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PROLIFERATING PARASITES IN DIVIDING CELLS: KIMMEL’S
BRANCHING MODEL REVISITED
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Université Paris 6

We consider a branching model introduced by Kimmel for cell division
with parasite infection. Cells contain proliferating parasites which are shared
randomly between the two daughter cells when they divide. We determine the
probability that the organism recovers, meaning that the asymptotic propor-
tion of contaminated cells vanishes. We study the tree of contaminated cells,
give the asymptotic number of contaminated cells and the asymptotic propor-
tions of contaminated cells with a given number of parasites. This depends
on domains inherited from the behavior of branching processes in random en-
vironment (BPRE) and given by the bivariate value of the means of parasite
offsprings. In one of these domains, the convergence of proportions holds in
probability, the limit is deterministic and given by the Yaglom quasistationary
distribution. Moreover, we get an interpretation of the limit of the Q-process
as the size-biased quasistationary distribution.

1. Introduction. We consider the following model for cell division with par-
asite infection. Unless otherwise specified, we start with a single cell infected with
a single parasite. At each generation, each parasite multiplies independently, each
cell divides into two daughter cells and the offspring of each parasite is shared
independently into the two daughter cells. It is convenient to distinguish a first
daughter cell called 0 and a second one called 1 and to write Z(0) + Z(1) the
number of offspring of a parasite, Z(0) of which go into the first daughter cell
and Z(1) of which into the second one. The symmetric sharing is the case when

(Z(0),Z(1))
d= (Z(1),Z(0)). Even in that case, the sharing of parasites can be un-

equal [e.g., when P(Z(0)Z(1) = 0) = 1].
We denote by T the binary genealogical tree of the cell population, by Gn (resp.

G
∗
n) the set of cells at generation n (resp. the set of contaminated cells at genera-

tion n) and by Zi the number of parasites of cell i ∈ T, that is,

Gn := {0,1}n, G
∗
n := {i ∈ Gn :Zi > 0}, T := ⋃

n∈N

Gn.
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FIG. 1. Multiplication of parasites and cell division.

For every cell i ∈ T, conditionally on Zi = x, the numbers of parasites (Zi0,Zi1)

of its two daughter cells is given by
x∑

k=1

(
Z

(0)
k (i),Z(1)

k (i)
)
,

where (Z
(0)
k (i),Z(1)

k (i))i∈T,k≥1 is an i.i.d. sequence distributed as (Z(0),Z(1)) (see
Figure 1).

This is a discrete version of the model introduced by Kimmel in [15]. In partic-
ular, it contains the following model with binomial repartition of parasites. Let Z

be a random variable in N and p ∈ [0,1]. At each generation, every parasite mul-
tiplies independently with the same reproduction law Z. When the cells divides,
every parasite chooses independently the first daughter cell with probability p (and
the second one with probability 1 − p). It contains also the case when every par-
asite gives birth to a random cluster of parasites of size Z which goes to the first
cell with probability p (and to the second one with probability 1 − p).

We introduce for a ∈ {0,1}
ma := E

(
Z(a)) ∀s ≥ 0, fa(s) := E

(
sZ(a))

.(1)

We assume 0 < m0 < ∞, 0 < m1 < ∞ and to avoid trivial cases, we require

P
((

Z(0),Z(1)) = (1,1)
)
< 1, P

((
Z(0),Z(1)) ∈ {(1,0), (0,1)}) < 1.(2)

This model is a Markov chain indexed by a tree. This subject has been studied
in the literature (see e.g., [6, 8]) in the symmetric independent case. In this case,
for every (i, k) ∈ T × N, we have

P
(
(Zi0,Zi1) = (k0, k1) | Zi = k

) = P(Zi0 = k0 | Zi = k)P(Zi0 = k1 | Zi = k)
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which require that Z(0) and Z(1) are i.i.d. in this model. Guyon [14] studies a
Markov chain indexed by a binary tree where asymmetry and dependence are al-
lowed and limit theorems are proved. But the case where his results apply is de-
generate (this is the case m0m1 ≤ 1 and the limit of the number of parasites in a
random cell line is zero). Moreover, adapting his arguments for the theorems stated
here appears to be cumbersome (see the remark in Section 5.2 for details). In the
same vein, we refer to [10, 20] (cellular aging).

The total population of parasites at generation n, which we denote by Zn, is a
Bienaymé Galton–Watson process (BGW) with reproduction law Z(0) + Z(1). We
call Ext (resp. Extc) the event extinction of the parasites (resp. nonextinction of the
parasites),

Zn = ∑
i∈Gn

Zi,

Ext = {∃n ∈ N :Zn = 0},(3)

Extc = {∀n ∈ N :Zn > 0}.
Another process that appears naturally is the number of parasites in a random cell
line. More precisely, let (ai)i∈N be an i.i.d. sequence independent of (Zi)i∈T such
that

P(a1 = 0) = P(a1 = 1) = 1/2.(4)

Then (Zn)n∈N = (Z(a1,a2,...,an))n∈N is a Branching Process in Random Environ-
ment (BPRE).

The first question we answer here arose from observations made by de Paepe,
Paul and Taddei at TaMaRa’s Laboratory (Hôpital Necker, Paris). They have in-
fected the bacteria E. coli with a parasite (lysogen bacteriophage M13). A fluores-
cent marker allows them to see the level of contamination of cells. They observed
that a very contaminated cell often gives birth to a very contaminated cell which
dies fast and to a much less contaminated cell whose descendance may survive.
So cells tend to share their parasites unequally when they divide so that there are
lots of healthy cells. This is a little surprising since one could think that cells share
equally all their biological content (including parasites). In Section 3, we prove
that if m0m1 ≤ 1, the organism recovers a.s. (meaning that the number of infected
cells becomes negligible compared to the number of cells when n → ∞). Other-
wise the organism recovers iff parasites die out (and the probability is less than 1).

In Section 4, we consider the tree of contaminated cells. We denote by ∂T the
boundary of the cell tree T and by ∂T

∗ the infinite lines of contaminated cells,
that is

∂T = {0,1}N, ∂T
∗ = {i ∈ ∂T :∀n ∈ N,Zi|n 
= 0}.

We shall prove that the contaminated cells are not concentrated in a cell line. Note
that if m0 + m1 > 1, conditionally on Extc, ∂T

∗ 
= ∅ since at each generation, one
can choose a daughter cell whose parasite descendance does not become extinct.
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FIG. 2.

The rest of the work is devoted to the convergence of the number of contam-
inated cells in generation n and the convergence of proportions of contaminated
cells with a given number of parasites (Section 5). These asymptotics depend on
(m0,m1) and we distinguish five different cases which come from the behavior of
the BGW process Zn and the BPRE Zn (Section 2), shown in Figure 2.

If (m0,m1) ∈ D5, the contaminated cells become largely infected (Theorem
5.1). The main two results correspond to cases (m0,m1) ∈ D3 and (m0,m1) ∈ D1
and are given by the following two theorems.

THEOREM 1.1. If (m0,m1) ∈ D3, conditionally on Extc, the following con-
vergence holds in probability for every k ∈ N,

#{i ∈ G
∗
n :Zi = k}/#G

∗
n

n→∞−→ P(ϒ = k),

where ϒ is the Yaglom quasistationary distribution of the BPRE (Zn)n∈N (see
[5, 12]). Note that the limit is deterministic and depends solely on the marginal
laws of (Z(0),Z(1)) (see Proposition 2.2). This gives then a way to compute ϒ as
a deterministic limit, although it is defined by conditioning on a vanishing event.

Kimmel [15] considers the symmetric case ((Z(0),Z(1))
d= (Z(1),Z(0))) with m0 =

m1 < 1 < m0 + m1 in a continuous analogue of this model (cells divide after an
exponential time). The counterpart of his result in the discrete case is easy to prove
[see (21)] and makes a first link with ϒ .

lim
n→∞E(#{i ∈ Gn :Zi = k})/E(#G

∗
n) = P(ϒ = k).

Moreover, the proportions of contaminated cells on the boundary of the tree whose
ancestors at generation n have a given number of parasites converge to the size-
biased distribution of ϒ letting n → ∞ (Corollary 5.4). This gives a pathwise
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interpretation that the limit of the Q-process associated to Zn (see [1, 5]) is the
size-biased quasistationary distribution.

THEOREM 1.2. If (m0,m1) ∈ D1, (#{i ∈ G
∗
n :Zi = k})k∈N conditioned on

Zn > 0 converges in distribution as n → ∞ to a finite random sequence (Nk)k∈N.

We obtain a similar result in the case (m0,m1) ∈ D2 (Theorem 5.5) and we get
the following asymptotics (Theorem 3.1 and Corollaries 5.3, 5.6, 5.8).

If (m0,m1) ∈ D3 (resp. D5), then conditionally on Extc, #G
∗
n/(m0 +m1)

n (resp.
#G

∗
n/2n) converges in probability to a finite positive r.v.
If (m0,m1) ∈ D1 (resp. D2), then #G

∗
n (resp. #G

∗
n/n) conditioned by #G

∗
n > 0

converges in distribution to a finite positive r.v.
In the case (m0,m1) ∈ D4, we get only some estimates of the asymptotic of #G

∗
n

which are different from those which hold in the other domains. Our conjecture is
that #G

∗
n has also a deterministic asymptotic, which depends on three subdomains

(the interior of D4 and its boundaries). As a perspective, we are also interested
in determining which types of convergences hold in D4 for the proportions of
contaminated cells with a given number of parasites (see Section 5.5).

Moreover, we wonder if the convergences stated above hold a.s. and if they
extend to the continuous case and complement the results of Kimmel. Finally,
in a work in progress with Beresticky and Lambert, we aim at determining the
localizations of contaminated cells and the presence of cells filled-in by parasites
on the boundary of the tree (branching measure and multifractal analysis).

2. Preliminaries. In this section, we give some useful results about the two
processes introduced above. First define:

m := 1
2(m0 + m1).(5)

We use the classical notation, where for every i = (α1, . . . , αn) ∈ Gn,

|i| = n, i|k = (α1, . . . , αk) for every k ≤ n,

j < i if ∃k < n : i|k = j.

2.1. Results on the BGW process (Zn)n∈N. The results stated hereafter are
well known and can be found in [5]. First, the probability of extinction of the
parasites satisfies

P(Ext) = inf
{
s ∈ [0,1] : E

(
sZ(0)+Z(1)) = s

};
P(Ext) = 1 iff m0 + m1 ≤ 1/2.

From now, we assume

m̌ := E
((

Z(0) + Z(1)) log+(
Z(0) + Z(1))) < ∞.



972 V. BANSAYE

Then there exists a random variable W such that
Zn

(m0 + m1)n
n→∞−→ W, P(W = 0) = P(Ext), E(W) = 1.(6)

In the case m0 + m1 < 1, there exists b > 0 such that P(Zn > 0)
n→∞∼ b(m0 +

m1)
n. Then, there exists U > 0 such that

P(Zn > 0) ≥ U(m0 + m1)
n.(7)

Moreover (Zn)n∈N conditioned to be nonzero converges to a variable called the
Yaglom quasistationary distribution and we set

B(s) := lim
n→∞ E(sZn | Zn > 0).(8)

We consider then Bn,k(s) := E(sZn | Zn+k > 0) which satisfies

lim
n→∞Bn,k(s) = B(s) − B(sfk(0))

1 − B(fk(0))
.(9)

Moreover B is differentiable at 1 (Lemma 1 on page 44 in [5]) and we get

lim
k→∞ lim

n→∞Bn,k(s) = sB ′(s)
B ′(1)

.(10)

This is the probability generating function of the size-biased Yaglom quasistation-
ary distribution, which is also the stationary distribution of the Q-process.

Finally if m̂ := E((Z(0) + Z(1))((Z(0) + Z(1)) − 1)) < ∞ and 2m 
= 1, then

E
(
Zn(Zn − 1)

) = m̂(2m)n
(2m)n − 1

(2m)2 − 2m
.(11)

2.2. Properties of the BPRE (Zn)n∈N. Recall that (Zn)n∈N is the popula-
tion of parasites in a uniform random cell line. Then (Zn)n∈N is a BPRE with
two equiprobable environments. More precisely, for each n ∈ N, conditionally on
an = a with a ∈ {0,1} [see (4)], all parasites behave independently of one another
and each of them gives birth to Z(a) children. The size of the population at genera-
tion 0 is denoted by k and we note Pk the associated probability. Unless otherwise
mentioned, the initial state is equal to 1. For the general theory, see, for exam-

ple, [9, 12, 13, 19]. In the case Z(0) d= Z(1), (Zn)n∈N is a BGW with reproduction
law Z(0).

For i = (α1, . . . , αn) ∈ Gn, we define

fi := fα1 ◦ · · · ◦ fαn, mi =
n∏

i=1

mαi
,

and for all (n, k) ∈ N × N
∗ and i ∈ Gn,

Ek

(
sZn | (a1, . . . , an) = i

) = fi(s)
k.
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Then for all (n, k) ∈ N × N
∗ and s ∈ [0,1],
Ek(s

Zn) = 2−n
∑

i∈Gn

fi(s)
k.(12)

First, for every n ∈ N, E(Zn+1 | Zn) = mZn and E(Zn) = mn.
Moreover, as (P(Zn = 0))n∈N is an increasing sequence, it converges to the

probability of extinction p of the process. Recalling (1), we have the following
result (see [19] or [3]).

PROPOSITION 2.1. If m0m1 ≤ 1, then p = 1. Otherwise p < 1.

In the subcritical case (m0m1 < 1), the process Zn conditioned to be nonzero
which is denoted by Z∗

n converges weakly (Theorem 1.1 in [12]). By analogy with
BGW, we call its limit distribution the Yaglom quasistationary distribution and
denote it by ϒ . That is,

∀s ∈ [0,1] E(sZn | Zn > 0)
n→∞−→ E(sϒ) = G(s).

In the subcritical case, the asymptotics of (P(Zn > 0))n∈N when n is large depends
on the sign of m0 log(m0) + m1 log(m1) (see [12]). Now, we require also that

m0 log(m0) + m1 log(m1) < 0; E(Za log+(Za)) < ∞.(13)

Then we say that Zn is strongly subcritical and there exists c > 0 such that as n

tends to ∞ (Theorem 1.1 in [12]),

P(Zn > 0) ∼ cmn.(14)

Moreover, in that case, ϒ is characterized by

PROPOSITION 2.2. G is the unique probability generating function which sat-
isfies

G(0) = 0, G′(1) < ∞,
(15)

G(f0(s)) + G(f1(s))

2
= mG(s) + (1 − m).

To prove the uniqueness, we need and prove below the following result.

LEMMA 2.3. If H : [0,1] �→ R is continuous, H(1) = 0 and

H = H ◦ f0 · f ′
0 + H ◦ f1 · f ′

1

2m
,(16)

then H = 0.
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PROOF OF PROPOSITION 2.2. The finiteness of G′(1) = E(ϒ) is the second
part of Theorem 1.1 in [12].

We characterize now the probability generating function G of the limit distrib-
ution:

1 − E(sZn+1 | Zn+1 > 0)

= 1 − E(sZn+1)

P(Zn+1 > 0)
= 1

P(Zn+1 > 0)

∞∑
i=1

P(Zn = i)
(
1 − Ei (s

Z1)
)

= P(Zn > 0)

P(Zn+1 > 0)

1

P(Zn > 0)

∞∑
i=1

P(Zn = i)

(
1 − f0(s)

i + f1(s)
i

2

)

= P(Zn > 0)

P(Zn+1 > 0)

(
1 − E

(
f0(s)

Zn | Zn > 0
) + 1 − E

(
f1(s)

Zn | Zn > 0
))

/2.

And (14) ensures that P(Zn > 0)/P(Zn+1 > 0)
n→∞−→ m−1, so that

1 − G(s) = 1 − G(f0(s)) + 1 − G(f1(s))

2m
.

Finally we prove the uniqueness of solutions of this equation. Let G and F be
two probability generating functions which are solutions of (15). Choose α > 0
such that G′(1) = αF ′(1). Putting H := G − αF , H ′ satisfies equation (16) and
H ′(1) = 0. Thus Lemma 2.3 gives H ′ = 0. As H(0) = 0, H = 0. Moreover,
F(1) = G(1) = 1, so α = 1 and F = G. �

PROOF OF LEMMA 2.3. If H 
= 0 then there exists α ∈ [0,1[ such that

β := sup{|H(s)| : s ∈ [0, α]} 
= 0.

Let αn ∈ [0,1[ such that αn
n→∞−→ 1 and α ≤ αn ≤ 1. Then, for every n ∈ N, there

exists βn ∈ [0, αn] such that:

sup{|H(s)| : s ∈ [0, αn]} = |H(βn)|

≤ |H(f0(βn))|f ′
0(βn) + |H(f1(βn))|f ′

1(βn)

2m

< sup{|H(s)| : s ∈ [0,1]},
since sup{|H(s)| : s ∈ [0,1]} 
= 0 and (2m)−1(f ′

0(βn)+f ′
1(βn)) < 1. As I ∩J = ∅,

sup I < sup(I ∪ J ) ⇒ sup I < supJ , we get

β ≤ sup{|H(s)| : s ∈ [0, αn]} < sup{|H(s)| : s ∈]αn,1]}.
And H(s)

s→1−→ 0 leads to a contradiction letting n → ∞. So H = 0. �
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In the subcritical case (m0m1 ≤ 1), if m0 log(m0) + m1 log(m1) > 0 [resp.
m0 log(m0) + m1 log(m1) = 0], we say that Zn is weakly subcritical (resp. in-
termediate subcritical) and we have P(Zn > 0) ∼ c′n−3/2γ n [resp. P(Zn > 0) ∼
c′′n−1/2mn] for some γ < m,c′ > 0, c′′ > 0 (see [12] for details).

Finally we have the following expected result in the supercritical case [4].

PROPOSITION 2.4. If m0m1 > 1, P(Zn
n→∞−→ ∞ | ∀n ∈ N :Zn > 0) = 1.

3. Probability of recovery. We say that the organism recovers if the number
of contaminated cells becomes negligible compared to the number of cells when
n → ∞. We determine here the probability of this event. Actually if this probabil-
ity is not equal to 1, then the parasites must die out for the organism to recover.

THEOREM 3.1. There exists a random variable L ∈ [0,1] such that

#G
∗
n/2n n→∞−→ L.

If m0m1 ≤ 1 then P(L = 0) = 1.
Otherwise P(L = 0) < 1 and {L = 0} = Ext.

REMARK. In the case m0 +m1 > 1 and m0m1 ≤ 1, the population of parasites
may explode although the organism recovers.

This theorem states how unequal the sharing of parasites must be for the organ-
ism to recover. More precisely, let m0 = αM, m1 = (1 −α)M where M > 0 is the
parasite growth rate. Then the organism recovers a.s. iff

M ≤ 2 or α /∈ ](
1 −

√
1 − 4/M2

)
/2,

(
1 +

√
1 − 4/M2

)
/2

[
(M > 2).

Note that for all n ∈ N,

E

(
#G

∗
n

2n

)
= E(

∑
i∈Gn

1Zi>0)

2n
= P(Zn > 0).

Recalling that p is the probability of extinction of (Zn)n∈N,

∀n ∈ N E

(
#G

∗
n

2n

)
= P(Zn > 0)

n→∞−→ 1 − p.(17)

The last equality gives also the asymptotic of E(#G
∗
n) as n → ∞ in the case

m0m1 < 1 [see Section 2.2 for the asymptotic of P(Zn > 0), which depends on
the sign of m0 log(m0) + m1 log(m1)] and in the case m0m1 = 1 (see [2, 16]).

PROOF OF THEOREM 3.1. As #G
∗
n/2n decreases as n increases, it converges

as n → ∞.
Monotone convergence of #G

∗
n/2n to L as n → ∞ and (17) ensure that E(L) =

1 − p. Using Proposition 2.1, we get P(L = 0) = 1 iff m0m1 ≤ 1.
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Obviously {L = 0} ⊃ Ext. Denote by P (n) the set of parasites at generation n

and for every p ∈ P (n), denote by Nk(p) the number of cells at generation n + k

which contain at least a parasite whose ancestor is p. Then, for every n ∈ N,

{L = 0} = ⋂
p∈P (n)

{
Nk(p)

2k

k→∞−→ 0
}
.

As Tn := inf{k ≥ 0 :Zk ≥ n} is a stopping time with respect to the natural filtration
of (Zi)|i|≤n, strong Markov property gives

P(L = 0) ≤ P(Tn < ∞)P(L = 0)n + P(Tn = ∞).

If P(L = 0) < 1, letting n → ∞ gives

P(L = 0) ≤ lim
n→∞ P(Tn = ∞) = P(Zn is bounded) = P(Ext)

since Zn is a BGW. This completes the proof. One can also use a coupling ar-
gument: the number of contaminated cells starting with one single cell with n

parasites is less than the number of contaminated cells starting from n cells with
one single parasite. �

4. Tree of contaminated cells. Here, we prove that contaminated cells are
not concentrated in a cell line. If m0 + m1 ≤ 1, contaminated cells die out but
conditionally on the survival of parasites at generation n, the number of leaves of
the tree of contaminated cells tends to ∞ as n → ∞. The proof of this result will
also ensure that, if m0 + m1 > 1, the number of contaminated cells tends to ∞
provided that they do not die out.

THEOREM 4.1. If m0 + m1 ≤ 1, #{i ∈ T :Zi 
= 0,Zi0 = 0,Zi1 = 0} condi-
tioned by #G

∗
n > 0 converges in probability as n → ∞ to ∞.

If m0 + m1 > 1, conditionally on Extc, #G
∗
n

n→∞−→ ∞ a.s.

REMARK. In the conditions of the theorem, #G
∗
n (resp. the number of leaves)

grows at least linearly with respect to n (see Section 5 for further results). In the
case m0 + m1 ≤ 1, conditionally on #G

∗
n > 0, the tree of contaminated cells is a

spine with finite subtrees, as for BGW conditioned to survive (see [11, 17]).

We need two lemmas for the proof. First we prove that the ancestor of a conta-
minated cell has given birth to two contaminated cells with a probability bounded
from below. We have to distinguish the case where P(Z(0)Z(1) = 0) = 1, since in
that case a cell must contain at least two parasites so that it can give birth to two
contaminated cells.
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LEMMA 4.2. There exists α > 0 such that for all N ∈ N, i ∈ GN , n < N and
k ≥ 2,

P(Zj0 
= 0,Zj1 
= 0 | Zj = k,Zi > 0) ≥ α

denoting j = i | n. If P(Z(0)Z(1) = 0) 
= 1, this result also holds for k = 1.

PROOF. We consider first the case P(Z(0)Z(1) = 0) 
= 1 and we choose
(k0, k1) ∈ N

∗2 such that P((Z(0),Z(1)) = (k0, k1)) > 0. For every k ∈ N
∗, we have

P(Zj0 
= 0,Zj1 
= 0 | Zj = k,Zi > 0) ≥ P(Zj0 
= 0,Zj1 
= 0 | Zj = 1,Zi > 0).

Moreover, as the function R
∗+ � u �→ 1−e−u

u
decreases, we have for all y, x > 0

and p ∈ [0,1[,
1 − px

1 − py
≥ x

max{y, x} .(18)

Let a ∈ {0,1} and k such that i = jak. Then for all (k′
0, k

′
1) ∈ N

2 − (0,0),

P(Zj0 = k0,Zj1 = k1 | Zj = 1,Zi > 0)

P(Zj0 = k′
0,Zj1 = k′

1 | Zj = 1,Zi > 0)

= P(Z(0) = k0,Z
(1) = k1 | Zak > 0)

P(Z(0) = k′
0,Z

(1) = k′
1 | Zak > 0)

= P(Zak > 0 | Z(0) = k0,Z
(1) = k1)

P(Zak > 0 | Z(0) = k′
0,Z

(1) = k′
1)

P(Z(0) = k0,Z
(1) = k1)

P(Z(0) = k′
0,Z

(1) = k′
1)

= 1 − P(Zk = 0)ka

1 − P(Zk = 0)k
′
a

P((Z(0),Z(1)) = (k0, k1))

P((Z(0),Z(1)) = (k′
0, k

′
1))

≥ min{k0, k1}
k0 + k1 + k′

0 + k′
1

P((Z(0),Z(1)) = (k0, k1))

P((Z(0),Z(1)) = (k′
0, k

′
1))

using (18).

Cross product and sum over (k′
0, k

′
1) give[

E
(
Z(0) + Z(1)) + k0 + k1

]
P(Zj0 = k0,Zj1 = k1 | Zj = 1,Zi > 0)

≥ min{k0, k1}P((
Z(0),Z(1)) = (k0, k1)

)
.

This gives the result since P(Zj0 = k0,Zj1 = k1 | Zj = 1,Zi > 0) ≥ α with

α = min{k0, k1}P((Z(0),Z(1)) = (k0, k1))

E(Z(0) + Z(1)) + k0 + k1
> 0.

In the case P(Z(0)Z(1) = 0) = 1, we choose (k0, k1) ∈ N
∗2 such that P2((Z0,

Z1) = (k0, k1)) > 0 [using (2)]. We make then the same proof as above with Zj = 2
and

α = min{k0, k1}P2((Z0,Z1) = (k0, k1))

E2(Z0 + Z1) + k0 + k1
,
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so that the result follows as previously. �

Thus if P(Z(0)Z(1) = 0) = 1, we need to prove that there are many cells with
more than two parasites in a contaminated cell line.

LEMMA 4.3. If β := P(Z(0) ≥ 2 or Z(1) ≥ 2) > 0 then

inf
i∈Gn

P(#{j < i :Zj0 ≥ 2or Zj1 ≥ 2} ≥ βn/2|Zi > 0)
n→∞−→ 1.

PROOF. For all i ∈ Gn and j < i, let k such that i = jk, then for every α > 0,

P(Zj0 ≥ 2 or Zj1 ≥ 2 | Zj = α,Zi > 0) ≥ P(Z0 ≥ 2 or Z1 ≥ 2 | Zk > 0) ≥ β.

Then conditionally on Zi > 0, #{j < i :Zj0 ≥ 2 or Zj1 ≥ 2} ≥ ∑n
k=0 βk , where

(βk)1≤k≤n are i.i.d. and distributed as a Bernoulli(β). Conclude with the law of
large numbers. �

PROOF OF THEOREM 4.1. We consider first the case when m0 +m1 > 1, work
conditionally on Extc and choose i ∈ δT

∗.
If P(Z(0)Z(1) = 0) 
= 1, Lemma 4.2 (with k = 1) entails that a.s. under

P(·|Zi > 0),

#{j < i :Zj0 > 0,Zj1 > 0} = ∞.

Using the branching property and the fact that the probability of nonextinction of
parasites is positive ensures that #G

∗
n

n→∞−→ ∞ a.s.
If P(Z(0)Z(1) = 0) = 1 then P(Z(0) ≥ 2 or Z(1) ≥ 2) > 0 and by Lemma 4.3,

we have a.s. on P(·|Zi > 0),

#{j < i :Zj0 ≥ 2 or Zj1 ≥ 2} = ∞.

Using as above Lemma 4.2 (with k = 2) and the fact that the probability of nonex-
tinction of parasites is positive ensures that #G

∗
n

n→∞−→ ∞ a.s.
We consider now the case when m0 + m1 ≤ 1 and work conditionally on i =

(α1, . . . , αn) ∈ G
∗
n. We denote ij := (α1, . . . , αj−1,1 − αj ) for 1 ≤ j ≤ n.

If P(Z(0)Z(1) = 0) 
= 1, Lemma 4.2 entails that

∀1 ≤ j ≤ n, k ≥ 1 P(Zij > 0 | Zi|j−1 = k,Zi > 0) ≥ α.(19)

Moreover, if Zij > 0, then the tree of contaminated cells rooted in ij dies out and so
has at least one leaf. So by the branching property, the number of leaves converges
in probability to infinity as n tends to infinity.

If P(Z(0)Z(1) = 0) = 1, (19) holds for k ≥ 2 and Lemma 4.3 allows to conclude
similarly in this case. �
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5. Proportion of contaminated cells with a given number of parasites. We
determine here the asymptotics of the number of contaminated cells and the pro-
portion Fk of cells with k parasites, defined as

Fk(n) := #{i ∈ G
∗
n :Zi = k}

#G∗
n

(k ∈ N
∗).

In that view, we introduce the Banach space l1(N) and the subset of frequencies
S

1(N) which we endow with the norm ‖ · ‖1 defined by:

l1(N) :=
{
(xi)i∈N :

∞∑
i=0

|xi | < ∞
}
, ‖(xi)i∈N‖1 =

∞∑
i=0

|xi |,

S
1(N) :=

{
(fi)i∈N :∀i ∈ N, fi ∈ R

+,

∞∑
i=0

fi = 1

}
.

We shall work conditionally on Extc or Zn > 0 and introduce

P
∗ := P(· | Extc), P

n := P(· | Zn > 0).(20)

The asymptotics of the proportions depend naturally on the distribution of
(Z(0),Z(1)) and we determine five different behaviors according to the bivariate
value of (m0,m1).

The proofs of the convergences use the asymptotic distribution of the num-
ber of parasites of a typical contaminated cell at generation n, which is equal
to P

n(ZUn
∈ ·), where Un is a uniform random variable in G

∗
n independent of

(Zi)i∈T∗ . This distribution is different from the distribution of Z∗
n , that is the num-

ber of parasites of a random cell line conditioned to be contaminated at genera-
tion n. The following example even proves that P

n(ZUn
∈ ·) and P(Z∗

n ∈ ·) could
be a priori very different.

EXAMPLE. Suppose that generation n (fixed) contains 100 cells with 1 para-
site (and no other contaminated cells) with probability 1/2 and it contains 1 cell
with 100 parasites with probability 1/2 (and no other contaminated cells). Com-
pare then

P
n(ZUn

= 1) = 1/2, P
n(ZUn

= 100) = 1/2;
P(Z∗

n = 1) = 100/101, P(Z∗
n = 100) = 1/101.

Actually the convergence of (Z∗
n)n∈N leads to the result obtained by Kimmel

[15] in the continuous analogue of this model. That is,

P(Zn = k)

P(Zn > 0)
=

∑
i∈Gn

E(1Zi=k)∑
i∈Gn

E(1Zi>0)
= E(#{i ∈ Gn :Zi = k})

E(#G∗
n)

(21)

tends to P(ϒ = k) whereas we are here interested in the expectation of Fk(n).
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A sufficient condition to get the equality of the two distributions is that #G
∗
n

is deterministic, which does not hold here. But in the case when (m0,m1) ∈ D3,
we shall prove that #G

∗
n is asymptotically proportional to (m0 + m1)

n as n → ∞
(forthcoming Proposition 6.3). This enables us to control P

n(ZUn
∈ ·) by the dis-

tribution of P(Z∗
n ∈ ·). More precisely, it is sufficient to prove the separation

of descendances of parasites (Proposition 6.4) and the control of filled-in cells
(Lemma 6.5) using the results about the BPRE Z∗

n . These two results are the keys
for Theorems 5.2, 5.5 and 5.7. Similarly, when (m0,m1) ∈ D5, we already know
that #G

∗
n is approximatively equivalent to 2n. Then the fact that Z∗

n explodes as
n → ∞ (by Proposition 2.4) will ensure that the proportion of filled-in cells among
contaminated cells tends to one (Theorem 5.1 below).

5.1. Case (m0,m1) ∈ D5 (m > 1). In that case, recall that conditionally on
Extc, #G

∗
n is asymptotically proportional to 2n (by Theorem 3.1). Moreover the

contaminated cells become largely infected, as stated below.

THEOREM 5.1. Conditionally on Extc, for every k ∈ N, Fk(n) converges in
probability to 0 as n → ∞, that is,

∀K,ε > 0 P
∗
(

#{i ∈ Gn :Zi ≥ K}
#G∗

n

≥ 1 − ε

)
n→∞−→ 1.

If m0 = m1, the number of parasites in a contaminated cell is of the same order
as mn

0. More precisely, for every ε > 0,

sup
n∈N

{
P

∗
(

#{i ∈ G
∗
n :Zi ≤ αmn

0}
#G∗

n

≥ ε

)}
α→0−→ 0.

PROOF. In that case, use Theorem 3.1 and (20) to get that there exists a non-
negative random variable L̃ such that

#G
∗
n ≥ 2nL̃, P

∗(L̃ = 0) = 0.(22)

Let K,η and ε > 0 and put Bn(K,η) := {#{i∈G
∗
n : Zi≤K}
#G∗

n
≥ η} ∩ Extc, then∑

i∈G∗
n

1{Zi≤K} ≥ η2nL̃1Bn(K,η)

which gives, taking expectations,

E
(
L̃1Bn(K,η)

) ≤ E(
∑

i∈G∗
n

2−n1{Zi≤K})
η

= P(0 < Zn ≤ K)

η
.

Use then Proposition 2.4 and (22) to choose n large enough so that

P(Bn(K,η)) ≤ ε,

which completes the proof of the theorem. In the case m0 = m1 = m, follow the
proof above and use that Zn/mn converges to a positive limit on Extc (see [4]) to
get the finer result given after the theorem. �
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5.2. Case (m0,m1) ∈ D3 (m ≤ 1). We assume here E(Z(a)2) < ∞ and prove
that (Fk(n))k∈N converges to a deterministic limit. We prove the convergence
thanks to the Cauchy criterion [using completeness of l1(N)]. The fact that the
limit is deterministic is a consequence of the separation of the descendances of
parasites and the law of large numbers. Once we know this limit is deterministic,
we identify it with the Yaglom limit ϒ (see Section 6.1 for proofs).

THEOREM 5.2. Conditionally on Extc, as n → ∞, (Fk(n))k∈N converges in
probability in S

1(N) to (P(ϒ = k))k∈N.

REMARK. We get here a realization of the Yaglom distribution ϒ .
The limit just depends on the one-dimensional distributions of (Z(0),Z(1)).

More precisely, recall that the probability generating function G of ϒ is char-
acterized by (15).

This theorem still holds starting from k parasites. We also easily get a similar
result in the case when a cell gives birth to N cells (N ∈ N).

As an application, we can obtain numerically the Yaglom quasistationary dis-
tribution of any BGW. Let Z be the reproduction law of a BGW with mean m < 1
and choose N such that Nm > 1. Consider Kimmel’s model where each cell di-
vides into N daughter cells and Z(0) d= Z(1) d= · · · d= Z(N) d= Z. Computing then
the asymptotic of the proportions of contaminated cells with k parasites gives the
Yaglom quasistationary distribution associated to Z. If P(Ext) 
= 0, one can start
from many parasites “to avoid” extinction.

More generally, we can obtain similarly the Yaglom quasistationary distribution
of any BPRE with finite number k of environments such that

∑k
1 m2

i <
∑k

1 mi .
This theorem is in the same vein as Theorem 11 in [14]. But we can not follow

the same approach as Guyon for the proof. Indeed we have to consider here the
proportions among the contaminated cells in generation n whereas Guyon con-
siders proportions among all cells in generation n. Unfortunately, the subtree of
contaminated cells is itself random and induces long-range dependences between
cells lines, so that Guyon’s arguments do not hold here. Moreover, Theorem 11 in
[14] relies on an ergodicity hypothesis which cannot be circumvented.

EXAMPLE. We give two examples when the limit can be calculated.
Trivial case: P(Z(0) ∈ {0,1},Z(1) ∈ {0,1}) = 1 leads to P(ϒ = 1) = 1.
Symmetric linear fractional case: p ∈]0,1[, b ∈]0, (1 − p)2[ and

P
(
Z(0) = k

) = P
(
Z(1) = k

) = bpk−1 if k ≥ 1

and P(Z(0) = 0) = P(Z(1) = 0) = (1 − b − p)/(1 − p). Then m0 = m1 = b/(1 −
p)2 < 1 and letting s0 be the root of f0(s) = s larger than 1,

∀k ≥ 1 P(ϒ = k) = (s0 − 1)/sk
0 .



982 V. BANSAYE

As asymptotically we know the number of parasites and the proportion of cells
with k parasites, we get the number of contaminated cells [recall that W is given
by (6)].

COROLLARY 5.3. Conditionally on Extc, the following convergences hold in
probability

#G
∗
n

Zn

n→∞−→ 1

E(ϒ)
,

#G
∗
n

(m0 + m1)n
n→∞−→ W

E(ϒ)
.

We can also consider the ancestors at generation n of the cells of ∂T
∗, which

amounts to considering

Fk(n,p) = #{i ∈ G
∗
n+p :Zi|n = k}
#G

∗
n+p

and let p → ∞. Letting then n → ∞ yields the biased Yaglom quasistationary
distribution, thanks to the separation of descendances of parasites.

COROLLARY 5.4. Conditionally on Extc, for every k ∈ N, Fk(n,p) converges
in probability in S

1(N) as p tends to infinity. This limit converges in probability in
S

1(N) as n → ∞:

∀k ∈ N lim
n→∞ lim

p→∞Fk(n,p)
P= kP(ϒ = k)

E(ϒ)
.

We get here an interpretation of the fact that the stationary distribution of the Q-
process associated to the BPRE (Zn)n∈N is the size-biased Yaglom limit (see [1]).

5.3. Case (m0,m1) ∈ D2. In that case, the parasites die out. So we condition
by Zn > 0, we still assume E(Z(a) 2) < ∞ and we get a similar result.

THEOREM 5.5. As n → ∞, (Fk(n))k∈N conditioned by Zn > 0 converges in
distribution on S

1(N) to (P(ϒ = k))k∈N.

The proof follows that of the previous theorem. Indeed (13) is still satisfied
and we can use the same results on the BPRE (Zn)n∈N. There are only two
differences. First, we work under P

n instead of P
∗. Moreover Zn satisfies now

P(Zn > 0)
n→∞∼ 2/(Var(Z(0) + Z(1))n) and Zn/n conditioned to be nonzero

converges in distribution as n → ∞ to an exponential variable E of parameter
2/(m̂ + 1) (see Section 2.1). As above, we can derive the following result.

COROLLARY 5.6. As n → ∞, #G
∗
n/n conditioned by #G

∗
n > 0 converges in

distribution to E/E(ϒ).
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5.4. Case (m0,m1) ∈ D1. In this case, the number of contaminated cells does
not explode and the number of cells of type k at generation n conditioned by the
survival of parasites in this generation converges weakly to a nondeterministic
limit (see Section 7 for proofs).

THEOREM 5.7. As n → ∞, (#{i ∈ G
∗
n :Zi = k})k∈N conditioned on Zn > 0

converges in distribution on l1(N) to a random sequence (Nk)k∈N which satisfies
E(

∑
k∈N kNk) < ∞.

As above, we get:

COROLLARY 5.8. #G
∗
n conditioned by #G

∗
n > 0 converges in distribution to

a positive finite random variable.

Picking a cell uniformly on ∂T
∗ leads again to the size-biased distribution.

COROLLARY 5.9. For every n ∈ N, (#{i ∈ G
∗
n+p :Zi|n = k})k∈N conditioned

on Zn+p > 0 converges weakly in l1(N) to a random sequence as p tends to infin-
ity. This limit converges weakly as n → ∞.

∀k ∈ N lim
n→∞ lim

p→∞ #{i ∈ G
∗
n+p :Zi|n = k}|Zn+p > 0 = kNk∑

k′∈N k′Nk′
.

5.5. Remaining domain: (m0,m1) ∈ D4. In this domain, the asymptotic of the
mean of the number of contaminated cells, that is E(#G

∗
n) = 2n

P(Zn > 0), is dif-
ferent from the previous ones.

Recalling Section 2.2, this asymptotic depends on three subdomains, the interior
of D4 and the two connex components of its boundary. More precisely, it depends
on m0m1 = 1 or m0m1 < 1 and m0 log(m0) + m1 log(m1) is positive or zero.

If (m0,m1) ∈ D4 and m0 < 1 < m1, using (17) and a coupling argument with
Corollary 5.3, one can prove that

sup
n∈N

{
P

(
#G

∗
n

2nP(Zn > 0)
≥ A,

#G
∗
n

(m0 + m̃0)n
≤ 1/A

)}
A→0−→ 0,

where m̃0 = (1 +
√

1 + 4(m0 − m2
0))/2 > 1. Thus #G

∗
n grows geometrically and

one can naturally conjecture that #G
∗
n is asymptotically proportional to E(#G

∗
n) =

2n
P(Zn > 0).
Moreover separation of descendances of parasites, control of filled-in cells and

Corollary 5.4 do not hold in this case. Thus determining the limit behaviors here
requires a different approach.

Finally, note that in the subdomain m0m1 = 1 (boundary of D5), (Z∗
n)n∈N ex-

plodes (see [2]) so the asymptotic proportion of contaminated cells which are ar-
bitrarily largely contaminated should be equal to 1 as in Theorem 5.1.
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6. Proofs in the case (m0,m1) ∈ D3. We assume in this section that
E(Z(a)2) < ∞ (i.e., m̃ < ∞) and we start with giving some technical results.

6.1. Preliminaries. First, note that for all u, v ∈ l1(N∗), we have∥∥∥∥ u

‖u‖1
− v

‖v‖1

∥∥∥∥
1
=

∥∥∥∥u − v

‖u‖1
+ v

‖v‖1

‖v‖1 − ‖u‖1

‖u‖1

∥∥∥∥
1
≤ 2

‖u − v‖1

‖u‖1
.(23)

Moreover by (6), there exist two random variables C and D a.s finite such that

∀n ∈ N C ≤ Zn

(2m)n
≤ D a.s., P

∗(C = 0) = P
∗(D = 0) = 0(24)

and as
⋂

n∈N{Zn > 0} = {∀n ∈ N :Zn > 0}, we have

sup
A

{|Pn(A) − P
∗(A)|} n→∞−→ 0.(25)

We focus now on the BPRE (Zn)n∈N. First, by induction and convexity of fa ,
we have for every i ∈ Gn (see Section 2.2 for the notation)

P(Zi > 0) = 1 − fi(0) ≤ mi.(26)

Then identities (26) and (14) entail that there exists M > 0 such that

M ≤ P(Zn > 0)

mn
≤ 1.(27)

Moreover, by Corolary 2.3 in [1], we have

lim
K→∞ sup

n∈N

{E(Zn1Zn≥K | Zn > 0)} = 0.(28)

Finally, following the proof of Theorem 1.2 in [13] (see [7], Section 2.1 for
details) ensures that, if (Z

(1)
n )n∈N and (Z

(2)
n )n∈N are two independent BPRE dis-

tributed as (Zn)n∈N, we have

P
(
Z(1)

n > 0,Z(2)
n > 0

) = o
(
P(Zn > 0)

) = o(mn) (n → ∞).

Then, we have

2−n
∑

i∈Gn

P(Zi > 0)2 = o(mn) (n → ∞).(29)

6.2. Estimation of #G
∗
n. We prove here that the number of parasites which

belong to filled-in cells is negligible compared to the total number of parasites
(see also Lemma 6.5 for a result of the same kind). To prove this result, we use its
counterpart for BPRE (Zn)n∈N conditioned to be nonzero.

LEMMA 6.1. For every η > 0,

sup
n∈N

{
P

∗
(∑

i∈G∗
n
Zi1{Zi>K}
Zn

≥ η

)}
K→∞−→ 0.
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PROOF. Let η > 0 and write

An(K,η) :=
{∑

i∈G∗
n
Zi1{Zi>K}
Zn

≥ η

}
∩ Extc .

Then

1An(K,η)

∑
i∈G∗

n

Zi1{Zi>K} ≥ 1An(K,η)Znη.

Using (24), we have

1An(K,η)(2m)−n
∑
i∈G∗

n

Zi1{Zi>K} ≥ η1An(K,η)C

so that taking expectations,

m−n
E

(
2−n

∑
i∈G∗

n

Zi1{Zi>K}
)

≥ E
(
1An(K,η)C

)
η

m−n
E

(
Zn1{Zn>K}

)
/η ≥ E

(
1An(K,η)C

)
.

Then, by (28), we have

lim
K→∞ sup

n∈N

{
E

(
1An(K,η)C

)} = 0.

Then observe that ∀α > 0, infP∗(A)≥α{E(C1A)} > 0. So ∃K0 ≥ 0 such that ∀K ≥
K0, ∀n ∈ N,

P
∗(An(K,η)) < α,

which completes the proof. �

First, for any ε > 0, choose K using the previous lemma such that

P
∗
(∑

i∈G∗
n
Zi1{Zi≤K}
Zn

≥ 1/2
)

= 1 − P
∗
(∑

i∈G∗
n
Zi1{Zi>K}
Zn

< 1/2
)

≥ 1 − ε/2.

Adding that conditionally on Extc, Zn
n→∞−→ ∞ a.s, gives the following result.

PROPOSITION 6.2. Let ε > 0, there exists K ∈ N such that ∀N ∈ N, ∃n0 ∈ N

such that ∀n ≥ n0,

P
∗
( ∑

i∈G∗
n

Zi1{Zi≤K} ≥ N

)
≥ 1 − ε.

Second, we derive an estimation of #G
∗
n. By Lemma 6.1, the cells are not very

contaminated so the number of contaminated cells is asymptotically proportional
to the number of parasites, which is a Bienaymé Galton–Watson process.
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PROPOSITION 6.3. For every ε > 0, there exist A,B > 0 such that for every
n ∈ N,

P
∗
(

#G
∗
n

(2m)n
∈ [A,B]

)
≥ 1 − ε.

PROOF. First use (24) to get

#G
∗
n

(2m)n
≤ Zn

(2m)n
≤ D.

Moreover using again (24), we have

#G
∗
n

(2m)n
≥

∑
i∈G∗

n
Zi1{Zi≤K}

K(2m)n
≥ C

K

∑
i∈G∗

n
Zi1{Zi≤K}
Zn

and Lemma 6.1 gives the result. �

6.3. Separation of the descendances of parasites. Start with two parasites and
consider the BPRE (Zn)n∈N. Even when conditioning on the survival of their de-
scendance, the descendance of one of them dies out. This ensures that two distinct
parasites in generation n do not have descendants which belong to the same cell
in generation n + q if q is large enough. More precisely, we define Nn(i) as the
number of parasites of cell i|n whose descendance is still alive in cell i and we
prove the following result.

PROPOSITION 6.4. ∀K ∈ N, ∀ε, η > 0, ∃q ∈ N such that ∀n ∈ N, we have

P
∗
(#{i ∈ G

∗
n+q :Zi|n ≤ K,Nn(i) ≥ 2}

#G
∗
n+q

≥ η

)
≤ ε.

PROOF. Let K ∈ N, η > 0 and consider for A > 0,

Eq
n(η) =

{#{i ∈ G
∗
n+q :Zi|n ≤ K,Nn(i) ≥ 2}

#G
∗
n+q

≥ η

}
∩

{ #G
∗
n+q

(2m)n+q
≥ A

}
.

Then

1E
q
n (η)#{i ∈ G

∗
n+q :Zi|n ≤ K,Nn(i) ≥ 2} ≥ 1E

q
n (η)ηA(2m)n+q

so that taking expectations,

P(Eq
n(η)) ≤ 2−(n+q)

E(
∑

i∈Gn+q
1{Zi|n≤K,Nn(i)≥2})

ηAmn+q

≤ 2−n ∑
j∈Gn

P(0 < Zj ≤ K)2−q ∑
i∈Gq

PK(N0(i) ≥ 2)

ηAmn+q

≤ P(Zn > 0)2−q ∑
i∈Gq

PK(N0(i) ≥ 2)

ηAmn+q
.
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As we have
(K

2

)
ways to choose two parasites among K and they both survive

along i with probability P(Zi > 0)2, we have

PK

(
N0(i) ≥ 2

) ≤
(

K

2

)
P(Zi > 0)2.

Then

P(Eq
n(η)) ≤

(K
2

)
2−q ∑

i∈Gq
P(Zi > 0)2

ηAmq
.

Conclude choosing A in agreement with Proposition 6.3 and q with (29). �

6.4. Control of filled-in cells. Here we prove that filled-in cells have asymp-
totically no impact on the proportions of cells with a given number of parasites.

LEMMA 6.5. ∀ε, η > 0, ∃K ∈ N such that ∀n,q ∈ N, we have

P
∗
(#{i ∈ G

∗
n+q :Zi|n > K}
#G

∗
n+q

≥ η

)
≤ ε.

PROOF. Let η > 0, A > 0 and consider

Fq
n (η) =

{#{i ∈ G
∗
n+q :Zi|n > K}
#G

∗
n+q

≥ η

}
∩

{ #G
∗
n+q

(2m)n+q
≥ A

}
then

1F
q
n (η)#{i ∈ G

∗
n+q :Zi|n > K} ≥ 1F

q
n (η)ηA(2m)n+q .

Taking expectations leads to

P(F q
n (η)) ≤ 2−(n+q)

E(
∑

i∈Gn+q
1{Zi|n>K,Zi>0})

ηAmn+q

≤ 2−(n+q) ∑
i∈Gn+q

P(Zi|n > K,Zi > 0)

ηAmn+q

≤
∑

k>K 2−n ∑
j∈Gn

P(Zj = k)2−q ∑
i∈Gq

Pk(Zi > 0)

ηAmn+q
.

Moreover, Pk(Zi > 0) = 1 − (1 − P(Zi > 0))k ≤ kP(Zi > 0) and we have

P(F q
n (η)) ≤

∑
k>K 2−n ∑

j∈Gn
kP(Zj = k)P(Zq > 0)

ηAmn+q

≤ E(Zn1{Zn>K})
ηAmn

using (27).
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By (29), we get

lim
K→∞ sup

n∈N

{P(F q
n (η))} = 0.

Complete the proof choosing A in agreement with Proposition 6.3. �

6.5. Proof of Theorem 5.2. Consider the contaminated cells in generation
n + q . Their ancestors in generation n are cells which are not very contaminated
(by Lemma 6.5). Then taking q large, the parasites of a contaminated cell in gen-
eration n+q come from a same parasite in generation n (separation of the descen-
dances of parasites, Proposition 6.4). Thus at generation n + q , everything occurs
as if all parasites from generation n belonged to different cells. As the number of
parasites at generation n tends to infinity (n → ∞, m0 + m1 > 1), we have a law
of large numbers phenomenon and get a deterministic limit.

Step 1. We prove that for all ε, η > 0, there exist n0 ∈ N and �f ∈ S
1(N) such

that for every n ≥ n0,

P
∗(‖(Fk(n))k∈N − �f ‖1 ≥ η

) ≤ ε.

For every k ∈ N
∗ and every parasite p in generation n, we denote by Y

q
k (p) the

number of cells in generation n + q which contain at least k parasites, exactly k

of which have p as an ancestor. By convention, Y
q
0 (p) = 0. That is, writing for

p parasite, p ↪→ i when p belongs to the cell i and p|n its ancestor (parasite) in
generation n,

Y
q
k (p) = ∑

i∈Gn+q

1#{r : r↪→i,r|n=p}=k, k ∈ N
∗.

By the branching property, (Y
q
k (p))k∈N [p ∈ P (n)] are i.i.d. and we denote by

(Y
q
k )k∈N a random variable with this common distribution. Denoting by PK(n)

the set of parasites in generation n which belong to a cell containing at most K

parasites, we have∑
k∈N∗

∣∣∣∣∣#{i ∈ G
∗
n+q :Zi = k} − ∑

p∈PK(n)

Y
q
k (p)

∣∣∣∣∣
(30)

≤ (K + 1)#{i ∈ G
∗
n+q :Zi|n ≤ K,Nn(i) ≥ 2} + #{i ∈ G

∗
n+q :Zi|n > K}.

Indeed, the left-hand side of (30) is less than∑
k∈N∗

∣∣∣∣∣#{i ∈ G
∗
n+q :Zi = k,Zi|n ≤ K} − ∑

p∈PK(n)

Y
q
k (p)

∣∣∣∣∣ + #{i ∈ G
∗
n+q :Zi|n > K}.

And recalling that Nn(i) is the number of parasites of cell i|n whose descendance
is still alive in cell i, we get the following equalities:∑

p∈PK(n)

Y
q
k (p) = ∑

i∈Gn+q

∑
p∈PK(n)

1#{r : r↪→i,r|n=p}=k
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and

1Zi=k,Zi|n≤K,Nn(i)=1 = 1Nn(i)=1
∑

p∈PK(n)

1#{r : r↪→i,r|n=p}=k

which ensure∑
k∈N∗

∣∣∣∣∣#{i ∈ G
∗
n+q :Zi = k,Zi|n ≤ K} − ∑

p∈PK(n)

Y
q
k (p)

∣∣∣∣∣
≤ ∑

k∈N∗

∑
i∈Gn+q ,Nn(i)≥2

∣∣∣∣∣1Zi=k,Zi|n≤K − ∑
p∈PK(n)

1#{r : r↪→i,r|n=p}=k

∣∣∣∣∣
≤ #{i ∈ G

∗
n+q :Zi|n ≤ K, Nn(i) ≥ 2} + ∑

i∈Gn+q ,Nn(i)≥2
p∈PK(n)

1#{r : r↪→i,r|n=p}>0

≤ #{i ∈ G
∗
n+q :Zi|n ≤ K, Nn(i) ≥ 2} + ∑

i∈Gn+q ,Nn(i)≥2

K1Zi|n≤K

= (K + 1)#{i ∈ G
∗
n+q :Zi|n ≤ K,Nn(i) ≥ 2}.

We shall now prove that the quantities on the right-hand side of (30) are small
when n and q are large enough and that

∑
p∈PK(n) Y

q
k (p) follow a law of large

number. To that purpose, let ε, η > 0 and for all K,k,n, q ≥ 0 define

GK
k (n, q) :=

∑
p∈PK(n) Y

q
k (p)∑

k∈N

∑
p∈PK(n) Y

q
k (p)

.

First, by Proposition 6.2 and (25), ∃K1 ∈ N such that ∀N ∈ N, ∃n1 ∈ N such
that ∀K ≥ K1, ∀n ≥ n1,

P
n(|PK(n)| ≥ N

) ≥ 1 − ε.(31)

Moreover by Lemma 6.5, ∃K2 ≥ K1 such that ∀n,q ∈ N,

P
∗
(#{i ∈ G

∗
n+q :Zi|n > K2}
#G

∗
n+q

≥ η

)
≤ ε.(32)

And by Proposition 6.4, ∃q0 ∈ N such that ∀n ∈ N,

P
∗
(#{i ∈ G

∗
n+q0

:Zi|n ≤ K2,Nn(i) ≥ 2}
#G

∗
n+q0

≥ η/(K2 + 1)

)
≤ ε.(33)

Use then (30), (32) and (33) to get

P
∗
(∑

k∈N∗ |#{i ∈ Gn+q0 :Zi = k} − ∑
p∈PK2 (n) Y

q0
k (p)|

#G
∗
n+q0

≥ 2η

)
≤ 2ε.
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Then by (23), for every n ∈ N, we have

P
∗(∥∥(

Fk(n + q0)
)
k∈N

− (
G

K2
k (n, q0)

)
k∈N

∥∥
1 ≥ 4η

) ≤ 2ε.(34)

Second, conditionally on Zn > 0, Y
q0
k (p) [p ∈ PK2(n)] are i.i.d. Then the law

of large numbers (LLN) ensures that ∀k ∈ N, as n and so PK2(n) becomes large:

G
K2
k (n, q0) −→ fk(q0) where fk(q0) := E(Y

q0
k )∑

k′∈N E(Y
q0
k′ )

.

To see that, divide the numerator and denominator of G
K2
k (n, q0) by #PK2(n).

More precisely, by the LLN, there exists N > 0 such that for all n ∈ N,

P
n(‖(GK2

k (n, q0))k∈N∗ − �f (q0)‖1 ≥ η,PK2(n) ≥ N
) ≤ ε.

So using (31), there exists n1 ∈ N such that for every ∀n ≥ n1,

P
n(‖(GK2

k (n, q0))k∈N∗ − �f (q0)‖1 ≥ η
) ≤ 2ε.

Finally by (25), there exists n2 ≥ n1 such that for every n ≥ n2,

P
∗(‖(GK2

k (n, q0))k∈N∗ − �f (q0)‖1 ≥ η
) ≤ 3ε.(35)

As a conclusion, using (34) and (35), we have proved that for all ε, η > 0, and
for every n ≥ n2 + q0,

P
∗(‖(Fk(n))k∈N∗ − �f (q0)‖1 ≥ 5η

) ≤ 3ε.

Step 2. Existence of the limit.
For every l ∈ N, there exist n0(l) ∈ N and �f (l) ∈ S

1(N) such that for every
n ≥ n0(l)

P
(‖F(n) − �f (l)‖1 ≥ 1/2l+1) ≤ 1/2l .

Then for all l, l′ such that 2 ≤ l ≤ l′ :‖ �f (l′) − �f (l)‖1 ≤ 1/2l and completeness of
l1(N) ensures that ( �f (l))l∈N converges in S

1(N) to a limit �f . Moreover, ‖ �f (l) −
�f ‖1 ≤ 1/2l so for every n ≥ n0(l),

P
(‖F(n) − �f ‖1 ≥ 1/2l) ≤ 1/2l

which ensures the convergence in probability of (Fk(n))n∈N to �f as n → ∞.
Step 3. Characterization of the limit as fk = P(ϒ = k).
By Proposition 2.2, we have

∀k ∈ N P(Zn = k | Zn 
= 0)
n→∞−→ P(ϒ = k).(36)

Moreover, for every k ∈ N
∗, using (21),

P(Zn = k | Zn 
= 0) = E(#{i ∈ Gn :Zi = k})
E(#G∗

n)
= E(Fk(n)#G

∗
n)

E(#G∗
n)

.
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As Fk(n) converges in probability to a deterministic limit fk , we get

∀k ∈ N P(Zn = k | Zn 
= 0)
n→∞−→ fk.(37)

Indeed, by Proposition 6.3, there exists A > 0 such that

E(#G
∗
n)

(2m)n
≥ A.

Then for every η > 0, using |Fk(n) − fk| ≤ 1, we have∣∣∣∣E(Fk(n)#G
∗
n)

E(#G∗
n)

− fk

∣∣∣∣ ≤ E(#G
∗
n | Fk(n) − fk | 1{|Fk(n)−fk |<η})

E(#G∗
n)

+ E(#G
∗
n1{|Fk(n)−fk |≥η})
E(#G∗

n)

≤ η + E(Zn1{|Fk(n)−fk |≥η})
A(2m)n

.

By (11), Zn/(2m)n is bounded in L2 and it is uniformly integrable. Then, thanks
to the previous steps, the second term in the last displayed equation vanishes as n

grows and we get (37). Putting (36) and (37) together proves that fk = P(ϒ = k).

6.6. Proof of corollaries.

PROOF OF COROLLARY 5.3. Recall that E(ϒ) < ∞ (Proposition 2.2) and
note also that for every K ∈ N

∗,

#G
∗
n =

∑
i∈G∗

n
Zi1{Zi≤K}∑K

k=1 kFk(n)
.

Then using
∑

i∈G∗
n
Zi1{Zi≤K} ≤ Zn gives∣∣∣∣#G

∗
n

Zn

− 1

E(ϒ)

∣∣∣∣ =
∣∣∣∣ 1∑K

k=1 kFk(n)

∑
i∈G∗

n
Zi1{Zi≤K}
Zn

− 1

E(ϒ)

∣∣∣∣
≤

∣∣∣∣ 1∑K
k=1 kFk(n)

− 1

E(ϒ)

∣∣∣∣ + 1

E(ϒ)

∣∣∣∣
∑

i∈G∗
n
Zi1{Zi≤K}
Zn

− 1
∣∣∣∣.

Let η, ε > 0. We use Lemma 6.1 to choose K ∈ N
∗ such that

∀n ∈ N P
∗
(∑

i∈G∗
n
Zi1{Zi≤K}
Zn

≥ 1 − η

)
≥ 1 − ε;∣∣∣∣ 1

E(ϒ1ϒ≤K)
− 1

E(ϒ)

∣∣∣∣ ≤ η.



992 V. BANSAYE

Choose n0 ∈ N using Theorem 5.2 so that for every n ≥ n0,

P
∗
(∣∣∣∣ 1∑K

k=1 kFk(n)
− 1

E(ϒ1ϒ≤K)

∣∣∣∣ ≤ η

)
≥ 1 − ε.

Then for every n ≥ n0,

P
∗
(∣∣∣∣#G

∗
n

Zn

− 1

E(ϒ)

∣∣∣∣ ≥ 2η + 1

E(ϒ)
η

)
≤ 2ε,

which proves the convergence in probability of #G
∗
n/Zn to 1/E(ϒ). The second

convergence follows from (6). �

PROOF OF COROLLARY 5.4. We write for n,p, k ∈ N,

#{i ∈ G
∗
n+p :Zi|n = k}
#G

∗
n+p

= (2m)p

#G
∗
n+p

∑
j∈G∗

n : Zj=k

#{i ∈ G
∗
n+p : i|n = j}
(2m)p

.

Conditionally on Zj = k, by Corollary 5.3 and separation of descendances of par-
asites, we have the following convergence in probability

#{i ∈ G
∗
n+p : i|n = j}
(2m)p

p→∞−→ Wk(j),

where Wk(j) is the sum of k i.i.d. variables distributed as W/E(ϒ). Then, using
also (6),

E(Wk(j)) = kE(W)

E(ϒ)
= k

E(ϒ)
.(38)

Using again Corollary 5.3, we get the first limit of the corollary

lim
p→∞

#{i ∈ G
∗
n+p :Zi|n = k}
#G

∗
n+p

P= E(ϒ)

W

∑
j∈G∗

n : Zj=k Wk(j)

(2m)n
.

Moreover, Theorem 5.2 ensures that

#{j ∈ G
∗
n :Zj = k}

(2m)n
= Fk(n)

Zn

(2m)n
n→∞−→ W

E(ϒ)
fk.

And conditionally on #G
∗
n > 0, Wk(j) (j ∈ G

∗
n) is i.i.d. by the branching property

and #G
∗
n tends to infinity. So the law of large numbers and (38) ensure that

lim
n→∞

E(ϒ)

W

∑
j∈G∗

n : Zj=k Wk(j)

(2m)n

= lim
n→∞

E(ϒ)

W

#{j ∈ G
∗
n :Zj = k}

(2m)n

∑
j∈G∗

n : Zj=k Wk(j)

#{j ∈ G∗
n :Zj = k}

P
∗= kfk

E(ϒ)
,

which ends the proof. �
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7. Proofs in the case (m0,m1) ∈ D1. We still assume E(Z(a)2) < ∞, the
proof is in the same vein as the proof in the previous section and use the separa-
tion of the descendances of the parasites. The main difference is that Zn does not
explode so the limit is not deterministic and the convergence holds in distribution.

LEMMA 7.1. For every K > 0, there exists q0 ∈ N such that for all q ≥ q0
and n ∈ N,

P
n+q({i ∈ G

∗
n+q :Nn(i) ≥ 2} 
= ∅,Zn ≤ K

) ≤ ε.

PROOF. Denoting by E
q
n the event{{i ∈ G
∗
n+q :Nn(i) ≥ 2} 
= ∅,Zn ≤ K

}
,

we have

1E
q
n

≤ ∑
i∈Gn+q

1{Nn(i)≥2,Zn≤K}.

Thus we can follow the proof of Lemma 6.4.

P
n+q(Eq

n) ≤ ∑
i∈Gn+q

P(Nn(i) ≥ 2,Zn ≤ K)

P(Zn+q > 0)

≤
∑

i∈Gn+q
P(Nn(i) ≥ 2,Zi|n ≤ K)

U(2m)n+q
using (7)

≤ P(0 < Zn ≤ K)2−q ∑
i∈Gq

PK(N0(i) ≥ 2)

Umn+q

≤
(K

2

)
2−q ∑

i∈Gq
P(Zi > 0)2

Umq
using (27).

Conclude with (29). �

PROOF OF THEOREM 5.7.
Step 1. We recall that Pn is the set of parasites in generation n, follow Step 1

in the proof of Theorem 5.2 and use its notation. Thus, we begin with proving that
for every ε > 0, there exists n0 ∈ N such that for every n ≥ n0,

P
n+q(∥∥(

#{i ∈ G
∗
n+q :Zi = k})k∈N

− (Nk(n, q))k∈N

∥∥
1 
= 0

) ≤ ε,

where for all n,q, k ≥ 0, Nk(n, q) := ∑
p∈P (n) Y

q
k (p).

First, by (10), there exist K,q0 ∈ N such that for every q ≥ q0,

lim
n→∞ P

n+q(Zn > K) ≤ ε.(39)

By Lemma 7.1, there exists q1 ≥ q0 such that for every n ∈ N, we have

P
n+q1

({i ∈ G
∗
n+q1

:Nn(i) ≥ 2} 
= ∅,Zn ≤ K
) ≤ ε.(40)
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And by (39), there exists n0 ≥ 0 such that for every n ≥ n0,

P
n+q1(Zn ≥ K) ≤ 2ε.

Then

P
n+q1

(
#{i ∈ G

∗
n+q1

:Nn(i) ≥ 2} 
= 0
) ≤ 3ε.

Moreover,

#{i ∈ G
∗
n+q1

:Nn(i) ≥ 2} = 0

�⇒ (
#{i ∈ G

∗
n+q1

:Zi = k})k∈N
= (Nk(n, q1))k∈N.

Then for every n ≥ n0,

P
n+q1

(‖(#{i ∈ G
∗
n+q1

:Zi = k})k∈N − (Nk(n, q1))k∈N‖1 
= 0
) ≤ 3ε.

Step 2. As l1(N) is separable, we can consider the distance d associated with
the weak convergence of probabilities on l1(N). It is defined for any P1 and P2
probabilities by (see Theorem 6.2, Chapter II in [18])

d(P1,P2) = sup
{∣∣∣∣∫ f (w)P1(dw) −

∫
f (w)P2(dw)| :‖f ‖∞ ≤ 1,‖f ‖Lips ≤ 1

}
where

‖f ‖Lips = sup
{‖f (x) − f (y)‖1

‖x − y‖1
:x, y ∈ S

1(N), x 
= y

}
.

We prove now that for every l ≥ 1, there exist n0(l) ∈ N and a measure μ(l) on N
∗

such that for every n ≥ n0(l),

d
(
P

n(
(#{i ∈ G

∗
n :Zi = k})k∈N ∈ ·),μ(l)

) ≤ 1/2l .(41)

For that purpose, let l ∈ N. By Step 1, choose q,n0 ∈ N such that

∀n ≥ n0 d
(
P

n+q(
(#{i ∈ G

∗
n+q :Zi = k})k∈N ∈ ·),

(42)
P

n+q(
(Nk(n, q))k∈N ∈ ·)) ≤ 1/2l+1.

Recall that (Y
q
k (p))k∈N(p ∈ P (n)) is an i.i.d. sequence distributed as (Y

q
k )k∈N

and #P (n) = Zn. Thus, under P
n+q , Nk(n, q) is the sum of Zn variables

which are i.i.d., distributed as Y
q
k and independent of Zn, conditionally on∑

k∈N

∑
p∈P (n) Y

q
k (p) > 0.

Moreover P
n+q(Zn ∈ ·) converges weakly as n → ∞ to a probability ν [see (9)]

and we denote by N a random variable with distribution ν and by (Y
q
k (i))k∈N(i ∈

N) an i.i.d. sequence independent of N and distributed as (Y
q
k )k∈N. Then we have

for n large enough,

d
(
P

n+q(
(Nk(n, q))k∈ N ∈ ·),μ(l)

) ≤ 1/2l ,(43)
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where μ(l) is the distribution of (
∑

1≤i≤N Y
q
k (i))k∈N conditionally on∑

k∈N

∑
1≤i≤N Y

q
k (i) > 0. Combining (42) and (43) gives (41).

Conclusion. As l1(N) is complete, the space of probabilities on l1(N) endowed
with d is complete (see Theorem 6.5, Chapter II in [18]), (μ(l))l∈N converges and
we get the convergence of Theorem 5.7.

We now prove that E(
∑

k∈N∗ kNk) < ∞. For all n,K > 0, we have

E

( ∑
k≥K

k#{i ∈ G
∗
n :Zi = k}|Zn > 0

)
≤ E

(
Zn1{Zn≥K}|Zn > 0

) ≤ E(Z2
n)

P(Zn > 0)K

which converges uniformly to 0 as K → ∞ using (11). Moreover, Theorem 5.7
and k#{i ∈ G

∗
n :Zi = k} ≤ Zn ensure that

lim
n→∞ E

( ∑
1≤k≤K

k#{i ∈ G
∗
n :Zi = k} | Zn > 0

)
= E

( ∑
1≤k≤K

kNk

)
.

Thus we get the expected limit

E

(∑
k∈N

k#{i ∈ G
∗
n :Zi = k} | Zn > 0

)
n→∞−→ E

( ∑
k∈N∗

kNk

)

and recalling Section 2.1, we have also

E

( ∑
k∈N∗

k#{i ∈ G
∗
n :Zi = k} | Zn > 0

)
= E(Zn | Zn > 0)

n→∞−→ B ′(1) < ∞.

This completes the proof. �

The proofs of the corollaries follow those of the previous section.
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