) = sup
0≤t1<t2≤t

f |(t2) − f (t1)|.

Since X̂r converges to X∗ in distribution, for large enough r ,

P
(
Osc(X̂r , [0, T + L]) ≤ κ2

) ≥ 1 − ε.

Meanwhile, because

|Ẑr (0) − ζ αŴ r(0)| → 0 in probability,

we have

P
(|Ẑr (0) − ζ αŴ r(0)| ≤ ε

) ≥ 1 − ε

for r large enough.
Define

H r,ε = {ω : Ŵ r(0) ≤ κ1,Osc(X̂r , [0, T + L]) ≤ κ2,

and |Ẑr (0) − ζ αŴ r(0)| ≤ ε}.
Then for r large enough,

P(H r,ε) ≥ 1 − 3ε.

Furthermore, we can choose r large enough such that Propositions 5 and 8 hold
with ε replaced by ε/κ(κ1 + κ2 + 1) and P(Lr ) ≥ 1 − ε, where κ is given as in
Lemma 9. Note that P(Lr ) → 1 as r → ∞.
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Denote N r,ε = Lr ∩ H r,ε , then for all r large enough,

P(N r,ε) ≥ 1 − 4ε.

Now we are going to show that if ε ≤ ε0, ξ̄r,m ≤ κ(κ1 + κ2 + 1) on N r,ε for all r

large enough and m ≤ rT . In fact, we are going to show the following is true on
N r,ε for all r large enough and m ≤ rT :

|Ẑr (m/r) − ζ αŴ r(m/r)| ≤ ε,(7.39)

ξ̄r,m ≤ κ(κ1 + κ2 + 1),(7.40)

|Ẑr (t) − ζ αŴ r(t)| ≤ ε for all 0 ≤ t ≤ (m + ξ̄r,mL)/r,(7.41) ∫ (m+ξ̄r,mL)/r

0
1(Ŵ r (s)>1) dŶ r (s) = 0.(7.42)

This will be shown by induction. When m = 0, (7.39) obviously holds on N r,ε ,
and

ξ̄r,0 ≤ κ
(
Ŵ r(0) ∨ 1

) ≤ κ(κ1 ∨ 1) ≤ κ(κ1 + κ2 + 1).

Meanwhile, from (7.34), replacing ε by ε/κ(κ1 + κ2 + 1), we have

|Ẑr (t) − ζ αŴ r(t)| ≤ ε for all t ∈ [0, ξ̄r,0L/r].
Then from Proposition 9, with r ≥ 2J/ε0, we have∫ ξ̄r,0L/r

0
1
(Ŵ r (s)>1)

dŶ r (s) = 0.

Now we assume that (7.39)–(7.42) hold up to m, and we shall show they also hold
for m+ 1. First, (7.41) for m directly implies (7.39) for m+ 1 because ξ̄r,mL > 1.
Next, because (5.7) and (7.42) hold, and by Theorem 5.1 of Williams (1998b), we
have

Osc
(
Ŵ r , [0, (m + ξ̄r,mL)/r]) ≤ Osc

(
X̂r , [0, (m + ξ̄r,mL)/r]) + 1 ≤ κ2 + 1.

Note that, because m ≤ rT and (7.40), we have (m+ ξ̄r,mL)/r ≤ T +L for r large
enough. It then follows that

ξ̄r,m+1 ≤ κ
(
Ŵ r((m + 1)/r

) ∨ 1
)

≤ κ
(
Ŵ r(0) + Osc

(
Ŵ r , [0, (m + 1)/r]) ∨ 1

)
≤ κ

(
Ŵ r(0) + Osc

(
Ŵ r , [0, (m + ξ̄r,mL)/r]) ∨ 1

)
≤ κ(κ1 + κ2 + 1).

This fact and (7.30) imply that

|Ẑr (t) − ζ αŴ r(t)| ≤ ε

for all t ∈ [(m + 1 + ξ̄r,m+1τ0)/r, (m + 1 + ξ̄r,m+1L)/r].
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We choose L ≥ 3Nτ0 + 1. Then Lemma 8 implies ξ̄r,mL/r ≥ (1 + ξ̄r,m+1τ0)/r . It
follows that

|Ẑr (t) − ζ αŴ r(t)| ≤ ε for all t ∈ [0, (m + 1 + ξ̄r,m+1L)/r].
Then again Proposition 9 gives∫ (m+1+ξ̄r,m+1L)/r

0
1(Ŵ r (s)>1) dŶ r (s) = 0.

Therefore, we can conclude that ξ̄r,m ≤ κ(κ1 + κ2 + 1) for all 0 ≤ m ≤ rT , which
implies

‖Ẑr (t) − ζ αŴ r(t)‖T ≤ ε on N r,ε

for all large enough r . Theorem 5 follows because ε can be chosen arbitrarily
small. �

8. Heavy traffic limit theorem. In this section we prove the heavy traffic
limit theorem, Theorem 4. Our proof employs an invariance principle developed
in Williams (1998b) for semimartingale reflecting Brownian motions (RBMs), spe-
cialized to the one-dimensional case.

Recall that the constant ε0 is defined in Proposition 9. For each r , define process
δr = {δr(t) : t ≥ 0} as

δr(t) = (|Ẑr (t) − ζ αŴ r(t)| ∨ (2J/r)
)
/ε0.

It follows from the state space collapse theorem, Theorem 5, that δr → 0 in prob-
ability as r → ∞. Now, for each r , define processes γ r = {γ r(t) : t ≥ 0} and
W̃ r = {W̃ r(t) : t ≥ 0} as

γ r(t) = Ŵ r(t) ∧ δr(t) and W̃ r(t) = Ŵ r(t) − γ r(t).

Since δr → 0 in probability as r → ∞, γ r → 0 in probability as r → ∞. It is easy
to see that W̃ r(t) = (Ŵ r(t) − δr(t)) ∨ 0 ≥ 0 for all t ≥ 0. Now we claim that∫ ∞

0
W̃ r(s) dŶ r (s) = 0.(8.1)

To see this, it is enough to show that for any 0 ≤ t1 < t2, Ŷ r (t2) = Ŷ r (t1) whenever
W̃ r(t) > 0 for all t ∈ [t1, t2]; see, for example, Lemma 3.1.2 of Dai and Williams
(2003). Suppose that W̃ r(t) > 0 for all t ∈ [t1, t2]. Then Ŵ r(t) > δr(t) for all
t ∈ [t1, t2]. The latter condition implies that Ŵ r(t) ≥ 2J/(rε0) and |Ẑr (t)/Ŵ r(t)−
ζ α| ≤ ε0 for all t ∈ [t1, t2]. It follows from Proposition 9 that Ŷ r (t2) = Ŷ r (t1), thus
proving (8.1).

By Theorem 1, the maximum pressure policy is asymptotically efficient, and
thus, by Lemma 3, X̂r converges in distribution to the Brownian motion X∗ as
r → ∞.

Therefore, we conclude that the processes (Ŵ r , X̂r , Ŷ r ) satisfy the following
conditions:
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(i) Ŵ r = X̂r + Ŷ r ,

(ii) Ŵ r = W̃ r + γ r, where W̃ r(t) ≥ 0 for all t ≥ 0, and γ r → 0 in probability
as r → ∞,

(iii) X̂r converges to the Brownian motion X∗ in distribution as r → ∞.
(iv) With probability 1,

(a) Ŷ r (0) = 0,

(b) Ŷ r is nondecreasing,
(c)

∫ ∞
0 W̃ r(s) dŶ r (s) = 0.

Since we have a one-dimensional case, condition (II) of Proposition 4.2 of
Williams (1998b) is satisfied, and consequently, condition (vi) of Theorem 4.1
of Williams (1998b) holds. It then follows from Theorem 4.1 of Williams (1998b)
that Ŵ r converges in distribution to the reflecting Brownian motion W ∗ = ψ(X∗).
The convergence of Ẑr to ζ αW ∗ follows from the state space collapse result (5.16).
Thus, we have completed the proof of Theorem 4. �

9. Linear holding cost. In this section we discuss the asymptotic optimality
in terms of a linear holding cost structure for the sequence of stochastic processing
networks. For each network in the sequence, we assume that there is a linear hold-
ing cost incurred at rate ci > 0 for each job in buffer i. Let c be the corresponding
vector. For the r th network, the total holding cost rate at time t is

Cr(t) = c · Zr(t).(9.1)

Define the diffusion-scaled linear holding cost rate processes of the r th network
Ĉr = {Ĉr (t), t ≥ 0} via

Ĉr (t) = Cr(r2t)/r.

Clearly, Ĉr (t) = c · Ẑr (t) for t ≥ 0.

DEFINITION 7. Consider a sequence of stochastic processing networks in-
dexed by r . For a given ε > 0, an asymptotically efficient policy π∗ is said to be
asymptotically ε-optimal for the linear holding cost if for any t > 0, η > 0, and
any asymptotically efficient policy π ,

lim sup
r→∞

P
(
Ĉr

π∗(t) > η
) ≤ lim inf

r→∞ P
(
(1 + ε)Ĉr

π (t) > η
)
,(9.2)

where Ĉr
π∗(t) and Ĉr

π (t) are the diffusion-scaled total holding cost rates at time t

under policies π∗ and π , respectively.

THEOREM 7. Consider a sequence of stochastic processing networks where
Assumptions 1–4 hold and the limit network satisfies the EAA condition. For any
given ε > 0, there exists a maximum pressure policy π∗ that is asymptotically ε-
optimal for the linear holding cost.
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PROOF. Firs, we note that under any policy, for all r ,

Ĉr (t) = c · Ẑr (t) ≥
(

min
i∈I

ci/y
r
i

)
Ŵ r(t).

Let ι ∈ arg mini∈I ci/y
∗
i . Then for any asymptotically efficient policy π ,

lim inf
r→∞ P

(
Ĉr

π (t) > η
) ≥ lim inf

r→∞ P
(
(cι/y

r
ι )Ŵ

r
π (t) > η

) ≥ P
(
(cι/y

∗
ι )W ∗(t) > η

)
.

The second inequality follows from (5.10) and the fact that yr → y∗ as r → ∞.
Now consider a maximum pressure policy π∗ with parameter α given by

αi =
{
ciy

∗
i ε/(I|c × y∗|), i = ι,

1, otherwise.

Because
∑

i′(y
∗
i′)

2/αi′ ≥ (y∗
ι )2/αι = y∗

ι I|c × y∗|/cιε, we have ciζ
α
i ≤ cιε/(y

∗
ι I)

for all i �= ι and cιζ
α
ι ≤ cι/y

∗
ι .

From Theorem 4, we have

Ĉr
π∗ ⇒ c · Z∗,α as r → ∞.

Because ∑
i

ciZ
∗,α
i (t) = ∑

i

ciζ
α
i W ∗(t) ≤ (cι/y

∗
ι )W ∗(t)(1 + ε),

we have

lim
r→∞P

(
Ĉr

π∗(t) > η
) ≤ P

(
(cι/yι)W

∗(t)(1 + ε) > η
)
.

Then (9.2) follows. �

Theorem 7 says that, for any ε > 0, one can always find a maximum pressure
policy such that, for any time t , the total holding cost rate under the maximum pres-
sure policy is asymptotically dominated by (1+ ε) times the total holding cost rate
under any other efficient policy in the sense of stochastic ordering. For a given ε,
the parameter α that is used to define the asymptotically ε-optimal maximum pres-
sure policy in Theorem 7 depends on the first-order network data R and A.

APPENDIX A: AN EQUIVALENT DUAL FORMULATION FOR THE
STATIC PLANNING PROBLEM

In this section we describe an equivalent dual formulation for the static planning
problem (3.1)–(3.5). The equivalent dual formulation will be useful for our proofs
in Appendix B. Throughout this section, we will consider an arbitrary stochastic
processing network, so the results developed here can be applied to each of the r th
network in the network sequence that we discussed in Section 4 and they can also
be applied to the limit network. The main result of this section is the following
proposition.
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PROPOSITION A.1. Suppose ρ is the optimal objective value to the static
planning problem (3.1)–(3.5). Then (y∗, z∗) is optimal to the dual problem (3.6)–
(3.10) if and only if y∗ satisfies

max
a∈A

∑
i∈I,j∈JI

y∗
i Rij aj = −ρ(A.1)

and

max
a∈A

∑
i∈I,j∈JS

y∗
i Rij aj = 1,(A.2)

and {z∗
k, k ∈ KI } and {z∗

k, k ∈ KS} are, respectively, optimal solutions to

min − ∑
k∈KI

zk(A.3)

s.t.
∑
i∈I

y∗
i Rij ≤ − ∑

k∈KI

zkAkj for each input activity j ;(A.4)

and

min
∑

k∈KS

zk(A.5)

s.t.
∑
i∈I

y∗
i Rij ≤ ∑

k∈KS

zkAkj for each service activity j,(A.6)

zk ≥ 0 for each service processor.(A.7)

PROOF. For the “only if” part, we assume (x∗, ρ) and (y∗, z∗) are an optimal
dual pair for the static planning problem and its dual problem. We will show that
y∗ satisfies (A.1)–(A.2) and z∗ is optimal to (A.3)–(A.4) and (A.5)–(A.7). We first
show that

max
a∈A

∑
i∈I,j∈JI

y∗
i Rij aj ≥ −ρ,(A.8)

and

max
a∈A

∑
i∈I,j∈JS

y∗
i Rij aj ≥ 1.(A.9)

For this, we construct a feasible allocation a∗ with

a∗
j =

{
x∗
j , j ∈ JI ,

x∗
j /ρ, j ∈ JS.

By the complementary slackness on the constraints (3.7) and (3.8), we have∑
i∈I,j∈JI

y∗
i Rij x

∗
j = − ∑

k∈KI ,j∈JI

z∗
kAkjx

∗
j(A.10)
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and ∑
i∈I,j∈JS

y∗
i Rij x

∗
j = ∑

k∈KS,j∈JS

z∗
kAkjx

∗
j .(A.11)

By the complementary slackness on the constraints (3.3) and (3.4), we have∑
j∈JI ,k∈KI

z∗
kAkjx

∗
j = ∑

k∈KI

z∗
k = ρ(A.12)

and ∑
j∈JS,k∈KS

z∗
kAkjx

∗
j = ρ

∑
k∈KS

z∗
k = ρ.(A.13)

The last equality in (A.12) is from the strong duality theorem; the optimal objective
value of the dual problem equals the optimal objective value of the primal problem.
Readers are referred to Section 4.2 of Luenberger (1984) for a formal description
of the strong duality theorem. The last equality in (A.13) follows from (3.9). Then
from the definition of a∗ and (A.10)–(A.13), it immediately follows that∑

i∈I,j∈JI

y∗
i Rij a

∗
j = ∑

i∈I,j∈JI

y∗
i Rij x

∗
j = −ρ

and ∑
i∈I,j∈JS

y∗
i Rij a

∗
j = ∑

i∈I,j∈JS

y∗
i Rij x

∗
j /ρ = 1,

which imply (A.8) and (A.9) because a∗ ∈ A.
Next we shall show that

max
a∈A

∑
i∈I,j∈JI

y∗
i Rij aj ≤ −ρ

and

max
a∈A

∑
i∈I,j∈JS

y∗
i Rij aj ≤ 1.

For any a ∈ A, we have∑
i∈I,j∈JI

y∗
i Rij aj ≤ − ∑

k∈KI ,j∈JI

z∗
kAkjaj = − ∑

k∈KI

z∗
k = −ρ.

The first inequality above follows from (3.7), and the nonnegativity of a; the
second inequality holds since a ∈ A and, therefore,

∑
j∈JI

Akjaj = 1 for each
k ∈ KI ; the third is due to the strong duality theorem. Similarly, we have∑

i∈I,j∈JS

y∗
i Rij aj ≤ ∑

k∈KS,j∈JS

z∗
kAkjaj ≤ ∑

k∈KS

z∗
k = 1.
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The first inequality above follows from (3.8); the second follows from∑
j∈JS

Akjaj ≤ 1 and zk ≥ 0 for each k ∈ KS ; and the third is due to (3.9).
Hence, y∗ satisfies (A.1) and (A.2). To see the z∗ is an optimal solution to

(A.3)–(A.4) and (A.5)–(A.7), we consider the following problems:

max
∑

i∈I,j∈JI

y∗
i Rij aj

s.t.
∑
j∈JI

Akjaj = 1 for each input processor k,(A.14)

aj ≥ 0, j ∈ JI

and

max
∑

i∈I,j∈JS

y∗
i Rij aj

s.t.
∑
j∈JS

Akjaj ≤ 1 for each service processor k,(A.15)

aj ≥ 0, j ∈ JS.

It is easy to see that the above two problems are equivalent to the left-hand
side of (A.1) and (A.2). Furthermore, they are the dual problems of (A.3)–(A.4)
and (A.5)–(A.7). This implies that the optimal objective values to (A.3)–(A.4)
and (A.5)–(A.7) are −ρ and 1 respectively. Because (y∗, z∗) is an optimal so-
lution to (3.6)–(3.10), (A.4) and (A.6) are satisfied by z∗,

∑
k∈KI

z∗
k = ρ, and∑

k∈KS
z∗
k = 1. This implies that z∗ is feasible to (A.3)–(A.4) and (A.5)–(A.7)

with respective objective values −ρ and 1. Therefore, z∗ is optimal to (A.3)–(A.4)
and (A.5)–(A.7).

For the “if” part, let (y∗, z∗) be such that y∗ satisfies (A.1) and (A.2)
and z∗ is optimal to (A.3)–(A.4) and (A.5)–(A.7). Because (A.3)–(A.4) and
(A.5)–(A.7) are dual problems of the equivalent formulation of the left-hand side
of (A.1) and (A.2), ∑

k∈KI

z∗
k = ρ(A.16)

and ∑
k∈KS

z∗
k = 1.(A.17)

The fact that z∗ is feasible to (A.3)–(A.4) and (A.5)–(A.7), together with (A.17),
implies that (y∗, z∗) is feasible to the dual problem (3.6)–(3.10). Furthermore, the
corresponding objective value is ρ because of (A.16). This implies that (y∗, z∗) is
optimal to (3.6)–(3.10). �

Proposition A.1 immediately leads to the following corollary because the prob-
lem maxa∈A y∗ · Ra can be decomposed into problems (A.14) and (A.15).
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COROLLARY A.1. Suppose (y∗, z∗) is the unique optimal solution to the dual
problem (3.6)–(3.10) with objective value ρ. Then y∗ is the unique I-dimensional
vector that satisfies

max
a∈A

∑
i∈I,j∈JS

y∗
i Rij aj = 1(A.18)

and

max
a∈A

y∗ · Ra = 1 − ρ.(A.19)

APPENDIX B: PROOFS OF LEMMAS AND THEOREM 1

In this section we provide the proofs for Lemmas 1, 2, 5, 6 and 10, and Theo-
rem 1.

PROOF OF LEMMA 2. From Corollary A.1 and Assumption 2, we have

max
a∈A

yr · Ra = 1 − ρr .

On the other hand, T r(t)/t ∈ A. Hence, (1 − ρr)t ≥ yr · RT r(t), which implies
Y r is nonnegative. Similarly, for any 0 ≤ t1 < t2, (T r(t2) − T r(t1))/(t2 − t1) ∈ A,

and we have

yr · R(
T r(t2) − T r(t1)

)
/(t2 − t1) ≤ (1 − ρr).

It follows that Y r(t2) − Y r(t1) ≥ 0. �

PROOF OF LEMMA 5. First, if the statement is not true, then we can find a v0 ∈
V o such that κv0 /∈ V for all 0 < κ ≤ 1 because of the convexity of V . Denote V0 =
{κv0,0 < κ < 1}. Because any v in V0 is not in V , V0 ∩V = ∅. It is easy to see that
V0 is relatively open and convex. Therefore, there exists a hyperplane separating
V and V0 [cf. Rudin (1991), Theorem 3.4]. In other words, there exists a vector ŷ

and a constant b such that ŷ · v ≤ b for all v ∈ V and ŷ · v > b for all v ∈ V0. We
notice that b must be zero. To see this, first we have b ≥ 0 because the origin is in
V . Moreover, for any ε > 0, we can choose κ arbitrarily small such that κŷ ·v0 < ε.
Because κv0 ∈ V0, we have b < κŷ · v0 < ε. This implies b = 0, therefore, the
origin is in the separating hyperplane and maxa∈A ŷ · Ra = 0. Obviously, ŷ �= y∗
because y∗ · v = 0 < ŷ · v for v ∈ V0. Since maxa∈A

∑
i∈I,j∈JS

ŷiRij aj > 0 for
any vector ŷ, we consider two cases:

Case 1: maxa∈A
∑

i∈I,j∈JS
ŷiRij aj > 0. For this case, without loss of generality,

we select ŷ such that maxa∈A
∑

i∈I,j∈JS
ŷiRij aj = 1. Then ŷ satisfies both

(A.18) and (A.19) with ρ = 1. On the other hand, from Corollary A.1, y∗ is the
unique vector that satisfies both (A.18) and (A.19). This is a contradiction.
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Case 2: maxa∈A
∑

i∈I,j∈JS
ŷiRij aj = 0. For this case, we will show that y∗ + ŷ

satisfies both (A.18) and (A.19) with ρ = 1, thus yielding a contradiction. For
this, first observe that x∗ ∈ arg maxa∈A y∗ · Ra. This implies that

x∗ ∈ arg max
a∈A

∑
i∈I,j∈JS

y∗
i Rij aj .

To see this, suppose there is an allocation ã ∈ A such that∑
i∈I,j∈JS

y∗
i Rij ãj >

∑
i∈I,j∈JS

y∗
i Rij x

∗
j ,

then we can define another allocation â by

âj =
{

x∗
j , j ∈ JI ,

ãj , j ∈ JS,

so that y∗ · Râ > y∗ · Rx∗. This is certainly not true.
We also observe that x∗ ∈ arg maxa∈A ŷ ·Ra because maxa∈A ŷ ·Ra = 0 and

x∗ satisfies (3.2). This again implies that

x∗ ∈ arg max
a∈A

∑
i∈I,j∈JS

ŷiRij aj .

Thus,

max
a∈A

(y∗ + ŷ) · Ra = (y∗ + ŷ) · Rx∗ = 0

and

max
a∈A

∑
i∈I,j∈JS

(y∗
i + ŷi)Rij aj = ∑

i∈I,j∈JS

(y∗
i + ŷi )Rij x

∗
j = 1. �

PROOF OF LEMMA 6. It is natural to work in a more general setting. Consider
an i.i.d. sequence of nonnegative random variables {v�, � = 1,2, . . .} with mean
1/μv . Assume v� have finite 2 + εv moments for some εv > 0. That is, there exists
some σ̂ < ∞ such that E(v

2+εv

� ) = σ̂ . Let V (n) = ∑n
�=1 v�, n ∈ Z

+. Define the
renewal process associated with V (n) as G(t) = max{n :V (n) ≤ t}. Let vr,T ,max =
max{v� : 1 ≤ � ≤ G(r2T ) + 1}.

It immediately follows from Lemma 3.3 of Iglehart and Whitt (1970) that

vr,T ,max/r → 0 with probability 1.(B.1)

We now show that for any fixed ε > 0 and large enough n,

P
(‖V (�) − �/μv‖n ≥ εn

) ≤ ε/n.(B.2)

Because v� have finite 2 + εv moments, one gets

E
(|V (�) − �/μv|2+εv

) ≤ κv�
1+εv/2 for all � ≤ n,
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where κv is some constant that depends just on σ̂ and εv [cf. Ata and Kumar
(2005), Lemma 8]. Then from Chebyshev’s inequality, we have, for each � ≤ n,

P
(|V (�) − �/μv| ≥ εn

) ≤ κv�
1+εv/2/(εn)2+εv ≤ κv/(ε

2+εvn1+εv/2).

Choosing n large enough,

P
(|V (�) − �/μv| ≥ εn

) ≤ ε/n.

Let

τ = min{� : |V (�) − �/μv| ≥ nε}.
Then, restarting the process at time τ ,

P
(|V (n) − n/μv| ≤ εn/2 | τ ≤ n

)
≤ P

(|V (n) − V (τ) − (n − τ)/μv| ≥ εn/2 | τ ≤ n
) ≤ ε/2n.

On the other hand,

P
(|V (n) − n/μv| ≤ εn/2

) ≥ 1 − ε/2n.

It then follows that P(τ ≤ n) ≤ ε/(2n − ε) ≤ ε/n. This implies the result.
Finally, the inversion of (B.2) gives

P
(‖G(s) − μvs‖t ≥ εt

) ≤ ε/t for large enough t.(B.3)

Readers are referred to Proposition 4.3 of Bramson (1998) for such an inversion.
Applying (B.1) and (B.3) to the utilized service times uj (�), one gets (7.4)

and (7.6) in Lemma 6. Using (B.2) for each component of the routing vector φ
j
i (�)

yields (7.5). �

PROOF OF LEMMA 1. We first show that {(yr , zr)} is bounded. Since zr ≥ 0,∑
k∈KS

zr
k = 1, and

∑
k∈KI

zr
k = ρr for all r , we have |zr | ≤ 1. To show {yr} is

bounded, we consider the following primal-dual pair:

minimize ρ(B.4)

subject to Rx ≥ be,(B.5) ∑
j∈J

Akjxj = 1 for each input processor k,(B.6)

∑
j∈J

Akjxj ≤ ρ for each service processor k,(B.7)

x ≥ 0,(B.8)
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and

maximize
∑

k∈KI

zk + b
∑
i∈I

yi,(B.9)

subject to
∑
i∈I

yiRij ≤ − ∑
k∈KI

zkAkj for each input activity j,(B.10)

∑
i∈I

yiRij ≤ ∑
k∈KS

zkAkj for each service activity j,(B.11)

∑
k∈KS

zk = 1,(B.12)

y ≥ 0; and zk ≥ 0 for each service processor k.(B.13)

The dual LP (B.9)–(B.13) is obtained by perturbing the objective function co-
efficients of the dual static planning problem (3.6)–(3.10). Because the dual sta-
tic planning problem (3.6)–(3.10) has a unique optimal solution, for sufficiently
small b > 0, the optimal solution of the dual LP (B.9)–(B.13) equals (y∗, z∗) [cf.
Mangasarian (1979), Theorem 1]. Therefore, the primal problem (B.4)–(B.8) has
an optimal solution (ρ̂, x̂). Now choose r large enough such that |Rrx̂ − Rx̂| <

be/2. Then Rrx̂ ≥ be/2. Consider the problem (B.4)–(B.8) with b replaced by
b/2 and R replaced by Rr . Because (ρ̂, x̂) is a feasible solution, the optimal ob-
jective value ρ̃r ≤ ρ̂. The corresponding dual problem of this new LP is the dual
problem (B.9)–(B.13) with b in the objective function coefficients replaced by b/2
and R replaced by Rr . The optimal objective value of this new dual LP equals
ρ̃r ≤ ρ̂. The new dual LP has the exact same constraints as the dual static planning
problem (3.6)–(3.10) for the r th network. Thus, (yr , zr) is a feasible solution to
the new dual LP. It then follows that∑

k∈KI

zr
k + b/2

∑
i∈I

yr
i ≤ ρ̃r ≤ ρ̂.

This implies that
∑

i y
r
i ≤ 2ρ̂/b for large enough r , so {yr} is bounded.

Then we only need to show that every convergent subsequence of {(yr , zr)}
converges to (y∗, z∗). Let (ŷ, ẑ) be a limit point of any subsequence {(yrn, zrn)}.
We will verify that (ŷ, ẑ) is an optimal solution to the dual static planning prob-
lem (3.6)–(3.10) of the limiting network. First, we show that they are feasi-
ble. Since {(yrn, zrn)} → (ŷ, ẑ) as n → ∞, for any ε > 0, for large enough n,
|ŷ − yrn | < ε, |ẑ − zrn | < ε and |R − Rrn | < ε. For each input activity j ∈ JI ,∑

i∈I

ŷiRij ≤ ∑
i∈I

y
rn
i R

rn
ij + Iε

(
|ŷ| + sup

r
|Rr |

)

≤ − ∑
k∈KI

Akj z
rn
k + Iε

(
|ŷ| + sup

r
|Rr |

)



2294 J. G. DAI AND W. LIN

≤ − ∑
k∈KI

Akj ẑk + Iε
(
|ŷ| + sup

r
|Rr |

)
+ Kε.

Since ε can be arbitrarily small, we have∑
i∈I

ŷiRij ≤ − ∑
k∈KI

Akj ẑk for each input activity j ∈ JI .

Similarly, one can verify that∑
i∈I

ŷiRij ≤ ∑
k∈KS

Akj ẑk for each service activity j ∈ JS

and ∑
k∈KS

ẑk = 1.

Furthermore, because (yrn, zrn) are optimal solutions,
∑

k∈KI
z
rn
k = ρrn . Again, we

can show that ∑
k∈KI

ẑk = 1.

Therefore, (ŷ, ẑ) is an optimal solution to the dual problem (3.6)–(3.10) of the
limit network. Then by the uniqueness of the optimal solution, we conclude that
(ŷ, ẑ) = (y∗, z∗). Since the subsequence is arbitrary, we have (yr , zr) → (y∗, z∗)
as r → ∞. �

PROOF OF LEMMA 10. Similar to the proof of Lemma 1 above, we can prove
that xr → x∗ as r → ∞. From the strict complementary theorem [cf. Wright
(1997)], every pair of primal and dual LPs has a strict complementary optimal
solution if they have optimal solutions. Hence, we have the following relations:
for the limit network,∑

j∈JS

Akjx
∗
j = 1 is equivalent to z∗

k > 0 for all k ∈ KS;(B.14)

∑
i∈I

y∗
i Rij = ∑

k∈KS

Akj z
∗
k is equivalent to x∗

j > 0 for all j ∈ JS;(B.15)

∑
i∈I

y∗
i Rij = − ∑

k∈KI

Akj z
∗
k is equivalent to x∗

j > 0 for all j ∈ JI ;(B.16)

and for each r ,

zr
k > 0 implies

∑
j∈JS

Akjx
r
j = ρr for all k ∈ KS;(B.17)

xr
j > 0 implies

∑
i∈I

yr
i R

r
ij = ∑

k∈KS

Akj z
r
k for all j ∈ JS;(B.18)

xr
j > 0 implies

∑
i∈I

yr
i R

r
ij = − ∑

k∈KI

Akj z
r
k for all j ∈ JI .(B.19)
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Since xr → x∗ as r → ∞, we have for large enough r ,

x∗
j > 0 implies xr

j > 0 for all j ∈ J.(B.20)

This, together with (B.15) and (B.18), implies that, for large enough r and each
service activity j ∈ JS ,∑

i∈I

y∗
i Rij = ∑

k∈KS

Akj z
∗
k implies

∑
i∈I

yr
i R

r
ij = ∑

k∈KS

Akj z
r
k.(B.21)

Similarly, it follows from (B.16), (B.19) and (B.20) that, for large enough r and
each input activity j ∈ JI ,∑

i∈I

y∗
i Rij = − ∑

k∈KI

Akj z
∗
k implies

∑
i∈I

yr
i R

r
ij = − ∑

k∈KI

Akj z
r
k.(B.22)

Suppose z∗
k = 0 for some k ∈ KS , then

∑
j∈JS

Akjx
∗
j < 1. There exists an ε > 0

such that
∑

j∈JS
Akjx

∗
j = 1 − ε. For large enough r , we have

∑
j∈JS

Akjx
r
j ≤∑

j∈JS
Akjx

∗
j + ε/2 ≤ 1 − ε/2 because xr → x∗ as r → ∞. This implies zr

k = 0
for large enough r . Therefore, for large enough r ,

z∗
k = 0 implies zr

k = 0 for all k ∈ KS.(B.23)

Because (y∗, z∗) is the optimal solution to the dual static planning prob-
lem (3.6)–(3.10), we have for each a ∈ E ,∑

j∈J

(∑
i∈I

y∗
i Rij

)
aj ≤ ∑

j∈JS

( ∑
k∈KS

Akj z
∗
k

)
aj − ∑

j∈JI

( ∑
k∈KI

Akj z
∗
k

)
aj ≤ 0.(B.24)

For the second inequality, we use the fact that
∑

j∈JS
Akjaj ≤ 1 for all k ∈ KS ,∑

j∈JI
Akjaj = 1 for all k ∈ KI , and

∑
k∈KS

z∗
k = ∑

k∈KI
z∗
k = 1. Since a∗ ∈ E∗,

y∗ · Ra∗ = maxa∈E y∗ · Ra = 0. It follows that both inequalities in (B.24) are
equalities for a∗. Therefore,∑

i∈I

y∗
i Rij = ∑

k∈KS

Akj z
∗
k for all j ∈ JS with a∗

j > 0,(B.25)

∑
i∈I

y∗
i Rij = − ∑

k∈KI

Akj z
∗
k for all j ∈ JI with a∗

j > 0,(B.26)

∑
j∈JS

Akja
∗
j = 1 for all k ∈ KS with z∗

k > 0.(B.27)

From (B.21) and (B.25), we have for large enough r ,∑
i∈I

yr
i R

r
ij = ∑

k∈KS

Akj z
r
k for all j ∈ JS with a∗

j > 0.

Therefore,∑
j∈JS

a∗
j

∑
i∈I

yr
i R

r
ij = ∑

j∈JS

a∗
j

∑
k∈KS

Akj z
r
k for large enough r.(B.28)
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Similarly, it follows from (B.22) and (B.26) that, for large enough r ,∑
j∈JI

a∗
j

∑
i∈I

yr
i R

r
ij = − ∑

j∈JI

a∗
j

∑
k∈KI

Akj z
r
k.(B.29)

From (B.23) and (B.27), it follows that, for large enough r ,∑
j∈Js

a∗
j Akj = 1 for all k ∈ KS with zr

k > 0.

Therefore, ∑
k∈KS

zr
k

∑
j∈JS

a∗
j Akj = ∑

k∈KS

zr
k for large enough r.(B.30)

It follows from (B.28) and (B.29) that∑
j∈J

a∗
j

∑
i∈I

yr
i R

r
ij = ∑

j∈J

a∗
j

∑
k∈KS

Akj z
r
k − ∑

j∈J

a∗
j

∑
k∈KI

Akj z
r
k

= 1 − ρr for large enough r.

The second equality follows from (B.30),
∑

k∈KS
zr
k = 1,

∑
j∈JI

a∗
j Akj = 1 for

each k ∈ KI , and
∑

k∈KI
zr
k = ρr .

Then Lemma 10 follows from the fact that maxa∈E yr · Rra = 1 − ρr . �

PROOF OF THEOREM 1. We define the scaled process X
r via

X
r (t) = r−2

X(r2t) for each t ≥ 0.

Fix a sample path that satisfies the strong law of large numbers for uj and φi
j .

Let ( ¯̄Z, ¯̄T ) be a fluid limit of ( ¯̄Zr
, ¯̄T r

) along the sample path. Following the ar-
guments in Section A.2 in Dai and Lin (2005), such a limit exists and satisfies
the fluid model equations (6.1)–(6.5) presented in Section 6. Under the maximum
pressure policy with parameter α, each fluid limit ( ¯̄Z, ¯̄T ) also satisfies the fluid
model equation (6.6). The justification of fluid model equation (6.6) is similar to
Lemma 4 in Dai and Lin (2005), with the scaling r replaced by r2. Therefore,

( ¯̄Zr
, ¯̄T r

) is a fluid model solution under the maximum pressure policy. Similar to
the proof of Theorem 4 in Dai and Lin (2005), using a different Lyapunov func-
tion f (t) = (α × Z(t)) · Z(t), one can easily prove that the fluid model under
the maximum pressure policy with a general parameter set (α,β) is weakly stable;

namely, any fluid model solution ( ¯̄Zr
, ¯̄T r

) under the maximum pressure policy sat-
isfies Z(t) = 0 for each t ≥ 0 given Z(0) = 0. As a consequence, we have for any
t > 0, ¯̄T (t)/t satisfies (3.2)–(3.5) with ρ = 1. Because x∗ is the unique optimal
solution to the static planning problem (3.1)–(3.5) with objective value equal to 1,
¯̄T (t) = xt for each t ≥ 0. Since this is true for any fluid limit, we have ¯̄T r

(t) → x∗t
for each t with probability 1, which implies asymptotic efficiency. �
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