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We consider discrete nonparametric priors which induce Gibbs-type ex-
changeable random partitions and investigate their posterior behavior in de-
tail. In particular, we deduce conditional distributions and the corresponding
Bayesian nonparametric estimators, which can be readily exploited for pre-
dicting various features of additional samples. The results provide useful tools
for genomic applications where prediction of future outcomes is required.

1. Introduction. Random partitions and their associated probability distribu-
tions play an important role in a variety of research areas. In population genetics,
for example, models for random partitions are useful in order to describe the allo-
cation of a sample of n genes into a number of distinct alleles. See, for example,
[10, 33]. In machine learning theory, probabilistic models for linguistic applica-
tions (such as, e.g., speech and handwriting recognition, machine translation) are
often based on a suitable clustering structure for a set of words. See, for example,
[34, 35]. In Bayesian nonparametric inference, a discrete nonparametric prior is
commonly employed in complex hierarchical mixture models and it induces an
exchangeable random partition for the latent variables: this provides an effective
tool for inferring on the clustering structure of the observations. Such an approach
is due to [21] and has been extended in various directions. See, for example, [12,
13, 19, 22]. Other important areas of applications include storage problems, ex-
cursion theory, combinatorics and statistical physics. See the comprehensive and
stimulating monograph by Pitman [29] and references therein.

An early and well-known model which describes the grouping of n objects into
k distinct classes is due to [7] and leads to the Ewens sampling formula. The ba-
sic assumption is that individuals are sequentially sampled from an infinite set
of different species and the proportion p̃i with which the ith species is present
in the population is random. Then, if (Wk)k≥1 is a sequence of independent and
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identically distributed random variables with Beta(1, θ) distribution, the random
proportions are defined as

p̃1 = W1, p̃j = Wj

j−1∏
k=1

(1 − Wk) ∀j ≥ 2.(1)

Now, if X1, . . . ,Xn is a sample of n individuals drawn from the population, set
Mn := (M1,n, . . . ,Mn,n) where Mj,n is the number of species represented j times
in the sample of size n. Hence, the distribution of Mn is supported by all those
vectors mn = (m1,n, . . . ,mn,n) for which

∑n
i=1 imi,n = n. The Ewens sampling

formula provides the probability distribution of the random vector Mn under (1)
and it coincides with

Pr[Mn = mn] = n!
(θ)n

n∏
j=1

θmj,n

jmj,nmj,n!(2)

where (θ)n = θ(θ + 1) · · · (θ + n − 1) for any θ > 0. We also agree on set-
ting (θ)0 := 1. See also [2] for a derivation of (2). Obviously, to the distribu-
tion of Mn there corresponds a distribution of the vector (Kn,Nn) where Kn is
the number of distinct species detected among the n observations in the sample
and Nn = (N1,n, . . . ,NKn,n) is the vector of frequencies with which each dis-
tinct species is observed. Such a correspondence is one-to-one and, conditional
on Kn, the distribution of Nn, is supported on the set �n,Kn := {(n1, . . . , nKn

) ∈
{1, . . . , n}Kn :

∑Kn

j=1 nj = n}. In particular, for the Ewens sampling formula (2)
there corresponds the probability distribution

Pr[Kn = k,Nn = (n1, . . . , nKn
)] = θk

(θ)n

k∏
j=1

(nj − 1)!(3)

for any k ∈ {1, . . . , n} and (n1, . . . , nk) ∈ �n,k . The parameter θ , in genetic ap-
plications, is interpreted as the mutation rate of each gene into new allelic types.
Formula (3) has a further interesting combinatorial interpretation. If θ is a positive
integer, then θk ∏k

j=1(nj −1)! is the number of colored permutations of {1, . . . , n}
into k cycles with respective lengths n1, . . . , nk , each cycle being labeled by any of
the θ available colors. Accordingly, (3) is the probability distribution of a random
permutation with colored cycles. See [3, 29] for exhaustive accounts on the Ewens
sampling formula.

The distribution of the vector (Kn,Nn) takes on the name of exchangeable par-
tition probability function (EPPF), a notion introduced by Pitman in [26] and fur-
ther studied in a series of subsequent papers; see [29] and references therein. The
main object of investigation of the present paper is a family of EPPFs, introduced
and thoroughly investigated in [9], which generalize the Ewens sampling scheme.
Our aim is to establish distributional properties of such EPPFs which allow, given
a sample, to make predictions according to a Bayesian nonparametric procedure.
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The concrete motivation for this study is provided by the straightforward applica-
bility of the results to inference in genetic experiments. As a matter of fact, an im-
portant setting where our findings can be usefully applied relates to gene detection
in expressed sequence tags (EST) experiments. ESTs are produced by sequencing
randomly selected cDNA clones from a cDNA library. Given an initial EST data
set of size n, one is interested in the prediction of the outcomes of further sampling
from the library. For instance, interest lies in the estimation of the number of new
unique genes in a possible additional sample of size m: nonparametric frequentist
estimators, however, yield completely unstable estimates when m > 2n. See [25]
for a discussion of this phenomenon. In contrast, for the corresponding Bayesian
nonparametric estimators proposed in [20], and based on Gibbs partitions, the rel-
ative dimension of m with respect to n is not an issue. Indeed, we will show that
the EPPF, whenever analytically available, yields straightforward and coherent an-
swers to this and other related prediction problems.

In Section 2 we recall the concepts of exchangeable random partition and EPPF
and the definition of the class of exchangeable Gibbs random partitions. In Sec-
tion 3 we derive distributional results for the corresponding EPPFs conditionally
on a sample: we obtain expressions for the predictive distribution of future ob-
servations given the past, then focus on the probability distribution of the random
partition restricted to those observations yielding new distinct species in the future
sample and, finally, face the problem of determining the probability that specific
observed species will not appear in the future sample. In Section 4 we illustrate
how our results can be applied in the context of EST analysis of cDNA libraries.
The Appendix contains a short review of generalized factorial coefficients and the
proofs.

2. Exchangeable Gibbs random partitions. A random partition of the set of
natural numbers N is defined as a consistent sequence � = {�n}∞n=1 of random
elements, with �n taking values in the set of all partitions of [n] := {1, . . . , n}
into some number of disjoint nonempty blocks. Consistency in this setting implies
that each �n is obtained from �n+1 by discarding the integer n + 1. A random
partition � is exchangeable if, for each n, the probability distribution of �n is
invariant under all permutations of (1, . . . , n). To be more precise, let {Aj }kj=1
denote a partition of the set [n], and let the Aj ’s be indexed by [k] in order of their
least elements. In order to describe the property of exchangeability for � let us
introduce a sequence of functions �

(n)
k : �n,k → R+ such that:

(i) �
(1)
1 (1) = 1;

(ii) for any (n1, . . . , nk) ∈ �n,k , k ∈ {1, . . . , n} and n ≥ 1 one has

�
(n)
k (n1, . . . , nk) = �

(n)
k

(
nρ(1), . . . , nρ(k)

)
where ρ is an arbitrary permutation of the indices (1, . . . , k);
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(iii) for any (n1, . . . , nk) ∈ �n,k , k ∈ {1, . . . , n} and n ≥ 1 the following addi-
tion rule holds true:

�
(n)
k (n1, . . . , nk)

(4)

=
k∑

j=1

�
(n+1)
k (n1, . . . , nj + 1, . . . , nk) + �

(n+1)
k+1 (n1, . . . , nk,1).

A function �
(n)
k with these properties is known as an exchangeable partition prob-

ability function (EPPF) and it uniquely determines the probability law of an ex-
changeable random partition according to the equality

P(�n = {A1, . . . ,Ak}) = �
(n)
k (|A1|, . . . , |Ak|),

where |A| stands for the cardinality of set A. A first treatment of this concept can be
found in [26], and a recent exhaustive account on exchangeable random partitions
is provided in [29]. The above-mentioned Ewens sampling formula corresponds
to the EPPF of the Dirichlet process [8] as described in (3) and it has found many
interesting applications, for instance, in Bayesian nonparametrics and in popula-
tion genetics. Another noteworthy example is represented by Pitman’s sampling
formula which corresponds to an EPPF of the form

�
(n)
k (n1, . . . , nk) =

∏k−1
i=1 (θ + iσ )

(θ + 1)n−1

k∏
j=1

(1 − σ)nj−1,(5)

where θ > −σ and σ ∈ (0,1) or σ < 0 and θ = ν|σ | for some positive inte-
ger ν. See [26]. This can also be seen as the probability distribution induced by
the species sampling model P̃ (·) = ∑∞

j=1 p̃j δXj
where the Xj ’s are independent

and identically distributed from some nonatomic distribution H and the weights
p̃j are constructed via a stick-breaking procedure as in (1) the only difference
being, now, that Wj ∼Beta(1 − σ, θ + jσ ) for any j ≥ 1. We also agree that
Wj ∼Beta(1 − σ,0) implies that Wj = 1 almost surely. The random probability
P̃ is termed the two parameter Poisson–Dirichlet process. See [27, 29].

Another interesting example of EPPF arises from the normalization of a gener-
alized gamma process, as defined in [4], and leads to

�
(n)
k (n1, . . . , nk)

(6)

= σk−1eβ ∏k
j−1(1 − σ)nj−1


(n)

n−1∑
i=0

(
n − 1

i

)
(−1)iβi/σ


(
k − i

σ
;β

)

where β > 0 and 
(a;x) := ∫ ∞
x sa−1e−s ds is, for any x > 0, the incomplete

gamma function. See [14, 28] and [19] for an application of the corresponding ran-
dom discrete distribution in the context of mixture modeling. For general results
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concerning random probability measures derived via normalization procedures see
[15–17, 28, 31].

The examples we have briefly illustrated so far share a common structure. In-
deed, one may note that each EPPF in (3), (5) and (6) arises as a product of two
factors: the first one depends only on (n, k) and the second one depends on the
frequencies (n1, . . . , nk) via the product

∏k
j=1(1 − σ)nj−1. This structure is the

main ingredient for defining a general family of exchangeable random partitions,
namely the Gibbs-type random partitions.

DEFINITION 1 ([9]). An exchangeable random partition � of the set of natural
numbers is said to be of Gibbs form if, for all 1 ≤ k ≤ n and for any (n1, . . . , nk)

in �n,k , the EPPF of � can be represented as

�
(n)
k (n1, . . . , nk) = Vn,k

k∏
j=1

(1 − σ)nj−1,(7)

for some σ ∈ [0,1).

It is worth noting that the previous definition holds also for negative values of σ .
See [9]. According to Definition 1, an exchangeable Gibbs-type random partition
is completely specified once the Vn,k’s have been assigned. As shown in [9], if
a set of nonnegative weights V := {Vn,k :k = 1, . . . , n;n ≥ 1} solves the forward
recursive equations

Vn,k = (n − σk)Vn+1,k + Vn+1,k+1,(8)

then V identifies the EPPF of a Gibbs-type random partition. Hence, for infinite
exchangeable sequences of random partitions, the above recursion might provide
a constructive approach in order to determine Gibbs-type random partitions. In
[9], Theorem 12, one can find a complete description of the extreme points of
V . With reference to the previously illustrated examples, the corresponding set of
weights V are immediately identified from (3), (5) and (6), respectively. Recently,
[11] have investigated the dependence of the distribution of the frequencies of the
clusters of a Gibbs-type partition on their least elements and have extended some
of the results contained in [10] relating to the Ewens sampling formula.

Finally, note that Definition 1 directly involves infinite sequences � = {�n} of
exchangeable random partitions. One can, however, confine oneself to considering
just a finite sequence of partitions � = {�n}Nn=1 for some integer N ≥ 1. In this
case, we say that � is a finite Gibbs random partition if it is characterized by an
EPPF of the form (7), for any k ∈ {1, . . . , n} and n ∈ {1, . . . ,N}. Note that in this
case, the addition rule (4) defining the EPPF holds true for n ∈ {1, . . . ,N − 1}.
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3. Conditional structures of Gibbs-type random partitions. The main goal
we are pursuing in the present paper consists in investigating some conditional
structures that emerge when the observations are sampled according to a Gibbs-
type random partition with a view to deriving Bayesian nonparametric estima-
tors for quantities of interest. The issue we address consists in evaluating, con-
ditionally on the partition of a basic sample of size n, the probability of sam-
pling, if m draws, a certain number of observations yielding new partition groups
with specified frequencies. Such a quantity can be useful in a variety of ap-
plications, some of which we highlight in Section 4. Resorting to the nota-
tion set forth in the Section 2, we study distributional properties of the parti-
tion of the set of integers {n + 1, . . . , n + m}, given [n] has been partitioned
into j classes with respective frequencies (n1, . . . , nj ). A few quantities, anal-
ogous to those describing the partition structure of [n], need to be introduced
in advance. We let K

(n)
m = Km+n − Kn stand for the number of new partition

sets C1, . . . ,CK
(n)
m

generated by the additional m-sample Xn+1, . . . ,Xn+m. Fur-

thermore, if C := ⋃K
(n)
m

i=1 Ci whenever K
(n)
m ≥ 1 and C ≡ ∅ if K

(n)
m = 0, we set

L
(n)
m := card({Xn+1, . . . ,Xn+m} ∩ C) as the number of observations belonging to

the new clusters Ci . It is obvious that L
(n)
m ∈ {0,1, . . . ,m} and that m − L

(n)
m ob-

servations belong to the sets defining the partition of the original n observations.
According to this, if S

L
(n)
m

= (S
1,L

(n)
m

, . . . , S
K

(n)
m ,L

(n)
m

) then the distribution of S
L

(n)
m

,

conditional on L
(n)
m = s, is supported by all vectors (s1, . . . , sK(n)

m
) of positive inte-

gers such that
∑K

(n)
m

i=1 si = s. The remaining m − L
(n)
m observations are allocated to

the “old” Kn groups with vector of nonnegative frequencies Rn = (R1, . . . ,RKn)

such that
∑Kn

i=1 Ri = m − L
(n)
m . Throughout we also assume that all random quan-

tities are defined on a common probability space (�,F ,P).

PROPOSITION 1. Suppose that � = {�n}∞n=1 is a Gibbs-type exchangeable
random partition with weights Vn,k and parameter σ ∈ [0,1). Then, the joint dis-
tribution of K

(n)
m , L

(n)
m and S

L
(n)
m

, given Kn and Nn, is of the form

P
(
K(n)

m = k,L(n)
m = s,S

L
(n)
m

= (
s1, . . . , sK(n)

m

)|Kn = j,Nn = (n1, . . . , nKn)
)

= P
(
K(n)

m = k,L(n)
m = s,S

L
(n)
m

= (
s1, . . . , sK(n)

m

)|Kn = j
)

(9)

= Vn+m,j+k

Vn,j

(
m

s

)
(n − jσ )m−s

k∏
i=1

(1 − σ)si−1.

Hence, the number Kn of partition sets in the basic n sample is sufficient for pre-
dicting: (i) the number of sets into which {n + 1, . . . , n + m} is partitioned, (ii) the
number of points from the subsequent m sample that belong to the new sets of the
partition of [n + m] and (iii) the frequencies in each of these new groups.
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By marginalizing the conditional distribution in (9) with respect to S
L

(n)
m

and,

then, with respect to K
(n)
m one obtains the conditional distribution for the number

of new groups and the number of observations belonging to these new groups and
the distribution of L

(n)
m , respectively. These marginalizations yield results in terms

of generalized Stirling numbers or generalized factorial coefficients, denoted as
C (s, k, σ ) and whose representation is given in (37).

COROLLARY 1. The joint distribution of K
(n)
m and L

(n)
m , given Kn, can be

expressed as

P
(
K(n)

m = k,L(n)
m = s|Kn = j

)
(10)

= Vn+m,j+k

Vn,j

(
m

s

)
(n − jσ )m−s

C (s, k, σ )

σ k

for k ≤ s = 0, . . . ,m and the conditional distribution of L
(n)
m is of the form

P
(
L(n)

m = s|Kn = j
) =

(
m

s

)
(n − jσ )m−s

s∑
k=0

Vn+m,j+k

Vn,j

C (s, k, σ )

σ k
(11)

for s = 0, . . . ,m.

From (10) and (11) one can also deduce other explicit forms for conditional dis-
tributions of interest. For example, the distribution of the number of observations
in the new m-sample which lie in new partition sets, given the number of groups
present in the basic n-sample and the number of new clusters K

(n)
m , is of the form

P
(
L(n)

m = s|K(n)
m = k,Kn = j

) =
(m
s

)
(n − jσ )m−sC (s, k, σ )

C (m, k;σ,−n + jσ )
(12)

for s = k, . . . ,m, where C (n, k;σ, γ ) is a noncentral generalized factorial coeffi-
cient representable as in (39). It is worth noting that the previous expression does
not depend on the particular Gibbs prior it is derived from: interestingly, Gibbs-
type random partitions share the same conditional structures once K

(n)
m and Kn are

fixed. This finding is reminiscent of a result in [9] where the authors show that Kn

is sufficient for the Gibbs random partition of the first n integers meaning that the
conditional distribution of the partition of [n] given Kn does not depend on the
weights Vn,k . On the other hand, the conditional distribution of K

(n)
m , given L

(n)
m

and Kn, is of the form

P
(
K(n)

m = k|L(n)
m = s,Kn = j

) = Vn+m,j+kC (s, k, σ )/σ k∑s
l=0 Vn+m,j+lC (s, l, σ )/σ l

(13)

for any k ∈ {0, . . . , s}. Moreover, the Bayes estimator (under quadratic loss func-
tion) for the expected number of new clusters, proposed in [20], is easily recovered
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from (10) as

E
(
K(n)

m |Kn = j
) =

m∑
k=0

k
Vn+m,j+k

Vn,j

C (m, k;σ,−n + jσ )

σ k
.(14)

Often interest relies also in determining an estimator for the number of observa-
tions in the subsequent m-sample that will belong to new species. For instance, in
genomic applications this can be seen as a better measure of redundancy of a cer-
tain library. For this purpose, one can resort to (11) and the corresponding Bayes
estimator is given by

E
(
L(n)

m |Kn = j
) =

m∑
s=0

s

(
m

s

)
(n − jσ )m−s

s∑
k=0

Vn+m,j+k

Vn,j

C (s, k, σ )

σ k
.(15)

Then, E(L
(n)
m |Kn = j)/m is the expected proportion of genes in the new sample

which do not coincide with previously observed ones. The expression in (15) ad-
mits a noteworthy simplification as outlined in the following proposition: indeed,
the Bayes estimator is m times the probability that the (n+ 1)th draw yields a new
cluster, given that j distinct clusters are generated by the first n observations.

PROPOSITION 2. For any j ∈ {1, . . . , n} and m ≥ 1 one has

E
(
L(n)

m |Kn = j
) = m

Vn+1,j+1

Vn,j

.(16)

All the previous expressions are easily available for the three examples we have
mentioned in Section 2. We first focus our attention on the Dirichlet process which
represents the most well-known case. Indeed, from (3) one finds out that Vn,k =
θk/(θ)n and, for instance, (9) reduces to

P
(
L(n)

m = s,K(n)
m = k,S

L
(n)
m

= (
s1, . . . , sK(n)

m

)|Kn = j
)

(17)

= θk

(θ + n)m

(
m

s

)
(n)m−s

k∏
i=1

(si − 1)!.

Note that simple algebra leads to rewrite the above expression as

(
m

s

)(
1 − n

θ + n

)k
{

(θ + n)k

(θ + n)s

k∏
i=1

(si − 1)!
}

(n)m−s

(θ + n + s)m−s

=
(

m

s

)
pθ(n,m, k, s, sk)

where it can be immediately seen that the term in curly brackets on the left-hand
side is the sampling formula in (9) with θ +n in the place of θ being the total mass
parameter of the Dirichlet process conditioned on a sample of size n. Hence, the



CONDITIONAL GIBBS STRUCTURES 1527

quantity pθ(n,m, k, s, sk) can be interpreted as the probability of drawing, condi-
tional on the n past observations, a specific sample of size m of which s belong to
the new k groups of the partition with vector of frequencies sk = (s1, . . . , sk) and
the other m− s coincide with any of the conditioning n observations. On the other
hand, recall that limσ→0

C (n,k,σ )

σ k = |s(n, k)| where s(·, ·) stands for the Stirling
number of the first kind. This allows to determine the expressions appearing in
(10) and (11). Indeed, one has

P
(
K(n)

m = k,L(n)
m = s|Kn = j

) =
(

m

s

)
θk(n)m−s

(θ + n)m
|s(n, k)|

and, using the definition of the signless Stirling number of the first kind according
to which

s∑
i=0

θi |s(s, i)| = (θ)s(18)

(see, e.g., [6], page 2536), one has

P
(
L(n)

m = s|Kn = j
) =

(
m

s

)
(n)m−s

(θ + n + s)m−s

(θ)s

(θ + n)s
=

(
m

s

)
qθ (n,m, s)

where it is apparent that qθ (n,m, s) is the probability, conditional on a sample of
size n, of observing a specific m-sample containing s elements not contained in
the conditioning n-sample.

REMARK 1. It is important to note that the conditional structure of the Dirich-
let process does not depend on Kn: it only depends on the size of the basic sample
n. This is, indeed, a characterizing property of the Dirichlet process as shown in
[36]. Such a property simplifies the mathematical expressions but represents a seri-
ous drawback for applications. Indeed, it is reasonable to expect that Kn influences
prediction of the clustering structure of future observations: the larger Kn the more
new clusters K

(n)
m and the more observations belonging to these new clusters L

(n)
m

one would expect. This is the reason which explains the interest in a more general
family of partition distributions such as those of Gibbs-type for which prediction
depends on Kn. Finally, it is worth recalling that the Dirichlet process can be seen
as a two parameter Poisson–Dirichlet process with parameter (θ,0). Hence, when
we deal with the Poisson–Dirichlet process in the sequel, the Dirichlet process case
can be recovered by letting σ → 0.

REMARK 2. All the quantities described up to now, and developed in the next
subsections, depend on the analysis of the conditional structure of a Gibbs-type
random partition. Investigation of the conditional structure for the sequence of
blocks (Kn)n≥1 is pursued in [9] where the authors do consider the conditional
distribution of the number of groups in the partition of [n], given the number of
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blocks in which [n+m] is partitioned. In our setting, where prediction is the main
focus, we are more interested in evaluating conditional probabilities (or expecta-
tions) for the partition of future observations given the partition structure of past
observations. And we also consider other relevant quantities, besides the number
of groups. It might be that starting from the conditional characterizations provided
by [9] one can derive formulae analogous to those we are now going to estab-
lish, but we find our approach more direct and particularly suited to the specific
prediction problems we have in mind.

3.1. The process generating new clusters. We are now going to consider an
important quantity which describes the partition structure of observations gener-
ating new groups in a further sampling procedure, conditional on the partition
generated by the first n observations. In particular we are able to point out a sort of
reproducibility of the Gibbs structure as established by the following proposition.

PROPOSITION 3. Let � = {�n}∞n=1 be a Gibbs-type random exchange-
able partition whose EPPF is characterized by the set of weights {Vn,k :k =
1, . . . , n;n ≥ 1} and by the parameter σ ∈ (0,1). Then

P
(
K(n)

m = k,S
L

(n)
m

= (
s1, . . . , sK(n)

m

)∣∣L(n)
m = s,Kn = j,Nn = (n1, . . . , nj )

)
(19)

= Vn+m,j+k∑s
i=0 Vn+m,j+iC (s, i, σ )/σ i

k∏
i=1

(1 − σ)si−1

for any s ∈ {1, . . . ,m}, k ∈ {1, . . . , s}, j ∈ {1, . . . , n}, (n1, . . . , nj ) ∈ �n,j and
(s1, . . . , sk) ∈ �s,k . Consequently the partition of the observations which belong to
the new partition sets is, conditional on the basic sample of size n, a finite Gibbs-
type random partition with weights {Vs,k(m,n, j) : s = 1, . . . ,m;k = 1, . . . , s} de-
fined by

Vs,k(m,n, j) = Vn+m,j+k∑s
i=0 Vn+m,j+i

C (s,i,σ )

σ i

(20)

and with parameter σ ∈ [0,1).

Note from (19), again, that

P
(
K(n)

m = k,S
L

(n)
m

= (
s1, . . . , sK(n)

m

)∣∣L(n)
m = s,Kn = j,Nn = (n1, . . . , nj )

)
= P

(
K(n)

m = k,S
L

(n)
m

= (s1, . . . , sK(n)
m

)
∣∣L(n)

m = s,Kn = j
)
.

The finiteness of the random partition described by (19) is obvious, since it takes
values on the space of all partitions of [s], with 1 ≤ s ≤ m. Moreover, the particular
structure featured by the conditional distribution in (19) motivates the following
definition.
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DEFINITION 2. The conditional probability distribution

�̃
(s)
k (s1, . . . , sk;m,n, j)

(21)
:= P

(
K(n)

m = k,S
L

(n)
m

= (
s1, . . . , sK(n)

m

)∣∣L(n)
m = s,Kn = j

)
,

with 1 ≤ s ≤ m and 1 ≤ k ≤ s, is termed conditional EPPF.

Hence, the probability distribution in (19) is a conditional EPPF giving rise to a
finite Gibbs-type random partition. Even if the structure of �̃

(s)
k (s1, . . . , sk;m,n, j)

is quite general, one might wonder whether it is possible to provide more informa-
tion about its Vs,k(m,n, j) weights in some particular cases. For example, it would
be interesting to ascertain when Vs,k(m,n, j) does not depend on m and n, so that
�̃

(s)
k (s1, . . . , sk;m,n, j) = �̃

(s)
k (s1, . . . , sk; j), which means that the conditional

EPPF is that corresponding to an infinite Gibbs partition. This leads us to state the
following:

COROLLARY 2. The conditional EPPF �̃
(s)
k (s1, . . . , sk;m,n, j) does not de-

pend directly on m and n if and only if it is determined from a two-parameter
Poisson–Dirichlet random partition.

Having the conditional EPPF �̃
(s)
k at hand, one can compute some other in-

teresting conditional distributions in a straightforward way. For example, if one
combines the expression for �̃

(s)
k with Corollary 1 it is immediate to check that

P
(
S

L
(n)
m

= (
s1, . . . , sK

m(n)

)|K(n)
m = k,L(n)

m = s,Kn = j
)

= σk

C (s, k, σ )

k∏
i=1

(1 − σ)si−1

is an expression for the conditional distribution of detecting a particular configu-
ration (s1, . . . , sk) for the observations belonging to the new partition sets, given
the number of new sets, the number of observations falling into these sets and the
basic n-sample.

All the sampling formulae we have deduced so far have important applications
in Bayesian nonparametrics and population genetics. In Bayesian nonparametrics,
random discrete distributions are commonly employed in order to define a clus-
tering structure either at the level of the observations or at the level of the latent
variables in a complex hierarchical model. In particular any EPPF corresponds to
some random discrete distribution and it represents, together with all the expres-
sions for the conditional distributions we have obtained, a useful tool for specifying
prior opinions on the clustering of the data. In population genetics, the concept of
conditional EPPF can be seen as follows. Given a sample of size n containing j

distinct species with absolute frequencies n1, . . . , nj , a new sample of size m is to
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be drawn. Given that s of the m observations contribute to generating newly ob-
served species, that is, they belong to new distinct clusters, one might be interested
in evaluating the probability that the s observations are grouped into k clusters with
respective frequencies s1, . . . , sk . The answer to such a question is provided by a
conditional EPPF. The other distributions, discussed previously, provide a wide
range of sampling formulae which answer similar types of problems. In the fol-
lowing subsection we focus attention on some noteworthy particular cases, namely
the Poisson–Dirichlet distribution, the two-parameter Poisson–Dirichlet distribu-
tion and the generalized gamma partition distribution.

3.2. Illustrative examples. We start our illustrations by considering the two-
parameter Poisson–Dirichlet process due to [26]. The EPPF of this process is also
known as Pitman sampling formula. Basing upon Proposition 1, one has

P
(
K(n)

m = k,L(n)
m = s,S

L
(n)
m

= (
s1, . . . , sK(n)

m

)|Kn = j
)

(22)

=
∏k−1

i=0 (θ + jσ + iσ )

(θ + n)m

(
m

s

)
(n − jσ )m−s

k∏
i=1

(1 − σ)si−1

and it is possible to derive explicit expressions for all the sampling formulae set
forth in Section 2. First note that from properties of generalized factorial coeffi-
cients, one has

s∑
k=0

Vn+m,j+k

C (s, k, σ )

σ k
= σ j

(θ + n)m

σ∑
k=0

(
θ

σ

)
j+k

C (s, k, σ )

=
∏j−1

i=0 (θ + iσ )

(θ + n)m

σ∑
k=0

(
θ

σ
+ j

)
k

C (s, k, σ )

=
∏j−1

i=0 (θ + iσ )

(θ + n)m
(θ + jσ )s

= Vn+m,j (θ + jσ )s.

According to this equality, from (11) one has

P
[
L(n)

m = s|Kn = j
] = 1

(θ + n)m

(
m

s

)
(n − jσ )m−s(θ + jσ )s.(23)

Now, (23) yields an estimate for the expected number of observations which do
not coincide with the previously observed ones which, by virtue of Proposition 2,
coincides with

E
[
L(n)

m |Kn = j
] = m(θ + jσ )

θ + n
.(24)
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Consider now the conditional EPPF in (19), which is associated to the process
generating the new clusters as explained in Section 3.1. We know by Corollary 2
that in the two-parameter Poisson–Dirichlet case the Vs,k(m,n, j) weights do not
depend on m and n. Their specific form is easily seen to be

Vs,k(m,n, j) = Vn+m,j+k∑s
i=0 Vn+m,j+iσ−iC (s, i, σ )

= Vn+m,j+k

Vn+m,j (θ + jσ )s

=
∏j+k−1

i=j (θ + iσ )

(θ + jσ )s
=

∏k−1
i=0 (θ + jσ + iσ )

(θ + jσ )s

with the proviso that
∏s−1

i=s (θ + jσ + i) ≡ 1. Hence, the conditional Pitman sam-
pling formula is given by

�̃
(s)
k (s1, . . . , sk;m,n, j) =

∏k−1
l=0 (θ + jσ + lσ )

(θ + jσ )s

k∏
i=1

(1 − σ)si−1.(25)

Now set θ ′ = θ + jσ and note that the conditional EPPF of a Poisson–Dirichlet
process with parameter (θ, σ ) is again a Poisson–Dirichlet process with an updated
parameter (θ ′, σ ). This can be seen as a quasi-conjugacy of the two-parameter
Poisson–Dirichlet process, where by quasi-conjugacy we mean that the process
generating the new observations is of the same form as the prior process with up-
dated parameters. Hence, at this stage one can equivalently re-express Corollary 2
above in a language quite familiar in Bayesian nonparametrics as follows:

COROLLARY 2′ . The only quasi-conjugate Gibbs-type prior is the two-
parameter Poisson–Dirichlet process.

Note that the quasi-conjugacy of the two-parameter Poisson–Dirichlet process
was first shown in Pitman ([28], Corollary 20) by means of different techniques,
whereas the characterization as the only quasi-conjugate Gibbs prior is new. With
the Poisson–Dirichlet process with parameter (θ,0), that is, the Dirichlet process
prior with parameter measure having total mass θ > 0, some useful simplifications
occur. For example, the conditional EPPF is

�̃
(s)
k (s1, . . . , sk;m,n, j) = θk ∏k

i=1(si − 1)!∑s
i=0 θi |s(s, i)| = θk

(θ)s

k∏
i=1

(si − 1)!(26)

which replicates the unconditional form of the EPPF in (3) and, as expected, does
not depend on (m,n, j). From a Bayesian nonparametric perspective, this is not
surprising given the conjugacy of the Dirichlet process (see [8]). Indeed, this is
just a reformulation, in a different context, of the fact that given a sample from the
Dirichlet process, its conditional distribution is again a Dirichlet process. More-
over,

P
(
S

L
(n)
m

= (
s1, . . . , sK

m(n)

)|K(n)
m = k,L(n)

m = s,Kn = j
) =

∏k
i=1(si − 1)!
|s(s, k)| .
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A further example of exchangeable Gibbs-type random partition for which closed-
form expressions of sampling formulae are available is the generalized gamma
distribution (6). The conditional EPPF of the corresponding random partition is
given by

�̃
(s)
k (s1, . . . , sk;m,n, j)

= σk ∑n+m−1
i=0

(n+m−1
i

)
(−1)iβi/σ
(j + k − i/σ ;β)∑s

i=0 C (s, i, σ )
∑n+m−1

l=0

(n+m−1
l

)
(−1)lβl/σ
(j + i − l/σ ;β)

(27)

×
k∏

i=1

(1 − σ)si−1

and all sampling distributions described in Section 2 can be derived in a straight-
forward way.

3.3. Looking backward. In this section we face the problem of determining
the probability that certain specific observations, present in the basic sample, are
not re-observed in the additional m-sample. This is tantamount to deriving the
probability that the new observations belong either to new clusters or to specified
“old” clusters.

Let A1, . . . ,Aj be the classes of Kn = j sets into which the first n observations,

or n integers {1, . . . , n}, are clustered. Define M
(n,j)
r := M

(n,j)
r (i1, . . . , ir ) to be,

for any (i1, . . . , ir ) ∈ {1, . . . , j}r such that ik �= il for any l �= k, the event which
is true if and only if none of the m observations belongs to any of the sets Ai

where i /∈ {i1, . . . , ir}. That is, M
(n,j)
r is true if the m new observations belong

either to “new” clusters or to the specified “old” clusters Ai1, . . . ,Air . We are now
interested in evaluating the probability of such an event. Obviously, one has r ∈
{1, . . . , j} and recall that of the m new observations m−s are the ones belonging to
the “old” clusters. Correspondingly, we set �r = (i1, . . . ,ir ) to be the vector of
frequencies, that is, il = card({n + 1, . . . , n + m} ∩ Ail ) ≥ 0 for any l = 1, . . . , r

and
∑r

l=1 il = m − s. Hence, it can be seen that

P
(
Kn = j,Nn = nj ,L

(n)
m = s,K(n)

m = k,S
L

(m)
n

= s
K

(m)
n

,�r = λr

)
(28)

= Vn+m,j+k

k∏
r=1

(1 − σ)sr−1

r∏
l=1

(1 − σ)nil
+λil

−1

j∏
l=r+1

(1 − σ)nil
−1.

From (28) a number of interesting distributions can be derived. They typically
provide information about the possibility of not re-observing certain “old” species
in a subsequent “new” sample. The main result of the subsection we wish to state
is the following:
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PROPOSITION 4. Given that the basic n-sample is partitioned into Kn = j

classes, A1, . . . ,Aj , with frequencies (n1, . . . , nj ), the probability that the obser-
vations from the subsequent m-sample contain either elements from Ai1, . . . ,Air ,
with r ∈ {1, . . . , j}, or from new clusters is given by

P
(
M(n,j)

r

∣∣Kn = j,Nn = nj

)
(29)

=
m∑

k=0

Vn+m,j+k

Vn,j

C (m, k;σ, rσ − ∑r
l=1 nil )

σ k
.

For the two-parameter Poisson–Dirichlet process, one has

Vn+m,j+k

Vn,jσ k
= (θ + 1)n−1

∏j+k−1
i=1 (θ + iσ )

σ k(θ + 1)n+m−1
∏k−1

i=1 (θ + iσ )

=
∏k−1

i=0 (θ + jσ + iσ )

σ k(θ + n)m
= ((θ + jσ )/σ )k

(θ + n)m
.

Hence, combining (29) with the definition of noncentral generalized factorial co-
efficient (38) in the Appendix, one has

P
(
M(n,j)

r

∣∣Kn = j,Nn = nj

)
= 1

(θ + n)m

m∑
k=0

(
θ + jσ

σ

)
k

C

(
m,k;σ, rσ −

r∑
l=1

nil

)
(30)

= (θ + (j − r)σ + ∑r
l=1 nil )m

(θ + n)m
.

Such a simple expression provides the conditional probability that no integer in
{n+1, . . . , n+m} will belong to any of the sets Ai , with i /∈ {i1, . . . , ir}, generated
by [n]. In other terms, of the j clusters associated to the (conditioning) partition of
[n], at most the r clusters with indexes i1, . . . , ir do possibly contain integers from
{n + 1, . . . , n + m}.

3.4. The case σ < 0. In the previous subsections we have focused on Gibbs
random partitions with σ ∈ [0,1). See Definition 1. The nonnegativity of σ

ensures that (7) defines the probability distribution of an infinite exchange-
able partition. On the other hand, when σ < 0 Lemma 8 in [9] entails that
the weights V = {Vn,k :k = 1, . . . , n;n ≥ 1} in (7) are mixtures of the weights
V (ν) = {Vn,k(ν) :k = 1, . . . , n;n ≥ 1}, for ν = 1,2, . . . , and Vn,k(ν) = |σ |kν(ν −
1) · · · (ν − k + 1)/(ν|σ |)n. Thus, the Vn,k(ν)’s correspond, for each ν = 1,2, . . . ,

to the weights of Pitman’s sampling formula (25) and imply that the number of
distinct species in the population is ν. See [9] for details. According to Theo-
rem 12(i) in [9], V arises as a mixture of the weights V (1), . . . , V (N∗), where
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N∗ ∈ {1,2, . . .} ∪ {∞} and one can, then, obtain the same results as stated in
the present section, with the proviso that Kn < N∗ + 1. If N∗ = ∞, then no
relevant change occurs. In particular, a slight modification of the proof allows
one to recover the characterization of Corollary 2, with the conditional EPPF
�̃

(s)
k (s1, . . . , sk;m,n, j) being defined for any j < N∗ + 1. Note that, in this case,

the two-parameter Poisson–Dirichlet model coincides with symmetric Dirichlet
distributions. See [29].

4. Application to the analysis of EST data. In this section we show how
Gibbs priors can be applied in a straightforward way to the analysis of Expressed
Sequence Tags (ESTs). ESTs are generated by partially sequencing randomly iso-
lated gene transcripts that have been converted into cDNA. From their introduction
in [1], ESTs have played an important role in the identification, discovery and char-
acterization of organisms as they provide an attractive and efficient alternative to
full genome sequencing. The resulting transcript sequences and their correspond-
ing abundances are the main focus of interest providing the identification and level
of expression of genes. Given a cDNA library and an initial sample of reads of
size n, the main statistical issues to be faced are of predictive nature in the sense
that various features of a possible additional sample of size m are to be predicted.
See, for example, [23, 24, 32]. Such features include, for instance: (i) the expected
number of new genes meant as an estimate of the number of new unique genes to
be detected in the additional EST survey; (ii) the expected number of genes which
do not coincide with genes already present in the initial sample; (iii) the proba-
bility that certain specific genes, present in the basic sample, do not appear in the
additional sample. Based on these estimates important decisions are to be taken.
For instance, researchers have to decide: (i) whether to proceed with sequencing
from a certain library; (ii) whether to carry out a “normalization” protocol (an ex-
pensive procedure which aims at making the frequencies of genes in the library
more uniform); (iii) which libraries, among several ones concerning the same or-
ganism, are less redundant in the sense that they deliver more information from an
additional sample.

The Bayesian nonparametric framework based on Gibbs-type random proba-
bility measures represents a natural, and at the same time powerful, approach for
dealing with these kinds of problems since it conveys, in a statistically rigorous
way, the information present in the initial sample into prediction. In particular, we
focus on the two-parameter Poisson–Dirichlet process, which stands out for its
mathematical tractability.

In order to illustrate the results of the previous section we first deal with a sim-
ple numerical example and then analyze some real EST data. The information
provided by an EST data set sequenced from a cDNA library is summarized by the
size of the sample n, the number of different cDNA fragments j , each of which
represents a unique gene and their corresponding expression levels. Recalling the
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notation set in the Introduction, Mi,n stands for the number of clusters of size i

with the initial n-sample: within the EST framework Mi,n is now the number of
genes with expression level i. For our purposes it is useful to convert the Mi,n’s
into the Ni,n’s, the frequencies (or expression levels) of the various unique genes:
hence, the sample information is given by n, j and (n1, . . . , nj ). We then assume
the EST data are an exchangeable sequence with nonparametric prior given by
the two-parameter Poisson–Dirichlet process. This implies that the clustering of
the ESTs follows a two-parameter Poisson–Dirichlet random partition (5). Such a
setup postulates the sequence of tags to be extendible to infinity: however, interest
relies in computing estimates for m up to the size of the library, which is always
finite implying finiteness of all the estimates. In order to specify the prior parame-
ters θ and σ we resort to an empirical Bayes approach as in [20]. Hence, we fix
σ and θ so to maximize (5) corresponding to the observed sample (j, n1, . . . , nj ),
that is,

(σ̂ , θ̂ ) = arg max
(σ,θ)

∏j−1
i=1 (θ + iσ )

(θ + 1)n−1

j∏
i=1

(1 − σ)ni−1.(31)

Given this, the model is completely specified and attention can be focused on pre-
dicting various features of a future sample of size m.

4.1. Numerical example. Here we compare predictions arising from two dif-
ferent basic samples both of size n = 100. The sample sequenced from library 1
is composed of j = 59 unique genes with m1,100 = 40, m2,100 = 10, m3,100 = 4,
m4,100 = 2, m5,100 = 2, m10,100 = 1, whereas the sample sequenced from library
2 consists of j = 37 unique genes such that m1,100 = 20, m2,100 = 5, m3,100 = 4,
m4,100 = 3, m5,100 = 2, m6,100 = 1, m10,100 = 1, m20,100 = 1. It is to be noted that
the first one features a higher number of unique genes and the expression levels of
the genes is remarkably lower. The average expression level, n/j , is 1.69 for the
sample taken from library 1 and 2.7 for the sample sequenced from library 2. The
parameters for Pitman’s sampling formula are set according to (31), which yields
(σ̂1, θ̂1) = (0.34,33) and (σ̂2, θ̂2) = (0.26,12) for the two cases. Furthermore, we
consider an additional sample of size m = 100.

The expected number of new genes in the additional m-sample can be immedi-
ately derived from (14) and is given by

E
[
K(n)

m |Kn = j
] =

m∑
k=1

k
(j + θ/σ)k

(θ + n)m
C (n, k;σ,−n + jσ ).(32)

In our case the estimator leads to predict 33 and 15 new unique genes, respectively.
This is in accordance with the intuition, which leads to guess a higher number of
new genes for library 1, since the basic sample featured 59 unique ones in contrast
with 37 of library 2. A second quantity of interest is the expected number of genes,
in the additional sample, which do not coincide with previously observed ones.
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Such an expression is given in (24) and it can be seen as a better measure of
redundancy of the library since, in contrast to (32), it takes also the expression
levels of the new genes into account. In our case E[L(n)

m |Kn = j ] yields 40 for
library 1 and 19 for library 2. At first glance these estimates may seem low since
one would expect the difference E[L(n)

m |Kn = j ] − E[K(n)
m |Kn = j ] to be larger.

However, it is reasonable that only a few new unique genes will have expression
levels greater than 1: otherwise they would have been discovered already in the
basic sample. Combining the two estimates one can obtain a plug-in estimator of
the average expression level of the new unique genes in the additional sample as
Am := E[L(n)

m |Kn = j ]/E[K(n)
m |Kn = j ], which in our case are equal to 1.21 for

library 1 and 1.28 for library 2. If one is interested in the overall average expression
level after n + m = 200 reads, the estimator

An+m := (n + m)/
(
j + E

[
K(n)

m |Kn = j
])

(33)

yields 2.17 for library 1 and 3.85 for library 2.
Another important aspect to look at is represented by the frequency configura-

tions of the new unique genes in the additional sample. In particular, one is inter-
ested in establishing which type of configurations are more likely to appear. By
the above considerations, it is clear that these will have a few numbers of unique
genes with significant expression level (which have “escaped” being sequenced in
the basic sample) and all the others with expression level 1. For detecting such a
feature, we work conditionally on K

(n)
m and on L

(n)
m which leads to the following

probability distribution for S
L

(n)
m

P
(
Ss = (s1, . . . , sk)|K(n)

m = k,L(n)
m = s,Kn = j

)
(34)

= σk

C (s, k, σ )

k∏
i=1

(1 − σ)si−1.

It is then reasonable to set K
(n)
m equal to the expected number of new unique genes

arising from (32) and L
(n)
m equal to the expected number of genes which coincide

with any of the newly observed genes, given in (24) with σ = σ̂ and θ = θ̂ as
in (31). Denote these values by k̄m and s̄m, respectively. Given this we consider
the ratio of the distribution in (34) for two configurations S

1

s̄m
and S

2

k̄m
as an in-

dex for establishing which configuration is more likely to appear. From (34) one
immediately obtains

I (n)
m (S

1

s̄m
,S

2

k̄m
) :=

∏s̄m
i=1(1 − σ)s1

i −1∏k̄m

i=1(1 − σ)s2
i −1

(35)

where obviously
∑k̄m

i=1 sr
i = s̄m. Let us first consider library 1 and compare S

1

40
given by 32 genes with expression level 1 and 1 gene with expression level 8 with
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S
2

40 such that 26 genes are observed once and 7 twice. Then, I
(100)
100 (S

1

40,S
2

40) =
34346, that is, the unbalanced configuration with only one gene having expres-
sion level 8 is 34346 times more likely than most balanced configuration. If we
compare the first configuration with S

3

40 given by 31 genes with expression level
1 and two genes with expression levels 4 and 5, respectively, then it appears that
configuration 1 is “only” 60 times more likely. For library 2, things are quite dif-
ferent, even though the unbalanced configuration still predominates. By compar-
ing S

1

19 given by 14 genes with expression level 1 and 1 gene with expression

level 5 with S
2

19, where 11 genes are observed once and 4 genes twice, one has

I
(100)
100 (S

1

19,S
2

19) = 44. This means that the odds in favor of the unbalanced config-
uration with respect to the most balanced are “only” 44. By taking an intermediate
configuration such as 13 genes observed once and two observed 2 and 4 times,
respectively, the odds reduce to 5.

Finally, it is also worth looking backward, in the sense of determining probabil-
ities that certain genes present in the initial sample will not be re-observed in the
additional survey of size m. Since one is typically interested in probabilities con-
cerning the most highly expressed genes, or the genes with expression level 1, it is
useful to order the frequencies in the initial sample in increasing order and denote
them by n(1), n(2), . . . , n(j). Then, from (30), the probability of not re-observing
the j − r most highly expressed genes is given by

(θ + (j − r)σ + ∑r
i=1 n(i))m

(θ + n)m
.(36)

In order to avoid that probabilities take on too-low values, set m = 10. As for li-
brary 1, the probability of not observing the unique gene with expression level 10
is 0.482, whereas the probability of not observing the 40 genes with expression
level 1 is 0.118. It is also worth noting that the probability of not observing certain
specific 10 genes with expression level 1 (out of the 40 present in the initial sam-
ple) is given by 0.611. From this, one can see that it is more likely to re-observe
a gene with expression level a than a genes with expression level 1: this appears
to be a reasonable and, indeed, desirable feature for a model dealing with species
prediction problems. As for library 2, one can, for instance, compute that the prob-
ability of not re-observing the unique gene with expression level 20 is 0.156, while
the probability of not re-sequencing the 20 genes with expression level 1 is 0.257.
Again, the probability attached to highly expressed genes is more than proportional
with respect to genes with expression level 1. Finally, note that these probabilities
are not directly comparable between libraries: this is due to the fact that library 1
exhibits a higher estimate of new genes to be discovered in the additional sample
and also a higher number of observations which belong to these new clusters: con-
sequently, it is natural that the probabilities of not re-observing certain genes are
always higher for library 1.
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4.2. Genomic example. Here we analyze a tomato-flower cDNA library from
the Institute for Genomic Research Tomato Gene Index with library identifier
T1526 [30]. This library was made from 0–3 mm buds of tomato flowers and was
previously analyzed in [20, 23, 24] with reference to the determination of the dis-
covery probability of further reads from the library. The initial sample consists of
n = 2586 ESTs with j = 1825 unique genes. The tomato flower data set shows the
following expression levels:

mi,2586 = 1434,253,71,33,11,6,2,3,1,2,2,1,1,1,2,1,1

with i ∈ {1,2, . . . ,14} ∪ {16,23,27}, which means that we are observing 1434
genes which appear once, 253 genes which appear twice, etc. The average expres-
sion level of the basic sample is 1.417.

We first perform a cross-validation study for assessing the performance of the
method. To this end 10 sub-samples of size 1000 have been drawn without re-
placement from the available 2586 EST sample. On the basis of each sub-sample,
the corresponding values of (σ, θ) have been fixed according to (31). Then, we
have computed the estimators for an additional sample of size m = 1586, which
corresponds to the remaining observed data. In addition to the Bayes estimates
E(K

(n)
m |Kn = j) and E(L

(n)
m |Kn = j), we also computed, using the distributions of

(K
(n)
m |Kn = j) recoverable from (10) and of (L

(n)
m |Kn = j) given in (23), the 95%

highest posterior density (HPD) intervals; these represent the Bayesian counterpart
to frequentist confidence intervals. Finally, also the estimates for the average ex-
pression levels have been computed. Table 1 reports the true values corresponding
to each sub-sample, whereas Table 2 displays the estimates with corresponding
95% HPD intervals.

By comparing Table 1 and 2, one sees that 9 times out of 10 the highest pos-
terior density interval covers the true number of distinct genes present in the ad-
ditional sample, whereas the true number of genes not coinciding with previously
observed ones is always covered. The average prediction errors are 24.5 and 21.2
genes, respectively. The average error in the estimation of the expression level of
the additional sample is 0.0026, whereas the average error of the estimates of the
overall expression level is 0.019. Given the fact that prediction is carried out over
an additional sample of size about 1.5 times the used sub-sample, such results
appear completely satisfactory.

We now deal with the problem of predicting the outcomes of future se-
quencing and, as possible sizes of the additional sample, we consider m ∈
{250,500,750,1000}. As for the prior specification of (σ, θ) the maximization in
(31) leads to (σ̂ , θ̂ ) = (0.612,741). The corresponding estimates for the expected
number of new genes (32) and for the number of genes which do not coincide
with previously observed ones (24) are reported in Table 2 together with the corre-
sponding 95% HPD intervals. The estimates of the average expression level of the
new unique genes and of the average expression level for the whole sample of size
n + m are also reported.
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TABLE 1
Description of the 10 sub-samples of size n = 1000 and the true values of the quantities

to be estimated on the remaining m = 1586 data: the second column indicates the
number K1000 = j of distinct genes in the sub-sample; columns 3–6 report

the true values of (K
(1000)
1586 |K1000), (L

(1000)
1586 |K1000), A1586 and A2586

N j Ktrue Ltrue Atrue
1586 Atrue

2586

1 825 1000 1166 1.166 1.417
2 816 1009 1142 1.132 1.417
3 806 1019 1151 1.130 1.417
4 834 991 1146 1.156 1.417
5 820 1005 1150 1.144 1.417
6 831 994 1145 1.152 1.417
7 819 1006 1150 1.149 1.417
8 813 1012 1130 1.117 1.417
9 812 1013 1135 1.120 1.417

10 830 995 1157 1.163 1.417

It is worth noting that for this real data set the two estimates in the first two
columns are extremely close, leading to an extremely low average expression level
for the new unique genes. This can be explained by two facts: (i) the number of
genes with expression level 1 is already very high in the basic sample (m1,2586 =
1434); (ii) the basic sample is large (n = 2586) and, hence, it is very unlikely

TABLE 2
Predictions, based on the sub-samples, of the quantities of interest on the remaining m = 1586 data:
columns 2–3 display the parameter specifications derived from (31); columns 4–7 report the Bayes

estimates K̂ := E[K(1000)
1586 |K1000 = j ] and L̂ := E[L(1000)

1586 |K1000 = j ] with the corresponding
95% highest posterior density (HPD) intervals; columns 8–9 display the estimates for the

average expression level in the additional sample and in the whole sample
denoted by Â1586 and Â2586, respectively

N σ̂ θ̂ K̂ HPD 95% L̂ HPD 95% Â1586 Â2586

1 0.72 444 1017 (969, 1067) 1140 (1089, 1190) 1.121 1.404
2 0.75 344 1012 (963, 1065) 1128 (1076, 1180) 1.115 1.415
3 0.78 254 1009 (959, 1063) 1116 (1063, 1170) 1.106 1.425
4 0.75 410 1049 (1001, 1101) 1165 (1115, 1215) 1.111 1.373
5 0.65 583 979 (932, 1028) 1118 (1068, 1168) 1.142 1.437
6 0.73 446 1034 (986, 1084) 1155 (1104, 1204) 1.117 1.387
7 0.72 420 1004 (955, 1055) 1128 (1077, 1179) 1.124 1.419
8 0.72 397 992 (943, 1043) 1115 (1063, 1167) 1.124 1.433
9 0.69 457 976 (928, 1028) 1108 (1056, 1159) 1.135 1.446

10 0.72 466 1027 (980, 1078) 1151 (1100, 1200) 1.121 1.393
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TABLE 3
Estimates arising from the two-parameter PD model with (σ̂ , θ̂ ) = (0.612,741) for sizes of the

additional sample corresponding to m ∈ {250,500,750,1000}. K̂ and L̂ denote the Bayes

estimates E[K(2586)
m |K2586 = 1825] and E[L(2586)

m |K2586 = 1825], respectively, and are
reported together with their 95% highest posterior density (HPD) intervals.

Columns 6 and 7 display the estimated average expression levels

m K̂ 95% HPD L̂ 95% HPD Âm Â2586+m

250 138 (122, 156) 140 (124, 155) 1.014 1.445
500 272 (249, 297) 279 (256, 302) 1.026 1.471
750 402 (373, 433) 419 (390, 448) 1.042 1.498

1000 530 (496, 566) 558 (523, 593) 1.053 1.522

that several highly expressed genes have not been sequenced. In such a case the
frequency configuration of the additional sample is forced to be unbalanced and
there is no need to compute (35) to state this. Just note that the most balanced
configuration for m = 250 would be 136 genes with expression level 1 and 2 genes
with level 2.

Another issue of interest is the determination of the probability of not re-
observing certain particular genes in the additional m-sample. This can be achieved
via the expressions in (30) and (36). With reference to the EST data set we are an-
alyzing, the probability of not re-observing genes with expression level larger than
10, which correspond to 9 genes with frequencies 11,11,12,13,14,16,16,23,27,
is given by 0.656,0.123,0.016 for m = 10,50,100, respectively. The prob-
ability of not observing the 71 genes with expression level 3 is given by
0.593,0.075,0.006 for m = 10,50,100, respectively.

APPENDIX

A.1. Generalized factorial coefficients. The results in the previous sections
rely on the generalized factorial coefficients: here we provide a short account of
their definitions and of formulae for their evaluation. For further details and point-
ers to the literature, the reader can refer to [5, 6]. See also [9]. For any n ≥ 1 and
k = 0, . . . , n, the generalized factorial coefficient C (n, k;σ) coincides with the co-
efficient of the kth order factorial of t in the expansion of the nth order generalized
factorial of t with scale parameter σ ∈ R, that is,

(σ t)n =
n∑

k=0

C (n, k;σ)(t)k.

In order to determine the distribution of the number of different species appearing
in a sample of size n, that is, Kn, we have resorted to the following representation:

C (n, k;σ) = 1

k!
k∑

j=0

(−1)j
(

k

j

)
(−jσ )n(37)
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with the proviso that C (0,0;σ) = 1 and C (n,0;σ) = 0 for all n ≥ 1. It is to
be noted that C slightly differs from the definition of generalized factorial coef-
ficient C(n, k;σ) as given, for example, in [5, 6]. Indeed, one has C (n, k;σ) =
(−1)n−kC(n, k;σ).

Besides C (n, k;σ) we consider another quantity C (n, k;σ, γ ) which is known
as noncentral generalized factorial coefficient. It is defined as the coefficient of the
kth order factorial of t in the expansion of the nth order noncentral generalized
factorial of t , with scale parameter σ and noncentrality parameter γ , that is,

(σ t − γ )n =
n∑

k=0

C (n, k;σ, γ )(t)k.(38)

Note that in [5] the definition of noncentral generalized factorial coefficient des-
ignates a quantity C(n, k;σ, γ ) = (−1)n−kC (n, k;σ, γ ). From (2.60) in [5] it is
seen that it can be represented as

C (n, k;σ, γ ) = 1

k!
k∑

j=0

(−1)j
(

k

j

)
(−σj − γ )n(39)

and this can be usefully employed in order to evaluate the probability of discover-
ing a new species. Moreover, from (2.56) in [5] it is possible to establish a connec-
tion between noncentral and central generalized factorial coefficients

C (n, k;σ, γ ) =
n∑

s=k

(
n

s

)
C (s, k;σ)(−γ )n−s .(40)

Finally we briefly recall the relation to Stirling numbers. Indeed,

lim
σ→0

C (n, k;σ)

σ k
= |s(n, k)|

where, as before, |s(n, k)| is the signless Stirling number of the first kind. More-
over, one has

lim
σ→0

C (n, k;σ, γ )

σ k
=

n∑
i=k

(
n

i

)
|s(i, k)|(−γ )n−i .

A.2. Multivariate Chu–Vandermonde formula. Here we present a multi-
variate version of the celebrated Chu–Vandermonde identity. In, for example, [5]
the following version of the Chu–Vandermonde identity is presented:

[a + b]n =
n∑

r=0

(
n

r

)
[a]r [b]n−r(41)

for any a and b in R, where [x]n := x(x − 1) · · · (x − n + 1) stands for the de-
scending factorial. Since a multivariate version in terms of rising factorials seems
not readily available in the literature we present it together with a proof.
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LEMMA A.1. For each q, j ≥ 1, set Aj,q = {(q1, . . . , qj ) : qi ≥ 0,
∑j

i=1 qi =
q}. Then

∑
(q1,...,qj )∈Aj,q

(
q

q1 · · ·qj

) j∏
i=1

(ai)ni+qi−1 =
(
n − j +

j∑
i=1

ai

)
q

j∏
i=1

(ai)ni−1(42)

where (n1, . . . , nj ) is such that ni > 0, for i = 1, . . . , j and
∑j

i=1 ni = n.

PROOF. Since 
(a+n)

(a)

= (a)n = (−1)n[−a]n, from identity (41) one deduces
that

(a + b)n =
n∑

r=0

(
n

r

)
(a)r(b)n−r .(43)

The proof now follows by inductive reasoning. Suppose the identity holds true for
j − 1, that is,

∑
(q1,...,qj−1)∈Aj−1,q

q!
q1! · · ·qj−2!qj−1!(aj−1)nj−1+qj−1−1

j−2∏
i=1

(ai)ni+qi−1

=
(
n − (j − 1) +

j−1∑
i=1

ai

)
q

j−1∏
i=1

(ai)ni−1,

and we show it holds for j as well. Indeed, observe that

∑
(q1,...,qj )∈Aj,q

q!
q1! · · ·qj−1!qj !(aj )nj+qj−1

j−1∏
i=1

(ai)ni+qi−1

=
q∑

qj−1=0

q!
qj−1!(q − qj−1)!(aj−1)nj−1+qj−1−1

× ∑
(q1,...,qj−1)∈Aj−1,q−qj−1

(q − qj−1)!
q1! · · ·qj−2!qj !(aj )nj+qj−1

j−2∏
i=1

(ai)ni+qi−1.

By the induction hypothesis, the second factor above equals(
n − nj−1 − (j − 1) +

j∑
i=1

ai − aj−1

)
q−qj−1

(aj )nj−1

j−2∏
i=1

(ai)ni−1.

Finally the proof is completed by virtue of (43), after noting that

(aj−1)nj−1+qj−1−1 = (aj−1)nj−1−1(nj−1 − 1 + aj−1)qj−1 . �

Lemma A.1 can also be proved by combining the last relation displayed in the
proof with the definition of the multinomial-Dirichlet distribution, according to
which

∑
(q1,...,qj )∈Aj,q

( q
q1···qj

)∏j
i=1(ai)ni+qi−1/(n − j + ∑j

i=1 ai)q = 1.
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A.3. Proofs.

PROOF OF PROPOSITION 1. An obvious point to start from is the following: if
we have seen n observations partitioned into j distinct groups, then the conditional
probability that the next q ≥ 1 observations provide no new groups is

∏q
l=1(1 −

Vn+l,j+1/Vn+l−1,j ) which, using the recursive formula (8) for Vn,k , is given by

P
(
K(n)

q = 0|Kn = j,Nn = nj

)

=
q∏

l=1

(n + l − 1 − jσ )
Vn+l,j

Vn+l−1,j

= (n − jσ )q
Vn+q,j

Vn,j

.

On the other hand, suppose we have seen n + q observations yielding Kn+q = j

groups. Then the conditional probability of obtaining K
(n+q)
s = k new groups of

sizes s1, . . . , sk from the next s observations, where none of these coincides with
the first n + q , is given by

Vn+q+s,j+k

Vn+q,j

k∏
i=1

(1 − σ)si−1

where s1 + · · · + sk = s. If we now set q + s = m, the conditional probability
of obtaining new groups with respective frequencies s1, . . . , sk in the m obser-
vations following on from n, given Kn = j , is, due to exchangeability, found
by multiplying the two conditional probabilities above and including the

(m
s

)
term. Hence one achieves (9). Note that an alternative proof can be given by
considering the joint distribution of (Kn,Nn,K

(n)
m ,L

(n)
m ,S

K
(n)
m

,�j ) where j =
(λ

1,m−L
(n)
m

, . . . , λ
j,m−L

(n)
m

) is the vector of nonnegative integers denoting the num-
ber of new observations in each of the j groups into which the first n observations
are partitioned, and then by using Lemma A.1. �

PROOF OF PROPOSITION 2. The proof works by induction. Let us first note
that for any m ≥ 1 one has

L
(n)
m+1 = L(n)

m + Hn,m

where Hn,m = IXc
n
(Xn+m+1) and Xn = {X1, . . . ,Xn}. Let us first fix m = 1 and

determine

E
[
L

(n)
2 |Kn = j

] = E
[
L

(n)
1 |Kn = j

] + E[Hn,1|Kn = j ].
The first summand is clearly equal to Vn+1,j+1/Vn,j . As for the second summand,
one can use the assumption of exchangeability which yields

E[Hn,1|Kn = j ] = E[IXc
n
(Xn+2)|Kn = j ]

= E[IXc
n
(Xn+1)|Kn = j ]

= Vn+1,j+1

Vn,j

.
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Hence, (16) holds true for m = 2. Now, suppose (16) is valid for m and let us show
this implies it is still true for m + 1. This means we shall determine

E
[
L

(n)
m+1|Kn = j

] = E
[
L(n)

m |Kn = j
] + E[Hn,m|Kn = j ].

By assumption, E[L(n)
m |Kn = j ] = mVn+1,j+1/Vn,j . Moreover, exchangeability

again entails that the second summand above is Vn+1,j+1/Vn,j and the conclusion
follows. �

PROOF OF PROPOSITION 3. This is straightforward and follows from taking
the ratio between (9) and (11) in Corollary 1. �

PROOF OF COROLLARY 2. Let

fj,σ (s, k) := Vn+m,j+k∑s
i=0 Vn+m,j+iσ−iC (s, i;σ)

which, by assumption, does not depend on n and m. Then, if s = 2 and k = 2

Vn+m,(j−2)+2∑2
i=0 Vn+m,(j−2)+iσ−iC (2, i;σ)

= fj−2,σ (2,2)

and, with s = 2 k = 1

Vn+m,(j−2)+1∑2
i=0 Vn+m,(j−2)+iσ−iC (2, i;σ)

= fj−2,σ (2,1).

If we, now, consider the ratio of these two expressions, we obtain the identity

Vn+m,j

Vn+m,j−1
= fj−2,σ (2,2)

fj−2,σ (2,1)
.

From this, one sees that

Vn+m,j

Vn+m,2
=

j∏
i=3

Vn+m,i

Vn+m,i−1
=

j−2∏
i=1

fi,σ (2,2)

fi,σ (2,1)

so that Vn+m,j = Vn+m,2
∏j−2

i=1 (fi,σ (2,2)/fi,σ (2,1)) = g1(n + m)g2(j) for some
functions g1 and g2. By a result of Kerov ([18], Theorem 7.1) (see also [9]) this
entails that the weights Vn,k are those from the two-parameter Poisson–Dirichlet
process. �

PROOF OF PROPOSITION 4. Consider the expression displayed in (28) and
sum with respect to all vector sk in �s,k to obtain

P
(
Kn = j,Nn = nj ,L

(n)
m = s,K(n)

m = k,�r = λr

)
(44)

= Vn+m,j+k

C (s, k, σ )

σ k

r∏
l=1

(1 − σ)nil
+λil

−1

j∏
l=r+1

(1 − σ)nil
−1.
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Now exploit Lemma 1 in order to integrate out �r thus obtaining

P
(
Kn = j,Nn = nj ,L

(n)
m = s,K(n)

m = k,M(n)
r

)
(45)

= Vn+m,j+k

C (s, k, σ )

σ k

(
r∑

l=1

nil − rσ

)
m−s

j∏
i=1

(1 − σ)ni−1.

Finally, integrating out L
(n)
m and K

(n)
m and summing over k = 0, . . . ,m one has

P
(
Kn = j,Nn = nj ,M

(n)
r

)
(46)

=
j∏

i=1

(1 − σ)ni−1

m∑
k=0

Vn+m,j+k

σ k
C

(
m,k;σ, rσ −

r∑
l=1

nil

)
.

Hence, the ratio of (46) over the EPPF �
(n)
j (n1, . . . , nj ) yields the result in (29).

�
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