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ON UNIVERSAL ESTIMATES FOR BINARY
RENEWAL PROCESSES

BY GUSZTÁV MORVAI1 AND BENJAMIN WEISS

MTA-BME Stochastics Research Group and Hebrew University of Jerusalem

A binary renewal process is a stochastic process {Xn} taking values in
{0,1} where the lengths of the runs of 1’s between successive zeros are inde-
pendent. After observing X0,X1, . . . ,Xn one would like to predict the future
behavior, and the problem of universal estimators is to do so without any
prior knowledge of the distribution. We prove a variety of results of this type,
including universal estimates for the expected time to renewal as well as es-
timates for the conditional distribution of the time to renewal. Some of our
results require a moment condition on the time to renewal and we show by an
explicit construction how some moment condition is necessary.

1. Introduction. The classical binary renewal process is a stochastic process
{Xn} taking values in {0,1} where the lengths of the runs of 1’s between suc-
cessive zeros are independent. These arise, for example, in the study of Markov
chains since the return times to a fixed state form such a renewal process; cf. [7].
(More details on this will be given in the next section.) In many applications, the
occurrences of a zero, which represent the failure times of some system which is
renewed after each failure, are of importance and so the problem arises of estimat-
ing when the next failure will occur; cf. Example 12.13 in [8].

Our purpose in this paper is to investigate the possibility of giving a universal
estimator at time n for the residual waiting time to the next zero in the binary
renewal process {Xn}. Let {pk}∞k=0 be the conditional probability that a run of
k 1’s follows a given 0 event. This distribution describes completely the renewal
process as a two-sided stationary process. In order that the probability of X0 = 0 be
nonzero it is necessary that μ = ∑∞

k=0 kpk < ∞ and then P(X0 = 0) = 1/(1 + μ)

is positive. (This relation between the mean of the conditional renewal distribution
and the stationary probability of the renewal event is well known in ergodic theory
as Kac’s formula for the expected return time to a set, and in probability theory
cf. [7], Chapter XIII and [28], Section I.2.c.) If the process distribution is known,
then after observing X0,X1, . . . ,Xn one may give a consistent estimator for the
expected value of residual waiting time to the occurrence of the next zero as

μL =
∑∞

k=L(k − L)pk∑∞
k=L pk

Received August 2006; revised December 2007.
1Supported by the Bolyai János Research Scholarship during the second revision of this paper.
AMS 2000 subject classifications. 60G25, 60K05.
Key words and phrases. Prediction theory, renewal theory.

1970

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/07-AAP512
http://www.imstat.org
http://www.ams.org/msc/


ON UNIVERSAL ESTIMATES FOR BINARY RENEWAL PROCESSES 1971

if there is at least one zero among the values of X0,X1, . . . ,Xn and the last zero
occurs at moment Xn−L = 0. (Indeed, if Xn−L = 0 and for all n − L < i ≤ n,
Xi = 1, then for k ≥ L the probability that for all n + 1 ≤ i < n − L + k + 1,
Xi = 1, and Xn+k−L+1 = 0 is pk∑∞

i=L pi
.) We denote this L by τ(X0,X1, . . . ,Xn).

Similarly we define τ = τ(X0−∞) as that t ≥ 0 such that X−t = 0 and Xi = 1
for all −t < i ≤ 0. It is clear from the stationarity that P(τ = L) is proportional
to

∑∞
k=L pk and thus for the finiteness of the unconditional expectation of the

residual waiting time we would have to demand that
∑∞

k=0 k2pk < ∞. We shall not
assume this since we are interested primarily in the conditional expectations and
with probability 1 for n sufficiently large at least one of the Xi = 0, for 0 ≤ i ≤ n

and for any fixed value of τ(X0, . . . ,Xn) = L ≤ n the expected residual waiting
time is μL < ∞. This of course is well known in the classical analysis of renewal
processes. In the spirit of recent investigations into universal estimators for various
features of stationary processes (see [1–3, 6, 10, 13, 14, 17, 23–25, 29, 30]) we take
up here the problem of how well can we do when all that we know is that the binary
process {Xn} is in fact a renewal process. The fact that we are trying to estimate
the time to next occurrence of zero rather than Xn+1 takes us out of the framework
of previous investigations. In earlier works such as [11] attention is restricted to
those renewal processes which arise from Markov chains with a finite number of
states. In that case the probabilities pk decay exponentially and one can use this
information in trying to find not only the distribution but even the hidden Markov
chain itself. Since we are considering the general case where the number of hidden
states might be infinite, this exponential decay no longer holds in general and the
problem becomes much more difficult.

For the estimator itself it is most natural to use the empirical distribution ob-
served in the data segment X0,X1, . . . ,Xn. However, if there were an insufficient
number of occurrences of 1-blocks of length at least τ(X0,X1, . . . ,Xn), then we
do not expect the empirical distribution to be close to the true distribution. In
particular, if no block of that length has occurred yet, clearly no intelligent es-
timate can be given. For this reason we will estimate only along stopping times
λ1, λ2, . . . and our main positive result is that there is a sequence of universally de-
fined stopping times λn with density 1 and estimators hn(X0,X1, . . . ,Xλn) which
are almost surely converging to μτ(X0,X1,...,Xλn). (For further reading on estimation
along stopping times see [12, 15, 16, 18, 21, 22].) We also will define estimators
p̂l(X0,X1, . . . ,Xλn) which are almost surely converging in the variation metric
to the conditional distribution of the residual waiting time. These results will re-
quire a suitable higher moment condition on the {pk} distribution. These estima-
tors are simply the averages of what we observe in a piece of the data segment
Xκn, . . . ,Xλn where κn is chosen so that there is a large fixed number of occur-
rences of the relevant pattern. The reason for these stopping times λn is that we
want to estimate only at those times when we feel that we have enough data.

Another kind of result may be obtained without a higher moment condition.
Namely, there is a sequence of estimators h̃n and p̃n such that for any renewal
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process and almost every sequence of observations X0,X1, . . . there is a sequence
of density 1 of n’s D, which depend on the observed sequence of Xi along which
these estimators converge to the μτ and conditional distributions of residual wait-
ing times. The difference is that now we are unable to determine what these se-
quences are by finite observations.

On the other hand, for stopping times of density 1 we will show that no such
result is possible in general, that is, without higher moment assumptions. More pre-
cisely, there is no strictly increasing sequence of stopping times {λn} with density
1, and sequence of estimators {hn(X0, . . . ,Xλn)}, such that for all binary classical
renewal processes

lim sup
n→∞

∣∣hn(X0, . . . ,Xλn) − μτ(X0,...,Xλn)

∣∣ = 0 almost surely.

(For results of similar vein see [4, 9, 19, 20, 27].)
In spite of this negative result, without any condition on higher moments,

we can find stopping times with density close to 1 along which we converge
to the estimates that are possible with full knowledge of the system. That is to
say, for any ε > 0 there exists a sequence of stopping times {λ(ε)

n }, estimators
{h(ε)

n (X0, . . . ,Xλ
(ε)
n

)} and {p(ε)
l (X0, . . . ,Xλ

(ε)
n

)} such that the density of the stop-
ping times is greater than 1 − ε and almost surely these estimators converge to μτ

and the conditional distributions of residual waiting times, respectively.

2. Results. It is easiest to formally define a renewal process in terms of an
underlying Markov chain. Consider a Markov chain on the state space {0,1,2, . . .}
with transition probabilities pi,i−1 = 1 for all i ≥ 1 and p0,i = pi a probability dis-
tribution π on {0,1,2, . . .}; cf. [8], Example 12.13. This chain is positive recurrent
exactly when

∑∞
i=0 ip0,i = μ < ∞ and the unique stationary probability assigns

mass 1
1+μ

to the state 0; cf. [7], Chapter XIII and [28], Section I.2.c. Collapsing
all states i ≥ 1 to 1 gives rise to the classical binary renewal process. Even though
our primary interest is in one-sided processes, stationarity implies that there exists
a two-sided process with the same statistics and we will use the two-sided version
whenever it is convenient to do so.

For conciseness, we will denote X
j
i = (Xi, . . . ,Xj ) and also use this notation

for i = −∞ and j = ∞. Our interest is in the waiting time to renewal (the state
0) given some previous observations, in particular given Xn

0 . Recall that if the data
segment Xn

0 does not contain a zero, the expected time to the first occurrence of a
zero may be infinite; this depends on the finiteness of the second moment of π . If
a zero occurs, then the expected time depends on the location of the zero and so
we introduce the notation:

τ(Xn−∞) = the t ≥ 0 such that Xn−t = 0, and Xi = 1 for n − t < i ≤ n.

Note that this is well defined with probability 1. If a zero occurs in Xn
0 , then

τ(Xn−∞) depends only on Xn
0 and so we will also write for τ(Xn−∞), τ(Xn

0) with
the understanding that this is defined only if a zero occurs in Xn

0 .
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Now for the classical binary renewal process {Xn} define θn as

θn = E(max{0 ≤ k :Xi = 1 for all n < i ≤ n + k}|Xn
0).

(Note that θn =
∑∞

k=0 kpk+τ(X0,...,Xn)∑∞
k=τ(X0,...,Xn) pk

as soon as there is at least one zero in Xn
0 . As

we have already mentioned, if no zero occurs, then it might happen that θn = ∞.)
For a family of processes {X(j)

n } we use the notation θ
(j)
n . Our goal is to estimate

both θn and the distribution of the time to renewal given Xn
0 but without prior

knowledge of the distribution function of the process.
Define ψ as the position of the first zero, that is,

ψ = min{t ≥ 0 :Xt = 0}.
Let 0 < γ < 1 be arbitrary. First define the stopping times λn as λ0 = ψ and for
n ≥ 1,

λn = min
{
k > λn−1 : |{ψ ≤ i < k : τ(Xi

0) = τ(Xk
0)}| ≥ k1−γ }

.

These are the successive times i when the value t = τ(Xi
0) has occurred pre-

viously enough times so that we can safely estimate the residual renewal time by
empirical distributions derived from observations already made. We also need to
fix κn as the index where reading backward from Xλn will have seen for the first

time ≥ λ
1−γ
n occurrences of an i with τ(Xi

0) = τ(X
λn

0 ). Formally put

κn = max
{
K : |{K ≤ k < λn : τ(Xk

0) = τ(X
λn

0 )}| = �λ1−γ
n �}.

Define σi as the length of runs of 1’s starting at position i. Formally put

σi = max{0 ≤ l :Xj = 1 for i < j ≤ i + l}.
For n > 0 define our estimator hn(X0, . . . ,Xλn) at time λn as

hn(X0, . . . ,Xλn) = 1

�(λn)1−γ �
λn−1∑
i=κn

I{τ(Xi
0)=τ(X

λn
0 )}σi.

[Notice that the role of κn is rather technical. It ensures that we take into consider-
ation exactly �(λn)

1−γ � pieces of occurrences.] The above formula is simply the
average of the residual waiting times that we have already observed in the data seg-
ment Xλn

κn
when we were at the same value of τ as we see at time λn. In a similar

fashion we can define the average of the number of times that the residual waiting
time assumed a fixed value. Namely, define p̂l(X0, . . . ,Xλn) for each l as

p̂l(X0, . . . ,Xλn) = 1

�(λn)1−γ �
λn−1∑
i=κn

I{τ(Xi
0)=τ(X

λn
0 ),σi=l}.

Note that p̂l(X0, . . . ,Xλn) is a probability distribution on the nonnegative integers.
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THEOREM 1. Assume
∑∞

k=0 kα+1pk < ∞ for some α > 2. Let 0 < γ <

min(1 − 2/α,1/3). Then for the stopping times λn and the estimator hn(X0, . . . ,

Xλn), p̂l(X0, . . . ,Xλn) defined above, almost surely,

lim
n→∞

λn

n
= 1,(1)

lim
n→∞|hn(X0, . . . ,Xλn) − θλn | = 0(2)

and

lim
n→∞

∞∑
l=0

∣∣∣∣p̂l(X0, . . . ,Xλn) −
p

l+τ(X
λn
0 )∑∞

i=τ(X
λn
0 )

pi

∣∣∣∣ = 0.(3)

Note that p̂l(X0, . . . ,Xλn), hn and λn depend on γ and so on α.

In order to reduce our assumption from α > 2 to α > 1 a slightly more involved
scheme of stopping times is needed.

Let 0 < γ < 1 be arbitrary. First define the stopping times λ∗
n as λ∗

0 = ψ and for
n ≥ 1,

λ∗
n = min

{
t > λ∗

n−1 :∃ψ < i < log t such that τ(Xi
0) = τ(Xt

0)

and
∣∣{log t ≤ j < 2
log t� : τ(X

j
0) = τ(Xt

0)
}∣∣ ≥ 2
log t�(1−γ )}.

(Note that all logarithms are to the base 2.) Put

κ∗
n = min

{
K : |{
logλ∗

n� < j ≤ K : τ(X
j
0) = τ(X

λ∗
n

0 )}| = ⌈
2
logλ∗

n�(1−γ )⌉}
.

Note that κ∗
n < 2
logλ∗

n�. For n > 0 define our estimator h∗
n(X0, . . . ,Xλ∗

n
) at time

λ∗
n as

h∗
n(X0, . . . ,Xλ∗

n
) = 1

�2
logλ∗
n�(1−γ )�

κ∗
n∑

i=
logλ∗
n�+1

I{τ(Xi
0)=τ(X

λ∗
n

0 )}σi.

(Notice that κ∗
n ensures that we take into consideration exactly �2
logλ∗

n�(1−γ )�
pieces of occurrences.) The above formula is simply the average of the residual

waiting times that we have already observed in the data segment X
κ∗
n
logλ∗

n�+1 when
we were at the same value of τ as we see at time λ∗

n. Note that h∗
n(X0, . . . ,Xλ∗

n
)

is by far not as efficient as hn(X0, . . . ,Xλn) since as long as 2m ≤ λ∗
n < 2m+1 the

estimator h∗
n(X0, . . . ,Xλ∗

n
) is not refreshed. Keeping the same estimate for many

values of n enables us to use weaker moment assumptions since the number of
unfavorable events that we have to consider is reduced.
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In a similar fashion we can define the average of the number of times that the
residual waiting time assumed a fixed value. Namely, define p̂∗

l (X0, . . . ,Xλ∗
n
) for

each l as

p̂∗
l (X0, . . . ,Xλ∗

n
) = 1

�2
logλ∗
n�(1−γ )�

κ∗
n∑

i=
logλ∗
n�+1

I{τ(Xi
0)=τ(X

λ∗
n

0 ),σi=l}.

Note that p̂∗
l (X0, . . . ,Xλ∗

n
) is a probability distribution on the nonnegative integers.

THEOREM 2. Assume
∑∞

k=0 kα+1pk < ∞ for some α > 1. Let 0 < γ < 1/3.
Then for the stopping times λ∗

n and the estimator h∗
n(X0, . . . ,Xλ∗

n
), p̂∗

l (X0, . . . ,

Xλ∗
n
) defined above, almost surely,

lim
n→∞

λ∗
n

n
= 1,(4)

lim
n→∞|h∗

n(X0, . . . ,Xλ∗
n
) − θλ∗

n
| = 0(5)

and

lim
n→∞

∞∑
l=0

∣∣∣∣p̂∗
l (X0, . . . ,Xλ∗

n
) −

p
l+τ(X

λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

∣∣∣∣ = 0.(6)

Note that neither h∗
n, p̂∗

l (X0, . . . ,Xλ∗
n
) nor λ∗

n depend on α.

The main point in the above theorems is that we eventually know when the error
is small. If we do not want to know this, then the moment condition can be dropped
as is exhibited in the next theorem.

Define the estimator h̃n(X
n
0) as

h̃n(X
n
0) =

∑n−1
i=ψ σiI{τ(Xi

0)=τ(Xn
0 )}

|{ψ ≤ i ≤ n − 1 : τ(Xi
0) = τ(Xn

0)}| .

This is just the average of values of θi for the data segment Xn
0 for those indices i

for which τ(Xi
0) = τ(Xn

0).
Define also p̃l(X

n
0) as

p̃l(X
n
0) =

∑n−1
i=ψ I{τ(Xi

0)=τ(Xn
0 ),σi=l}

|{ψ ≤ i ≤ n − 1 : τ(Xi
0) = τ(Xn

0)}| .

THEOREM 3. For any binary renewal process {Xn}, and almost every se-
quence of observations X∞

0 , there is a set of indices D(X∞
0 ) ⊂ {0,1, . . .} such

that limn→∞
|D(X∞

0 )∩{0,1,...,n}|
n+1 = 1 and

lim
n∈D(X∞

0 ),n→∞
|h̃n(X0, . . . ,Xn) − θn| = 0(7)
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and

lim
n∈D(X∞

0 ),n→∞

∞∑
l=0

∣∣∣∣p̃l(X
n
0) − pl+τ(Xn

0 )∑∞
i=τ(Xn

0 ) pi

∣∣∣∣ = 0.(8)

However, for stopping times we need some restrictions to achieve consistency
on density 1 as is showed in the next theorem.

THEOREM 4. For any strictly increasing sequence of stopping times {λn} and
sequence of estimators {hn(X0, . . . ,Xλn)}, such that for all binary classical re-
newal processes limn→∞ λn

n
= 1 almost surely, there exists a binary classical re-

newal process such that

P

(
lim sup
n→∞

|hn(X0, . . . ,Xλn) − θλn | > 0
)

> 0.

We do not know if a similar result can be formulated for the estimation of the
distribution of the residual waiting times in total variation.

Finally, if one merely intends to predict along a stopping time with density
greater than 1 − ε for some fixed ε > 0, then no condition on higher moments at
all is required as it is stated in the next theorem. Let λ

(ε)
0 = ψ and for n ≥ 1 define

λ(ε)
n = min

{
t > λ

(ε)
n−1 : |{ψ ≤ i ≤ t : τ(Xi

0) < τ(Xt
0)}| ≤ t (1 − ε/2)

}
.

This sequence of stopping times is designed so that eventually we only stop when
τ(Xi

0) takes values bounded by some finite L. The point is that if L is large enough,
then eventually the density of times i when τ(Xi

0) < L will be greater than (1 −
ε/2) so that our stopping times will choose only moments that are less than L. On
the other hand, the fact that eventually the τ(Xi

0) < L’s will enable us to prove
the convergence of the empirical estimators by a direct application of the ergodic
theorem.

Define the estimator h
(ε)
n (X0, . . . ,Xλ

(ε)
n

) at time λ
(ε)
n as

h(ε)
n

(
X0, . . . ,Xλ

(ε)
n

) =
∑λ

(ε)
n −1

i=ψ I
{τ(Xi

0)=τ(X
λ
(ε)
n

0 )}
σi

|{ψ ≤ i < λ
(ε)
n : τ(Xi

0) = τ(X
λ

(ε)
n

0 )}|
.

Also define

p
(ε)
l

(
X0, . . . ,Xλ

(ε)
n

) =
∑λ

(ε)
n −1

i=ψ I
{τ(Xi

0)=τ(X
λ
(ε)
n

0 ),σi=l}

|{ψ ≤ i < λ
(ε)
n : τ(Xi

0) = τ(X
λ

(ε)
n

0 )}|
.
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THEOREM 5. For the stopping times λ
(ε)
n and estimator h

(ε)
n (X0, . . . ,Xλ

(ε)
n

)

defined above, almost surely,

lim inf
n→∞

n

λ
(ε)
n

> 1 − ε,

lim sup
n→∞

∣∣h(ε)
n

(
X0, . . . ,Xλ

(ε)
n

) − θ
λ

(ε)
n

∣∣ = 0

and

lim sup
n→∞

∞∑
l=0

∣∣∣∣p(ε)
l

(
X0, . . . ,Xλ

(ε)
n

) − pl+τ(Xn
0 )∑∞

i=τ(Xn
0 ) pi

∣∣∣∣ = 0.

3. Proof of Theorem 1. It is easy to see that limn→∞ λn

n
= 1 since if a block

of 1’s has positive probability it will appear with that frequency which is eventually

greater than λ
1−γ
n

λn
(which tends to zero). Formally,

lim inf
n→∞

n

λn

≥ lim inf
N→∞

max{i > 0 :λi ≤ N}
N

.

Thus we have to see why the density of times when we stop and estimate tends

to 1. Since the cutoff λ
1−γ
n

λn
tends to zero, any positive probability event will even-

tually be greater than it and so for any bounded K we will have

lim inf
N→∞

max{i > 0 : τ(X
λi

0 ) < K,λi ≤ N}
N

= P
(
τ(X0−∞) < K

)
.

As K tends to ∞ this last expression tends to 1 and thus

1 ≥ lim sup
n→∞

n

λn

≥ lim inf
n→∞

n

λn

≥ P
(
τ(X0−∞) < ∞) = 1.

This establishes (1).
The usual proof of the weak law of large numbers for independent and identi-

cally random variables {Zn} with a second moment uses Chebyshev’s inequality
P(|∑n

i=1(Zi −EZi)| ≥ nε) ≤ 1
nε2 E((Z1 −EZ1)

2). We will need a sharpening of
this for random variables with an αth moment for α > 2.

It will be convenient to extend our process, as we may to the past, and establish
first an inequality for an estimator based on an unlimited past. For a given fixed
k, for i ≥ 0 define jk

i as the ith occurrence of τ(Xk−∞) (reading backward) from
position k, that is,

jk
i = max

{
j ≤ k : |{j ≤ l < k : τ(Xl−∞) = τ(Xk−∞)}| = i

}
.

Now for i ≥ 0 define

Z
(k)
i = σjk

i
.
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Clearly Z
(k)
i are conditionally independent and identically distributed given

τ(Xk−∞) = L. Apply Markov inequality and Theorem 2.10 of Petrov [26] to get
that

P

(∣∣∣∣
∑�k1−γ �

i=1 Z
(k)
i

�k1−γ � −
∑∞

h=0 hph+L∑∞
h=L ph

∣∣∣∣ > ε
∣∣∣ τ(Xk−∞) = L

)

≤ 2C(α)

εαk(1−γ )α/2

∑∞
h=0 hαph+L∑∞

h=L ph

where C(α) depends only on α. [Notice that
E(|Z(k)

0 |α |τ(Xk−∞)=L)=∑∞
h=0 hαph+L∑∞

h=L ph
.]

Multiply both sides of the last inequality by P(τ(Xk−∞) = L) =
1

1+∑∞
h=0 hph

∑∞
h=L ph (note that by Kac’s theorem P(Xk−L = 0) = 1

1+∑∞
h=0 hph

; cf.

[7], Chapter XIII and [28], Section I.2.c) and sum over L. It is easy to see that

∞∑
L=0

∑∞
h=0 hαph+L∑∞

h=L ph

∑∞
h=L ph

1 + ∑∞
h=0 hph

≤
∑∞

h=0 hα+1ph

1 + ∑∞
h=0 hph

and we get the following estimate:

P

(∣∣∣∣
∑�k1−γ �

i=1 Z
(k)
i

�k1−γ � −
∑∞

h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ > ε

)
≤ 2C(α)

εαk(1−γ )α/2

∑∞
h=0 hα+1ph

1 + ∑∞
h=0 hph

.

Applying the Borel–Cantelli lemma [by assumption (1−γ )α
2 > 1] one gets that

∣∣∣∣
∑�k1−γ �

i=1 Z
(k)
i

�k1−γ � −
∑∞

h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ < ε

eventually almost surely. Particularly, on the subsequence λn,

∣∣∣∣
∑�(λn)1−γ �

i=1 Z
(λn)
i

�(λn)
1−γ � −

∑∞
h=0 hp

h+τ(X
λn−∞)∑∞

h=τ(X
λn−∞)

ph

∣∣∣∣ < ε

eventually almost surely. Since τ(X
λn−∞) = τ(X

λn

0 ), hn(X
λn

0 ) =
∑�(λn)1−γ �

i=1 Z
(λn)
i

�(λn)1−γ � and

θλn =
∑∞

h=0 hp
h+τ(X

λn
0 )∑∞

h=τ(X
λn
0 )

ph
, we get that

|hn(X0, . . . ,Xλn) − θλn | < ε

eventually almost surely which since ε was arbitrary gives (2).
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For (3) observe that
∞∑
l=0

∣∣∣∣p̂l(X
λn

0 ) −
p

l+τ(X
λn
0 )∑∞

i=τ(X
λn
0 )

pi

∣∣∣∣

=
�(λn)γ logλn�−1∑

l=0

∣∣∣∣p̂l(X
λn

0 ) −
p

l+τ(X
λn
0 )∑∞

i=τ(X
λn
0 )

pi

∣∣∣∣

+
∞∑

l=�(λn)γ logλn�

∣∣∣∣p̂l(X
λn

0 ) −
p

l+τ(X
λn
0 )∑∞

i=τ(X
λn
0 )

pi

∣∣∣∣
= An + Bn.

First we deal with the first term. We will use finite sums of exponential bounds in
order to bound it. Now define

Z
(k)
i,l = I{σ

jk
i
=l}.

Clearly Z
(k)
i,l are conditionally independent and identically distributed given

τ(Xk−∞) = L. Apply Hoeffding’s inequality to get that

P

(∣∣∣∣
∑�k1−γ �

i=1 Z
(k)
i,l

�k1−γ � − pl+L∑∞
h=L ph

∣∣∣∣ > k−γ (logk)−2
∣∣∣τ(Xk−∞) = L

)

≤ e−k1−γ /(2k2γ (log k)4).

After integrating both sides with respect to the conditioning, and using the sum
bound on the events for 0 ≤ l ≤ �kγ log k� − 1, we get

P

(
max

0≤l≤�kγ log k�−1

∣∣∣∣
∑�k1−γ �

i=1 Z
(k)
i,l

�k1−γ � −
pl+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ > k−γ (logk)−2
)

≤ �kγ log k�e−k1−γ /(2k2γ (logk)4)

which is summable (by assumption γ < 1
3 ) and so by the Borel–Cantelli lemma,

max
0≤l≤�kγ logk�−1

∣∣∣∣
∑�k1−γ �

i=1 Z
(k)
i,l

�k1−γ � −
pl+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ ≤ k−γ (log k)−2

eventually almost surely. Particularly, on the subsequence λn,

�(λn)γ logλn�−1∑
l=0

∣∣∣∣
∑�(λn)1−γ �

i=1 Z
(λn)
i,l

�(λn)
1−γ � −

p
l+τ(X

λn−∞)∑∞
h=τ(X

λn−∞)
ph

∣∣∣∣
≤ �(λn)

γ (logλn)�λn
−γ (logλn)

−2
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eventually almost surely. Observe that τ(X
λn−∞) = τ(X

λn

0 ) and p̂l(X
λn

0 ) =∑�(λn)1−γ �
i=1 Z

(λn)
i,l

�(λn)1−γ � and so we get that

An =
�(λn)γ logλn�−1∑

l=0

∣∣∣∣p̂l(X
λn

0 ) −
p

l+τ(X
λn
0 )∑∞

i=τ(X
λn
0 )

pi

∣∣∣∣ ≤ 2

logλn

(9)

eventually almost surely. We have to prove that Bn → 0 almost surely. Note that
by the Markov inequality, given τ(Xk

0) = L, for L < k,∑∞
l=�μL log k� pl+L∑∞

l=L pl

≤ 1

log k
(10)

where μL = ∑∞
i=L(i − L)pi/

∑∞
i=L pi .

Now observe that almost surely for sufficiently large n,

μ
τ(X

λn
0 )

≤ (λn)
γ .(11)

Indeed

hn(X
λn

0 ) = 1

�(λn)1−γ �
λn−1∑
i=κn

I{τ(Xi
0)=τ(X

λn
0 )}σi,λn ≤ λn − �(λn)

1−γ �
�(λn)1−γ � ≤ (λn)

γ − 1

[in the data segment X
λn

0 there are at least �(λn)
1−γ � zeros] and we have already

proved that hn(X
λn

0 ) − μ
τ(X

λn
0 )

→ 0.

Now, apply (11), (10) and the upper bound on An in (9) in order to get

Bn ≤
∞∑

l=�(λn)γ logλn�
p̂l(X

λn

0 ) +
∞∑

l=�(λn)γ logλn�

p
l+τ(X

λn
0 )∑∞

i=τ(X
λn
0 )

pi

≤ 1 −
�(λn)γ logλn�−1∑

l=0

p̂l(X
λn

0 ) + 2

logλn

≤ 1 −
�(λn)γ logλn�−1∑

l=0

p
l+τ(X

λn
0 )∑∞

i=τ(X
λn
0 )

pi

+
�(λn)γ logλn�−1∑

l=0

∣∣∣∣p̂l(X
λn

0 ) −
p

l+τ(X
λn
0 )∑∞

i=τ(X
λn
0 )

pi

∣∣∣∣ + 2

logλn

≤ 6

logn

eventually almost surely, and so Bn → 0 almost surely. The proof of Theorem 1 is
complete.
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4. Proof of Theorem 2. The proof is similar to that of Theorem 1 but with a
number of changes required to deal with the weaker hypothesis. It is easy to see
that limn→∞ λ∗

n

n
= 1 since if a block of 1’s has positive probability it will appear

with that frequency which is eventually greater than 2
logλ∗
n�(1−γ )

λ∗
n

(which tends to
zero). Formally,

lim inf
n→∞

n

λ∗
n

≥ lim inf
N→∞

max{i > 0 :λ∗
i ≤ N}

N

≥ lim inf
N→∞

max{i > 0 : τ(X
λ∗

i

0 ) < K,λ∗
i ≤ N}

N

= P
(
τ(X0−∞) < K

)
for arbitrary large K . Thus

1 ≥ lim sup
n→∞

n

λ∗
n

≥ lim inf
n→∞

n

λ∗
n

≥ P
(
τ(X0−∞) < ∞) = 1.

Let k < m be fixed. Define j
(k,m)
0 = m and for i ≥ 0 let j

(k,m)
i+1 denote the (i + 1)st

occurrence of τ(Xk−∞) (reading forward, starting at position m), that is,

j
(k,m)
i+1 = min

{
t > j

(k,m)
i : τ(Xt−∞) = τ(Xk−∞)

}
.

Now for i ≥ 1 define

Z
(k,m)
i = σ

j
(k,m)
i

.

Clearly Z
(k,m)
i are conditionally independent and identically distributed given

τ(Xk−∞) = L. For 1 < α ≤ 2 apply Markov inequality and Theorem 2 of von Bahr
and Essen in [5] to get that

P

(∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i

�(2m)1−γ � −
∑∞

h=0 hph+L∑∞
h=L ph

∣∣∣∣ > ε
∣∣∣τ(Xk−∞) = L

)

≤ 10

εα(2m)(1−γ )(α−1)

∑∞
h=0 hαph+L∑∞

h=L ph

.

[Notice that E(|Z(k,m)
1 |α|τ(Xk−∞) = L) =

∑∞
h=0 hαph+L∑∞

h=L ph
.] Multiply both sides of the

last inequality by P(τ(Xk−∞) = L) = 1
1+∑∞

h=0 hph

∑∞
h=L ph (note that by Kac’s the-

orem P(Xk−L = 0) = 1
1+∑∞

h=0 hph
; cf. [7], Chapter XIII and [28], Section I.2.c) and

sum over L. It is easy to see that
∞∑

L=0

∑∞
h=0 hαph+L∑∞

h=L ph

∑∞
h=L ph

1 + ∑∞
h=0 hph

≤
∑∞

h=0 hα+1ph

1 + ∑∞
h=0 hph
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and we get the following estimate:

P

(∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i

�(2m)1−γ � −
∑∞

h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ > ε

)

≤ 10

εα(2m)(1−γ )(α−1)

∑∞
h=0 hα+1ph

1 + ∑∞
h=0 hph

and in turn

P

(
max

0≤k≤m−1

∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i

�(2m)1−γ � −
∑∞

h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ > ε

)

≤ 10m

εα(2m)(1−γ )(α−1)

∑∞
h=0 hα+1ph

1 + ∑∞
h=0 hph

and the right-hand side is summable. For α > 2 apply Markov inequality and The-
orem 2.10 of Petrov [26] to get that

P

(∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i

�(2m)1−γ � −
∑∞

h=0 hph+L∑∞
h=L ph

∣∣∣∣ > ε
∣∣∣τ(Xk−∞) = L

)

≤ 2C(α)

εα2m(1−γ )α/2

∑∞
h=0 hαph+L∑∞

h=L ph

where C(α) depends only on α. Integrating both sides, just as in the previous case
above, we get

P

(∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i

�(2m)1−γ � −
∑∞

h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ > ε

)

≤ 2C(α)

εα2m(1−γ )α/2

∑∞
h=0 hα+1ph

1 + ∑∞
h=0 hph

and in turn

P

(
max

0≤k≤m−1

∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i

�(2m)1−γ � −
∑∞

h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ > ε

)

≤ 2mC(α)

εα2m(1−γ )α/2

∑∞
h=0 hα+1ph

1 + ∑∞
h=0 hph

and the right-hand side is summable. Applying the Borel–Cantelli lemma in both
cases one gets that

max
0≤k≤m−1

∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i

�(2m)1−γ � −
∑∞

h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ < ε
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eventually almost surely. Since 2m ≤ λ∗
n < 2m+1 for some m, we get that

|h∗
n(X0, . . . ,Xλ∗

n
) − θλ∗

n
| < ε

eventually almost surely, which since ε was arbitrary gives (5). [Indeed, observe
first that for k ≥ ψ , τ(Xk−∞) = τ(Xk

0). Now for suitable k < 
logλ∗
n� and m =


logλ∗
n�: h∗

n(X0, . . . ,Xλ∗
n
) =

∑�(2m)1−γ �
i=1 Z

(k,m)
i

�(2m)1−γ � and θλ∗
n
=

∑∞
h=0 hp

h+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph
.]

Now we will deal with (6). For k < m define

Z
(k,m)
i,l = I{σ

j
(k,m)
i

=l}.

Clearly, for fixed k < m and l, Z
(k,m)
i,l , i ≥ 1, are conditionally independent and

identically distributed given τ(Xk−∞) = L. Apply Hoeffding’s inequality to get
that

P

(∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i,l

�(2m)1−γ � − pl+L∑∞
h=L ph

∣∣∣∣ > (2m)
−γ

m−2
∣∣∣τ(Xk−∞) = L

)

≤ e−(2m)1−γ /2(2m)2γ m4
.

After integrating both sides with respect to the conditioning, and using the sum
bound on the events for 0 ≤ l < �(2m)γ m�, we get

P

(
max

0≤l<�(2m)γ m�

∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i,l

�(2m)1−γ � −
pl+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ > (2m)
−γ

m−2
)

≤ �(2m)
γ
m�e−(2m)1−γ /(2(2m)2γ m4).

Now

P

(�(2m)γ m�−1∑
l=0

∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i,l

�(2m)1−γ � −
pl+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ >
�(2m)γ m�
(2m)γ m2

)

≤ �(2m)
γ
m�e−(2m)1−γ /(2(2m)2γ m4)

and

P

(
max

0≤k<m

�(2m)γ m�−1∑
l=0

∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i,l

�(2m)1−γ � −
pl+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ >
�(2m)γ m�
(2m)γ m2

)

≤ m�(2m)γ m�
e(2m)1−γ /(2(2m)2γ m4)

,
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which is summable and so by the Borel–Cantelli lemma,

max
0≤k<m

�(2m)γ m�−1∑
l=0

∣∣∣∣
∑�(2m)1−γ �

i=1 Z
(k,m)
i,l

�(2m)1−γ � −
pl+τ(Xk−∞)∑∞
h=τ(Xk−∞)

ph

∣∣∣∣ ≤ �(2m)γ m�
(2m)γ m2 ≤ 2

m

eventually almost surely. Since 2m ≤ λ∗
n < 2m+1 for some m,

�2
logλ∗
n�γ 
logλ∗

n��−1∑
l=0

∣∣∣∣p̂l(X
λ∗

n

0 ) −
p

l+τ(X
λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

∣∣∣∣ ≤ 2


logλ∗
n�

(12)

eventually almost surely. [Indeed, observe first that for k ≥ ψ , τ(Xk−∞) = τ(Xk
0).

Now for suitable k < 
logλ∗
n� and m = 
logλ∗

n�: p̂l(X
λ∗

n

0 ) =
∑�(2m)1−γ �

i=1 Z
(k,m)
i,l

�(2m)1−γ � and
p

l+τ(X
λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )

pi
=

p
l+τ(Xk−∞)∑∞

h=τ(Xk−∞)
ph

.]

Observe that
∞∑
l=0

∣∣∣∣p̂l(X
λ∗

n

0 ) −
p

l+τ(X
λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

∣∣∣∣

=
�2
logλ∗

n�γ 
logλ∗
n��−1∑

l=0

∣∣∣∣p̂l(X
λ∗

n

0 ) −
p

l+τ(X
λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

∣∣∣∣

+
∞∑

l=�2
logλ∗
n�γ 
logλ∗

n��

∣∣∣∣p̂l(X
λ∗

n

0 ) −
p

l+τ(X
λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

∣∣∣∣
= An + Bn.

By (12), An → 0 almost surely. We have to prove that Bn → 0 almost surely. Note
that by the Markov inequality, given τ(Xk

0) = L, for L < k,∑∞
l=�μL
log k�� pl+L∑∞

l=L pl

≤ 1


log k�(13)

where μL = ∑∞
i=L(i − L)pi/

∑∞
i=L pi .

Now observe that almost surely for sufficiently large n,

μ
τ(X

λ∗
n

0 )
≤ 2
logλ∗

n�γ .(14)

Indeed

hn(X
λ∗

n

0 ) =
∑κ∗

n

i=
logλ∗
n�+1 I{τ(Xi

0)=τ(X
λ∗
n

0 )}σi

�2
logλ∗
n�(1−γ )� ≤ 2
logλ∗

n� − �2
logλ∗
n�(1−γ )�

�2
logλ∗
n�(1−γ )�

≤ 2
logλ∗
n�γ − 1
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(in the data segment X
λ∗

n

0 there are at least �2
logλ∗
n�(1−γ )� zeros) and we have

already proved that hn(X
λ∗

n

0 ) − μ
τ(X

λ∗
n

0 )
→ 0.

Now, apply (14), (13) and the upper bound on An in (12) in order to get

Bn ≤
∞∑

l=�2
logλ∗
n�γ 
logλ∗

n��
p̂l(X

λ∗
n

0 ) +
∞∑

l=�2
logλ∗
n�γ 
logλ∗

n��

p
l+τ(X

λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

≤ 1 −
�2
logλ∗

n�γ 
logλ∗
n��−1∑

l=0

p̂l(X
λ∗

n

0 ) + 1


logλ∗
n�

≤ 1 −
�2
logλ∗

n�γ 
logλ∗
n��−1∑

l=0

p
l+τ(X

λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

+
�2
logλ∗

n�γ 
logλ∗
n��−1∑

l=0

∣∣∣∣p̂l(X
λ∗

n

0 ) −
p

l+τ(X
λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

∣∣∣∣ + 1


logλ∗
n�

≤
∞∑

l=�2
logλ∗
n�γ 
logλ∗

n��

p
l+τ(X

λ∗
n

0 )∑∞
i=τ(X

λ∗
n

0 )
pi

+ 3


logλ∗
n�

≤ 4


logn�
eventually almost surely, and so Bn → 0 almost surely. The proof of Theorem 2 is
complete.

5. Proof of Theorem 3. In the proof of this theorem we do not need to use
explicit estimates and can rely on the ergodic theorem alone. Notice that these re-
newal processes are always ergodic and therefore any finite block that occurs at
all with positive probability will almost surely eventually occur in the data seg-
ment Xn

0 with an empirical distribution which is converging to its probability. This
observation yields the following for any fixed m:

lim
L→∞ lim

n→∞
1

n

n−1∑
i=0

I{τ(Xi
0)≤L,|h̃i (X

i
0)−

∑∞
k=0 kp

k+τ(Xi
0)

/
∑∞

k=τ(Xi
0)

pk |<2−m} = 1

almost surely. What follows is that for each m,

lim
n→∞

1

n

n−1∑
i=0

I{|h̃i (X
i
0)−

∑∞
k=0 kp

k+τ(Xi
0)

/
∑∞

k=τ(Xi
0)

pk |<2−m} = 1

almost surely.
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To obtain the set D1 with density 1 we will construct an auxiliary sequence of
integers Nm tending to infinity as follows. For a fixed realization X∞

0 , let N0 = 0
and for m ≥ 1 define

Nm = min

{
n > Nm−1 :∀i ≥ n,

1

i + 1

i∑
j=0

I{|h̃j (X
j
0 )−∑∞

k=0 kp
k+τ(X

j
0 )

/
∑∞

k=τ(X
j
0 )

pk |<2−(m+1)} > 1 − 2−(m+1)

}
.

The existence of these Nm’s follows once again from the ergodic theorem and since
we are requiring only a countable number of conditions we may assume that these
are satisfied simultaneously on a single set with probability 1. Notice that for any
i ≥ Nm the number of indices j where the error we are making is at most 2−(m+1)

is at least j (1 − 2−(m+1)). Using this sequence define the set of indexes D1(X
∞
0 )

as

D1(X
∞
0 ) =

∞⋃
i=1

{
n ≤ Ni :

∣∣∣∣h̃n(X0, . . . ,Xn) −
∑∞

k=0 kpk+τ(Xn
0 )∑∞

k=τ(Xn
0 ) pk

∣∣∣∣ < 2−i

}
.

By our previous observation the density of this D1 will be 1, namely:

lim
n→∞

|D1(X
∞
0 ) ∩ {0,1, . . . , n}|

n + 1
= 1.

Furthermore,

lim
n∈D(X∞

0 ),n→∞

∣∣∣∣h̃n(X0, . . . ,Xn) −
∑∞

k=0 kpk+τ(Xn
0 )∑∞

k=τ(Xn
0 ) pk

∣∣∣∣ = 0.

For p̃l(X
n
0) the proof proceeds along similar lines. A set D2(X

∞
0 ) is constructed

with density 1 along which (8) will hold and the set D in the theorem is taken to
be D1 ∩ D2 which has density 1. The proof of Theorem 3 is complete.

6. Proof of Theorem 4. Suppose that on the contrary

P

(
lim

n→∞|hn(X0, . . . ,Xλn) − θλn | = 0
)

= 1

for all binary classical renewal processes.
We first define an auxiliary Markov chain M(0). Let the state space be the non-

negative integers. For i ≥ 0 let p
(0)
0,i = 1

2i+1 and p
(0)
i+1,i = 1. Clearly, state zero is

positive recurrent and since the Markov chain is irreducible this Markov chain
yields a stationary and ergodic distribution. We will modify this Markov chain
M(0) in such a way that the limiting Markov chain M(∞) will remain stationary
and ergodic.
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The binary classical renewal process is defined as X
(i)
n = 0 if M

(i)
n = 0 and

X
(i)
n = 1 otherwise. Let L0 = 0.
Now choose N1 large enough that

P

( ∞⋃
n=1

{
L0 < λn < N1,X

(0)
λn

= 0,

∣∣∣∣∣hn

(
X

(0)
0 , . . . ,X

(0)
λn

) −
∞∑
i=0

ip
(0)
0,i

∣∣∣∣∣ < 1
100

} ∣∣∣ X
(0)
0 = 0

)
> 1 − 1

1000 .

This can be done since P(X
(0)
0 = 0) > 0 and limn→∞ λn

n
= 1. Note that if X

(0)
λn

= 0,

then θ
(0)
λn

= ∑∞
i=0 ip

(0)
0,i .

For an arbitrary δ1 < 0.25p
(0)
0,0 (which will be specified later) let p

(1)
0,0 = p

(0)
0,0 −δ1

and for some k1 > 2
δ1

, p
(1)
0,k1

= p
(0)
0,k1

+ δ1. Now the change in

∞∑
i=0

ip
(1)
0,i −

∞∑
i=0

ip
(0)
0,i = k1δ1 > 2.

Now choose δ1 so small such that∑
(x0,...,xN1 )∈{0,1}N1

∣∣P (
X

(0)
0 = x0, . . . ,X

(0)
N1

= xN1 |X(0)
0 = 0

)

− P
(
X

(1)
0 = x0, . . . ,X

(1)
N1

= xN1 |X(1)
0 = 0

)∣∣ ≤ 1
1000 .

In this way, for the {X(1)
n } process, for some L0 < λn < N1, the estimate

hn(X
(1)
0 , . . . ,X

(1)
λn

) will be smaller than the target
∑∞

i=0 ip
(1)
0,i by at least 1 with

probability 1 − 2
1000 .

For an arbitrary N1 < L1 let
∑

i≥L1
p

(1)
0,i = β1. For an arbitrary δ2 < 0.25p

(1)
0,0 let

p
(2)
0,0 = p

(1)
0,0 − δ2 and for some k2 which will be specified later, p

(2)
0,k2

= p
(1)
0,k2

+ δ2.
Now the change in∑∞

i=L1
(i − L1)p

(2)
0,i∑∞

i=L1
p

(2)
0,i

−
∑∞

i=L1
(i − L1)p

(1)
0,i∑∞

i=L1
p

(1)
0,i

= k2δ2

β1 + δ2
− δ2

∑∞
i=L1

ip
(1)
0,i

β1(β1 + δ2)

and in
∞∑
i=0

ip
(2)
0,i −

∞∑
i=0

ip
(1)
0,i = k2δ2.

Choose N1 < L1 such that 3β1 < 100−2. Now choose N2 so big such that

P

( ∞⋃
n=1

{
L1 < λn < N2,X

(1)
λn−L1

= 0,X
(1)
λn−L1+1 = · · · = X

(1)
λn

= 1,
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∣∣∣∣∣hn

(
X

(1)
0 , . . . ,X

(1)
λn

) −
∑∞

i=L1
(i − L1)p

(1)
0,i∑∞

i=L1
p

(1)
0,i

∣∣∣< 1

100

}∣∣∣∣∣X(1)
0 = 0

)

> 1 −
(

1

1000

)2

.

Note that if X
(1)
λn−L1

= 0 and X
(1)
λn−L1+1 = · · · = X

(1)
λn

= 1, then θ
(1)
λn

=∑∞
i=L1

(i−L1)p
(1)
0,i∑∞

i=L1
p

(1)
0,i

.

Choose k2 so large and δ2 so small such that

k2δ2

β1 + δ2
− δ2

∑∞
i=L1

ip
(1)
0,i

β1(β1 + δ2)
> 2,

k2δ2 <
1

1002

and ∑
(x0,...,xN2 )∈{0,1}N2

∣∣P (
X

(1)
0 = x0, . . . ,X

(1)
N2

= xN2 |X(1)
0 = 0

)

− P
(
X

(2)
0 = x0, . . . ,X

(2)
N2

= xN2 |X(2)
0 = 0

)∣∣ ≤ 1

10002 .

In this way, for the M(2) process for some L0 < λn1 < N1 and for some other
L1 < λn2 < N2 the estimate hn(X

(2)
0 , . . . ,X

(2)
λn

) will be smaller than the target by

at least 1 with probability 1 − 2
1000 − 2

10002 . (Note that
∑∞

i=0 ip
(1)
0,i ≥ ∑∞

i=0 ip
(0)
0,i .)

Inductively, assume at stage j we have a Markov chain M(j) which satisfies the
conditions (Cj ):

There are integers L0 < N1 < L1 < · · · < Nj such that

P

( ∞⋃
n1=1

, . . . ,

∞⋃
nj=1

j⋂
i=1

{
Li−1 < λni

< Ni,X
(j)
λni

−Li−1
= 0,

X
(j)
λni

−Li−1+1 = · · · = X
(j)
λni

= 1,

hni

(
X

(j)
0 , . . . ,X

(j)
λni

)
<

∑∞
h=Li−1

(h − Li−1)p
(j)
0,h∑∞

h=Li−1
p

(j)
0,h

− 1

}∣∣∣

X
(j)
0 = 0

)

> 1 −
j∑

i=1

2

1000i
,(15)
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∑
(x0,...,xNj

)∈{0,1}Nj

∣∣P (
X

(j−1)
0 = x0, . . . ,X

(j−1)
Nj

= xNj
|X(j−1)

0 = 0
)

− P
(
X

(j)
0 = x0, . . . ,X

(j)
Nj

= xNj
|X(j)

0 = 0
)∣∣ ≤ 1

1000j
(16)

and
∞∑

h=0

hp
(j)
0,h ≤ 1 +

j∑
h=1

1

100h
.(17)

Now we will define M(j+1). For an arbitrary Nj < Lj let
∑

i≥Lj
p

(j)
0,i = β . For

some δ < 0.25p
(j)
0,0 and k which will be specified later, let p

(j)
0,0 = p

(j)
0,0 − δ and

p
(j)
0,k = p

(j)
0,k + δ. Now the change in∑∞

i=Lj
(i − Lj)p

(j+1)
0,i∑∞

i=Lj
p

(j+1)
0,i

−
∑∞

i=Lj
(i − Lj)p

(j)
0,i∑∞

i=Lj
p

(j)
0,i

= kδ

β + δ
−

∑∞
i=Lj

ip
(j)
0,i δ

β(β + δ)

and in
∞∑
i=1

ip
(j+1)
0,i −

∞∑
i=1

ip
(j)
0,i = kδ.

Now choose Lj such that 3β < 100−(j+1). Choose Nj+1 so big such that

P

( ∞⋃
n=1

{
Lj < λn < Nj+1,X

(j)
λn−Lj

= 0,X
(j)
λn−Lj+1 = · · · = X

(j)
λn

= 1,

∣∣∣∣∣hn

(
X

(j)
0 , . . . ,X

(j)
λn

) −
∑∞

i=Lj
(i − Lj)p

(j)
0,i∑∞

i=Lj
p

(j)
0,i

∣∣∣∣∣ <
1

100

} ∣∣∣ X
(j)
0 = 0

)

> 1 −
(

1

1000

)j

.

Note that if k > K = max0≤i<j

∑∞
h=Li

hp
(j)
0,h∑∞

h=Li
p

(j)
0,h

, then for all 0 ≤ i < j ,

∑∞
h=Li

hp
(j+1)
0,h∑∞

h=Li
p

(j+1)
0,h

≥
∑∞

h=Li
hp

(j)
0,h∑∞

h=Li
p

(j)
0,h

.(18)

Choose k > K so large and δ so small such that

kδ

β + δ
− δ

∑∞
i=Lj

ip
(j)
0,i

β(β + δ)
> 2,

kδ <
1

100j+1
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and ∑
(x0,...,xNj+1 )∈{0,1}Nj+1

∣∣P (
X

(j)
0 = x0, . . . ,X

(j)
Nj+1

= xNj+1 |X(j)
0 = 0

)

− P
(
X

(j+1)
0 = x0, . . . ,X

(j+1)
Nj+1

= xNj+1 |X(j+1)
0 = 0

)∣∣
≤ 1

1000j+1 .

The resulting Markov chain M(j+1) is irreducible and positive recurrent and so it
yields a stationary and ergodic distribution and the inductive assumption holds for
j + 1.

Define p
(∞)
i,j = limn→∞ p

(n)
i,j . The resulting Markov chain M(∞) is clearly irre-

ducible and positive recurrent and so it yields a stationary and ergodic distribution.
Let Xn = 0 if M

(∞)
n = 0 and 1 otherwise. Clearly, by the induction and (18),

P

( ∞⋃
n1=1

, . . . ,

∞⋃
nj=1

j⋂
i=1

{
Li−1 < λni

< Ni,Xλni
−Li

= 0,

Xλni
−Li+1 = · · · = Xλni

= 1,

hni
(X0, . . . ,Xλni

) <

∑∞
h=Li

(h − Li)p
(∞)
0,h∑∞

h=Li
p

(∞)
0,h

− 1
}∣∣∣X0 = 0

)

> 1 −
∞∑
i=1

2

1000i
.

Since the set (event) is decreasing in j so

P

( ∞⋃
l=1

∞⋃
nl=1

∞⋂
i=1

{
Li−1 < λnl

< Ni,Xλnl
−Li

= 0,

Xλnl
−Li+1 = · · · = Xλnl

= 1,

hnl
(X0, . . . ,Xλnl

) <

∑∞
h=Li

(h − Li)p
(∞)
0,h∑∞

h=Li
p

(∞)
0,h

− 1
} ∣∣∣ X0 = 0

)

≥ 1 −
∞∑
i=1

2

1000i

and
∞∑

h=0

hp
(∞)
0,h ≤ 1 +

∞∑
h=1

1

100h
.

The proof of Theorem 4 is complete.
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7. Proof of Theorem 5. Consider the largest L such that

P
(
τ(X0−∞) < L

) ≤ 1 − ε

2
.

Applying the ergodic theorem we get that almost surely,

lim inf
n→∞

n

λ
(ε)
n

≥ P
(
τ(X0−∞) ≤ L

) ≥ 1 − ε

2
> 1 − ε.

It is also clear that

lim sup
n→∞

n

λ
(ε)
n

≤ P
(
τ(X0−∞) ≤ L

)
,

and so eventually we are predicting for finitely many blocks of 1’s and by ergod-
icity the consistency of the estimator h

(ε)
n (X0, . . . ,Xλ

(ε)
n

) is also established. Since

p
(ε)
l (X

λ
(ε)
n

0 ) is a probability distribution, now by ergodicity its consistency in total
variation follows immediately for the same reason and the proof of Theorem 5 is
complete.
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