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We study how the spread of computer viruses, worms and other self-
replicating malware is affected by the logical topology of the network over
which they propagate. We consider a model in which each host can be in one
of 3 possible states—susceptible, infected or removed (cured and no longer
susceptible to infection). We characterize how the size of the population that
eventually becomes infected depends on the network topology. Specifically,
we show that if the ratio of cure to infection rates is larger than the spectral
radius of the graph, and the initial infected population is small, then the final
infected population is also small in a sense that can be made precise. Con-
versely, if this ratio is smaller than the spectral radius, then we show in some
graph models of practical interest (including power law random graphs) that
the average size of the final infected population is large. These results yield
insights into what the critical parameters are in determining virus spread in
networks.

1. Introduction. Computer viruses and worms are self-replicating pieces of
code that propagate in a network. The essential difference between them is that a
virus typically needs some form of human intervention, such as opening an email
attachment or executing some software, to cause them to be replicated, whereas
worms do not require such intervention. They use a number of different methods
to identify new targets for infection; for example, many worms scan randomly gen-
erated IP addresses to locate vulnerable hosts, while email viruses send copies of
themselves to all addresses in the address book of the victim. A survey of tech-
niques for target location can be found in [25].

The particular mechanism chosen by a worm or virus to propagate itself defines
a topology over which the infection can potentially spread. What impact does the
topology have on the speed of spread of the epidemic and, moreover, what are the
key features of the topology that determine how virulent the epidemic is? These
are the questions that we address in this paper.

In this paper we use a susceptible-infected-removed (SIR) model to describe
the spread of the epidemic. Here, each susceptible node can be infected by its
infected neighbors at a rate proportional to their number, and remains infected
for a deterministic or random time until it is removed. While it is infected, it has
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the potential to infect its neighbors. Removal can correspond to either (i) patching
the computer represented by the node, or (ii) its disconnection from the network by
some quarantining mechanism, or (iii) the exhaustion of its infectious period either
by a time-out mechanism or because it has tried all its neighbors. Once a node is
removed, it cannot become susceptible or infected again. Our model ignores the
possibility that susceptible nodes can also be removed, for example, because they
have received a patch or virus signature conferring immunity. This is justified if
the timescale for patching of susceptible hosts is much larger (happens much more
slowly) than that of epidemic spread.

In the context of worms, there has recently been considerable interest in au-
tomatic mechanisms for detecting whether hosts are infected, and throttling or
quarantining them; see, for example, [26]. There has also been work on automatic
generation of self-certifying alerts [13] which are equivalent to patches. Thus, it
is possible to view removal as happening on the same time scale as infection. In
the case of viruses, it takes longer to generate virus signatures and update antivirus
software, but their spread is also slower. Hence, again, the model is not unrealistic.

There is a substantial literature on the SIR model in epidemiology, starting with
the work of Kermack and McKendrick [18]. A commonly used approach in early
work was to approximate a stochastic model by a deterministic one in a large pop-
ulation (law of large numbers) limit. More recent work has considered stochastic
aspects, such as obtaining Poisson or normal limiting distributions for the num-
ber of survivors; see, for example, [5, 19]. A key concept in these studies is the
basic reproductive number R0, which denotes the expected number of secondary
infectives caused by a single primary infective. If R0 > 1, the infection spreads to
some sizeable fraction of the entire population; if R0 < 1, then the fraction even-
tually infected is close to zero. The concept of basic reproductive number is easy
to define with uniform mixing (i.e., when any infective can infect any susceptible
equally easily), but it is not clear how to apply it to general networks, where this
number could be different for every node. One approach is to consider networks
with special structure, where either nodes or links belong to one of a small number
of types. This is the approach taken, for example, by Ball, Mollison and Scalia-
Tomba [3], who consider two-level models where network links can belong to one
of two types—(i) local, for example, within a household or (ii) global, between
households.

In this paper we obtain conditions for the number eventually infected to be
small, in arbitrary networks. Conversely, we obtain conditions for the average
number of infected nodes to be large in some specific network models of prac-
tical interest, including Erdős–Rényi and power law random graphs. The rest of
the paper is structured as follows. We introduce the epidemic spreading model in
Section 2. Sufficient conditions for small epidemic size (where the size is defined
as the number that ever become infected) are obtained in Section 2. Applications
of these results to the star, clique, Erdős–Rényi graph and power law graph are
found in Section 3. Furthermore, in this section we took advantage of results on
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the giant component for various families of graphs to give a lower bound to the
number of nodes ultimately removed.

2. Model. We consider a closed population of n individuals, connected by
a neighborhood structure which is represented by an undirected, labelled graph
G = (V ,E) with node set V and edge set E. Each node can be in one of three
possibly states, susceptible (S), infective (I) or removed (R). The initial set of in-
fectives at time 0 is assumed to be nonempty, and all other nodes are assumed to be
susceptible at time 0. The evolution of the epidemic is described by the following
discrete-time model. Let Xv(t) denote the indicator that node v is infected at the
beginning of time slot t and Yv(t) the indicator that it is removed. Each node that
is infected at the beginning of a time slot attempts to infect each of its neighbors;
each infection attempt is successful with probability β independent of other infec-
tion attempts. Each infected node is removed at the end of the time slot. Thus, the
probability that a susceptible node u becomes infected at the end of time slot t is
given by 1 − ∏

v∼u(1 − βXv(t)), where we write v ∼ u to mean that (u, v) ∈ E.
Note that the evolution stops when there are no more infectives in the population.
At this time, we want to know how many nodes are removed.

The above model is known as the Reed–Frost model. It corresponds to a deter-
ministic infectious period which is the same at every node. It is one of the earliest
stochastic SIR models to be studied in depth, because of its analytical tractability.
Note that the evolution can be described by a Markov chain in this case. Another
commonly used model assumes that infectious periods are i.i.d. and exponentially
distributed, so that the system evolves as a continuous time Markov process. Gen-
eral infectious periods give rise to non-Markovian systems. These are outside the
scope of this work.

The object of interest is the number of nodes that eventually become infected
(and removed) compared to the number initially infected. As noted earlier, in mean
field models of SIR epidemics, the number of nodes removed exhibits a sharp
threshold; as β is increased, it suddenly jumps from a constant (which doesn’t
depend on n) to a nonzero fraction of n, the number of nodes in the system. We
wish to ask if a similar threshold is exhibited on general graphs and, if so, how the
critical value of β is related to properties of the graph.

We now state general conditions for the number of nodes removed to be small.
Let A denote the adjacency matrix of the undirected graph G, that is, aij = 1 if
(i, j) ∈ E and aij = 0 otherwise. Since A is a symmetric, nonnegative matrix,
all its eigenvalues are real, the eigenvalue with the largest absolute value λ1(A)

is positive and its associated eigenvector has nonnegative entries (by the Perron–
Frobenius theorem). If the graph is connected, as we shall assume, then this eigen-
value has multiplicity one, the corresponding eigenvector is strictly positive and is
the only one with all elements being nonnegative.

THEOREM 2.1. Suppose βλ1(A) < 1. Then, the total number of nodes re-
moved, |Y(∞)|, satisfies, for any ε > 0 and for some constant C > 0 depending
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on the graph,

P
(|Y(∞)| >

√
|X(0)|nε+1/2) ≤ Cn−ε,

where |X(0)| is the number of initial infectives.
If the graph G is regular (i.e., each node has the same number of neighbors)

with node degree d , then for any ε > 0 and for some constant C′ > 0 depending
on the graph,

P
(|Y(∞)| > |X(0)|nε) ≤ C′n−ε.

PROOF. Let ν(i) = P(node i is ever infected). Then, ν(i) = 1 if i ∈ I , where
I denotes the set of initial infectives, and otherwise ν(i) ≤ ∑

j∼i βν(j), where we
write j ∼ i to mean that (i, j) is an edge. Thus,

(I − βA)ν ≤ 1I ,(2.1)

where 1I denotes the vector with components 1 for i ∈ I and 0 for i /∈ I , and
the inequality holds in the usual partial order, namely, componentwise. Now, if
βλ1(A) < 1, then we have the power series expansion

(I − βA)−1 =
∞∑

k=0

βkAk.

Therefore, we can multiply both sides of the inequality in (2.1) by (I − βA)−1 to
obtain

ν = E[Y(∞)] ≤ (I − βA)−1X(0),(2.2)

and so

E[|Y(∞)|] ≤ 1T (I − βA)−1X(0)
(2.3)

≤ ‖1‖ ‖(I − βA)−1‖ ‖X(0)‖,
where ‖ · ‖ denotes the Euclidean norm in the case of a vector, and the matrix
or operator norm in the case of a matrix. Now the operator norm of a symmet-
ric matrix is its spectral radius, the largest of its eigenvalues in absolute value.

Hence, ‖(I − βA)−1‖ = (1 − βλ1(A))−1. Moreover, ‖X(0)‖ =
√∑

v∈V X2
v(0) =√|X(0)|. Likewise, ‖1‖ = √

n. Substituting these in (2.3) yields

E[|Y(∞)|] ≤ 1

1 − βλ1(A)

√
n|X(0)|.

The first claim of the theorem follows using Markov’s inequality.
Next, let (λ1(A),λ2(A), . . . , λn(A)) be the eigenvalues of A associated with the

eigenvectors (x1, x2, . . . , xn). Using the spectral decomposition

(I − βA)−1 =
n∑

i=1

1

1 − βλi(A)
xi(xi)T ,
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where xi denotes the eigenvector corresponding to the eigenvalue λi of A and
(xi)T its transpose, we can rewrite (2.3) as

E[|Y(∞)|] ≤
n∑

i=1

1

1 − βλi(A)
1T xi(xi)T X(0).(2.4)

Now, if G is a regular graph and each node has degree d (i.e., has exactly d neigh-
bors), then each row sum of its adjacency matrix A is equal to d . Hence, it is clear
that the positive vector 1√

n
1 is an eigenvector of A corresponding to the eigen-

value d . By the Perron–Frobenius theorem, this is therefore the largest eigenvalue.
Hence, λ1(A) = d , x1 = 1√

n
1, and all other eigenvectors x2, . . . , xn are orthogonal

to 1. Hence, by (2.4),

E[|Y(∞)|] ≤ 1

1 − βλ1
1T x1x

T
1 X(0)

= 1

n(1 − βλ1)
1T 11T X(0)

= 1

1 − βλ1
|X(0)|.

A direct application of Markov’s inequality yields the second claim of the theorem.
�

REMARKS. The theorem says that, if βλ1(A) < 1, then starting from a
“small” population of initial infectives, the final size of the epidemic is small with
high probability, that is, with probability going to 1 as n tends to infinity. For ex-
ample, if |X(0)| = 1, then the final size of the epidemic is bounded by a constant
in the case of regular graphs, and by a multiple of

√
n in general. Thus, the fraction

of nodes infected goes to zero as n tends to infinity.
The upper bounds in the theorem are close to the best possible in general, as the

example of the star-shaped network in Section 3.1 demonstrates. Nevertheless, the
factor of

√
n “gap” between the bound on arbitrary graphs and on regular graphs

leads us to ask whether we can obtain tighter bounds for some other families of
graphs besides regular graphs. We now present two such bounds.

Let G be an arbitrary connected graph with adjacency matrix A, and let x1

denote the eigenvector corresponding to the largest eigenvalue λ1(A). Note that
A is an irreducible matrix since G is connected. Hence, by the Perron–Frobenius
theorem, all elements of the vector x1 are positive. We now have the following:

THEOREM 2.2. Suppose βλ1(A) < 1. Then,

E[|Y(∞)] ≤ 1

1 − βλ1(A)

x1
max

x1
min

|X(0)|,
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where x1
max and x1

min denote the largest and smallest elements of the eigenvec-
tor x1.

PROOF. We obtain from (2.2) and the spectral expansion of (I − βA)−1 that

(x1)T ν =
n∑

j=1

x1
j E[Yj (∞)]

≤ (x1)T (I − βA)−1X(0)

=
n∑

i=1

1

1 − βλi(A)
(x1)T xi(xi)T X(0)

= 1

1 − βλ1(A)
(x1)T X(0).

The last equality holds because the eigenvectors are orthogonal, since A is sym-
metric.

Recall that all elements of x1 are positive. Hence, we obtain from the above that

E[|Y(∞)|] =
n∑

j=1

E[Yj (∞)] ≤ 1

1 − βλ1(A)

x1
max

x1
min

X(0),

as claimed. �

The bound above coincides with the first bound in Theorem 2.1 when applied
to a star network (see Section 3.1) and with the second bound when applied to
regular graphs. Intuitively, we might expect that graphs with bounded node degree
should exhibit behavior very similar to regular graphs. However, we do not know
of any general upper bounds on the ratio x1

max/x
1
min based only on node degrees,

and it is not even clear that such a bound exists. But, as the next lemma demon-
strates, it is indeed possible to bound the final epidemic size via the maximal node
degree. While this bound does not capture the correct epidemic threshold, it may
nevertheless may be quite good away from the threshold.

THEOREM 2.3. Let G be an arbitrary graph with maximal node degree de-
noted �. If β� < 1, then

E[|Y(∞)|] ≤ 1

1 − β�
|X(0)|.

PROOF. We use a well-known monotonicity property of epidemics on graphs.
Let G be a subgraph of G′, that is, G and G′ have the same vertex set and the
edge set of G is a subset of the edge set of G′. Let (X(t), Y (t)) and (X′(t), Y ′(t))
denote the indicators of the set of infected and removed nodes corresponding to



THRESHOLDS FOR VIRUS SPREAD ON NETWORKS 365

Reed–Frost epidemics on G and G′, respectively, starting with the same initial
condition (X(0), Y (0)). Then, the epidemics can be coupled in such a way that
Y(t) ≤ Y ′(t) for all t .

This result extends, with suitable modifications described below, to multigraphs,
namely, graphs which may have self-loops as well as multiple edges between pairs
of nodes. The definition of the epidemic is extended to multigraphs as follows.
Self-loops can cause an infected node to become re-infected in the next time slot,
so that each infected node remains infected for a geometric number of time slots
(with parameter depending on the number of self-loops) prior to removal. Also,
in each time slot, each infected node draws an independent sample of its edges
(counting multiple edges separately) along which to propagate infection. Let Ni(t)

and N ′
i (t) denote the number of time slots for which node i has been infectious

up to time t , for the epidemic on the multigraphs G and G′, respectively. If these
epidemics start from the same initial condition, there is a coupling such that N(t) ≤
N ′(t) for all t ≥ 0.

Moreover, for the epidemic on G, we have the inequality E[Ni(t)] ≤ ∑n
j=1 β ×

AijE[Nj(t)] + 1I (i), for each node i, where 1I (i) is the indicator that node i is
initially infected. Thus, analogous to (2.2), we obtain

(I − βA)N ≤ 1I ,

and a similar equation for N ′ with A replaced by A′; here A and A′ are the “ad-
jacency” matrices of G and G′, whose entries count the number of edges between
any pair of nodes. Thus, Theorem 2.1 remains true if we replace Y(∞) with N(∞)

in its statement. (In the case of simple graphs, they are identical.)
Now observe that a graph G with maximal node degree dmax can be extended,

by the addition of multiple edges and self-loops, to a regular multi-graph G′ with
constant node degree dmax. Thus, along the lines of Theorem 2.1, we have

E

[
n∑

i=1

N ′
i (∞)

]
≤ 1

1 − β�
|X(0)|.

But N ≤ N ′ by coupling, and Yi(t) = 1(Ni(t) ≥ 1) ≤ Ni(t) for all i and t . Hence,

E[|Y(∞)|] ≤ 1

1 − β�
|X(0)|,

and the second claim follows by direct application of Markov’s inequality. �

REMARK. Using Markov’s inequality, it is clear that both Theorem 2.2 and
Theorem 2.3 imply that, starting from a small number of infectives, the proportion
of infected individuals is, with high probability, a zero fraction of the population.

Next, we note that the proof of Theorem 2.1 above doesn’t require us to assume
that the epidemic be of Reed–Frost type. It works for general infectious period.
More precisely, the model is as follows and evolves in continuous time. We as-
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sociate i.i.d. nonnegative random variables Tu with arbitrary distribution with the
nodes u ∈ V , and independent i.i.d. Exponential(μ) random variables Eu,v with the
edges (u, v) ∈ E. If node u becomes infected, it stays infected for a random time
Tu. If Eu,v ≤ Tu, then Eu,v time units after infection, it attempts to infect node v.

For our purposes, the key difference from the Reed–Frost model is that edges
are not independent. Conditional on the existence of an edge (u, v), the distribution
of Tu is biased toward larger values, which makes the existence of adjacent edges
(u,w) more likely. Nevertheless, this lack of independence does not affect the
union bound used to derive equation (2.1). Therefore, following the steps of the
above proof and replacing β by the probability that a node gets infected by an
infected neighbor, given by p = 1 − E[e−μTu], we have the following:

THEOREM 2.4. If pλ1(A) < 1, then the total number of nodes removed,
|Y(∞)|, satisfies

E[|Y(∞)|] ≤ 1

1 − pλ1(A)

√
n|X(0)|,

where |X(0)| is the number of initial infectives. Moreover, if the graph G is regular
(i.e., each node has the same number of neighbors), then

E[|Y(∞)|] ≤ 1

1 − pλ1(A)
|X(0)|.

The converse of Theorem 2.1 is not true in general. Consider the ring on n

nodes. As a regular graph with degree 2, its adjacency matrix has maximum eigen-
value 2. Nevertheless, for any β < 1, the size of the epidemic starting from a single
initial infective is bounded by the sum of the sizes of two independent branching
processes, where each branching process has Bernoulli offspring distribution with
parameter β . (The branching processes decide if the epidemic will spread one
node left or right from its current position before dying out.) Since each branching
process is subcritical, its final size is finite almost surely and in expectation. Thus,
the expected size of the epidemic is a constant that does not depend on n. In other
words, the epidemic is small even if βλ1 = 2β > 1.

In particular, the SIR epidemic on the ring does not exhibit a sharp threshold on
the open interval (0,1). On this interval, the final size of the epidemic is a smooth
function of the infectiousness parameter β , even in the limit as n tends to infinity.
It is shown in Section 3.1 that a similar result holds for star-shaped networks as
well; in fact, there is no threshold even on the closed interval [0,1] in this case.

However, while there isn’t always a threshold, it turns out that there is one in
many networks of practical interest: there is a lower bound on β , above which the
epidemic infects a positive fraction of the population on average. We now illustrate
this through several examples.
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3. Examples.

3.1. Star-shaped networks. The star-shaped network is of interest because it
illustrates that the bounds in Theorems 2.1 and 2.2 are close to the best possible
for general networks. It also exhibits a smooth dependence of the final size of the
epidemic on the infectiousness parameter β , thereby demonstrating that thresh-
old behavior doesn’t always occur. Finally, understanding the star is important to
understanding certain power-law networks.

Consider the star network, consisting of a hub and n − 1 leaves, each of which
is attached only to the hub. Its adjacency matrix A has ones along the first row
and column, except for the (1,1) element, which is zero; all other elements
are zero. Thus, A is a rank-two matrix and can have only two nonzero eigen-
values. It is readily verified that (

√
n − 1,1, . . . ,1)T and (−√

n − 1,1, . . . ,1)T

are eigenvectors corresponding to the eigenvalues
√

n − 1 and −√
n − 1 respec-

tively, and so the spectral radius of A is
√

n − 1. The principal eigenvector is
x1 = (

√
n − 1,1, . . . ,1)T , so that x1

max/x
1
min = √

n − 1.
Now suppose β

√
n − 1 = c < 1. Consider the initial condition where only the

hub is infected, so that |X(0)| = 1. The number of leaves infected before the hub
is cured is binomial with parameters n − 1 and β . No other leaves can be infected
subsequently. Hence,

E[|Y(∞)|] = 1 + β(n − 1) = 1 + c
√

n − 1,

which is comparable to the upper bound,
√

n − 1/(1 − c), given by Theorem 2.1
or, equivalently, by Theorem 2.2. In addition, using large deviations properties of
the binomial distribution ([1], Corollary A.1.14), we can show that, for c′ < c,
P(|Y(∞)| < c′√n) goes to 0, exponentially in n, when n goes to infinity.

We observe in this case that E[|Y(∞)|] is a smooth (almost linear) function of β

and does not exhibit any threshold behavior.
Suppose next that the hub is initially uninfected but k leaves are infected. The

hub becomes infected in the next time step with probability 1 − (1 − β)k . It sub-
sequently infects a number of leaves which is binomial with parameters n − 1 − k

and β . The epidemic dies out at t = 3. So, in this case,

E[|Y(∞)|] = k + [1 − (1 − β)k][1 + β(n − 1 − k)]
≤ k + βk[1 + β(n − 1 − k)] ≤ |X(0)|(1 + c2/2).

Thus, when the hub is initially uninfected, the expected final size of the epidemic
is only a constant multiple of the initial number of infectives. This illustrates that
the initial condition can have a big impact in general.

3.2. Complete graph. A complete graph is one in which an edge is present
between every pair of nodes. Much of the early work on SIR epidemics was based
on mean field models. These are rigorously justifiable only in the case of complete
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graphs, and motivates our interest in them. We shall recover the classical result
that the epidemic has a threshold at R0 = 1, where the basic reproduction number
R0 = β(n − 1) is defined as the mean number of secondary infections caused by a
single primary infective, when the entire population is susceptible.

The complete graph is a regular graph with common node degree n − 1. There-
fore, its spectral radius is λ1 = n − 1, and we have by Theorem 2.1 that, if
β(n − 1) < 1, then the final size of the epidemic is bounded by 1/(1 − β(n − 1))

times the initial number of infectives. We now establish a converse.
Suppose β(n − 1) = c > 1 is held constant. (We don’t need to assume this,

but the results will need to be restated in terms of the limits superior and inferior
of the sequence cn; it should be clear to the reader how to do so based on the
discussion below.) Let |X0| = 1 and let u be the initial infected node. Consider
the random subgraph of the complete graph obtained by retaining each edge with
probability β , independent of all other edges, and let Cu denote the connected
component containing u in this random graph (possibly just the singleton {u}). It
is clear that Cu can be interpreted as the set of infected nodes in the epidemic;
each neighbor of u is infected with probability β , and is hence a neighbor of u

in the random graph described above, and so on iteratively. Thus, the number of
infected nodes in the epidemic has the same probability law as the size of the
component Cu. The connection between Reed–Frost epidemics and random graphs
has been previously noted in [2].

The above random graph model was introduced by Erdős and Rényi [14]; we
denote it by G(n,β), where n denotes the number of nodes, and β the probability
that the edge between each pair of nodes is present. It is also called a Bernoulli
random graph because the indicators of edges are i.i.d. Bernoulli random variables.

We now use the following fact, which was established by Erdős and Rényi [14];
see [17], Theorem 5.4, for a more recent reference. Here, we assume that c =
β(n − 1) is held constant while n → ∞, and that c > 1.

THEOREM 3.1. Let γ be the unique positive solution of γ + e−γ c = 1. Then,
as n → ∞, the size of the largest connected component in the random graph
G(n,β) is (1 + o(1))γ n, with high probability (with probability going to 1 as n

tends to infinity).

The uniqueness of γ follows from the convexity of the function f (x) = x+e−cx

and the fact that f (0) = 1, while its existence follows from the continuity of f and
the fact that f ′(0) = 1 − c < 0, but that f (x) → ∞ as x → ∞.

We now estimate the size of Cu, the connected component containing the initial
infective. If u belongs to the “giant component,” then |Cu| = (1 + o(1))γ n. Since
a fraction γ of nodes belong to the giant component, the probability that node u

does so is γ . Hence, E[|Cu|] = (1 +o(1))γ 2n. Moreover, it is proved in [17], The-
orem 5.4, that the size of the second largest component in the supercritical random
graph is O(log(n). Hence, |Y(∞)| = O(log(n)) with probability 1 − γ , which is
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the probability that the initial node does not belong to the giant component, and
P(|Y(∞)| > (1 + o(1))γ n) = γ . We have thus shown the following:

THEOREM 3.2. Let G = (V ,E) be the complete graph on n nodes, and let
β = c

n−1 for an arbitrary constant c > 1. Then, the final size of the epidemic satis-
fies

E[|Y(∞)|] ≥ (
1 + o(1)

)
γ 2n,

for any |X(0)| ≥ 1, where γ > 0 solves γ + e−γ c = 1. Moreover, |Y(∞)| =
(1 + o(1))γ n with probability tending to γ as n tends to infinity, while |Y(∞)| =
O(logn) with probability tending to 1 − γ .

There is thus a threshold at c = 1 for the final size of the epidemic; starting
with a constant number of initial infectives, the final size is a constant independent
of n with high probability if c < 1, and a fraction of n with positive probability
(depending only on c and not on n) if c > 1.

3.3. Erdős–Rényi random graphs. The Erdős–Rényi graph G(n,p) with para-
meters n and p is defined as a random graph on n nodes, where the edge between
each pair of nodes is present with probability p, independent of all other edges. If
p = 1, then this is the complete graph.

The spreading behavior of an epidemic on an Erdős–Rényi graph is of interest
for a number of reasons. First, it is a graph that has received considerable attention
in the past [6]. Second, it is an important component of the class of power-law
random graphs that model the emails graph and number of other social networks.

We shall consider a sequence of such graphs indexed by n. Denote by d the
corresponding average degree, that is, d = (n−1)p. Note that p and d may depend
on n, but this is suppressed in the notation. We consider the regime log(n) � d ,
that is, log(n)/d → 0 as n → ∞. In this case, it is known that the graphs are
connected with high probability [6].

Define cn = βd = (n − 1)βp; we have omitted the dependence of β and p on n

in the notation, but make it explicit in the case of c. Consider an SIR epidemic on
such a graph starting with one node initially infected. We have the following:

THEOREM 3.3. If lim supn→∞ cn ≤ c < 1, then for all n sufficiently large,
E[|Y(∞)|] is bounded by a constant that does not depend on n.

On the other hand, if lim infn→∞ cn ≥ c > 1, then |Y(∞)| = (1 + o(1))γ n with
probability tending to γ as n tends to infinity, while |Y(∞)| = O(logn) with prob-
ability tending to 1 − γ , where γ > 0 solves γ + e−γ c = 1.

Here, expectations and probabilities are taken both with respect to the random
realization of a graph and the evolution of the epidemic conditional on the graph.



370 M. DRAIEF, A. GANESH AND L. MASSOULIÉ

PROOF. Suppose first that lim infn→∞ cn ≥ c > 1. As in the case of the com-
plete graph, we identify the infected individuals in the epidemic with the connected
component containing the initial infective u in an Erdős–Rényi random graph with
parameters n and βp. [If edge (u, v) is present in the original Erdős–Rényi graph,
which happens with probability p, then u succeeds in infecting v with probabil-
ity β . This yields the new graph with edge probability βp; the independence of the
edges is obvious.] Thus, the second claim of the theorem follows in the same way
as Theorem 3.2.

The first claim is stronger than what the upper bound of Theorem 2.1 yields.
Note that, by the Perron–Frobenius theorem, the spectral radius λ1(A) of the ad-
jacency matrix lies between the smallest and largest node degree. For the random
graph G(n,p), the node degrees are binomial random variables with parameters
n − 1 and p. If the average node degree d = (n − 1)p satisfies d � log(n), that
is, log(n)/d → 0 as n → ∞, then it can be shown using Chernoff’s bound that
both the minimal and maximal node degree are (1 + o(1))d with high proba-
bility; hence, so is the spectral radius. In this case, Theorem 2.1 yields that, if
βλ1(A) ∼ (n − 1)βp ≤ c < 1, then the expected final size of the epidemic is
bounded by a constant times

√
n. To show that it is in fact bounded by a con-

stant, and that this holds even without the assumption that d � log(n), we use a
branching process construction.

Rather than fixing the random graph G(n,p) in advance, we use the principle
of deferred decisions to generate it dynamically as the epidemic progresses. Thus,
starting with the initial infective u, we put down all edges from it to other nodes.
Then, we decide whether u succeeds in infecting its neighbors along each of those
edges. For each neighbor v so infected, we repeat the process. Thus, the number
of nodes infected by u is binomial with parameters n − 1 and βp; the number of
nodes infected by each subsequent infective is stochastically dominated by such a
binomial random variable. Thus, the size of the epidemic is bounded above by the
size of a branching process whose offspring distribution is binomial, B(n−1, βp).
The branching process is subcritical by the assumption that (n−1)βp ≤ c < 1, and
so it becomes extinct with probability 1, that is, its final population size is finite
almost surely, and in expectation. It can be shown directly, using generating func-
tions, that it is bounded uniformly in n. Alternatively, note that if (n − 1)βp = c

for all n, then the binomial offspring distributions converge in distribution to a
Poisson with parameter c as n → ∞; the population sizes of the corresponding
branching processes also converge, both in distribution and in expectation. Since
c < 1, the branching process with Poisson(c) offspring distribution is subcritical,
and so it has a finite mean population size. �

3.4. Power law random graphs. There has been considerable interest in power
law graphs since it was first noticed that the Internet AS-level graph exhibits a
power law degree distribution [15]. Briefly, a power law graph is one where the
number of nodes with degree k is proportional to k−γ for some γ > 1. For the
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mean degree to be finite, we need γ > 2 and this is the range we shall consider. It is
suggested in [15] that the Internet Autonomous System level graph is characterized
by γ ≈ 2.1.

There have been several different models proposed for graphs with power
law degree distributions; see, for example, [4, 8]. In this paper we consider
the following model of random graphs on n vertices, introduced in [11]. Let
w = (w1,w2, . . . ,wn) be a sequence of positive weights assigned to the nodes
of the graph; we assume without loss of generality that w1 ≥ w2 ≥ · · · ≥ wn. The
edge between the pair of vertices (i, j) is present with probability

pij = wiwj∑n
k=1 wk

,

independent of all other edges; we assume that w2
1 ≤ ∑n

k=1 wk . The resulting ran-
dom graph is denoted G(w). For example, taking wi = np for all i yields the
Erdős–Rényi model with parameters n and p.

It is easy to see that wi is the expected value of the degree of node i; hence, this
model is referred to as the expected degree model. (Reed and Molloy [21, 22] have
studied a model where one conditions on actual rather than expected degrees. The
expected degree model has the advantage that edges are independent, which makes
it much easier to analyze.) We do not assume that the wi are integer-valued. Note
that the resulting graph may have self-loops, but it does not have multiple edges.
The self-loops do not affect the spread of the epidemic and are not important to
our analysis.

Let d denote the average and m the maximum expected degree. (Thus, m = w1,
but it is convenient to distinguish it in the notation as the model is parametrized by
d , m and the exponent of the power law degree distribution.) Chung and Lu [11]
propose the following explicit power law model for the expected degree sequence:

wi = c(i0 + i)−1/(γ−1), 1 ≤ i ≤ n,(3.1)

where

c = γ − 2

γ − 1
dn1/(γ−1), i0 = n

(
d(γ − 2)

m(γ − 1)

)γ−1

.(3.2)

The number of nodes with weight bigger than k (equal to the largest i such that
wi ≥ k) scales like k1−γ . Thus, γ is the exponent of the power law distribution of
expected node degrees. The weights wi are the order statistics of this distribution.
The distribution is shifted by i0 and scaled by c, where these constants are chosen
so as to achieve the specified average d and maximum m for the expected degrees.

The eigenvalues of the adjacency matrix for this random graph model have been
studied by Chung, Lu and Vu. They show ([12], Theorem 4) that, with high prob-
ability, the spectral radius of the graph is

λ1(A) =
⎧⎪⎨
⎪⎩

(
1 + o(1)

)√
m, γ > 2.5,(

1 + o(1)
) d(γ − 2)2

(γ − 1)(3 − γ )

(
(γ − 1)m

(γ − 2)d

)3−γ

, 2 < γ < 2.5.
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By Theorem 2.1, if βλ1(A) < 1, then the size of the epidemic is bounded by√
n times the size of the initial infective population.
We show that, if γ ∈ (2,3), then the expected size of the final epidemic is large

(a nonzero fraction of n) for any nonempty set of initial infectives, and any β > 0.
We now establish a partial converse. We show that the graph has a core such that, if
γ ∈ (2,3), then the expected size of the final epidemic is large (a nonzero fraction
of n) for any nonempty set of initial infectives, and any β > 0. It is easy to see
from the description above that the expected degree of node i is precisely wi , and
the expected average degree of the graph is given by d = 1

n

∑n
i=1 wi . We can now

write pij = wiwj

nd
.

It is straightforward to describe the evolution of a Reed–Frost epidemic on
the expected degree random graph model. Consider a single initial infective, say,
node i. Node j becomes infected at time 1 if edge (i, j) is present in the random
graph and if i infects j in the first time slot; this has probability βpij , and is in-
dependent of whether node i infects some other node k. Moreover, node i cannot
infect node j in any subsequent time step since it is removed at time 1. Using
the principle of deferred decisions, we can construct a realization of the random
graph as the epidemic spreads. It is clear from this construction that the set of
nodes that eventually become infected can be identified with the connected com-
ponents containing the initial infectives in the random graph with weight sequence
βw, namely, G(βw). Suppose there is a single initial infective. The question of
whether there is a large epidemic is equivalent to that of whether the random graph
G(βw) possesses a giant component, and whether the initial infective belongs to
this giant component. If there is more than one initial infective, the final set of
removed nodes is the union of the connected components containing the initial
infectives, in the random graph G(βw).

A sufficient condition for the existence of a giant component is derived in [10],
Theorem 3. The condition can be stated in terms of the average expected degree d ,
as follows:

THEOREM 3.4. For a random graph G(w) with expected degree sequence
having average expected degree d > 1 + δ > 1, with positive probability, there is
a unique giant component C such that

∑
i∈C wi ≥ (1 − cδ)

∑
i∈V wi , where cδ ∈

(0,1) is a constant that depends only on δ.

In words, the giant component contains a nonzero fraction of the total weight of
all nodes. Later, we will show that this implies that it contains a nonzero fraction
of the nodes.

We use this result to obtain estimates on the final size of an epidemic on a power
law random graph. Fix k (as a function of n) and consider the subgraph induced
by the k nodes with the largest weight in the random graph G(βw). The average
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expected degree of this subgraph is easily seen to be

dk = (
∑k

i=1 βwi)
2

k
∑n

i=1 βwi

= β(
∑k

i=1 wi)
2

knd
.(3.3)

If this is strictly larger than 1, then by Theorem 3.4 above, this subgraph has a
giant component. We now find conditions on k such that dk > 1.

We have from (3.1) and (3.2) that

wi = m

(
1 + i

i0

)−1/(γ−1)

,

and so,

k∑
i=1

wi ∼
∫ k

0
m

(
1 + x

i0

)−1/(γ−1)

dx = mi0

∫ 1+(k/i0)

1
y−1/(γ−1) dy

= γ − 1

γ − 2
mi0

[(
k

i0
+ 1

)(γ−2)/(γ−1)

− 1
]
.

Now, if k � i0, it follows that

k∑
i=1

wi ∼ γ − 1

γ − 2
mk(γ−2)/(γ−1)i

1/(γ−1)
0 = dn1/(γ−1)k(γ−2)/(γ−1).(3.4)

Substituting this in (3.3) yields

dk = βdn(3−γ )/(γ−1)k(γ−3)/(γ−1).(3.5)

We now distinguish two cases. Suppose first that γ > 3. Then dk is a nonde-
creasing function of k, and its maximum value, attained at k = n, is βd . This only
yields the weak result that there is a large epidemic if βd > 1.

Suppose next that 2 < γ < 3. Then dk is a decreasing function of k. Fix δ > 0.
Defining Nδ to be the largest value of k for which dk > 1 + δ, we see that

Nδ =
⌊(

βd

1 + δ

)(γ−1)/(3−γ )

n

⌋
+ 1,(3.6)

where �x� denotes the integer part of x. The following result is now an easy con-
sequence.

THEOREM 3.5. For 2 < γ < 3, and β > 0 fixed arbitrarily small, the expected
size of the epidemic, starting from an arbitrary initial infective, is bounded below
by a constant multiple of n, where the constant may depend on β . Here the ex-
pectation is taken both with respect to the random realization of a graph, and the
evolution of the epidemic conditional on the graph.
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PROOF. Consider the Nδ nodes of largest weight, where Nδ is given by (3.6).
Since β,d > 0 are constants, Nδ is a constant multiple of n. By Theorem 3.4, the
random graph G(βw) restricted to these nodes contains, with positive probability,
a giant component C such that

∑
i∈C

wi ≥ (1 − cδ)

Nδ∑
i=1

wi ∼ dn(1 − cδ)

(
βd

1 + δ

)(γ−2)/(3−γ )

,(3.7)

where we have used (3.4) and (3.6) to obtain the last asymptotic equivalence. Re-
call that cδ ∈ (0,1) is a constant that depends on δ. Since β , d and δ are constants,
while

∑n
i=1 wi = nd , equation (3.7) tells us that the giant component C contains

a constant fraction of the total weight of the graph. We now deduce that it must
also contain a constant fraction of the total number of nodes. Indeed, for a given
weight, the size (in number of nodes) would be minimized if C contained the high-
est weight nodes. Thus, we ask what is the smallest value of k such that

∑k
i=1 wi

exceeds the weight of C. It follows from (3.4) and (3.7) that we require

dn1/(γ−1)k(γ−2)/(γ−1) ∼ dn(1 − cδ)

(
βd

1 + δ

)(γ−2)/(3−γ )

,

and so,

k ∼ n(1 − cδ)
(γ−1)/(γ−2)

(
βd

1 + δ

)(γ−1)/(3−γ )

;(3.8)

in particular, k is equivalent to a constant multiple of n.
Now, if any of the initially infected nodes belongs to the giant component C,

then C is a subset of the set of nodes ever infected; hence, the final size of the epi-
demic is proportional to n. On the other hand, suppose none of the initial infectives
belongs to C. Let i be an initially infected node. Now, the probability that there is
an edge between i and C in the random graph G(βw) is given by

p(i,C) = wi

∑
j∈C wj

nd
= (

1 + o(1)
)
(1 − cδ)

(
βd

1 + δ

)(γ−2)/(3−γ )

wi,

which is a positive constant bounded away from zero. Conditional on this edge be-
ing present, C is a subset of the set of eventually infected nodes. Thus, in this case
too, the expected final size of the epidemic is proportional to n. This completes the
proof of the theorem. �

This theorem shows that, at least in the regime 2 < γ < 3, the epidemic thresh-
old tends to zero in power law graphs. In other words, even arbitrarily small infec-
tion rates give rise to large epidemics (with positive probability). Similar results
were obtained by Pasto–Satorras and Vespignani using mean-field methods [23,
24]. Analogous results for the SIS model were obtained by Ganesh, Massoulie and
Towsley [16] and by Berger, Borgs, Chayes and Saberi [9].
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3.5. Inhomogeneous W -graphs. We are interested in the following family of
graphs G(W) with vertex set {1, . . . , n} where i and j are connected by an edge
with probability pi,j defined as follows: let {Xi, i = 1, . . . , n} be a sequence of
i.i.d. random variables uniformly distributed on [0,1]. Then pij = W(Xi,Xj ),
where W : [0,1]2 → [0,1] is measurable and symmetric. The edges are condi-
tionally independent given the Xis. This model has been introduced in [20] and
generalized in [7] to a larger family of inhomogeneous networks. As a matter of
example, W(x,y) = p for all x and y gives the classical Erdős–Rényi random
graph. For more details on this family of graphs, we refer the reader to [7]. Our
main interest in what follows is to understand the emergence of the giant compo-
nent.

Let TW be the integral operator with kernel nW defined by

(TWf )(x) =
∫ 1

0
nW(x, y)f (y) dy,

and define

‖TW‖ = sup{‖TWf ‖2 :f ≥ 0,‖f ‖2 ≤ 1}.
As previously, we check that starting with a G(W) graph, the epidemic graph is
described by G(βW).

The next theorem ([7], Corollary 3.2) characterizes the emergence of the giant
component in this family of graphs.

THEOREM 3.6. Consider the graph G(W), then ‖TW‖ = 1 is the threshold
for the existence of the giant component. More precisely:

• if ‖TW‖ ≤ 1, then the size of the largest component is negligible with respect to
n, with high probability;

• if ‖TW‖ > 1 and W is irreducible [roughly speaking, TW is reducible if the
vertex set of G(W) can be split into two parts so that the probability of an edge
from one part to the other is zero, and irreducible otherwise], then with positive
probability (uniformly in n), there is a unique giant component consisting of a
nonzero fraction of all n nodes.

Hence, ‖TW‖−1 is the threshold for the final size of the epidemic on G(W),
that is, if β ≤ ‖TW‖−1, there is a negligible fraction of removed nodes, whereas if
β > ‖TW‖−1, there is a nonzero fraction of removed nodes. We are now going to
give explicit computations in the case of scale-free networks.

Let us examine the case where

W(x,y) = w(x)w(y)∫ 1
0 w(u)du

,
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and such that for X uniformly distributed on [0,1], the variable w(X) follows a
Pareto (power-law) distribution, that is,

P
(
w(X) ∈ (t, t + dt)

) = γ − 1

(1 + t)γ
dt, t ∈ [0,∞).(3.9)

This yields w(x) = (1 − x)−1/(γ−1) − 1 and if we assume that γ > 3, we have

W(x,y) = γ − 2

n

(
(1 − x)−1/(γ−1) − 1

)(
(1 − y)−1/(γ−1) − 1

)
.

Let us now go back to the operator TW , our goal is to compute the L2-module of

(TWf )(x) =
∫ 1

0
n
γ − 2

n

(
(1 − x)−1/(γ−1) − 1

)(
(1 − y)−1/(γ−1) − 1

)
f (y) dy.

It is not difficult to see that the maximum is reached for f (y) = ((1−y)−1/(γ−1)−1)∫ 1
0 w(u)du

and, thus,

‖TW‖ = (γ − 2)

∫ 1

0
w(y)2 dy = 2

γ − 3
.

Applying the above results for this specific W -graph we see that there will be a
large outbreak if we have a giant component in the corresponding graph, that is, if

2β
γ−3 > 1. Hence, if β >

γ−3
2 , then the epidemic will eventually reach a proportion

τ > 0 of the total population. As a by product of [7], Theorem 6.2, it turns out that
τ is related to the solution of the following functional equation:

f = 1 − eTW f .(3.10)

We omit this last computation as it is a bit intricate and does not bring any fur-
ther insight into the model. As previously, we can conclude that if β >

γ−3
2 , then

the final size of the epidemic is bounded below by (1 + o(1))τ 2n, where τ is
related to the solution of the functional equation (3.10). Moreover, in [7], The-
orem 3.12, it is proven that, in the supercritical case ‖TW‖ > 1, the size of the
remaining components in the graph is O(log(n)). Therefore, if β >

γ−3
2 , the final

size of the epidemic is a nonzero fraction of the population with probability tend-
ing to τ when n, and its size is negligeable (O(logn)) with probability tending to
1 − τ .

Finally, note that if T is a random variable with probability distribution given
by (3.9), then the epidemic threshold γ−3

2 corresponds to the ratio E(T )/E(T 2).
Moreover, this gives a stronger result for the case γ > 3 than the one derived
in Section 3.4 since γ−3

2 < γ − 2, where 1
γ−2 is the average node degree of the

graph.
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