
The Annals of Applied Probability
2008, Vol. 18, No. 4, 1491–1518
DOI: 10.1214/00-AAP492
© Institute of Mathematical Statistics, 2008

COMPUTABLE EXPONENTIAL BOUNDS FOR SCREENED
ESTIMATION AND SIMULATION

BY IOANNIS KONTOYIANNIS 1 AND SEAN P. MEYN 2

Athens University of Economics and Business and University of Illinois,
Urbana-Champaign

Suppose the expectation E(F(X)) is to be estimated by the empirical
averages of the values of F on independent and identically distributed sam-
ples {Xi}. A sampling rule called the “screened” estimator is introduced, and
its performance is studied. When the mean E(U(X)) of a different function
U is known, the estimates are “screened,” in that we only consider those
which correspond to times when the empirical average of the {U(Xi)} is suf-
ficiently close to its known mean. As long as U dominates F appropriately,
the screened estimates admit exponential error bounds, even when F(X) is
heavy-tailed. The main results are several nonasymptotic, explicit exponen-
tial bounds for the screened estimates. A geometric interpretation, in the spirit
of Sanov’s theorem, is given for the fact that the screened estimates always
admit exponential error bounds, even if the standard estimates do not. And
when they do, the screened estimates’ error probability has a significantly
better exponent. This implies that screening can be interpreted as a variance
reduction technique. Our main mathematical tools come from large devia-
tions techniques. The results are illustrated by a detailed simulation example.

1. Introduction. Suppose we wish to estimate the expectation,

μ := E[X3/4] =
∫ ∞

1
x3/4 f (x) dx,

based on n independent samples X1,X2, . . . ,Xn drawn from some unknown den-
sity f on [1,∞). Suppose, also, we have reasons to suspect that f has a fairly
heavy right tail, and assume that the only specific piece of information we have
available is the value of the mean of f , ν := E(X) = ∫ ∞

1 xf (x) dx, perhaps also
its variance. Because of the heavy right tail, it is natural to expect significant vari-
ability in the data {Xi} as well as in the subsequent estimates of μ. For definite-
ness, assume that the unknown density is f (x) = 5

2x7/2 , for x ≥ 1 [and f (x) = 0,
otherwise], so that μ = 10/7 and ν = 5/3.
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Consider the simplest (and most commonly used) estimator for μ; for each
k ≤ n, let Ŝk denote the empirical average of the transformed samples {X3/4

i },

Ŝk := 1

k

k∑
i=1

X
3/4
i , 1 ≤ k ≤ n.

Although the law of large numbers guarantees that the sequence of estimates {Ŝk}
is consistent and the central limit theorem implies that the rate of convergence is of
order n−1/2, a quick glance at the behavior of Ŝk for finite k reinforces the concern
that the estimates are highly variable: The plots in Figure 1 clearly indicate that,
up to k = n = 5000, the {Ŝk} are still quite far from having converged.

Since f is heavy-tailed, this irregular behavior is hardly surprising: Indeed, as
n grows, the error probability Pr{Ŝn > μ + ε} decays like

Pr{Ŝn > μ + ε} ∼ 1

ε10/3n7/3 , n → ∞,(1.1)

for any ε > 0; see, for example [12]. Therefore, unlike with most classical expo-
nential error bounds, here the error probability decays polynomially in the sample
size n, and with a rather small power at that.

This state of affairs is discouraging, but suppose we decide to use the addi-
tional information we have about f , namely that its mean ν equals 5/3, in order to
“screen” the estimates {Ŝk}. This can be done as follows: Together with the {Ŝk},
also compute the empirical averages {T̂k} of the samples {Xi} themselves,

T̂k = 1

k

k∑
i=1

Xi, 1 ≤ k ≤ n,

and only consider estimates Ŝk at times k when the corresponding average T̂k is
within a fixed threshold u > 0 from its known mean. That is, only examine Ŝk if at
that same time k, |T̂k − ν| < u.

FIG. 1. Two typical realizations of the estimates {Ŝk} for k = 100,101, . . . , n = 5000.
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FIG. 2. Four typical realizations of the estimates {Ŝk} for k = 100,101, . . . , n = 5000. The
“screened estimates” are plotted in bold, and they are simply the original Ŝk at times k when the
corresponding empirical average T̂k is within u = 0.005 of its mean ν = 5/3.

This results in what we call in this paper the “screened estimator” of μ. Figure 2
illustrates its performance on four different realizations of the above experiment.

More generally, assume X,X1,X2, . . . are independent and identically distrib-
uted (i.i.d.) random variables with unknown distribution, and we wish to estimate
the expectation μ := E[F(X)] for a given function F : R → R, while we hap-
pen to know the value of the expectation ν := E[U(X)] of a different function
U : R → R. In this general setting, we introduce:

The Screened Estimator. For each k ≥ 1, together with the empirical averages {Ŝk} of
the {F(Xi)} also compute the averages {T̂k} of the {U(Xi)}, and only consider estimates
Ŝk at times k when T̂k is within a fixed threshold u > 0 from its mean, that is, |T̂k −
ν| < u.

The intuition is simple. In cases when we suspect that the empirical distribution
P̂k of the samples {Xi : i ≤ k} is likely to be far from the true underlying distribu-
tion P , we can check that the projection

∫
U dP̂k = T̂k of P̂k along a function U is

close to the projection
∫

U dP = ν of the true distribution P along U . Of course
this does not guarantee that P̂k ≈ P or that Ŝk ≈ μ, but it does rule out instances k

when it is certain that P̂k differs significantly from P .
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More importantly, as we shall see next, it is often possible to obtain explicitly
computable exponential error bounds for the screened estimator, even when the
error probability of the standard estimates {Ŝk} decays at a polynomial rate.

The purpose of this paper is twofold. First, we provide a theoretical explana-
tion for the practical advantage of the screened estimator: We develop general
conditions under which the error probability of the screened estimator decays ex-
ponentially, regardless of the tail of the distribution of the {F(Xi)}. The main as-
sumption is that U dominates F from above, in that supx[F(x) − βU(x)] is finite
for all β > 0, where the supremum is over all x in the support of X. Then we
state and prove a number of explicit exponential bounds for the error probability
of the screened estimator, which are easily computable and readily applicable to
specific problems where the only information we have about the unknown underly-
ing distribution is the mean and perhaps also the variance of U(X) for a particular
function U .

To illustrate, we return to the example of estimating the expectation μ =
E(X3/4) with respect to an unknown density f on [1,∞), based on n i.i.d. sam-
ples X1, . . . ,Xn drawn from f , and assuming that we only know the mean (and
perhaps some higher moments) of X. In the above notation, this corresponds to
F(x) ≡ x3/4 and U(x) ≡ x. The proof of the following proposition is given at the
end of Section 3.

PROPOSITION 1.1. (i) The error probability of the standard estimator {Ŝn}
decays to zero at a polynomial rate: If the density f is given by f (x) = 5

2x7/2 for
x ≥ 1, then for any ε > 0,

Pr{Ŝn − μ > ε} ∼ 1

ε10/3n7/3 , n → ∞.

(ii) The error probability of the screened estimator decays to zero exponen-
tially fast: If the only information we have about f is that its mean ν equals 5/3,
then we can conclude that for all ε,u > 0 there exists I (ε, u) > 0 such that

Pr
{
Ŝn − μ > ε and

∣∣T̂n − 5
3

∣∣ < u
} ≤ e−nI (ε,u) for all n ≥ 1.

(iii) If, in addition, we know that the variance of f equals 20/9, then an explicit
exponential bound can be computed: For any ε > 0 and any 0 < u ≤ ε

20 ,

Pr
{
Ŝn − μ > ε and

∣∣T̂n − 5
3

∣∣ < u
} ≤ e−(0.005)×nε2

for all n ≥ 1.

(iv) If we also know that the value of the covariance between X3/4 and X under
f is 20/21, then the following more accurate bound can be obtained: For any ε > 0
and any 0 < u ≤ ε

20 ,

Pr
{
Ŝn − μ > ε and

∣∣T̂n − 5
3

∣∣ < u
} ≤ e−(0.0367)×nε2

,(1.2)

for all n ≥ 1.
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As long as the mean of X is known, we can employ the screened estimator and
be certain that it will have an exponentially small error probability, whereas the
standard estimator’s probability of error may decay at least as slowly as n−7/3.
If the variance of X is also known, then for the specific values in the simulation
examples in Figure 2, with ε = 0.2, u = 0.005 and n = 5000, part (iii) of the
proposition gives

Pr
{
Ŝn − μ > 0.2 and

∣∣T̂n − 5
3

∣∣ < 0.005
} ≤ 0.368.

This is fairly weak, despite the fact that ε = 0.2 is a rather moderate margin of
error. But the error probability does decay exponentially, and with n = 10,000
samples the corresponding upper bound is only ≈ 0.136, while for n = 15,000 it
is ≈ 0.0498. And if, in addition, the value of the covariance between X3/4 and X

is available, then part (iv) gives a much more accurate result even for smaller ε:
Taking ε = 0.1, u = 0.005 and n = 5000,

Pr
{
Ŝn − μ > 0.1 and

∣∣T̂n − 5
3

∣∣ < 0.005
} ≤ 0.1596,

and for n = 10,000 samples the corresponding bound is ≈ 0.025.
Two points of caution are in order here. The first is perhaps somewhat subtle and

has to do with the interpretation of the above error bounds. What exactly does (1.2)
say? Is it the case that, at any time k when T̂k is within u of its mean, we can apply
(1.2) to obtain a bound on the probability of error for the corresponding estimate
Ŝk? Strictly speaking, the answer is “no”; since the times at which the screening
averages {T̂k} are close to their mean are random, (1.2) cannot be automatically
invoked. A strict operational interpretation of the mathematical statement in (1.2)
is as follows: First choose and fix an n such that (1.2) offers a satisfactory guarantee
on the error probability; here n may be the total number of samples available, or
it may be the number of samples we decide to generate from f . Then look at T̂n,
and if |T̂n − ν| < u, it is legitimate to use the error bound (1.2) for the value of the
estimate Ŝn at the last sample time n. Otherwise, do not use the bound (1.2) at all.

The same interpretation applies to any application of the screened estimator. On
the one hand, screening gives a powerful heuristic for selecting times k when the
Ŝk are more likely to be accurate, and it can be used as a diagnostic tool to actually
rule out times k when it is certain that the empirical distribution of the samples
is not close to the true underlying distribution. On the other hand, in cases when
it is required that the error probability be precisely quantified, the sampling times
cannot be random and they have to be decided upon in advance.

The second point is based on some results we observed in simulation experi-
ments, indicating that the sampling times k picked out by the screened estimator
are not all equally reliable: Naturally, since the probability of error decays expo-
nentially, earlier times correspond to much looser error bounds, while the error
probability of estimates obtained during later times can be more tightly controlled.
This is illustrated by the (rather atypical but not impossibly rare) results shown in
Figure 3.
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FIG. 3. Another realization of the empirical estimates {Ŝk} for k = 100,101, . . . , n = 5000, plot-
ted together with the screened estimates shown in bold (where u = 0.005 as before). The screened
estimates at earlier times are less accurate than some of the later estimates that are ignored by the
screened estimator.

From the probabilistic point of view, the following calculation gives a quick ex-
planation for the fact that the screened estimator leads to exponential error bounds
in great generality (although this is not how the actual error bounds in Section 3
are obtained). Suppose the {Ŝk} are used to estimate the mean μ = E(F(X)) for
some F , while we know ν = E(U(X)) for a different function U that dominates
F in that ess supX[F(X) − βU(X)] < ∞, for all β > 0. Although F(X) may be
heavy-tailed, in which case the {Ŝk} themselves will not admit exponential error
bounds, the error probability of the screened estimator is bounded by

Pr{Ŝn − μ > ε and |T̂n − ν| < u}

≤ Pr

{
1

n

n∑
i=1

[F(Xi) − βU(Xi)] − (μ − βν) > ε − βu

}
.(1.3)

Since E[F(X) − βU(X)] = μ − βν, for 0 < β < ε
u

this is a large devia-
tions probability for the right tail of the partial sums of the random variables
{F(Xi) − βU(Xi)}, which are (a.s.) bounded above. It is, therefore, no surprise
that this probability is exponentially small.

1.1. Screening and control variates. A well-known and commonly used tech-
nique for reducing the variance of an estimator in classical Monte Carlo simulation
is the method of control variates; see, for example, the standard texts [7, 11, 13]
or the paper [9] for extensive discussions. This method is based on the observation
that in many applications—exactly as in our setting—there is a function U whose
expectation ν = E[U(X)] is known. Therefore, replacing the estimates {Ŝk} for
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μ = E[F(X)] with the control variate estimates,

S̃k := 1

k

k∑
i=1

(
F(Xi) − β[U(Xi) − ν]), 1 ≤ k ≤ n,

yields an estimator which is still consistent (since the additional term has zero
mean) but whose variance is different from that of {Ŝk}. In fact, choosing (or es-
timating) the value of the constant β appropriately always leads to an estimator
with strictly reduced variance, as long as F(X) and U(X) are correlated random
variables.

This technique is widely employed in practice; see the references above as well
as [1, 6]; also the text [8] contains many examples of current interest in compu-
tational finance and pointers to the relevant literature. In particular, functions U

that appear in applications as control variates provide a natural class of screening
functions that can be incorporated in the design on the screened estimator.

An interesting connection between these two methods (control variates and
screening) is seen in that the second probability in (1.3) above is exactly the error
probability for the control variate estimates {S̃k}. More generally, in cases where
control variates (or some other method) are used to reduce the variance of the
{Ŝk}, we view screening as a sampling rule which complements (and does not
replace) variance reduction or variance estimation techniques. The connection be-
tween screening and variance reduction is an intriguing one, and will be explored
in subsequent work [10].

1.2. Outline and summary of results. The general results in Sections 2 and 3
parallel those presented for the example in Proposition 1.1. Theorems 2.1, 2.2
and 2.3 offer a theoretical description of the large deviations behavior of the
screened estimator’s error probability, both asymptotically and for finite n. The
only assumptions necessary are that E(F(X)) is finite, and that the mean E(U(X))

is known for some function U which dominates F in that ess sup[F(X) −
βU(X)] < ∞ for all β > 0. Then the error probability admits a nontrivial expo-
nential bound, regardless of the distribution of X. The exponent can be expressed
either as a Fenchel–Legendre transform or in terms of relative entropy, and the
relative entropy formulation leads to an elegant geometric explanation for the fact
that the screened estimator’s error probability always decays exponentially.

When F(X) and U(X) also have finite second moments, and assuming that
the variance Var(U(X)) is known, in Theorem 3.1 we give an explicit, easily com-
putable, exponential bound for the error probability. The bound holds for all n ≥ 1,
and the exponent is of order ε2 for small ε,u. Also, a more refined bound is given
when the value of the covariance between F(X) and U(X) is available. These are
the main results of this paper.

In Section 4 we consider the case when F(X) and U(X) have finite exponential
moments, so that the standard estimator {Ŝk} already has an exponentially van-
ishing error probability. Theorem 4.1 shows that the screened estimator’s error
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probability decays at a strictly faster exponential rate, and the difference between
the exponents is more precisely quantified in Theorem 4.2: It is shown to be of
order ε2 for small ε,u, and this is used to draw a different heuristic connection
between screening and variance reduction techniques.

Section 5 contains the proofs of Theorems 2.1, 2.2 and 2.3.
Finally, we mention that the screening idea can also be applied in the context of

more complex problems arising in Markov chain Monte Carlo (MCMC) simula-
tion. Such generalizations are by no means immediate, and they will be explored
in subsequent work.

2. Large deviations. In this section we give a theoretical explanation for the
(sometimes dramatic) performance improvement offered by the screened estima-
tor. For explicit bounds like those presented in the Introduction, see Section 3.

Let X,X1,X2, . . . be i.i.d. random variables with common law given by the
probability measure P on R. Given a function F : R → R whose mean is to
be estimated by the empirical averages of the {F(Xi)}, for the purposes of this
section only we consider a slightly simplified version of the screened estima-
tor: Assuming the mean ν = E(U(X)) of a different function U : R → R is
known, we examine the screened estimator based on the one-sided screening event,
{∑n

i=1 U(Xi) − nν < nu}, for some u > 0. To avoid cumbersome notation, write
Sn := ∑n

i=1 F(Xi) and Tn := ∑n
i=1 U(Xi), n ≥ 1.

In the first result, Theorem 2.1 below, we obtain representations for the asymp-
totic exponents of the error probability, both for the standard estimator and for the
screened estimator. The exponents are expressed in terms of relative entropy, in the
spirit of Sanov’s theorem; see [3, 4, 14]. Recall that the relative entropy between
two probability measures P and Q on the same space is defined by

H(P ‖Q) :=
⎧⎨
⎩

∫
dP log

dP

dQ
, when

dP

dQ
exists,

∞, otherwise.
Theorem 2.1 follows from the more general results in Theorems 2.2 and 2.3 below;
its proof is given in Section 5.

THEOREM 2.1 (Sanov asymptotics). Suppose the functions F : R → [0,∞)

and U : R → R have finite first moments μ := E[F(X)], ν := E[U(X)], and also
finite second moments, E[F(X)2], E[U(X)2]. Assume that F(X) is heavy-tailed
in that E[eθF(X)] = ∞ for all θ > 0, and that U dominates F in that m(β) :=
ess sup[F(X) − βU(X)] < ∞ for all β > 0. Then:

(i) The error probability of the standard estimator decays subexponentially:
For all ε > 0,

lim
n→∞

1

n
log Pr{Sn − nμ > nε} = − inf

Q∈�
H(Q‖P) = 0,

where � is the set of all probability measures Q on R such that
∫

FdQ − μ > ε.
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(ii) The error probability of the screened estimator decays exponentially: For
all ε,u > 0,

lim
n→∞

1

n
log Pr{Sn − nμ > nε and Tn − nν < nu} = − inf

Q∈E
H(Q‖P) < 0,

where E ⊂ � is the set of all probability measures Q on R such that
∫

F dQ−μ >

ε and
∫

U dQ − ν < u.

Therefore, while the (asymptotic) exponent of the error probability of the
standard estimator is equal to zero, the exponent of the error probability of the
screened estimator is strictly positive. Although this situation is only possible
when the relative entropy is minimized over an infinite-dimensional space of
measures [in that the exponent infQ∈� H(Q‖P) cannot be zero when X takes
only finitely many values], it is perhaps illuminating to offer a geometric descrip-
tion.

The large oval in the first diagram in Figure 4 depicts the space of all proba-
bility measures Q on R, and the small “cap” on the left is the set � of those Q

with
∫

FdQ − μ > ε. The gray shaded area corresponds to the “smallest” sub-
set of � such that the infimum of H(Q‖P) over this subset is zero. (Of course
this set is not exactly well defined, but it does convey the correct intuition.) In
the second diagram, the black shaded area corresponds to set E, formed by the
intersection of � with the half-space H = {Q : ∫

UdQ − ν < u}. Note that H

is a “typical” set under P , in that P ∈ H and the empirical measure of the {Xi}
will eventually concentrate there by the law of large numbers. Nevertheless, when
� is intersected with H to give E, Theorem 2.1 tells us that it excludes the part
of � which is close to P in relative entropy (the gray area), and this forces the
result of the minimization over Q ∈ E to be strictly positive; the limiting mini-
mizer Q∗, assuming it exists, is shown as laying on the common boundary of �

and H .
The following two theorems give a more precise and complete description of

the large deviations properties of the probabilities of interest. Formally, they sim-

FIG. 4. Geometric illustration of the fact that infQ∈� H(Q‖P) = 0 whereas infQ∈E H(Q‖P) is
strictly positive.
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ply establish a version of Cramér’s theorem in the present setting. What is perhaps
somewhat surprising is that this is done without any assumption of finite exponen-
tial moments. In the presence of the domination condition m(β) < ∞, it turns out
that it is only necessary to assume finite first (and in some cases second) moments
for F(X) and U(X).

The results in Theorems 2.2 and 2.3 will form the basis for the development of
the bounds in Section 3. Their proofs are given in Section 5.

THEOREM 2.2 (Exponential upper bounds). Suppose the functions F : R → R

and U : R → R are such that μ := E[F(X)] and ν := E[U(X)] are both finite, and
that m(β) := ess sup[F(X) − βU(X)] < ∞ for all β > 0. Then for all ε,u > 0:

(i) Pr{Sn − nμ > nε,Tn − nν < nu} ≤ exp{−nH(E‖P)}, for all n ≥ 1,
where,

H(E‖P) := inf{H(Q‖P) :Q ∈ E},(2.1)

and E is the set of all probability measures Q on R such that
∫

F dQ−μ > ε and∫
U dQ − ν < u.

(ii) Pr{Sn − nμ > nε,Tn − nν < nu} ≤ exp{−n�∗+(ε, u)}, for all n ≥ 1,
where,

�∗+(ε, u) := sup
θ1,θ2≥0

{θ1(μ + ε) − θ2(ν + u) − �+(θ1, θ2)},

with �+(θ1, θ2) := logE[exp{θ1F(X) − θ2U(X)}], θ1, θ2 ≥ 0.

(iii) The rate function �∗+(ε, u) is strictly positive.

THEOREM 2.3 (Large Deviations Asymptotics). Under the assumptions of
Theorem 2.2, if, in addition, F(X) and U(X) have finite second moments, then
for all ε,u > 0,

lim
n→∞

1

n
log Pr{Sn − nμ > nε,Tn − nν < nu} = −�∗+(ε, u),(2.2)

and �∗+(ε, u) coincides with the rate function H(E‖P) given in (2.1).

3. Bounds for arbitrary tails. Let X,X1,X2, . . . be i.i.d. random variables.
Given functions F,U : R → R, write Sn = ∑n

i=1 F(Xi) and Tn = ∑n
i=1 U(Xi).

We begin by restating part of Theorem 2.2. Since the two-sided error event
{Sn − nμ > nε, |Tn − nν| < nu} is contained in {Sn − nμ > nε,Tn − nν < nu},
we have:

COROLLARY 3.1. Suppose the functions F : R → R and U : R → R are
such that μ := E[F(X)] and ν := E[U(X)] are both finite, and that m(β) :=



SCREENED ESTIMATION AND SIMULATION 1501

ess sup[F(X) − βU(X)] < ∞ for all β > 0. Then for all n ≥ 1 and all ε,u > 0,

Pr{Sn − nμ > nε, |Tn − nν| < nu} ≤ e−n�∗+(ε,u),

where the exponent, �∗+(ε, u), is given by

sup
θ1≥0,θ2≥0

{
θ1(μ + ε) − θ2(ν + u) − logE[exp{θ1F(X) − θ2U(X)}]},

and is strictly positive.

REMARKS. 1. An exactly analogous result holds if instead of m(β) we
assume that ess sup[F(X) + βU(X)] < ∞ for all β > 0. Then, repeating the
Chernoff argument in the proof of Theorem 2.2 for the one-sided error event
{Sn − nμ > ε,Tn − nν > −nu} leads to the same bound, but with the exponent,
�∗+(ε, u), given by

sup
θ1≥0,θ2≥0

{
θ1(μ + ε) + θ2(ν − u) − logE[exp{θ1F(X) + θ2U(X)}]},

and �∗+(ε, u) can be similarly seen to be strictly positive.
2. Replacing F by −F yields a corresponding result for the left tail. If

ess inf[F(X) + βU(X)] > −∞ for all β > 0,

Pr{Sn − nμ < −nε, |Tn − nν| < nu} ≤ e−n�∗−(ε,u),

where �∗−(ε, u) is given by

sup
θ1≥0,θ2≥0

{
θ1(−μ + ε) + θ2(−ν − u)

− logE[exp{−θ1F(X) − θ2U(X)}]},
and is strictly positive. Moreover, in view of the previous remark, an analogous
bound holds under the assumption that ess inf[F(X) − βU(X)] > −∞ for all
β > 0; in this case the exponent is replaced by

�∗−(ε, u) = sup
θ1≥0,θ2≥0

{
θ1(−μ + ε) + θ2(ν − u)

− logE[exp{−θ1F(X) + θ2U(X)}]},
which is also strictly positive.

3. Combining the observations in Remarks 1 and 2 immediately yields a bound
on the two-sided deviations of {Sn}. If both μ = E[F(X)] and ν = E[U(X)] are
finite, and also both ess sup[F(X) − βU(X)] < ∞ and ess inf[F(X) + βU(X)] >

−∞, for all β > 0, then for all n ≥ 1 and all ε,u > 0,

Pr{|Sn − nμ| > nε, |Tn − nν| < nu}
(3.1)

≤ e−n�∗+ + e−n�∗− ≤ 2e−nmin{�∗+,�∗−},
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where �∗+ and �∗− are strictly positive. Although this double domination assump-
tion may appear severe, it is generally quite easy to find functions U that will
dominate a given F appropriately. For example, if F(x) ≡ x we can simply take
U(x) ≡ x2, or, more generally, U(x) ≡ x2k for any positive integer k, assuming
appropriately high moments exist.

4. In Remarks 1 and 2, two different domination assumptions were shown
to give a bound on the right tail of the partial sums of F , and two more as-
sumptions do the same for the left tail. Any of their four different combi-
nations gives a bound similar to (3.1), with the appropriate combination of
exponents.

If F and U also have finite second moments, an easily applicable, quantitative
version of Corollary 3.1 can be obtained. The gist of the argument is the use of the
boundedness of [F(X) − βU(X)] in order to compute an explicit lower bound for
the exponent �∗+(ε, u).

THEOREM 3.1. Suppose E[F(X)] = E[U(X)] = 0, Var(F (X)) ≤ 1,
Var(U(X)) = 1, and that m(β) := ess sup[F(X) − βU(X)] < ∞ for all β > 0.
Then the following hold for all n ≥ 1:

(i) For any ε,u > 0, if there exists β > 0 such that m(β) ≤ ε − βu, then

Pr{Sn > nε, |Tn| < nu} = 0.

(ii) For any ε,u > 0,

log Pr{Sn > nε, |Tn| < nu}
(3.2)

≤ −2n sup
α∈(0,1)

[
m · (1 − α)

m2 + 1 + (αε/u)2 − 2αγ ε/u

]2
ε2,

where m := m(αε
u

) and γ := E[F(X)U(X)] is the covariance between F(X) and
U(X).

(iii) Let K > 0 be arbitrary. Then for any ε > 0 and any 0 < u ≤ Kε,

log Pr{Sn > nε, |Tn| < nu} ≤ −n

2

[
M

M2 + (1 + 1/(2K))2

]2

ε2,(3.3)

where M = m( 1
2K

).

REMARKS. 1. The assumption that Var(F (X)) ≤ 1 in Theorem 3.1 seems to
require that we know an upper bound on the variance of F in advance, but in
practice this is easily circumvented. In specific applications, we typically have a
function U that dominates F in that, not only m(β) < ∞ for all β > 0, but also
there are finite constants C1,C2 such that

|F(x)| ≤ C1U(x) + C2 for all x in the support of X.(3.4)
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This is certainly the case for the example presented in the Introduction, as well
as in the examples in Remark 3 above. A bound on the variance of F(X) is ob-
tained from (3.4), Var(F (X)) ≤ C2

1 Var(U(X))+C2
2 . This and several other issues

arising in the application on Theorem 3.1 are illustrated in detail in the proof of
Proposition 1.1.

2. As will become clear from its proof, to use the bounds in Theorem 3.1 it is not
necessary to know m(β) exactly; any upper bound on the ess sup[F(X)−βU(X)]
can be used in place of m(β).

3. When F(x) ≡ F̃ (x) − μ, where μ is the unknown mean to be estimated, it
is hard to imagine that the exact value of the covariance γ may be known without
knowing μ. But, similarly to m(β), in order to apply (3.2) it suffices to have an
upper bound on γ , and such estimates are often easy to obtain. See the proof of
Proposition 1.1 for an illustration.

4. The main difference between the bounds in (3.2) and (3.3) is that (3.3) only
requires knowledge of the first and second moments of U(X), whereas (3.2) also
depends on γ . The bound in (3.3) is attractive because it is simple and it clearly
shows that the exponent is of order ε2 for small ε. Its main disadvantage is that
it often leads to rather conservative estimates, since it ignores the potential corre-
lation between F(X) and U(X) and it follows from (3.2) by an arbitrary choice
for the parameter α. The exponent in (3.2), on the other hand, despite its perhaps
somewhat daunting appearance, is often easy to estimate and it typically gives sig-
nificantly better results. This too is clearly illustrated by the results (and the proof)
of Proposition 1.1.

5. Considering −F in place of F gives corresponding bounds for the lower tail
of the partial sums Sn, under the assumption that ess inf[F(X) + βU(X)] be finite
for all β > 0. As in (3.1), these can be combined with the corresponding results in
Theorem 3.1 to give explicit exponential bounds for the two-sided deviation event,
{|Sn| > ε, |Tn| < u}.

PROOF OF THEOREM 3.1. As already noted in (1.3) in the Introduction, for
any β > 0,

Pr{Sn > nε, |Tn| < u} ≤ Pr

{
1

n

n∑
i=1

[F(Xi) − βU(Xi)] > ε − βu

}
.

If the essential supremum m(β) of the random variables [F(Xi)−βU(Xi)] which
are being averaged is smaller than the threshold ε − βu, then the above event is
empty and its probability is zero, establishing (i).
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Recall the definitions of �+ and �∗+ in Theorem 2.2. With any α ∈ (0,1), taking
θ2 = αεθ1/u in the definition of �∗+(ε, u), Corollary 3.1 yields

Pr{Sn > nε, |Tn| < nu} ≤ exp
{
−n sup

θ≥0
[θ(1 − α)ε − �0(θ)]

}
,(3.5)

where �0(θ) := �+(θ, αεθ
u

). Write s2 := Var(F (X)) ≤ 1, define the random vari-
able Y := F(X) − αε

u
U(X), and note that Y ≤ m := m(αε

u
) a.s., E(Y ) = 0, and

Var(Y ) = s2 +
(

αε

u

)2

− 2αεγ

u
≤ σ 2 := 1 +

(
αε

u

)2

− 2αεγ

u
.

Throughout the rest of the proof we assume, without loss of generality, that m > 0.
[We know m ≥ 0 by our assumptions, so if m = 0, then �0(θ) ≡ 0 and the supre-
mum in (3.5) equals +∞, implying that the probability of interest equals zero and
that all the bounds stated in the theorem are trivially valid.]

Now we apply Bennett’s lemma [4], Lemma 2.4.1, to get an upper bound on
�0(θ) as

�0(θ) = logE(eθY ) ≤ log
{

m2

m2 + σ 2 e−θσ 2/m + σ 2

m2 + σ 2 eθm

}
.

Using this and replacing θ by λ/m, the supremum in (3.5) is bounded below by

I (ε,α,u) := sup
λ≥0

[
λx − log

{
e−λτ 2 + τ 2eλ

1 + τ 2

}]
,

where

x := (1 − α)ε

m
and τ 2 := σ 2

m2 = 1 + ((αε)/u)2 − (2αεγ )/u

m2 .

We consider the following cases:
(i) If there exists α ∈ (0,1) for which (1 − α)ε ≥ m(αε

u
), then with β = αε/u

we have m(β) ≤ ε − βu, which we already showed implies that the probability of
interest is zero.

(ii) In view of (i), we assume without loss of generality that (1 − α)ε < m(αε
u

),
for all α ∈ (0,1). For any α ∈ (0,1), in the definition of I (ε,α,u) we may pick

λ = 1

1 + τ 2 log
(

τ 2 + x

τ 2(1 − x)

)
,

which, after some algebra, yields

I (ε,α,u) ≥ H

(
x + τ 2

1 + τ 2

∥∥∥∥ τ 2

1 + τ 2

)
,

where H(y‖z) := y log y
z

+ (1 − y) log 1−y
1−z

denotes the relative entropy between
the Bernoulli(y) and the Bernoulli(z) distributions. This relative entropy is, in turn,
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by a standard argument (e.g., using Pinsker’s inequality; cf. [2], Theorem 4.1),
bounded below by 2x2

(1+τ 2)2 . Therefore,

1

n
log Pr{Sn > nε, |Tn| < nu}

≤ − sup
α∈(0,1)

[
2x2

(1 + τ 2)2

]

= − sup
α∈(0,1)

[
2(1 − α)2ε2

m2[1 + (1 + ((αε)/u)2 − (2αγ ε)/u)/m2]2

]
,

proving part (ii).
(iii) Start by taking u = Kε. Noting that |γ | ≤ s ≤ 1,

1 +
(

αε

u

)2

− 2γαε

u
≤ 1 +

(
αε

u

)2

+ 2αε

u
=

(
1 + α

K

)2

.

This and part (ii) show that the exponent of interest is bounded below by

2 sup
α∈(0,1)

[
m · (1 − α)

m2 + (1 + α/K)2

]2

ε2,

where m = m(αε
u

) = m( α
K

). Picking α = 1/2, this is further bounded below by

1

2

[
M

M2 + (1 + 1/(2K))2

]2

ε2,

where M = m( 1
2K

), giving the required result in the case u = Kε. Since the prob-
ability in (3.3) can be no bigger for smaller values of u, the same bound holds for
all 0 < u ≤ Kε. �

We are now in a position to illustrate how the results of Proposition 1.1 stated
in the introduction can be derived from Theorem 3.1.

PROOF OF PROPOSITION 1.1. Part (i) is already stated in (1.1), and part (ii)
is immediate from Corollary 3.1. For parts (iii) and (iv) we will use the bound in
Theorem 3.1(ii). To that end, we begin by defining two functions F,U appropri-
ately.

Recall that, for (iii), we only have the following information: X is supported on
[1,∞), E(X) = 5/3 and Var(X) = 20/9. Then we can define

U(x) := 3x

2
√

5
−

√
5

2
, x ≥ 1,
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so that E(U(X)) = 0 and Var(U(X)) = 1. Noting that μ ≥ 1 and that
E[(X3/4)2] ≤ E(X2) = Var(X) + E(X)2 = 5 implies that Var(X3/4) ≤ 5 − 1 = 4.

Therefore, letting

F(x) := (x3/4 − μ)/2, x ≥ 1,

we have E(F(X)) = 0 and Var(F (X)) ≤ 1. Using again the fact that μ ≥ 1, we
obtain an upper bound on m(β) as

m(β) ≤ sup
x≥1

[
x3/4

2
− 1

2
− 3βx

2
√

5
+

√
5β − 1

2

]
.

This is a particularly easy maximization for β ≥
√

5
4 , in which case the maximum

is achieved at x = 1, giving

m(β) ≤ m̃(β) := β√
5

for β ≥
√

5

4
.(3.6)

We can now apply (3.2). Let Sn and Tn be as in Theorem 3.1, and let Ŝn and T̂n

be as in the proposition. For arbitrary ε > 0 and u = ε
20 , (3.2) gives

− 1

n
log Pr

{
Ŝn − μ > ε,

∣∣∣∣T̂n − 5

3

∣∣∣∣ < u

}

= −1

n
log Pr

{
Sn > nε/2, |Tn| < 3nu/2

√
5
}

(3.7)

≥ 1

2
sup

α∈(0,1)

[
(1 − α)m̃((20

√
5α)/3)

m̃((20
√

5α)/3)2 + 1 + ((20
√

5α)/3)2 − (40
√

5αγ )/3

]2

ε2,

where γ is the (yet unknown) covariance between F(X) and U(X). Restricting
to α ≥ 3/80, using (3.6) and noting that |γ | ≤ 1, the above exponent is further
bounded below by,

1

2
sup

3/80≤α<1

[
20α(1 − α)/3

((20α)/3)2 + (1 + (20
√

5α)/3)2

]2

ε2 ≥ 0.005ε2,

where the last inequality follows by taking α = 0.0552083 in the above minimiza-
tion (this α was selected by plotting the graph of the expression to be maximized
and picking α to give a value near the maximum). This proves (iii) for u = ε/20,
but, since the probability of interest is nondecreasing in u, the same bound holds
for any 0 < u ≤ ε/20.

For part (iv), assuming that we also know that Cov(X3/4,X) = 20/21, we can
calculate

γ := Cov(F (X),U(X)) = 3

4
√

5
Cov(X3/4,X) =

√
5

7
.
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From the bound in (3.7), restricting as before to α ≥ 3/80, using (3.6) and substi-
tuting the value of γ , gives

− log Pr
{
Ŝn − μ > ε,

∣∣∣∣T̂n − 5

3

∣∣∣∣ < u

}

≥ n

2
sup

3/80≤α<1

[
20α(1 − α)/3

(2400α2)/9 − (200α)/21 + 1

]2

ε2

≥ 0.0367nε2,

where the last inequality follows from choosing α = 0.0568. This proves (iv) for
u = ε/20, and, as before, the same bound remains valid for any 0 < u ≤ ε/20. �

4. Bounds for light tails. As before, let Sn, Tn denote the partial sums
of {F(Xi)}, {U(Xi)}, respectively, with respect to the i.i.d. random variables
X,X1,X2, . . . , with common law P . We assume that E(F(X)) = E(U(X)) = 0,
and throughout this section we also assume that F and U have finite exponential
moments, that is,

�(θ) := logE
[
eθF(X)] < ∞,

and E[eθU(X)] < ∞, for all θ ∈ R.

From Corollary 3.1 and the subsequent discussion, we know that the screened
estimator always admits exponential error bounds,

log Pr{Sn > nε, |Tn| < nu} ≤ −nmax{�∗+(ε, u),�∗+(ε, u)}, n ≥ 1,(4.1)

for all ε,u > 0, where the exponents �∗+ and �∗+, given in Corollary 3.1 and Re-
mark 1 after Corollary 3.1, respectively, are strictly positive. But in this setting, the
standard estimates { 1

n
Sn} also admit exponential error bounds; Cramér’s theorem

states that

log Pr{Sn > nε} ≤ −n�∗(ε), n ≥ 1,(4.2)

where

�∗(ε) := sup
θ≥0

{θε − �(θ)} > 0,

for any ε > 0; see [4]. Recall that the exponents in both (4.1) and (4.2) are asymp-
totically tight.

In this section we develop conditions under which the screened estimator offers
a nontrivial improvement. That is, even when the error of the standard estimator
decays exponentially, the error of the screened estimator has a better rate in the
exponent. To that end, we look at difference

�(ε,u) := max{�∗+(ε, u),�∗+(ε, u)} − �∗(ε).
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Clearly �(ε,u) is always nonnegative. Theorem 4.1 says that, as long as the
covariance between F(X) and U(X) is nonzero, �(ε,u) is strictly positive for
all ε,u small enough. This is strengthened in Theorem 4.2, where it is shown
that this improvement is a “first-order effect,” in that, for small ε,u, �(ε,u) and
max{�∗+(ε, u),�∗+(ε, u)} are each of order ε2.

This leads to a different interpretation of the advantage offered by the screened
estimator. Suppose that, for small ε,u, �∗(ε) ≈ cε2, and that max{�∗+(ε, u),

�∗+(ε, u)} ≈ (c + c′)ε2, for some c, c′ > 0. Then for large n, the error of the stan-
dard estimator is

Pr{Sn > nε} ≈ e−ncε2
,

whereas for the screened estimator,

Pr{Sn > nε, |Tn| < u} ≈ e−n(c+c′)ε2
.

In both cases, we have approximately Gaussian tails. Therefore, roughly speaking,
we may interpret the result of Theorem 4.2 as saying that, as long as the covariance
between F(X) and U(X) is nonzero, the screened estimates are asymptotically
Gaussian with a strictly smaller variance than the standard estimates.

THEOREM 4.1. Suppose that E[F(X)] = E[U(X)] = 0 and that γ :=
Cov(F (X),U(X)) is nonzero. There exists ε0 > 0 such that, for each 0 < ε < ε0,
there exists u0 = u0(ε) > 0 such that �(ε,u) > 0 for all u ∈ (0, u0).

Note that the assumption on the covariance being nonzero cannot be relaxed. For
example, let Xi = YiZi , i ≥ 1, where {Yi} are i.i.d. nonnegative random variables,
and {Zi} are i.i.d., independent of the {Yi}, with each Zi = ±1 with probability
1/2. With F(x) ≡ |x|−E|X1| and U(X) ≡ sign(x), we have F(Xi) = Yi −E(Yi)

and U(Xi) = Zi , so that Sn and Tn are independent for all n ≥ 1. Therefore,

Pr{Sn > nε, |Tn| < nu} = Pr{Sn > nε}Pr{|Tn| < nu},
and since limn Pr{|Tn| < nu} = 1, the exponents of the other two probabilities must
be identical.

Whenever γ is nonzero, the variances σ 2(F ), σ 2(U) of F(X) and U(X), re-
spectively, are both nonzero. If �̃(ε, u) denotes the corresponding difference of
exponents for the normalized functions F/σ(F ) and U/σ(U), then from the defi-
nitions,

�(ε,u) = �̃

(
ε

σ(F )
,

ε

σ (U)

)
.

Therefore, in order to determine the nature of this difference for small ε we can
assume, without loss of generality, that Var(F (X)) = Var(U(X)) = 1.
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THEOREM 4.2. Suppose that E[F(X)] = E[U(X)] = 0, Var(F (X)) =
Var(U(X)) = 1, and that γ := Cov(F (X),U(X)) is nonzero. Then there exists
α > 0 such that

lim inf
ε→0

1

ε2 �(ε,αε) > 0.

In fact, there exists ε0 > 0 such that

�

(
ε,

|γ |
4

ε

)
≥ γ 2

8
ε2,

for all ε ∈ (0, ε0).

Before giving the proofs of the theorems, we collect some technical facts in the
following lemma.

LEMMA 4.1. Suppose that E[F(X)] = E[U(X)] = 0 and that γ :=
Cov(F (X),U(X)) is nonzero. Then:

(i) � is smooth on R, �(0) = 0, �′(0) = 0, limθ→∞ �′(θ) = F̄ :=
ess supF(X), �′′(0) = Var(F (X)) > 0 and �′′(θ) > 0 for all θ ∈ R.

(ii) For each 0 < ε < F̄ there exists a unique θ∗ = θ∗(ε) > 0 such that
�′(θ∗) = ε and �∗(ε) = θ∗ε − �(θ∗), where θ∗ = θ∗(ε) is strictly increasing
in ε ∈ (0, F̄ ).

(iii) Suppose Var(F (X)) = 1. Let δ ≥ 0 be arbitrary (but fixed). Then for any
η > 0 there exists ε̄ > 0 such that

�(δε) ≥ 1
2(1 − η)δ2ε2 for all ε < ε̄.

(iv) Suppose Var(F (X)) = Var(U(X)) = 1. For arbitrary (but fixed) β ≥ 0,
and for all t, ε ≥ 0, define ft (ε) := �+(tε, βε). Then for any η > 0 there exist
τ, ε̄ > 0 such that

ft (ε) ≤ 1
2(1 + β2 − 2βγ + η)ε2 for all ε < ε̄, |t − 1| < τ.

PROOF. The statements in (i) and (ii) are well known; see, for example, [4].
In particular, it is a standard exercise to apply the dominated convergence theo-
rem in order to justify all the required differentiations, as well as all the continuity
statements and differentiations in the rest of this proof and in the proofs of Theo-
rems 4.1 and 4.2. For (iii), given η > 0, since �′′(θ) is continuous and �′′(0) = 1,
we can choose ε′ > 0 such that �′′(ε) ≥ 1 − η for ε < ε′. The result follows upon
expanding � in a Taylor series around zero and recalling that �(0) = �′(0) = 0,
with ε̄ = ε′/δ.

Part (iv) is similar. Let η > 0 be given. We have ft (0) = �+(0,0) = 0, f ′
t (0) =

E[tF (X) − βU(X)] = 0 and f ′′
t (ε) is jointly continuous in t, ε ≥ 0 with

f ′′
t (0) = Var

(
tF (X) − βU(X)

) = t2 + β2 − 2tβγ,
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where the prime (′) now denotes differentiation with respect to ε. Continuity at the
point (t, ε) = (1,0) implies that we can find τ, ε̄ > 0 such that

f ′′
t (ε) ≤ f ′′

1 (0) + η = 1 + β2 − 2βγ + η for all ε < ε̄, |t − 1| < τ.

For any t in that range, expanding ft (ε) in a three-term Taylor series around ε = 0
gives the required result. �

PROOF OF THEOREM 4.1. From the definitions, it follows that

�(ε,u) ≥ �∗+(ε, u) − �∗(ε) ≥ sup
θ≥0

[−θu − �+(θ∗, θ) + �(θ∗)].(4.3)

The expression inside the last supremum is zero for θ = 0, and our goal is to show
that it is strictly positive for small θ . To that end, define the function

g(θ) := E
[
F(X)U(X)eθF(X)], θ ≥ 0,

and note that it is continuous in θ , and g(0) = γ . Choose θ0 > 0 so that g(θ)/γ ≥
1/2 for all 0 ≤ θ ≤ θ0. Let ε0 = �′(θ0) > 0, and choose and fix an arbitrary 0 <

ε < ε0, so that θ∗ = θ∗(ε) ∈ (0, θ0).

First consider the case γ > 0. Define

h(θ) := θ∗ε − θu − �+(θ∗, θ).

Then h(0) = �∗(ε), and as in (4.3),

�(ε,u) ≥ �∗+(ε, u) − �∗(ε)

≥
[
sup
θ≥0

h(θ)

]
− �∗(ε)(4.4)

≥ h(0) − �∗(ε) = 0.

In order to establish that �(ε,u) > 0 it suffices to show that h′(0) > 0. Computing
the derivative of h yields

h′(0) = e−�(θ∗)E
[
U(X)eθ∗F(X)] − u,

and expanding the exponential inside the expectation in a two-term Taylor expan-
sion,

h′(0) = θ∗e−�(θ∗)E
[
F(X)U(X)eθ̃F (X)] − u,

where θ̃ = θ̃ (X) ∈ (0, θ∗). Therefore,

h′(0) ≥ θ∗e−�(θ∗) inf
θ∈(0,θ∗)

g(θ) − u ≥ θ∗e−�(θ∗)γ /2 − u,

which is strictly positive, as long as

u < u0 = u0(ε) := θ∗(ε)e−�(θ∗(ε))|γ |/2.
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The case γ < 0 is similar, with �∗+ in place of �∗+: Replace h by h(θ) = θ∗ε −
θu − logE[exp{θ∗F(X) + θU(X)}], so that h(0) = �∗(ε) and

�(ε,u) ≥ �∗+(ε, u) − �∗(ε) ≥
[
sup
θ≥0

h(θ)

]
− �∗(ε)

≥ h(0) − �∗(ε) = 0.

Again it suffices to show h′(0) > 0, where

h′(0) = −e−�(θ∗)E
[
U(X)eθ∗F(X)] − u

= −θ∗e−�(θ∗)E
[
F(X)U(X)eθ̃F (X)] − u,

with θ̃ = θ̃ (X) ∈ (0, θ∗). Then,

h′(0) ≥ −θ∗e−�(θ∗) sup
θ∈(0,θ∗)

g(θ) − u ≥ −θ∗e−�(θ∗)γ /2 − u,

which is strictly positive, as long as u < u0 = u0(ε), with the same u0 as before.
�

PROOF OF THEOREM 4.2. Assume first that γ > 0. Following the derivation
of (4.4) in the proof of Theorem 4.1, we have that for any 0 < ε < F̄ and any
u,φ > 0,

�(ε,u) ≥ −φu − �+(θ∗, φ) + �(θ∗).(4.5)

At this point, most of the required work has been done. What remains is to write
the above expression as a second-order Taylor expansion around ε = 0, so that,
with u = γ ε/4 and φ = γ ε, the right-hand side of (4.5) is approximately bounded
below by

−γ 2ε2

4
− 1

2
ε2

[
∂2

∂ε2 �+(θ∗(ε), γ ε)

]
ε=0

+ 1

2
ε2

[
∂2

∂ε2 �(θ∗(ε))
]
ε=0

≥ γ 2ε2

8
.

We proceed to make this approximation rigorous. Let η := γ 2/10 > 0 in
parts (iii) and (iv) of Lemma 4.1, and choose and fix a δ ∈ (0, η) smaller than
the resulting τ in part (iv). Since �′′(θ) is continuous and �′′(0) = 1, we can
choose θ0 > 0 small enough so that |�′′(θ) − 1| ≤ δ�′′(θ) for all 0 < θ < θ0. Let
ε0 be the minimum of �′(θ0) and the two quantities ε̄ in parts (iii) and (iv) of the
lemma. Then θ∗(ε) < θ0 for all 0 < ε < ε0, and moreover, θ∗(ε) = ε

�′′(θ)
for some

θ < θ∗ < θ0, so that∣∣∣∣θ
∗(ε)
ε

− 1
∣∣∣∣ ≤ δ < τ for all 0 < ε < ε0.(4.6)
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Now for any ε < ε0, let u = γ ε/4 and φ = γ ε in (4.5); using (4.6) and noting that
�(θ∗) is nondecreasing in θ∗,

�(ε, γ ε/4) ≥ −γ 2ε2

4
− �+(θ∗(ε), γ ε) + �

(
(1 − δ)ε

)

≥ −γ 2ε2

4
− 1

2
(1 − γ 2 + η)ε2 + 1

2
(1 − η)(1 − δ)2ε2

= ε2

4
[γ 2 + 2(1 − η)δ2 − 4(1 − η)δ − η]

≥ ε2

4
[γ 2 − 5η] ≥ γ 2ε2

8
,

where the second inequality follows from parts (iii) and (iv) of Lemma 4.1 with
(1 − δ) in place of δ, β = γ , and t = θ∗(ε)/ε.

Finally, the same result holds in the case γ < 0, either by considering −U in
place of U , or by replacing �∗+ by �∗+ in the above argument, as in the proof of
Theorem 4.1. �

5. Proofs of Theorems 2.1, 2.2 and 2.3. We begin with a simple, general
upper bound in the spirit of the results in [3].

LEMMA 5.1. Let F1,F2, . . . ,Fm be an arbitrary (finite) collection of measur-
able functions from R to R. For any constants c1, c2, . . . , cm we have

log Pr

{
n∑

i=1

Fj (Xi) > ncj for all j = 1,2, . . . ,m

}
≤ −n inf

Q∈Em

H(Q‖P),

where Em is the set of all probability measures Q on R such that
∫

Fj dQ > cj

for all j = 1,2, . . . ,m.

PROOF. Let A denote the event of interest in the lemma, and assume without
loss of generality that it has nonzero probability. Write PA for the probability mea-
sure on R

n obtained by conditioning the product measure P n on A, and note that,
by definition,

− log Pr(A) = − logP n(A) = H(PA‖P n).

Expressing PA as the product of the conditional measures PA,i(·|x1, . . . , xi−1) for
i = 1,2, . . . , n, we can expand the logarithm inside the relative entropy to obtain

− log Pr(A) =
n∑

i=1

E[H(PA,i(·|Y1, . . . , Yi−1)‖P)],
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where the random variables Y1, Y2, . . . , Yn have joint distribution given by the
measure PA. Using the fact that relative entropy is convex in its first argument
(see, e.g., [4], Chapter 6), Jensen’s inequality gives

− log Pr(A) ≥
n∑

i=1

H(Qi‖P),

where Qi denotes the ith marginal of PA on R. Using convexity again,

− log Pr(A) ≥ n

n∑
i=1

1

n
H(Qi‖P) ≥ nH(Q‖P),

where Q = 1
n

∑n
i=1 Qi. To complete the proof it suffices to show that Q ∈ Em.

Indeed, for any j = 1,2, . . . ,m,∫
Fj dQ = 1

n

n∑
i=1

∫
Fj dQi = E

[
1

n

n∑
i=1

Fj (Yi)

]
> cj ,

where the last inequality holds since the joint distribution of the {Yi} is PA, which
is entirely supported on A by definition. �

Next we give the proof of Theorem 2.2. The first upper bound follows from
Lemma 5.1, the second is derived using the classical Chernoff bound, and the
positivity of the exponent comes from the domination assumption m(β) < ∞.

PROOF OF THEOREM 2.2. Throughout, we assume, without loss of general-
ity, that μ = ν = 0. For part (i), taking F1 = F , F2 = −U , c1 = ε and c2 = −u,
Lemma 5.1 immediately yields the required bound. Part (ii) follows by the usual
Chernoff argument: For any pair of θ1, θ2 ≥ 0,

Pr{Sn > nε,Tn < nu} ≤ Pr{Sn > nε,Tn < nu}
= E

[
I{Sn>nε}I{Tn<nu}

]
≤ E[exp{θ1(Sn − nε)} exp{−θ2(Tn − nu)}]
= exp{−n[θ1ε − θ2u − �+(θ1, θ2)]}.

The stated result is obtained upon taking the supremum over all θ1, θ2 ≥ 0 in the
exponent.

Finally, for part (iii) choose and fix an arbitrary α ∈ (0,1). Taking θ2 = αεθ1/u

in the definition of �∗+(ε, u) yields

�∗+(ε, u) ≥ sup
θ≥0

[θ(1 − α)ε − �0(θ)],(5.1)

where �0(θ) := �+(θ, αεθ
u

) < ∞ for all θ ≥ 0 because m(β) < ∞ for all β > 0.
Now for any θ ≥ 0, let Xθ be a random variable whose distribution has Radon–
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Nikodym derivative with respect to that of X given by the density

gθ (x) = exp{θ [F(x) − ((αε)/u)U(x)]}
E[exp{θ [F(X) − ((αε)/u)U(X)]}] , x ∈ R,

so that g0 ≡ 1 and X0 = X. Obviously �0(0) = 0, and simple calculus shows that
�′

0(θ) = E[F(Xθ) − αε
u

U(Xθ)] so that �′
0(0) = 0; the dominated convergence

theorem justifies the differentiation under the integral, and also shows that �′
0(θ)

is continuous in θ for all θ ≥ 0, since F(X) and U(X) have finite first moments
and m(β) < ∞ for all β > 0.

Pick θ0 > 0 small enough so that

sup{�′
0(θ) : θ ∈ [0, θ0]} ≤ �′

0(0) + (1 − α)ε

2
.

Restricting the range of the supremum in (5.1) to [0, θ0] yields

�∗+(ε, u) ≥ sup
0≤θ≤θ0

θ(1 − α)ε

2
= θ0(1 − α)ε

2
,

which is strictly positive. �

The main technical step in the following proof is the (asymptotic) large devi-
ations lower bound; it is established by a change-of-measure argument combined
with regularization of the random variables of interest, as in Cramér’s theorem. The
main difference from the classical case is that, here, the domination assumption
m(β) < ∞ replaces the usual condition on the existence of exponential moments
in a neighborhood of the origin.

PROOF OF THEOREM 2.3. As above, we assume without loss of generality
that μ = ν = 0. Write θ for an arbitrary pair of nonnegative (θ1, θ2), and write
G : R → R

2 for the function G(x) = (F (x),−U(x)), x ∈ R, so that �+(θ) =
logE[exp{〈θ ,G(X)〉}] and

�∗+(ε, u) = sup
θ

[〈θ , (ε,−u)〉 − �+(θ)],

where 〈·, ·〉 denotes the usual Euclidean inner product. Note that, since m(β) < ∞
for all β > 0, we have �+(θ) < ∞ as long as θ2 > 0, and �+(0) = 0. Moreover,
since E(G(X)) = 0, the dominated convergence theorem implies that �+(θ) is
differentiable, with

∇�+(θ) = E[G(X) exp{〈θ ,G(X)〉 − �+(θ)}],(5.2)

for all θ with θ2 > 0.
In view of Theorem 2.2(ii), in order to establish the limiting relation (2.2), it

suffices to prove the asymptotic lower bound,

lim inf
n→∞

1

n
log Pr{Sn > nε,Tn < nu} ≥ −�∗+(ε, u).(5.3)
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To that end, consider three cases. First, if �∗+(ε, u) = ∞, (5.3) is trivially true.
Second, assume that �∗+(ε, u) < ∞ and there exists θ such that

E[G(X) exp{〈θ ,G(X)〉 − �+(θ)}] = (ε,−u).(5.4)

Fixing this θ , define a new sequence of i.i.d. random variables X′,X′
1,X

′
2, . . . with

common distribution P ′, where

dP ′

dP
(x) = exp{〈θ ,G(x)〉 − �+(θ)}, x ∈ R.

Write S′
n and T ′

n for the corresponding partial sums, and choose and fix δ > 0;
then, 1

n
log Pr{Sn > nε,Tn < nu} is bounded below by

1

n
log Pr{nε < Sn < n(ε + δ), n(u − δ) < Tn < nu}

= 1

n
logE

[
n∏

i=1

dP

dP ′ (X
′
i)I{nε<S′

n<n(ε+δ)}I{n(u−δ)<T ′
n<nu}

]

(5.5)

= �+(θ) − 〈θ , (ε,−u)〉 + 1

n
logE

[
e−θ1(S

′
n−nε)+θ2(T

′
n−nu)

IBn

]

≥ �+(θ) − 〈θ , (ε,−u)〉 − (θ1 + θ2)δ + 1

n
log Pr(Bn),

where Bn denotes the event Bn := {nε < S′
n < n(ε + δ)} ∩ {n(u − δ) < T ′

n < nu},
and the last inequality follows from the observation that the exponential inside
the expectation is bounded below by exp{−θ1nδ − θ2nδ} on Bn. Note that our
assumption (5.4) implies that E[G(X′)] = (ε,−u), and since m(β) < ∞ for all β ,
F(X′) and U(X′) have finite second moments. Therefore, from the central limit
theorem we obtain

lim inf
n→∞

1

n
log Pr(Bn) = 0,

as long as δ > 0 is fixed. Noting also that �+(θ) − 〈θ , (ε,−u)〉 ≥ −�∗+(ε, u),
taking n → ∞ in (5.5) we obtain

lim inf
n→∞

1

n
log Pr{Sn > nε,Tn < nu} ≥ −�∗+(ε, u) − (θ1 + θ2)δ,(5.6)

for each δ > 0, and taking δ ↓ 0 in the above right-hand side yields (5.3).
The third and last case is when �∗+(ε, u) < ∞ but there is no θ such that (5.4) is

satisfied. We will repeat the above argument, but instead of the sequence {G(Xn)}
we will consider the new i.i.d. sequence {H(Xn)} which is obtained by adding to
the {G(Xn)} i.i.d. Gaussians with small mean and variance. Specifically, choose
and fix arbitrary δ > 0 and t > 0, and let

H(Xn) := G(Xn) + tZn +
(

δ

2
,
δ

2

)
, n ≥ 1,
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where the {Zn} are i.i.d. with each Zn consisting of two independent standard
Gaussian components, independent of the {Xn}. Let

�t(θ) := logE[exp{〈θ ,H(X)〉}],
and note that

�t(θ) = �+(θ) + t2(θ2
1 + θ2

2 )/2 + δ(θ1 + θ2)/2 ≥ �+(θ) ≥ 0,(5.7)

where the last inequality follows by applying Jensen’s inequality to the logarithm
in the definition of �+(θ) and recalling that G(X) has zero mean. Consequently,

�∗
t (ε, u) := sup

θ
[〈θ , (ε,−u)〉 − �t(θ)] ≤ �∗+(ε, u) < ∞.(5.8)

From (5.7) and (5.8) it follows that, for any given θ , the function

L(θ) := 〈θ , (ε,−u)〉 − �t(θ) ≤ �∗+(ε, u) − t2(θ2
1 + θ2

2 )/2 − δ(θ1 + θ2)/2

has supθ : θ1+θ2>R L(θ) → −∞ as R → ∞. Moreover, in view of (5.2), L(θ) is
differentiable, and therefore the supremum in the definition of �∗

t (ε, u) is achieved
for some finite θ which satisfies the analog of (5.4), that is, with H and �t(θ)

in place of G and �+(θ), respectively. So we can conclude from the previous
argument that the lower bound (5.3) holds with H in place of G. In fact, for the
specific value of δ > 0 we chose in the definition of H, the same argument used to
establish (5.5) and then (5.6) yields the following asymptotic lower bound:

lim inf
n→∞

1

n
log Pr

{
nε < Sn + t

√
nW + nδ

2
< n(ε + δ),

n(u − δ) < Tn + t
√

nV − nδ

2
< nu

}

≥ −�∗
t (ε, u) − (θ1 + θ2)δ(5.9)

≥ −�∗+(ε, u) − (θ1 + θ2)δ

> −∞,

where W,V are independent standard Gaussian random variables independent of
the {Xn}. On the other hand, a simple union bound gives

Pr
{
nε < Sn + t

√
nW + nδ

2
< n(ε + δ),

n(u − δ) < Tn + t
√

nV − nδ

2
< nu

}
(5.10)

≤ Pr{nε < Sn < n(ε + 2δ), n(u − 2δ) < Tn < nu}

+ Pr
{
|W | ≥

√
nδ

2t
, |V | ≥

√
nδ

2t

}
,
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where the last probability is easily bounded as

1

n
log Pr

{
|W | ≥

√
nδ

2t
, |V | ≥

√
nδ

2t

}
≤ − δ2

4t2 .(5.11)

Combining the bounds (5.9), (5.10) and (5.11) yields

−�∗+(ε, u) − (θ1 + θ2)δ

≤ max
{
− δ2

4t2 ,

lim inf
n→∞

1

n
log Pr{nε < Sn < n(ε + 2δ), n(u − 2δ) < Tn < nu}

}
.

Letting t ↓ 0 implies that

lim inf
n→∞

1

n
log Pr{Sn > nε,Tn < nu} ≥ −�∗+(ε, u) − (θ1 + θ2)δ,

and letting δ ↓ 0 establishes (5.3) and thus completes the proof of (2.2).
Finally, in order to show that the two rate functions are identical, it suffices

to show that �∗+(ε, u) is no greater than the entropy H(E‖Q), since the reverse
inequality follows from the upper bound in Theorem 2.2(i) combined with the
asymptotic relation (2.2) we just established. Indeed, for arbitrary θ1, θ2 ≥ 0 and
any Q ∈ E,

θ1ε − θ2u − logE[exp{θ1F(X) − θ2U(X)}]
= θ1ε − θ2u − log

∫
dQ(x)

dP

dQ
(x) exp{θ1F(x) − θ2U(x)}

≤ θ1ε − θ2u −
∫

dQ(x) log
[
dP

dQ
(x) exp{θ1F(x) − θ2U(x)}

]

= θ1

[
ε −

∫
F dQ

]
− θ2

[
u −

∫
U dQ

]
+ H(Q‖P)

≤ H(Q‖P),

where the first inequality is simply Jensen’s inequality and the second follows
from the assumption that Q ∈ E. Taking the supremum of both sides over
all θ1, θ2 ≥ 0 and then the infimum over all Q ∈ E establishes the inequality
�∗+(ε, u) ≤ H(E‖P) and completes the proof. �

It is now a simple matter to deduce Theorem 2.1 from Theorems 2.2 and 2.3.

PROOF OF THEOREM 2.1. Again we assume without loss of generality that
μ = ν = 0. For part (i), since E[eθF(X)] is infinite for all θ > 0, it is well known
that

lim
n→∞

1

n
log Pr{Sn > nε} = 0 :(5.12)
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see, for example, [5], Example 9.8, page 78. To see that H(�‖P) :=
infQ∈� H(Q‖P) = 0 note that, from Lemma 5.1, we have log Pr{Sn > nε} ≤
−nH(�‖P). This combined with (5.12) implies that H(�‖P) = 0. The limit
in part (ii) is an immediate consequence of Theorem 2.3, and the fact that the ex-
ponent is strictly nonzero follows from Theorem 2.2(iii) and the identification of
the rate function as the entropy given in Theorem 2.3. �
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