ON THE LARGEST COMPONENT OF A RANDOM GRAPH WITH A SUBPOWER-LAW DEGREE SEQUENCE IN A SUBCRITICAL PHASE

By B. G. Pittel
Ohio State University

Abstract

A uniformly random graph on n vertices with a fixed degree sequence, obeying a γ subpower law, is studied. It is shown that, for $\gamma>3$, in a subcritical phase with high probability the largest component size does not exceed $n^{1 / \gamma+\varepsilon_{n}}, \varepsilon_{n}=O(\ln \ln n / \ln n), 1 / \gamma$ being the best power for this random graph. This is similar to the best possible $n^{1 /(\gamma-1)}$ bound for a different model of the random graph, one with independent vertex degrees, conjectured by Durrett, and proved recently by Janson.

1. Introduction. In a recently published book ([5], Section 1.2), Durrett formulated the following conjecture.

Let $\mathbf{p}=\left\{p_{j}\right\}_{j \geq 1}$ be a probability distribution. Let D_{1}, \ldots, D_{n} be i.i.d. random variables, each having the distribution \mathbf{p}. Consider a graph on the vertex set [n], chosen uniformly at random among all graphs with the degree sequence $\left(D_{1}, \ldots, D_{n}\right)$. For such a set of graphs to be nonempty, it is necessary that $\max D_{i}<n$ and $\sum_{i} D_{i}$ is even. (The first condition holds with probability approaching 1 if $\mathrm{E}[D]<\infty$, and the second condition holds with probability approaching $1 / 2$ if $\mathrm{E}\left[D^{2}\right]<\infty$, and g.c.d. $\left\{j: p_{j}>0\right\}$ is odd.) Durrett states that at a vicinity of a generic vertex v the random graph looks like a tree rooted at v, and the number of direct descendants of every descendant of v has a distribution $\mathbf{q}=\left\{q_{j}\right\}_{j \geq 0}$,

$$
\begin{equation*}
q_{j}=\frac{(j+1) p_{j+1}}{\sum_{k \geq 1} k p_{k}}, \quad j \geq 0 \tag{1.1}
\end{equation*}
$$

If so, under the condition

$$
v:=\sum_{j} j q_{j}<1,
$$

one should expect that the component containing v, and even the largest component, are likely to be small compared to n. Specifically, Durrett conjectured that

[^0]for the power-law distribution,
$$
p_{j}=C j^{-\gamma}, \quad \gamma>3
$$
the likely size of the largest component should be of order $n^{1 /(\gamma-1)}$, exactly. In other words, the largest component has size of order of the maximum vertex degree. Janson [6] has recently proved Durrett's conjecture.

In this paper we consider a different model of the random graph, in which a degree sequence is fixed. There is given a tuple $\mathbf{d}=\mathbf{d}(n)=\left(d_{1}, \ldots, d_{n}\right)$ of positive integers $d_{1}, \ldots, d_{n}<n$ such that $d_{1}+\cdots+d_{n}$ is even. We consider a sample space $g_{n, \mathbf{d}}$ of all graphs on [n] with the degree sequence \mathbf{d}. Introduce the empirical degree distribution

$$
\mathbf{p}=\left\{p_{1}, \ldots, p_{n-1}\right\}, \quad p_{j}:=\frac{\mid\left\{i \in[n]: d_{i}=j\right\}}{n}
$$

Let $\mathbf{q}=\mathbf{q}(\mathbf{p})$ be defined by (1.1). Assuming that \mathbf{p} obeys a subpower law, that is,

$$
\begin{equation*}
p_{j} \leq c j^{-\gamma}, \quad 1 \leq j \leq n-1 \tag{1.2}
\end{equation*}
$$

with $\gamma>3$, we show that $g_{n, \mathbf{d}}$ is nonempty. We prove that, under the condition

$$
\begin{equation*}
\sum_{j \geq 1} j q_{j} \leq 1-\varepsilon, \quad \varepsilon>0 \tag{1.3}
\end{equation*}
$$

the largest component in the graph $G_{n, \mathbf{d}}$, chosen uniformly at random from $g_{n, \mathbf{d}}$, has size $C_{n}=O_{p}\left(n^{1 / \gamma} \ln n\right)$, that is, $C_{n} /\left(n^{1 / \gamma} \ln n\right)$ is bounded in probability. Similarly to Janson's result for the independent degrees model, the power $1 / \gamma$ is the best possible for the fixed-degree-sequence model, since among the degree sequences \mathbf{d} in question there are those with $\max _{v \in[n]} d_{v}$ of the exact order $n^{1 / \gamma}$.

That, under the condition equivalent to (1.3), $C_{n} / n \rightarrow 0$ in probability, had already been proved by Molloy and Reed [7, 8]. They also proved that, under their form of the condition

$$
\sum_{j \geq 1} j q_{j} \geq 1+\varepsilon
$$

with high probability the random graph $G_{n, \mathbf{d}}$ has a giant component of size $\Theta(n)$, even being able to establish, under additional conditions, the limit of that size scaled by n.

Following the footsteps of Molloy and Reed, our proof is based on analysis of an algorithm that determines the component containing a given vertex. We construct a collection of exponential supermartingales in order to prove, via the optional sampling theorem, that the random growth of that component follows closely a certain deterministic path. See [1] and [9], where a similar approach was used for analysis of the site (bootstrap) and the bond percolation on a random regular graph.
2. Main result and proofs. Let d_{1}, \ldots, d_{n} be positive integers, such that $d_{1}+$ $\cdots+d_{n}$ is even. Let $g_{n, \mathbf{d}}$ denote the sample space of all graphs on the vertex set [n] that have the degree sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$. Denote by $G_{n, \mathbf{d}}$ the random graph which is distributed uniformly on $g_{n, \mathbf{d}}$.

In parallel, let $M g_{n, \mathbf{d}}$ denote the sample space of all multigraphs with the degree sequence \mathbf{d}. Let us describe the random multigraph $M G_{n, \mathbf{d}}$ suggested first by Bollobás [3]. Consider the disjoint sets S_{1}, \ldots, S_{n} of cardinalities d_{1}, \ldots, d_{n}; set S_{i} representing vertex $i \in[n]$. (Some people prefer assigning d_{i} "half-edges" to a vertex $i \in[n]$, instead of sets S_{i}, but the difference is purely linguistic.) We know that $S:=\bigcup_{i} S_{i}$ has an even cardinality $2 m:=d_{1}+\cdots+d_{n}$. Introduce the sample space $\mathscr{P}_{n, \mathbf{d}}$ of all $(2 m-1)!!=1 \cdot 3 \cdots(2 m-1)$ pairings on S. Let $P_{n, \mathbf{d}}$ be the random pairing distributed uniformly on $\mathcal{P}_{n, \mathbf{d}}$. Define $M G_{n, \mathbf{d}}$ as follows: two vertices $i, j \in[n]$ are joined by an edge iff there are $s^{\prime} \in S_{i}, s^{\prime \prime} \in S_{j}$ such that $\left\{s^{\prime}, s^{\prime \prime}\right\}$ is one of the pairs in $P_{n, \mathbf{d}}$. Obviously $M G_{n, \mathbf{d}}$ may well have loops and multiple edges. And it is not uniformly distributed on $M g_{n, \mathbf{d}}$. However, conditioned on the event $A_{n}:=$ \{no loops, no multiple edges\}, $M G_{n, \mathbf{d}}$ is a simple graph distributed uniformly on $g_{n, \mathbf{d}}$, hence can be viewed as the random graph $G_{n, \mathbf{d}}$. (This connection is due to the observation that every $G \in \mathcal{G}_{n, \mathbf{d}}$ induces the same number, $d_{1}!\cdots d_{n}!$, of pairings in $\mathcal{P}_{n, \mathbf{d}}$.)

Suppose that $\mathbf{d}=\mathbf{d}(n)$ is such that

$$
\begin{equation*}
\liminf \mathrm{P}\left(A_{n}\right)>0 \tag{2.1}
\end{equation*}
$$

Under (2.1), any asymptotically rare (sure) event for $M G_{n, \mathbf{d}}$ is an asymptotically rare (sure) event for $G_{n, \mathbf{d}}$. And we will see that the probability estimates for the events in $M g_{n, \mathbf{d}}$ become quite manageable once translated into the language of the space $\mathcal{P}_{n, \mathbf{d}}$.

Introduce

$$
\begin{equation*}
v=v(n)=\frac{\sum_{i \in[n]} d_{i}\left(d_{i}-1\right)}{\sum_{i \in[n]} d_{i}} \tag{2.2}
\end{equation*}
$$

v can be interpreted as the expected outdegree of a nonroot vertex in a tree rooted at a given vertex v, which, heuristically, is how $G_{n, \mathbf{d}}$ looks like in a vicinity of v. Let

$$
p_{j}=p_{j}(n):=\frac{1}{n}\left|\left\{i \in[n]: d_{i}=j\right\}\right|, \quad j \in[n-1] .
$$

Then (2.2) becomes

$$
v=\frac{\sum_{j \in[n-1]} j(j-1) p_{j}}{\sum_{j \in[n-1]} j p_{j}}
$$

which is the ratio of the first two factorial moments of the distribution $\left\{p_{j}\right\}$. We denote the first moment, the average vertex degree, by $d=d(n)$.

We assume that $\mathbf{d}=\mathbf{d}(n)$ is such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{j \in[n-1]} j^{2} p_{j}<\infty, \quad \lim _{n \rightarrow \infty} n^{-1} \sum_{j \in[n-1]} j^{4} p_{j}=0 \tag{2.3}
\end{equation*}
$$

In fact, we assume a stronger condition, namely that $\left\{p_{j}\right\}$ is a subpower-law distribution, that is,

$$
\begin{equation*}
p_{j} \leq c j^{-\gamma}, \quad \gamma>3 \tag{2.4}
\end{equation*}
$$

In this case, since

$$
\left|\left\{i \in[n]: d_{i}=j\right\}\right|=n p_{j} \leq c \frac{n}{j^{\gamma}}<1 \quad \forall j>j_{n}:=\left\lfloor A(\gamma, c) n^{1 / \gamma}\right\rfloor
$$

we see that

$$
\left|\left\{i \in[n]: d_{i}=j\right\}\right|=0, \quad p_{j}=0 \forall j>j_{n} .
$$

In other words, $\max _{i \in[n]} d_{i}$, the largest vertex degree, is j_{n}, at most. That the first condition in (2.3) is met under (2.4) is obvious; the second condition holds true, since (2.4) implies

$$
n^{-1} \sum_{j \in[n-1]} j^{4} p_{j}=o\left(n^{-1 / 3}\right)
$$

see (2.19).
Lemma. Under the condition (2.3),

$$
\liminf \mathrm{P}\left(A_{n}\right) \geq \exp \left(-\hat{v} / 2-\hat{v}^{2} / 4\right)>0, \quad \hat{v}:=\lim \sup v .
$$

Note. Applied to the degree sequence $\mathbf{d}=(d, \ldots, d)$, this lemma yields a well-known asymptotic formula for the number of all d-regular graphs, due to Bender and Canfield [2].

We prove Lemma in the Appendix.
THEOREM. Let C_{n} denote the size of the largest component (cluster) of the random graph $G_{n, \mathbf{d}}$. Under the condition (2.4), for $\lambda=\lambda(n) \rightarrow \infty$ however slowly,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left\{C_{n} \leq \lambda n^{1 / \gamma} \ln n\right\}=1,
$$

provided that

$$
\begin{equation*}
\lim \sup v<1 ; \tag{2.5}
\end{equation*}
$$

in short, $C_{n}=O_{P}\left(n^{1 / \gamma} \ln n\right)$.

Proof. We will prove the bound by upper-bounding the likely size of a component that contains a generic vertex $v \in[n]$. In view of Lemma, it suffices to bound the size of the component of the random multigraph $M G_{n, \mathbf{d}}$ that contains vertex v.

Notice that a subset V of [n] is the vertex set of this component iff for every $u \in V$ there exist $w_{1}, \ldots, w_{k} \in[n]$ such that, for some $s_{0} \in S_{v}, s_{1} \in S_{w_{1}}, \ldots, s_{k} \in$ $S_{w_{k}}, s_{k+1} \in S_{u}$, all the pairs $\left\{s_{0}, s_{1}\right\}, \ldots,\left\{s_{k}, s_{k+1}\right\}$ are in $P_{n, \mathbf{d}}$. So we may, and will, deal with the corresponding "component" in $P_{n, \mathbf{d}}$ itself. We determine this component algorithmically, by adding to a current cluster of pairs exactly one new pair $\left\{s^{\prime}, s^{\prime \prime}\right\} \in P_{n, \mathbf{d}}$, where a point s^{\prime} is not in the current cluster of pairs, but has the same vertex "host" as one of the points in those pairs. [We will call them the (currently) active points.] If the point $s^{\prime \prime}$, the partner of the point s^{\prime}, is hosted by a fresh vertex, u, then u joins the current vertex cluster, and the $d_{u}-1$ still unexplored points hosted by u become active. As a result, the number of active points changes by $(-1)+\left(d_{u}-1\right)=d_{u}-2$. If $s^{\prime \prime}$ happens to be hosted by a vertex from the current vertex cluster, then the vertex cluster remains the same, but the number of active points decreases by 2 .

Importantly, instead of generating the uniformly random paring $P_{n, \mathbf{d}}$ in advance, we can generate it one pair at a time, as called for by the algorithmic process. Namely, given a total ordering of the points in S, as s^{\prime} we pick the first, say, active point and pair it with a point $s^{\prime \prime}$, chosen uniformly at random among all points not in the pairs.

Let $A(t), I_{j}(t)$ denote the total number of the currently active points and the number of the currently inactive (not in the current cluster, i.e.) vertices after t steps of the algorithm. In particular,

$$
\begin{equation*}
A(0)=d_{v}, \quad I_{j}(0)=n p_{j}-\delta_{j, d_{v}}, \quad j \leq j_{n} . \tag{2.6}
\end{equation*}
$$

Introduce

$$
I(t)=\sum_{j \leq j_{n}} j I_{j}(t),
$$

the total number of inactive points. From the discussion above,

$$
A(t+1)+I(t+1)=A(t)+I(t)-2
$$

so that, by (2.6),

$$
\begin{equation*}
A(t)+I(t)=A(0)+I(0)-2 t=n d-2 t, \tag{2.7}
\end{equation*}
$$

where

$$
d=n^{-1} \sum_{i \leq n} d_{i}=\sum_{j \leq j_{n}} j p_{j}
$$

is the average vertex degree. From (2.7), the process will terminate no later than by time $t \leq n d / 2$.

Clearly $\left\{A(t),\left\{I_{j}(t)\right\}_{j \leq j_{n}}\right\}_{t \geq 0}$ is a Markov chain, and if

$$
t<T=T_{v}:=\min \{\tau>0: \min \{A(\tau), I(\tau)\}=0\}
$$

then

$$
\begin{align*}
\mathrm{P}\left[I_{j}(t+1)=I_{j}(t)-1 \mid \mathscr{F}_{t}\right]= & -\frac{j I_{j}(t)}{A(t)+I(t)-1}, \tag{2.8}\\
\mathrm{E}\left[I_{j}(t+1) \mid \mathcal{F}_{t}\right]= & I_{j}(t)+(-1) \frac{j I_{j}(t)}{A(t)+I(t)-1}, \\
\mathrm{E}\left[A(t+1) \mid \mathcal{F}_{t}\right]= & A(t)+(-2) \frac{A(t)-1}{A(t)+I(t)-1} \tag{2.9}\\
& +\sum_{j \geq 1} \frac{j I_{j}(t)}{A(t)+I(t)-1}(j-2) ;
\end{align*}
$$

here $\mathrm{P}\left[\cdot \mid \mathcal{F}_{t}\right], \mathrm{E}\left[\cdot \mid \mathcal{F}_{t}\right]$ denote the probability and the expectation conditioned on $\left\{A(t),\left\{I_{j}(t)\right\}_{j \leq j_{n}}\right\}$. Since T is a stopping time, it follows from (2.8) and (2.7) that, for each $j \leq j_{n}$,

$$
X_{j}(t):= \begin{cases}\frac{I_{j}(t)}{\prod_{\tau=0}^{t-1}(1-j /(n d-2 \tau-1))}, & t \leq T \\ X_{j}(T), & t>T\end{cases}
$$

is a martingale, with

$$
\begin{equation*}
\mathrm{E}\left[X_{j}(t)\right] \equiv X_{j}(0)=I_{j}(0)=n p_{j}-\delta_{j, d_{v}} . \tag{2.10}
\end{equation*}
$$

We want to show that, for $t=O\left(n^{\alpha}\right), \alpha \in\left(\gamma^{-1}, 1-\gamma^{-1}\right), X_{j}(t)$ is relatively close to $X_{j}(0)$, with probability very close to 1 . (Of course, we focus on α close to γ^{-1}, since we expect the process to terminate around a time close to $n^{\gamma^{-1}}$.) To this end, first let us prove that the sequence

$$
Q_{j}(t):=\exp \left[n^{\beta_{j}} X_{j}(t) / n\right], \quad t \leq n^{\alpha}
$$

is "almost" a (super)martingale, provided that

$$
\gamma^{-1}+\alpha<1
$$

$$
\begin{equation*}
2\left(\beta_{j}-1\right)=\min \left\{0,-\alpha+(\gamma-1) \frac{\ln j}{\ln n}\right\} . \tag{2.11}
\end{equation*}
$$

Let $t<T$. Observe that, for $j \leq j_{n}$,

$$
\begin{align*}
\prod_{\tau=0}^{t}\left(1-\frac{j}{n d-2 \tau-1}\right) & =\exp \left(-\frac{j}{2} \int_{n d-2 t}^{n d} \frac{d x}{x}+O(j / n)\right) \\
& =\left(1-\frac{2 t}{n d}\right)^{j / 2}(1+O(j / n)) \tag{2.12}
\end{align*}
$$

$$
\begin{aligned}
& =1+O(j t / n) \\
& =1+O\left(n^{\gamma^{-1}+\alpha-1}\right) \rightarrow 1 .
\end{aligned}
$$

Consequently, using

$$
0 \leq I_{j}(t)-I_{j}(t+1) \leq 1, \quad j I_{j}(t) \leq j I_{j}(0)=j p_{j} n \leq d n,
$$

we obtain

$$
\begin{align*}
& n^{-1} X_{j}(t+1)-n^{-1} X_{j}(t) \\
&= n^{-1} \frac{I_{j}(t+1)-I_{j}(t)}{\prod_{\tau=0}^{t}(1-j /(n d-2 \tau-1))} \\
&-n^{-1} \frac{I_{j}(t) j /(n d-2 t-1)}{\prod_{\tau=0}^{t}(1-j /(n d-2 \tau-1))} \tag{2.13}\\
&= O\left(n^{-1}\left|I_{j}(t+1)-I_{j}(t)\right|\right)+O\left(j I_{j}(t) n^{-2}\right) \\
&= O\left(n^{-1}\right) .
\end{align*}
$$

Therefore, as $\beta_{j} \leq 1$,

$$
\begin{aligned}
\frac{Q_{j}(t+1)}{Q_{j}(t)}= & \exp \left[n^{\beta_{j}}\left(n^{-1} X_{j}(t+1)-n^{-1} X_{j}(t)\right)\right] \\
= & 1+n^{\beta_{j}-1}\left(X_{j}(t+1)-X_{j}(t)\right) \\
& +O\left(n^{2\left(\beta_{j}-1\right)}\left(X_{j}(t+1)-X_{j}(t)\right)^{2}\right)
\end{aligned}
$$

Since $X_{j}(t)$ is a martingale, we have

$$
\mathrm{E}\left[X_{j}(t+1)-X_{j}(t) \mid \mathcal{F}_{t}\right]=0
$$

Further, by (2.13) and (2.8),

$$
\begin{aligned}
& \mathrm{E}\left[\left(X_{j}(t+1)-X_{j}(t)\right)^{2} \mid \mathcal{F}_{t}\right] \\
& \quad=O\left(\mathrm{E}\left[\left(I_{j}(t+1)-I_{j}(t)\right)^{2} \mid \mathcal{F}_{t}\right]\right)+O\left(\left(j p_{j}\right)^{2}\right) \\
& \quad=O\left(j p_{j}+\left(j p_{j}\right)^{2}\right)=O\left(j p_{j}\right)
\end{aligned}
$$

Consequently, for $t<T$, and trivially for $t \geq T$,

$$
\begin{aligned}
\frac{1}{Q_{j}(t)} \mathrm{E}\left[Q_{j}(t+1) \mid \mathcal{F}_{t}\right] & =1+O\left(n^{2\left(\beta_{j}-1\right)} j p_{j}\right) \\
& =1+O\left(n^{2\left(\beta_{j}-1\right)} j^{-\gamma+1}\right) \\
& =1+O\left(n^{-\alpha}\right)
\end{aligned}
$$

the third equality and the fourth equality following from (2.4) and the definition of β_{j} in (2.11), respectively. Thus, there exists $\varepsilon_{n}>0, \varepsilon_{n}=O\left(n^{-\alpha}\right)$, such that

$$
\mathrm{E}\left[\left(1+\varepsilon_{n}\right)^{-t-1} Q_{j}(t+1) \mid \mathcal{F}_{t}\right] \leq\left(1+\varepsilon_{n}\right)^{-t} Q_{j}(t), \quad t \leq n^{\alpha}
$$

It makes

$$
\hat{Q}_{j}(t):=\left(1+\varepsilon_{n}\right)^{-t} Q_{j}(t), \quad t \leq n^{\alpha},
$$

a supermartingale, that differs from $Q_{j}(t)$ by a factor bounded away from both zero and infinity.

Given $j \leq j_{n}$, and $z>0$, introduce a stopping time $\mathcal{T}_{j}(z)$, the first $t \leq n^{\alpha} \wedge T$ such that

$$
\left|\frac{I_{j}(t)}{n} \prod_{\tau=0}^{t-1}\left(1-\frac{j}{n d-2 \tau-1}\right)^{-1}-\frac{I_{j}(0)}{n}\right|>\frac{z}{n^{\beta_{j}}},
$$

and set $\mathcal{T}_{j}(z)=\left\lceil n^{\alpha}+1\right\rceil$ if no such t exists. By (2.10), for $t \leq n^{\alpha} \wedge T$ and $t<$ $\min _{j} \mathcal{T}_{j}(z)$, we have

$$
\begin{equation*}
I_{j}(t)=\left(n p_{j}-\delta_{j, d_{v}}\right) \prod_{\tau=0}^{t-1}\left(1-\frac{j}{n d-2 \tau-1}\right)+O\left(n^{1-\beta_{j}} z\right) \tag{2.14}
\end{equation*}
$$

Applying the Optional Sampling Theorem to the supermartingale

$$
\frac{\hat{Q}_{j}(t)}{\hat{Q}_{j}(0)}=\left(1+\varepsilon_{n}\right)^{-t} \exp \left[n^{\beta_{j}}\left(X_{j}(t) / n-X_{j}(0) / n\right)\right], \quad t \leq n^{\alpha},
$$

the stopping time $\mathcal{T}_{j}(z)$ (Durrett [4], Section 4.7), and using Markov inequality, we have: uniformly for $z>0$, and $j \leq j_{n}$,

$$
\mathrm{P}\left\{\mathcal{T}_{j}(z)=\left\lceil n^{\alpha}+1\right\rceil\right\}=O\left(e^{-z}\right)
$$

Choosing $z=\chi \ln n,\left(\chi>\gamma^{-1}\right)$, and introducing

$$
B_{n}=\left\{\min _{j \leq j_{n}} \mathcal{T}_{j}(z)=\left\lceil n^{\alpha}+1\right\rceil\right\},
$$

we obtain then

$$
\begin{equation*}
\mathrm{P}\left(B_{n}\right) \geq 1-O\left(j_{n} e^{-z}\right)=1-O\left(n^{\gamma^{-1}} e^{-\chi \ln n}\right)=1-O\left(n^{-\chi+\gamma^{-1}}\right) \tag{2.15}
\end{equation*}
$$

Notice that, on the likely event B_{n}, (2.14) holds for all $t \leq n^{\alpha} \wedge T$.

Armed with (2.14), we turn our attention to (2.9) for

$$
\mathrm{E}\left[A(t+1) \mid \mathcal{F}_{t}\right], \quad t \leq n^{\alpha} \wedge T \text { and } t<\min _{j} T_{j}(z)
$$

By (2.14), for the sum in (2.10) we can write

$$
\begin{align*}
\sum_{j \leq j_{n}} j(j-2) I_{j}(t)= & n \sum_{j \leq j_{n}} j(j-2) p_{j} \prod_{\tau=0}^{t-1}\left(1-\frac{j}{n d-2 \tau-1}\right) \\
& +O\left(d_{v}^{2}\right)+O\left(\ln n \sum_{j \leq j_{n}} j^{2} n^{1-\beta_{j}}\right) \tag{2.16}
\end{align*}
$$

Here $d_{v}^{2}=O\left(n^{2 \gamma^{-1}}\right)$, and by the definition of β_{j},

$$
\begin{aligned}
\sum_{j \leq j_{n}} j^{2} n^{1-\beta_{j}} & \leq \sum_{j \leq n^{\alpha /(\gamma-1)}} j^{2} n^{1-\beta_{j}}+\sum_{j \leq j_{n}} j^{2} \\
& =n^{\alpha / 2} \sum_{j \leq n^{\alpha /(\gamma-1)}} \frac{1}{j^{(\gamma-5) / 2}}+O\left(j_{n}^{3}\right) \\
& = \begin{cases}O\left(n^{3 \alpha /(\gamma-1)} \ln n\right)+O\left(n^{3 \gamma^{-1}}\right), & \gamma \leq 7, \\
O\left(n^{\alpha / 2}\right)+O\left(n^{3 \gamma^{-1}}\right), & \gamma>7 .\end{cases}
\end{aligned}
$$

Or

$$
\begin{equation*}
\sum_{j \leq j_{n}} j^{2} n^{1-\beta_{j}}=O\left(n^{3 \gamma^{-1}}\right) \tag{2.17}
\end{equation*}
$$

for α close to γ^{-1}. Furthermore, using (2.12),

$$
\begin{align*}
& n \sum_{j \leq j_{n}} j(j-2) p_{j} \prod_{\tau=0}^{t-1}\left(1-\frac{j}{n d-2 \tau-1}\right) \\
& \quad=n \sum_{j \leq j_{n}} j(j-2) p_{j}\left(1-\frac{2 t}{n d}\right)^{j / 2}+O\left(\sum_{j \leq j_{n}} j^{3} p_{j}\right) \tag{2.18}
\end{align*}
$$

Here, by

$$
1-m x \leq(1-x)^{m} \leq 1-m x+\binom{m}{2} x^{2}, \quad x \geq 0,
$$

we have

$$
\begin{aligned}
1-\frac{2 t}{n d} \frac{j}{2} & \leq\left(1-\frac{2 t}{n d}\right)^{j / 2} \\
& \leq 1-\frac{2 t}{n d} \frac{j}{2}+O\left(n^{-2} j^{2} t^{2}\right)
\end{aligned}
$$

for $j=1$ we need the lower bound as $\left.j(j-2)\right|_{j=1}<0$. Therefore

$$
\begin{align*}
& n \sum_{j \leq j_{n}} j(j-2) p_{j}\left(1-\frac{2 t}{n d}\right)^{j / 2} \\
& \quad \leq n \sum_{j \leq j_{n}} j(j-2) p_{j}+O\left(t \sum_{j \leq j_{n}} j^{3} p_{j}+n^{-1} t^{2} \sum_{j \leq j_{n}} j^{4} p_{j}\right) \\
& \quad=n \sum_{j \leq j_{n}} j(j-2) p_{j}+O\left(n^{\alpha+\gamma^{-1}}+n^{-1+2\left(\alpha+\gamma^{-1}\right)}\right) \tag{2.19}\\
& \quad=n \sum_{j \leq j_{n}} j(j-2) p_{j}+O\left(n^{\alpha+\gamma^{-1}}\right)
\end{align*}
$$

as $\alpha+\gamma^{-1}<1$; see (2.11). [We have used the bounds

$$
\begin{align*}
& \sum_{j \leq j_{n}} j^{3} p_{j}=O\left(n^{\max \left\{0,(4-\gamma) \gamma^{-1}\right\}} \ln n\right), \tag{2.20}\\
& \sum_{j \leq j_{n}} j^{4} p_{j}=O\left(n^{\max \left\{0,(5-\gamma) \gamma^{-1}\right\}} \ln n\right)
\end{align*}
$$

which easily follow from (2.4).]
Combining (2.16)-(2.19), we obtain: for $t \leq n^{\alpha} \wedge T, t<\min _{j} \mathcal{T}_{j}(z)$,

$$
\begin{equation*}
\sum_{j \leq j_{n}} j(j-2) I_{j}(t) \leq n \sum_{j \leq j_{n}} j(j-2) p_{j}+O\left(n^{3 \gamma^{-1}} \ln n\right), \tag{2.21}
\end{equation*}
$$

if α is close to γ^{-1}. Notice that

$$
\sum_{j} j(j-2) p_{j}=\left(\sum_{j} j p_{j}\right)\left(\frac{\sum_{j} j(j-1) p_{j}}{\sum_{j} j p_{j}}-1\right)=d(v-1)
$$

so that

$$
\lim \sup \sum_{j} j(j-2) p_{j}<0,
$$

which is the Molloy-Reed condition for the subcritical phase. So, by (2.21) and the condition $\gamma>3$, (2.9) implies that

$$
\begin{align*}
\mathrm{E}\left[A(t+1) \mid \mathcal{F}_{t}\right] & \leq A(t)-a \quad\left[t \leq T \wedge n^{\alpha} \text { and } t<\min _{j} \mathcal{T}_{j}(z)\right] \\
a & :=\frac{1}{2} \limsup (1-v)>0 \tag{2.22}
\end{align*}
$$

for all n large enough.

The rest is short. Set

$$
A(t+1)=A(t)-a \quad\left[t>T \wedge n^{\alpha} \text { or } t \geq \min _{j} \mathcal{T}_{j}(z)\right]
$$

Clearly the extended sequence $\{A(t)\}$ satisfies (2.22) for all t. Besides, since $T=T_{v}$ is the first time τ when

$$
\min \{A(\tau), I(\tau)\}=0
$$

we have

$$
\begin{align*}
\left\{n^{\alpha}<T\right\} \cap\left\{\min _{j} \mathcal{T}_{j}(z)=\left\lceil n^{\alpha}+1\right\rceil\right\} & =\left\{n^{\alpha}<T\right\} \cap B_{n} \tag{2.23}\\
& \subseteq\left\{A\left(\left[n^{\alpha}\right]\right)>0\right\} .
\end{align*}
$$

Furthermore, since the maximum vertex degree is j_{n} at most,

$$
A(0)=d_{v} \leq j_{n}, \quad|A(t+1)-A(t)| \leq j_{n} ; \quad j_{n}=O\left(n^{\gamma^{-1}}\right)
$$

Also, reading out the conditional distribution $\mathrm{P}\left\{A(t+1)-A(t)=i \mid \mathcal{F}_{t}\right\}$ from (2.10), and using (2.20),

$$
\mathrm{E}\left[(A(t+1)-A(t))^{2} \mid \mathcal{F}_{t}\right] \leq 4+\frac{2}{d} \sum_{j \leq j_{n}} j^{3} p_{j}=O\left(n^{\max \left\{0,(4-\gamma) \gamma^{-1}\right\}} \ln n\right)
$$

if $t \leq T \wedge n^{\alpha}$ and $t<\min _{j} \mathcal{T}_{j}(z)$. And the bound holds trivially for the larger values of t. Then

$$
\begin{aligned}
& \mathrm{E}\left[\exp \left(n^{-\gamma^{-1}}(A(t+1)-A(t))\right) \mid \mathcal{F}_{t}\right] \\
& \quad=1+n^{-\gamma^{-1}} \mathrm{E}\left[A(t+1)-A(t) \mid \mathcal{F}_{t}\right] \\
& \quad+O\left(n^{-2 \gamma^{-1}} \mathrm{E}\left[(A(t+1)-A(t))^{2} \mid \mathcal{F}_{t}\right]\right) \\
& \leq \\
& \leq 1-a n^{-\gamma^{-1}}+O\left(n^{\max \left\{-2 \gamma^{-1},(2-\gamma) \gamma^{-1}\right\}} \ln n\right) \\
& \leq
\end{aligned}
$$

since $\gamma>3$. Therefore

$$
\mathrm{E}\left[\exp \left(n^{-\gamma^{-1}}(A(t+1)-A(t))\right) \mid \mathcal{F}_{t}\right] \leq \exp \left(-b n^{-\gamma^{-1}}\right)
$$

and then

$$
\mathrm{E}\left[\exp \left(n^{-\gamma^{-1}} A(t)\right)\right]=O\left(\exp \left(-t b n^{-\gamma^{-1}}\right)\right)
$$

Hence

$$
\mathrm{P}\{A(t)>0\}=O\left(\exp \left(-t b n^{-\gamma^{-1}}\right)\right)
$$

In particular, choosing

$$
\begin{equation*}
\alpha=\gamma^{-1}+\frac{\ln \ln n}{\ln n}+\frac{\eta}{\ln n}, \quad \eta>0 \tag{2.24}
\end{equation*}
$$

which certainly satisfies the inequality $\gamma^{-1}+\alpha<1$ in (2.11) for $n \geq n(\eta)$, we obtain

$$
\mathrm{P}\left\{A\left(\left[n^{\alpha}\right]\right)>0\right\}=O\left(n^{-b \eta}\right)
$$

By (2.23), we have then

$$
\mathrm{P}\left\{\left(n^{\alpha}<T_{v}\right) \cap B_{n}\right\}=O\left(n^{-b \eta}\right)
$$

and combining this estimate with (2.15) we conclude: for any fixed $\chi>0$ and $\eta>0$,

$$
\mathrm{P}\left\{n^{\alpha}<T_{v}\right\}=\mathrm{P}\left\{e^{\eta} n^{\gamma^{-1}} \ln n<T_{v}\right\}=O\left(n^{-\chi+\gamma^{-1}}+n^{-b \eta}\right) .
$$

Of course, a bounded constant factor implicit in the big-Oh notation depends on χ and η. Thus, given $K>0$, there exists $L=L(K)$ such that

$$
\mathrm{P}\left\{L n^{\gamma^{-1}} \ln n<T_{v}\right\} \leq n^{-K-1}, \quad v \in[n],
$$

whence

$$
\mathrm{P}\left\{\max _{v \in[n]} T_{v}>L n^{\gamma^{-1}} \ln n\right\} \leq n^{-K} .
$$

It remains to notice that the component containing the vertex v has size T_{v} at most, so that C_{n}, the size of the largest component, is $\max _{v} T_{v}$, at most.

Note. If, instead of (2.24), we had set

$$
\alpha=\gamma^{-1}+\frac{\omega(n)}{\ln n}, \quad \omega(n) \rightarrow \infty, \quad \omega(n)=o(\ln n)
$$

we would have proved that

$$
\begin{equation*}
\mathrm{P}\left\{\omega(n) n^{\gamma^{-1}}<T_{v}\right\}=O\left(n^{-\chi+\gamma^{-1}}+e^{-b \omega(n)}\right) \tag{2.25}
\end{equation*}
$$

so that $T_{v}=O_{p}\left(n^{\gamma^{-1}}\right)$. However, the $e^{-b \omega(n)}$ term in (2.25) would not have allowed us to deduce that $\max _{v \in[n]} T_{v}=O_{p}\left(n^{\gamma^{-1}}\right)$ as well.

APPENDIX

Proof of Lemma. Our argument is patterned after Bollobás's proof [3] of a similar, but more general, result for $\max _{i} d_{i}=O(1)$.

Let X_{n} and Y_{n} denote the total number of loops and the total number of pairs of parallel pairs in the random pairing $P_{n, \mathbf{d}}$. We want to show that, for every fixed k and ℓ,

$$
\mathrm{E}\left[\left(X_{n}\right)_{k}\left(Y_{n}\right)_{\ell}\right] \sim\left(\frac{v}{2}\right)^{k+2 \ell}, \quad n \rightarrow \infty
$$

where $(a)_{b}$ stands for the falling factorial $a(a-1) \cdots(a-b+1)$. This would imply that X_{n} and Y_{n} are asymptotically independent, and Poisson distributed, with parameter $v / 2$ and $(\nu / 2)^{2}$, respectively, and the statement would follow, since

$$
\mathrm{P}\left(A_{n}\right)=\mathrm{P}\left\{X_{n}=0, Y_{n}=0\right\} .
$$

Combinatorially, $\left(X_{n}\right)_{k}\left(Y_{n}\right)_{\ell}$ is the total number of samples, with order and without replacement, of k loops and of ℓ pairs of parallel edges from the random pairing $P_{n, \mathbf{d}}$. Given any such sample, let $S_{i_{1}}, \ldots, S_{i_{k+2 \ell}}$ be the ordered sequence of sets such that $S_{i_{j}}, j \leq k$, contains the j th loop, and, for $1 \leq t \leq \ell$, the t th pair of parallel pairs is $\left(s_{1}, s_{2}\right),\left(s_{3}, s_{4}\right)$, where $s_{1}, s_{2} \in S_{i_{k+2 t-1}}, s_{3}, s_{4} \in S_{i_{k+2 t}}$. We write

$$
\mathrm{E}\left[\left(X_{n}\right)_{k}\left(Y_{n}\right)_{\ell}\right]=E_{1}+E_{2} .
$$

Here E_{1} is the expected number of the samples such that $i_{1} \neq \cdots \neq i_{k+2 \ell}$, and E_{2} is the expected number of all other samples, when at least two indices among i_{j}, $1 \leq j \leq k+2 \ell$, coincide. Then

$$
E_{1}=\frac{(n d-2 k-4 \ell-1)!!}{(n d-1)!!} \sum_{i_{1} \neq \cdots \neq i_{k+2 \ell}} \prod_{s=1}^{k+2 \ell}\binom{d_{i_{s}}}{2} .
$$

EXPLANATION. Let a sequence $i_{1} \neq i_{2} \neq \cdots \neq i_{k+2 \ell}$ be given. From each set $S_{i_{j}}$ we choose two points, in $\prod_{s=1}^{k+2 \ell}\binom{d_{i_{s}}}{2}$ ways overall. We pair two points from each $S_{i_{j}}, j \leq k$, thus forming k loops. For each $t \in[1, \ell]$, we match two chosen points in $S_{k+2 t-1}$ with two chosen points in $S_{k+2 t}$, in 2^{ℓ} ways overall, and then divide by 2^{ℓ} to account for irrelevance of the order in which every two sets, $S_{k+2 t-1}$ and $S_{k+2 t}$, appear in the sequence $S_{i_{k+1}}, \ldots, S_{i_{k+2 t}}$.

Introduce

$$
\begin{aligned}
& \Sigma_{1}=\sum_{i_{1}, \ldots, i_{k+2 \ell}} \prod_{s=1}^{k+2 \ell}\binom{d_{i_{s}}}{2}, \\
& \Sigma_{2}=\binom{k+2 \ell}{2} \sum_{i_{1}=i_{2}, i_{3}, \ldots, i_{k+2 \ell}} \prod_{s=1}^{k+2 \ell}\binom{d_{i_{s}}}{2} ;
\end{aligned}
$$

so Σ_{1} is a counterpart of E_{1}, with the indices $i_{1}, \ldots, i_{k+2 \ell}$ allowed to coincide, and Σ_{2} is an upper bound of the total sum of terms in Σ_{1}, but not in E_{1}. Clearly then

$$
\frac{1}{(n d)^{k+2 \ell}}\left(\Sigma_{1}-\Sigma_{2}\right) \lesssim E_{1} \lesssim \frac{1}{(n d)^{k+2 \ell}} \Sigma_{1}
$$

Further

$$
\Sigma_{1}=\left(\sum_{i}\binom{d_{i}}{2}\right)^{k+2 \ell}=(n d)^{k+2 \ell}\left(\frac{1}{2 d} \sum_{j} j(j-1) p_{j}\right)^{k+2 \ell}
$$

so that

$$
\frac{\Sigma_{1}}{(n d)^{k+2 \ell}}=\left(\frac{v}{2}\right)^{k+2 \ell}
$$

Next

$$
\Sigma_{2}=\binom{k+2 \ell}{2}\left(\sum_{i}\binom{d_{i}}{2}^{2}\right)\left(\sum_{i^{\prime}}\binom{d_{i^{\prime}}}{2}\right)^{k+2 \ell-2}
$$

so that

$$
\frac{\Sigma_{2}}{(n d)^{k+2 \ell}}=O\left(n^{-2} \sum_{i}\binom{d_{i}}{2}^{2}\left(\frac{v}{2}\right)^{k+2 \ell-2}\right) \rightarrow 0
$$

since, by (2.20),

$$
n^{-2} \sum_{i} d_{i}^{4}=n^{-1} \sum_{j \leq j_{n}} j^{4} p_{j}=O\left(n^{-1 / 3}\right)
$$

Therefore

$$
E_{1} \sim\left(\frac{v}{2}\right)^{k+2 \ell}, \quad n \rightarrow \infty
$$

Finally

$$
E_{2} \leq \frac{(n d-2 k-4 \ell-1)!!}{(n d-1)!!} \cdot \Sigma_{2}=O\left(n^{-2} \sum_{i} d_{i}^{4}\right) \rightarrow 0
$$

Therefore

$$
\mathrm{E}\left[\left(X_{n}\right)_{k}\left(Y_{n}\right)_{\ell}\right]=E_{1}+O\left(E_{2}\right) \sim\left(\frac{v}{2}\right)^{k+2 \ell}, \quad n \rightarrow \infty
$$

Acknowledgment. The critical comments by the Associate Editor were very helpful.

REFERENCES

[1] Balogh, J. and Pittel, B. (2007). Bootstrap percolation on the random regular graph. Random Structures Algorithms 30 257-286. MR2283230
[2] Bender, E. A. and CANFIELD, E. R. (1978). The asymptotic number of labelled graphs with given degree sequences. J. Comb. Theory Ser. A 24 296-307. MR0505796
[3] BollobÁs, B. (2001). Random Graphs, 2nd ed. Cambridge Univ. Press. MR1864966
[4] Durrett, R. (2005). Probability: Theory and Examples, 3rd ed. Wadsworth and Brooks/Cole, Pacific Grove, CA. MR1068527
[5] Durrett, R. (2006). Random Graph Dynamics. Cambridge Univ. Press. MR2271734
[6] JANSON, S. (2008). The largest component in a subcritical random graph with a power law degree distribution. Ann. Appl. Probab. 18 1651-1668.
[7] Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures Algorithms 6 161-179. MR1370952
[8] Molloy, M. and Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combin. Probab. Comput. 7 295-305. MR1664335
[9] Pittel, B. (2008). Edge percolation on a random regular graph of low degree. Ann. Probab. 36 1359-1389.

Department of Mathematics
Ohio State University
Columbus, Ohio 43210
USA
E-MAIL: bgp@math.ohio-state.edu

[^0]: Received August 2007; revised November 2007.
 ${ }^{1}$ Supported in part by NSF Grant DMS-04-06024.
 AMS 2000 subject classifications. $60 \mathrm{C} 05,60 \mathrm{~K} 35,60 \mathrm{~J} 10$.
 Key words and phrases. Random graph, degree sequence, power law, largest cluster, pairing process, martingale, asymptotic, bounds.

