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ON THE LARGEST COMPONENT OF A RANDOM GRAPH WITH
A SUBPOWER-LAW DEGREE SEQUENCE IN A

SUBCRITICAL PHASE

BY B. G. PITTEL

Ohio State University

A uniformly random graph on n vertices with a fixed degree sequence,
obeying a γ subpower law, is studied. It is shown that, for γ > 3, in a sub-
critical phase with high probability the largest component size does not ex-
ceed n1/γ+εn , εn = O(ln lnn/ lnn), 1/γ being the best power for this ran-
dom graph. This is similar to the best possible n1/(γ−1) bound for a different
model of the random graph, one with independent vertex degrees, conjectured
by Durrett, and proved recently by Janson.

1. Introduction. In a recently published book ([5], Section 1.2), Durrett for-
mulated the following conjecture.

Let p = {pj }j≥1 be a probability distribution. Let D1, . . . ,Dn be i.i.d. ran-
dom variables, each having the distribution p. Consider a graph on the ver-
tex set [n], chosen uniformly at random among all graphs with the degree se-
quence (D1, . . . ,Dn). For such a set of graphs to be nonempty, it is necessary
that maxDi < n and

∑
i Di is even. (The first condition holds with probability

approaching 1 if E[D] < ∞, and the second condition holds with probability ap-
proaching 1/2 if E[D2] < ∞, and g.c.d.{j :pj > 0} is odd.) Durrett states that at
a vicinity of a generic vertex v the random graph looks like a tree rooted at v,
and the number of direct descendants of every descendant of v has a distribution
q = {qj }j≥0,

qj = (j + 1)pj+1∑
k≥1 kpk

, j ≥ 0.(1.1)

If so, under the condition

ν := ∑
j

jqj < 1,

one should expect that the component containing v, and even the largest compo-
nent, are likely to be small compared to n. Specifically, Durrett conjectured that
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for the power-law distribution,

pj = Cj−γ , γ > 3,

the likely size of the largest component should be of order n1/(γ−1), exactly. In
other words, the largest component has size of order of the maximum vertex de-
gree. Janson [6] has recently proved Durrett’s conjecture.

In this paper we consider a different model of the random graph, in which a
degree sequence is fixed. There is given a tuple d = d(n) = (d1, . . . , dn) of positive
integers d1, . . . , dn < n such that d1 +· · ·+dn is even. We consider a sample space
Gn,d of all graphs on [n] with the degree sequence d. Introduce the empirical
degree distribution

p = {p1, . . . , pn−1}, pj := |{i ∈ [n] :di = j}
n

.

Let q = q(p) be defined by (1.1). Assuming that p obeys a subpower law, that is,

pj ≤ cj−γ , 1 ≤ j ≤ n − 1,(1.2)

with γ > 3, we show that Gn,d is nonempty. We prove that, under the condition∑
j≥1

jqj ≤ 1 − ε, ε > 0,(1.3)

the largest component in the graph Gn,d, chosen uniformly at random from Gn,d,
has size Cn = Op(n1/γ lnn), that is, Cn/(n

1/γ lnn) is bounded in probability. Sim-
ilarly to Janson’s result for the independent degrees model, the power 1/γ is the
best possible for the fixed-degree-sequence model, since among the degree se-
quences d in question there are those with maxv∈[n] dv of the exact order n1/γ .

That, under the condition equivalent to (1.3), Cn/n → 0 in probability, had
already been proved by Molloy and Reed [7, 8]. They also proved that, under
their form of the condition ∑

j≥1

jqj ≥ 1 + ε,

with high probability the random graph Gn,d has a giant component of size �(n),
even being able to establish, under additional conditions, the limit of that size
scaled by n.

Following the footsteps of Molloy and Reed, our proof is based on analysis of an
algorithm that determines the component containing a given vertex. We construct
a collection of exponential supermartingales in order to prove, via the optional
sampling theorem, that the random growth of that component follows closely a
certain deterministic path. See [1] and [9], where a similar approach was used
for analysis of the site (bootstrap) and the bond percolation on a random regular
graph.
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2. Main result and proofs. Let d1, . . . , dn be positive integers, such that d1 +
· · · + dn is even. Let Gn,d denote the sample space of all graphs on the vertex set
[n] that have the degree sequence d = (d1, . . . , dn). Denote by Gn,d the random
graph which is distributed uniformly on Gn,d.

In parallel, let MGn,d denote the sample space of all multigraphs with the de-
gree sequence d. Let us describe the random multigraph MGn,d suggested first by
Bollobás [3]. Consider the disjoint sets S1, . . . , Sn of cardinalities d1, . . . , dn; set
Si representing vertex i ∈ [n]. (Some people prefer assigning di “half-edges” to a
vertex i ∈ [n], instead of sets Si , but the difference is purely linguistic.) We know
that S := ⋃

i Si has an even cardinality 2m := d1 + · · · + dn. Introduce the sample
space Pn,d of all (2m − 1)!! = 1 · 3 · · · (2m − 1) pairings on S. Let Pn,d be the
random pairing distributed uniformly on Pn,d. Define MGn,d as follows: two ver-
tices i, j ∈ [n] are joined by an edge iff there are s′ ∈ Si , s′′ ∈ Sj such that {s′, s′′}
is one of the pairs in Pn,d. Obviously MGn,d may well have loops and multiple
edges. And it is not uniformly distributed on MGn,d. However, conditioned on the
event An := {no loops, no multiple edges}, MGn,d is a simple graph distributed
uniformly on Gn,d, hence can be viewed as the random graph Gn,d. (This con-
nection is due to the observation that every G ∈ Gn,d induces the same number,
d1! · · ·dn!, of pairings in Pn,d.)

Suppose that d = d(n) is such that

lim inf P(An) > 0.(2.1)

Under (2.1), any asymptotically rare (sure) event for MGn,d is an asymptotically
rare (sure) event for Gn,d. And we will see that the probability estimates for the
events in MGn,d become quite manageable once translated into the language of the
space Pn,d.

Introduce

ν = ν(n) =
∑

i∈[n] di(di − 1)∑
i∈[n] di

.(2.2)

ν can be interpreted as the expected outdegree of a nonroot vertex in a tree rooted
at a given vertex v, which, heuristically, is how Gn,d looks like in a vicinity of v.
Let

pj = pj (n) := 1

n
|{i ∈ [n] :di = j}|, j ∈ [n − 1].

Then (2.2) becomes

ν =
∑

j∈[n−1] j (j − 1)pj∑
j∈[n−1] jpj

,

which is the ratio of the first two factorial moments of the distribution {pj }. We
denote the first moment, the average vertex degree, by d = d(n).
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We assume that d = d(n) is such that

lim sup
n→∞

∑
j∈[n−1]

j2pj < ∞, lim
n→∞n−1

∑
j∈[n−1]

j4pj = 0.(2.3)

In fact, we assume a stronger condition, namely that {pj } is a subpower-law dis-
tribution, that is,

pj ≤ c j−γ , γ > 3.(2.4)

In this case, since

|{i ∈ [n] :di = j}| = npj ≤ c
n

jγ
< 1 ∀j > jn := 	A(γ, c)n1/γ 
,

we see that

|{i ∈ [n] :di = j}| = 0, pj = 0 ∀j > jn.

In other words, maxi∈[n] di , the largest vertex degree, is jn, at most. That the first
condition in (2.3) is met under (2.4) is obvious; the second condition holds true,
since (2.4) implies

n−1
∑

j∈[n−1]
j4pj = o(n−1/3);

see (2.19).

LEMMA. Under the condition (2.3),

lim inf P(An) ≥ exp(−ν̂/2 − ν̂2/4) > 0, ν̂ := lim supν.

NOTE. Applied to the degree sequence d = (d, . . . , d), this lemma yields a
well-known asymptotic formula for the number of all d-regular graphs, due to
Bender and Canfield [2].

We prove Lemma in the Appendix.

THEOREM. Let Cn denote the size of the largest component (cluster) of the
random graph Gn,d. Under the condition (2.4), for λ = λ(n) → ∞ however slowly,

lim
n→∞ P{Cn ≤ λn1/γ lnn} = 1,

provided that

lim supν < 1;(2.5)

in short, Cn = OP (n1/γ lnn).
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PROOF. We will prove the bound by upper-bounding the likely size of a com-
ponent that contains a generic vertex v ∈ [n]. In view of Lemma, it suffices to
bound the size of the component of the random multigraph MGn,d that contains
vertex v.

Notice that a subset V of [n] is the vertex set of this component iff for every
u ∈ V there exist w1, . . . ,wk ∈ [n] such that, for some s0 ∈ Sv, s1 ∈ Sw1, . . . , sk ∈
Swk

, sk+1 ∈ Su, all the pairs {s0, s1}, . . . , {sk, sk+1} are in Pn,d. So we may, and
will, deal with the corresponding “component” in Pn,d itself. We determine this
component algorithmically, by adding to a current cluster of pairs exactly one new
pair {s′, s′′} ∈ Pn,d, where a point s′ is not in the current cluster of pairs, but has
the same vertex “host” as one of the points in those pairs. [We will call them
the (currently) active points.] If the point s ′′, the partner of the point s′, is hosted
by a fresh vertex, u, then u joins the current vertex cluster, and the du − 1 still
unexplored points hosted by u become active. As a result, the number of active
points changes by (−1) + (du − 1) = du − 2. If s′′ happens to be hosted by a
vertex from the current vertex cluster, then the vertex cluster remains the same, but
the number of active points decreases by 2.

Importantly, instead of generating the uniformly random paring Pn,d in advance,
we can generate it one pair at a time, as called for by the algorithmic process.
Namely, given a total ordering of the points in S, as s′ we pick the first, say, active
point and pair it with a point s′′, chosen uniformly at random among all points not
in the pairs.

Let A(t), Ij (t) denote the total number of the currently active points and the
number of the currently inactive (not in the current cluster, i.e.) vertices after t

steps of the algorithm. In particular,

A(0) = dv, Ij (0) = npj − δj,dv , j ≤ jn.(2.6)

Introduce

I (t) = ∑
j≤jn

jIj (t),

the total number of inactive points. From the discussion above,

A(t + 1) + I (t + 1) = A(t) + I (t) − 2,

so that, by (2.6),

A(t) + I (t) = A(0) + I (0) − 2t = nd − 2t,(2.7)

where

d = n−1
∑
i≤n

di = ∑
j≤jn

jpj

is the average vertex degree. From (2.7), the process will terminate no later than
by time t ≤ nd/2.
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Clearly {A(t), {Ij (t)}j≤jn}t≥0 is a Markov chain, and if

t < T = Tv := min
{
τ > 0 : min{A(τ), I (τ )} = 0

}
,

then

P[Ij (t + 1) = Ij (t) − 1 | Ft ] = − jIj (t)

A(t) + I (t) − 1
,(2.8)

E[Ij (t + 1) | Ft ] = Ij (t) + (−1)
jIj (t)

A(t) + I (t) − 1
,

E[A(t + 1) | Ft ] = A(t) + (−2)
A(t) − 1

A(t) + I (t) − 1
(2.9)

+ ∑
j≥1

jIj (t)

A(t) + I (t) − 1
(j − 2);

here P[· | Ft ], E[· | Ft ] denote the probability and the expectation conditioned on
{A(t), {Ij (t)}j≤jn}. Since T is a stopping time, it follows from (2.8) and (2.7) that,
for each j ≤ jn,

Xj(t) :=
⎧⎪⎨
⎪⎩

Ij (t)∏t−1
τ=0(1 − j/(nd − 2τ − 1))

, t ≤ T ,

Xj(T ), t > T ,

is a martingale, with

E[Xj(t)] ≡ Xj(0) = Ij (0) = npj − δj,dv .(2.10)

We want to show that, for t = O(nα), α ∈ (γ −1,1−γ −1), Xj(t) is relatively close
to Xj(0), with probability very close to 1. (Of course, we focus on α close to γ −1,

since we expect the process to terminate around a time close to nγ −1
.) To this end,

first let us prove that the sequence

Qj(t) := exp[nβj Xj (t)/n], t ≤ nα,

is “almost” a (super)martingale, provided that

γ −1 + α < 1,
(2.11)

2(βj − 1) = min
{

0,−α + (γ − 1)
ln j

lnn

}
.

Let t < T . Observe that, for j ≤ jn,
t∏

τ=0

(
1 − j

nd − 2τ − 1

)
= exp

(
−j

2

∫ nd

nd−2t

dx

x
+ O(j/n)

)

=
(

1 − 2t

nd

)j/2(
1 + O(j/n)

)
(2.12)
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= 1 + O(jt/n)

= 1 + O(nγ −1+α−1) → 1.

Consequently, using

0 ≤ Ij (t) − Ij (t + 1) ≤ 1, jIj (t) ≤ jIj (0) = jpjn ≤ dn,

we obtain

n−1Xj(t + 1) − n−1Xj(t)

= n−1 Ij (t + 1) − Ij (t)∏t
τ=0(1 − j/(nd − 2τ − 1))

− n−1 Ij (t)j/(nd − 2t − 1)∏t
τ=0(1 − j/(nd − 2τ − 1))

(2.13)

= O
(
n−1|Ij (t + 1) − Ij (t)|) + O(jIj (t)n

−2)

= O(n−1).

Therefore, as βj ≤ 1,

Qj(t + 1)

Qj (t)
= exp

[
nβj

(
n−1Xj(t + 1) − n−1Xj(t)

)]
= 1 + nβj−1(

Xj(t + 1) − Xj(t)
)

+ O
(
n2(βj−1)(Xj(t + 1) − Xj(t)

)2)
.

Since Xj(t) is a martingale, we have

E[Xj(t + 1) − Xj(t) | Ft ] = 0.

Further, by (2.13) and (2.8),

E
[(

Xj(t + 1) − Xj(t)
)2 | Ft

]
= O

(
E

[(
Ij (t + 1) − Ij (t)

)2 | Ft

]) + O((jpj )
2)

= O
(
jpj + (jpj )

2) = O(jpj ).

Consequently, for t < T , and trivially for t ≥ T ,

1

Qj(t)
E[Qj(t + 1) | Ft ] = 1 + O

(
n2(βj−1)jpj

)
= 1 + O

(
n2(βj−1)j−γ+1)

= 1 + O(n−α),
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the third equality and the fourth equality following from (2.4) and the definition of
βj in (2.11), respectively. Thus, there exists εn > 0, εn = O(n−α), such that

E[(1 + εn)
−t−1Qj(t + 1) | Ft ] ≤ (1 + εn)

−tQj (t), t ≤ nα.

It makes

Q̂j (t) := (1 + εn)
−tQj (t), t ≤ nα,

a supermartingale, that differs from Qj(t) by a factor bounded away from both
zero and infinity.

Given j ≤ jn, and z > 0, introduce a stopping time Tj (z), the first t ≤ nα ∧ T

such that ∣∣∣∣∣Ij (t)

n

t−1∏
τ=0

(
1 − j

nd − 2τ − 1

)−1

− Ij (0)

n

∣∣∣∣∣ >
z

nβj
,

and set Tj (z) = nα + 1� if no such t exists. By (2.10), for t ≤ nα ∧ T and t <

minj Tj (z), we have

Ij (t) = (npj − δj,dv )

t−1∏
τ=0

(
1 − j

nd − 2τ − 1

)
+ O(n1−βj z).(2.14)

Applying the Optional Sampling Theorem to the supermartingale

Q̂j (t)

Q̂j (0)
= (1 + εn)

−t exp
[
nβj

(
Xj(t)/n − Xj(0)/n

)]
, t ≤ nα,

the stopping time Tj (z) (Durrett [4], Section 4.7), and using Markov inequality,
we have: uniformly for z > 0, and j ≤ jn,

P{Tj (z) = nα + 1�} = O(e−z).

Choosing z = χ lnn, (χ > γ −1), and introducing

Bn =
{

min
j≤jn

Tj (z) = nα + 1�
}
,

we obtain then

P(Bn) ≥ 1 − O(jne
−z) = 1 − O(nγ −1

e−χ lnn) = 1 − O(n−χ+γ −1
).(2.15)

Notice that, on the likely event Bn, (2.14) holds for all t ≤ nα ∧ T .
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Armed with (2.14), we turn our attention to (2.9) for

E[A(t + 1) | Ft ], t ≤ nα ∧ T and t < min
j

Tj (z).

By (2.14), for the sum in (2.10) we can write

∑
j≤jn

j (j − 2)Ij (t) = n
∑
j≤jn

j (j − 2)pj

t−1∏
τ=0

(
1 − j

nd − 2τ − 1

)
(2.16)

+ O(d2
v ) + O

(
lnn

∑
j≤jn

j2n1−βj

)
.

Here d2
v = O(n2γ −1

), and by the definition of βj ,∑
j≤jn

j2n1−βj ≤ ∑
j≤nα/(γ−1)

j2n1−βj + ∑
j≤jn

j2

= nα/2
∑

j≤nα/(γ−1)

1

j (γ−5)/2 + O(j3
n )

=
{

O
(
n3α/(γ−1) lnn

) + O(n3γ −1
), γ ≤ 7,

O(nα/2) + O(n3γ −1
), γ > 7.

Or ∑
j≤jn

j2n1−βj = O(n3γ −1
),(2.17)

for α close to γ −1. Furthermore, using (2.12),

n
∑
j≤jn

j (j − 2)pj

t−1∏
τ=0

(
1 − j

nd − 2τ − 1

)
(2.18)

= n
∑
j≤jn

j (j − 2)pj

(
1 − 2t

nd

)j/2

+ O

( ∑
j≤jn

j3pj

)
.

Here, by

1 − mx ≤ (1 − x)m ≤ 1 − mx +
(

m

2

)
x2, x ≥ 0,

we have

1 − 2t

nd

j

2
≤

(
1 − 2t

nd

)j/2

≤ 1 − 2t

nd

j

2
+ O(n−2j2t2);
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for j = 1 we need the lower bound as j (j − 2)|j=1 < 0. Therefore

n
∑
j≤jn

j (j − 2)pj

(
1 − 2t

nd

)j/2

≤ n
∑
j≤jn

j (j − 2)pj + O

(
t

∑
j≤jn

j3pj + n−1t2
∑
j≤jn

j4pj

)

(2.19)
= n

∑
j≤jn

j (j − 2)pj + O
(
nα+γ −1 + n−1+2(α+γ −1))

= n
∑
j≤jn

j (j − 2)pj + O(nα+γ −1
),

as α + γ −1 < 1; see (2.11). [We have used the bounds∑
j≤jn

j3pj = O
(
nmax{0,(4−γ )γ −1} lnn

)
,

(2.20) ∑
j≤jn

j4pj = O
(
nmax{0,(5−γ )γ −1} lnn

)
,

which easily follow from (2.4).]
Combining (2.16)–(2.19), we obtain: for t ≤ nα ∧ T , t < minj Tj (z),∑

j≤jn

j (j − 2)Ij (t) ≤ n
∑
j≤jn

j (j − 2)pj + O(n3γ −1
lnn),(2.21)

if α is close to γ −1. Notice that

∑
j

j (j − 2)pj =
(∑

j

jpj

)(∑
j j (j − 1)pj∑

j jpj

− 1
)

= d(ν − 1),

so that

lim sup
∑
j

j (j − 2)pj < 0,

which is the Molloy–Reed condition for the subcritical phase. So, by (2.21) and
the condition γ > 3, (2.9) implies that

E[A(t + 1) | Ft ] ≤ A(t) − a

[
t ≤ T ∧ nα and t < min

j
Tj (z)

]
;

(2.22)
a := 1

2 lim sup(1 − ν) > 0,

for all n large enough.
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The rest is short. Set

A(t + 1) = A(t) − a

[
t > T ∧ nα or t ≥ min

j
Tj (z)

]
.

Clearly the extended sequence {A(t)} satisfies (2.22) for all t . Besides, since
T = Tv is the first time τ when

min{A(τ), I (τ )} = 0,

we have

{nα < T } ∩
{

min
j

Tj (z) = nα + 1�
}

= {nα < T } ∩ Bn

(2.23)
⊆ {A([nα]) > 0}.

Furthermore, since the maximum vertex degree is jn at most,

A(0) = dv ≤ jn, |A(t + 1) − A(t)| ≤ jn; jn = O(nγ −1
).

Also, reading out the conditional distribution P{A(t + 1) − A(t) = i |Ft } from
(2.10), and using (2.20),

E
[(

A(t + 1) − A(t)
)2 | Ft

] ≤ 4 + 2

d

∑
j≤jn

j3pj = O
(
nmax{0,(4−γ )γ −1} lnn

)
,

if t ≤ T ∧ nα and t < minj Tj (z). And the bound holds trivially for the larger
values of t . Then

E
[
exp

(
n−γ −1(

A(t + 1) − A(t)
)) | Ft

]
= 1 + n−γ −1

E[A(t + 1) − A(t) | Ft ]
+ O

(
n−2γ −1

E
[(

A(t + 1) − A(t)
)2 | Ft

])
≤ 1 − an−γ −1 + O

(
nmax{−2γ −1,(2−γ )γ −1} lnn

)
≤ 1 − bn−γ −1

, b < a,

since γ > 3. Therefore

E
[
exp

(
n−γ −1(

A(t + 1) − A(t)
)) | Ft

] ≤ exp(−bn−γ −1
),

and then

E[exp(n−γ −1
A(t))] = O(exp(−tbn−γ −1

)).

Hence

P{A(t) > 0} = O(exp(−tbn−γ −1
)).
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In particular, choosing

α = γ −1 + ln lnn

lnn
+ η

lnn
, η > 0,(2.24)

which certainly satisfies the inequality γ −1 + α < 1 in (2.11) for n ≥ n(η), we
obtain

P{A([nα]) > 0} = O(n−bη).

By (2.23), we have then

P{(nα < Tv) ∩ Bn} = O(n−bη),

and combining this estimate with (2.15) we conclude: for any fixed χ > 0 and
η > 0,

P{nα < Tv} = P{eηnγ −1
lnn < Tv} = O(n−χ+γ −1 + n−bη).

Of course, a bounded constant factor implicit in the big-Oh notation depends on χ

and η. Thus, given K > 0, there exists L = L(K) such that

P{Lnγ −1
lnn < Tv} ≤ n−K−1, v ∈ [n],

whence

P
{

max
v∈[n]Tv > Lnγ −1

lnn

}
≤ n−K.

It remains to notice that the component containing the vertex v has size Tv at most,
so that Cn, the size of the largest component, is maxv Tv , at most.

NOTE. If, instead of (2.24), we had set

α = γ −1 + ω(n)

lnn
, ω(n) → ∞, ω(n) = o(lnn),

we would have proved that

P{ω(n)nγ −1
< Tv} = O

(
n−χ+γ −1 + e−bω(n)),(2.25)

so that Tv = Op(nγ −1
). However, the e−bω(n) term in (2.25) would not have al-

lowed us to deduce that maxv∈[n] Tv = Op(nγ −1
) as well. �

APPENDIX

PROOF OF LEMMA. Our argument is patterned after Bollobás’s proof [3] of a
similar, but more general, result for maxi di = O(1).
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Let Xn and Yn denote the total number of loops and the total number of pairs of
parallel pairs in the random pairing Pn,d. We want to show that, for every fixed k

and �,

E[(Xn)k(Yn)�] ∼
(

ν

2

)k+2�

, n → ∞,

where (a)b stands for the falling factorial a(a − 1) · · · (a − b + 1). This would
imply that Xn and Yn are asymptotically independent, and Poisson distributed,
with parameter ν/2 and (ν/2)2, respectively, and the statement would follow, since

P(An) = P{Xn = 0, Yn = 0}.
Combinatorially, (Xn)k(Yn)� is the total number of samples, with order and with-
out replacement, of k loops and of � pairs of parallel edges from the random pair-
ing Pn,d. Given any such sample, let Si1, . . . , Sik+2�

be the ordered sequence of
sets such that Sij , j ≤ k, contains the j th loop, and, for 1 ≤ t ≤ �, the t th pair of
parallel pairs is (s1, s2), (s3, s4), where s1, s2 ∈ Sik+2t−1 , s3, s4 ∈ Sik+2t

. We write

E[(Xn)k(Yn)�] = E1 + E2.

Here E1 is the expected number of the samples such that i1 �= · · · �= ik+2�, and E2
is the expected number of all other samples, when at least two indices among ij ,
1 ≤ j ≤ k + 2�, coincide. Then

E1 = (nd − 2k − 4� − 1)!!
(nd − 1)!!

∑
i1 �=···�=ik+2�

k+2�∏
s=1

(
dis

2

)
.

EXPLANATION. Let a sequence i1 �= i2 �= · · · �= ik+2� be given. From each set
Sij we choose two points, in

∏k+2�
s=1

(dis
2

)
ways overall. We pair two points from

each Sij , j ≤ k, thus forming k loops. For each t ∈ [1, �], we match two chosen
points in Sk+2t−1 with two chosen points in Sk+2t , in 2� ways overall, and then
divide by 2� to account for irrelevance of the order in which every two sets, Sk+2t−1
and Sk+2t , appear in the sequence Sik+1, . . . , Sik+2�

.
Introduce

�1 = ∑
i1,...,ik+2�

k+2�∏
s=1

(
dis

2

)
,

�2 =
(

k + 2�

2

) ∑
i1=i2,i3,...,ik+2�

k+2�∏
s=1

(
dis

2

)
;

so �1 is a counterpart of E1, with the indices i1, . . . , ik+2� allowed to coincide,
and �2 is an upper bound of the total sum of terms in �1, but not in E1. Clearly
then

1

(nd)k+2�
(�1 − �2) � E1 � 1

(nd)k+2�
�1.
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Further

�1 =
(∑

i

(
di

2

))k+2�

= (nd)k+2�

(
1

2d

∑
j

j (j − 1)pj

)k+2�

,

so that

�1

(nd)k+2�
=

(
ν

2

)k+2�

.

Next

�2 =
(

k + 2�

2

)(∑
i

(
di

2

)2
)(∑

i′

(
di′
2

))k+2�−2

,

so that

�2

(nd)k+2�
= O

(
n−2

∑
i

(
di

2

)2(
ν

2

)k+2�−2
)

→ 0,

since, by (2.20),

n−2
∑
i

d4
i = n−1

∑
j≤jn

j4pj = O(n−1/3).

Therefore

E1 ∼
(

ν

2

)k+2�

, n → ∞.

Finally

E2 ≤ (nd − 2k − 4� − 1)!!
(nd − 1)!! · �2 = O

(
n−2

∑
i

d4
i

)
→ 0.

Therefore

E[(Xn)k(Yn)�] = E1 + O(E2) ∼
(

ν

2

)k+2�

, n → ∞.
�

Acknowledgment. The critical comments by the Associate Editor were very
helpful.

REFERENCES

[1] BALOGH, J. and PITTEL, B. (2007). Bootstrap percolation on the random regular graph. Ran-
dom Structures Algorithms 30 257–286. MR2283230

[2] BENDER, E. A. and CANFIELD, E. R. (1978). The asymptotic number of labelled graphs with
given degree sequences. J. Comb. Theory Ser. A 24 296–307. MR0505796

[3] BOLLOBÁS, B. (2001). Random Graphs, 2nd ed. Cambridge Univ. Press. MR1864966

http://www.ams.org/mathscinet-getitem?mr=2283230
http://www.ams.org/mathscinet-getitem?mr=0505796
http://www.ams.org/mathscinet-getitem?mr=1864966


1650 B. G. PITTEL

[4] DURRETT, R. (2005). Probability: Theory and Examples, 3rd ed. Wadsworth and Brooks/Cole,
Pacific Grove, CA. MR1068527

[5] DURRETT, R. (2006). Random Graph Dynamics. Cambridge Univ. Press. MR2271734
[6] JANSON, S. (2008). The largest component in a subcritical random graph with a power law

degree distribution. Ann. Appl. Probab. 18 1651–1668.
[7] MOLLOY, M. and REED, B. (1995). A critical point for random graphs with a given degree

sequence. Random Structures Algorithms 6 161–179. MR1370952
[8] MOLLOY, M. and REED, B. (1998). The size of the giant component of a random graph with a

given degree sequence. Combin. Probab. Comput. 7 295–305. MR1664335
[9] PITTEL, B. (2008). Edge percolation on a random regular graph of low degree. Ann. Probab. 36

1359–1389.

DEPARTMENT OF MATHEMATICS

OHIO STATE UNIVERSITY

COLUMBUS, OHIO 43210
USA
E-MAIL: bgp@math.ohio-state.edu

http://www.ams.org/mathscinet-getitem?mr=1068527
http://www.ams.org/mathscinet-getitem?mr=2271734
http://www.ams.org/mathscinet-getitem?mr=1370952
http://www.ams.org/mathscinet-getitem?mr=1664335
mailto:bgp@math.ohio-state.edu

	Introduction
	Main result and proofs
	Appendix
	Acknowledgment
	References
	Author's Addresses

