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SMALL NOISE ASYMPTOTIC OF THE TIMING JITTER IN
SOLITON TRANSMISSION

BY ARNAUD DEBUSSCHE AND ERIC GAUTIER

ENS Cachan Bretagne

We consider the problem of the error in soliton transmission in long-haul
optical fibers caused by the spontaneous emission of noise inherent to amplifi-
cation. We study two types of noises driving the stochastic focusing cubic one
dimensional nonlinear Schrödinger equation which appears in physics in that
context. We focus on the fluctuations of the mass and arrival time or timing
jitter. We give the small noise asymptotic of the tails of these two quantities
for the two types of noises. We are then able to prove several results from
physics among which the Gordon–Haus effect which states that the fluctua-
tion of the arrival time is a much more limiting factor than the fluctuation of
the mass. The physical results had been obtained with arguments difficult to
fully justify mathematically.

1. Introduction. The nonlinear Schrödinger (NLS) equation occurs as a
generic model in many areas of physics and describes the propagation of slowly
varying envelopes of a wave packet in media with both weakly nonlinear and dis-
persive responses; see [35] for a detailed presentation. The one-dimensional equa-
tion with a cubic focusing nonlinearity, for example, has the form

i
∂uu0

∂t
= �uu0 + |uu0 |2uu0,(1.1)

where uu0 is a complex valued function depending on t ≥ 0 and x ∈ R and the
superscript u0 means that uu0(0, x) = u0(x), x ∈ R. This equation is a very ac-
curate model in the context of single-mode optical fibers over short distances.
A derivation of the equation in that context is given, for example, in [24]. Re-
sulting from a balance between the focusing nonlinearity and the dispersive linear
part, localized stationary waves propagate. They are called solitons and have the
form

√
2A sech(A(x − x0)) exp(−iA2t + iθ0), where A > 0 is the amplitude, x0

and θ0 are respectively the initial position and phase. By extension, we herein also
call solitons the following nonstationary progressive solutions:

√
2A sech

(
A(x − x0) + 2AV t

)
exp

(−i(A2 − V 2)t + iV (x − x0) + iθ0
)
,(1.2)

where V is the group velocity or angular carrier frequency.
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In soliton based amplitude-shifted-keyed (ASK) communication systems, soli-
tons are used as information carriers to transmit the datum 0 or 1. A 1 corresponds
to the emission of a soliton at time 0 with zero velocity �0

A(x) = √
2A sech(Ax).

It is produced by a laser beam. At coordinate T (end of the line) a receiver records

(1/l)

∫ l/2

−l/2
|uu0(T , x)|2 dx, u0 = 0 or u0 = �0

A.

In optics the usual x variable of the NLS equation denotes some retarded time
while t is space. Thus, [−l/2, l/2] is a window in time and l may be chosen small
since the solution uu0 of the NLS equation is localized and remains centered. When
the above quantity is above a threshold, it is decided that a 1 has been emitted,
otherwise it is decided that a 0 has been emitted.

Over long distances, damping induced low loss becomes significant and the
signal has to be amplified. However, due to quantum considerations, amplification
is intrinsically associated with small noise; see [15] for a physical justification of
noise in optics. Simply stated, due to the Heisenberg principle, there is inherently
uncertainty on the amplified signal. This uncertainty is accounted by noise in the
system. This phenomenon is called spontaneous emission of noise. These intrinsic
quantum features can have direct macroscopic consequences such as fluctuation
of the arrival time, also called timing jitter or diffusion of the soliton. A practical
consequence for engineering is error in soliton transmission.

We consider in this article two specific models from the physics literature on
the topic which are stochastic PDEs (SPDEs). A first type of amplification, and
most discussed, is the case of regularly spaced Erbium–Doped amplifiers placed
along the line and such that the distance between amplifiers is small compared to
the length of the line. The limit case where there is a continuum of amplifiers is
called distributed amplification. In that case the noise (Gordon–Haus noise) acts
as a random external force; see, for example, [14, 19, 31]. There, the following
equation is used:

i
∂uε,u0

∂t
= �uε,u0 + |uε,u0 |2uε,u0 + √

ε�,(1.3)

where ε stands for the small noise amplitude, � is a complex Gaussian space-time
white noise and u0 is again the initial datum.

A formal derivation of this model is proposed in the above references. In partic-
ular, it is argued that it can be assumed that the damping term is exactly balanced
by the amplifiers so that these effects do not appear directly in the model. Only the
noise remains. Note also that this equation also appears in the context of anhar-
monic atomic chains in the presence of thermal fluctuation; see, for example, [5]
where timing jitter is also studied. In that second case the derivation can probably
be done in a more rigorous way; this will be the object of future work.

If we consider the recently studied Raman coupling to the thermal phonon
(see [7, 15–17, 29]), or four-wave-mixing (see [15, 30]), another quantum noise
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appears and depends on the pulse intensity. It is modeled as a real multiplicative
noise. The first physical derivation of the equation is obtained in [16]. Note that in
the case of the Raman amplification, an extra Raman nonlinear response appears
in the equation. As in the above physical references, we drop it since it is assumed
to have a limited effect on the noise induced timing jitter. The following model is
used:

i
∂uε,u0

∂t
= �uε,u0 + |uε,u0 |2uε,u0 + √

εuε,u0�R.(1.4)

Here the noise �R is a real Gaussian noise and the product is a Stratonovich prod-
uct. An important feature of this type of noise is that the mass, given mathemat-
ically by the square of the L2 norm, is a conserved quantity. The stochastic NLS
equation with real multiplicative noise is also used in the context of crystals; see,
for example, [2, 3].

Unlike the deterministic case, an initial soliton profile is progressively distorted
due to noise. As a consequence, with a probability that is expected to be small, an
error in transmission occurs. It is an important issue to derive theoretical tools to
estimate this probability. A first type error occurs when a soliton is emitted and at
the other end of the fiber it is not detected. Two phenomena may induce such error.
The mass

N(φ) = ‖φ‖2
L2 ∀φ ∈ L2,

which is an invariant quantity without noise fluctuates when an additive noise is
taken into account. Thus, when the noise is additive, the signal may not be detected
due to a decrease of the mass. The second source of error is the so-called timing
jitter. The arrival time is defined as

Y(φ) =
∫

R

x|φ(x)|2 dx ∀φ ∈ L2.

Without noise, the signal is centered at time x = 0 and the arrival time is zero.
The noise may change the arrival time and shift the signal outside the measuring
window [−l/2, l/2]. From these considerations, the problem is reduced to estimate
the probability that the mass has decreased significantly or that the arrival time has
changed significantly.

Similarly, when no signal is emitted, an additive noise may create from nothing
a signal with high enough mass at T and that might be mistaken as a 1. When the
noise is multiplicative, because the mass is invariant, we only have to consider the
loss of a 1 due to timing jitter.

The aim of the paper is to apply probabilistic tools, more specifically, large
deviations estimates to evaluate theoretically the probability of large fluctuations of
the mass and arrival time. The large fluctuations events are indexed by R positive,
for example, large fluctuations of the arrival time correspond to {Y(uε,u0

(T )) ≥
R} or {Y(uε,u0(T )) ≤ −R}. Using large deviation techniques is justified by the
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standard assumption in the physics literature that the noise is small. We prove that,
as usual in that context, the large deviation probabilities are related to an optimal
control problem. They are deduced by contraction from a large deviation principle
at the level of the paths. Our aim is to give precise upper and lower bounds of these
large deviation probabilities.

We get lower bounds by minimizing the rate function over a small set of paths.
Namely, we take paths which are modulated solitons, that is, solitons with time
varying parameters. Upper bounds are obtained using energy inequalities.

In the physics literature a different method is used. It relies on an adiabatic
perturbation theory, (see, e.g., [25, 26]), where the pulse is approximated by a soli-
ton ansatz with finite fluctuating collective variables. In other words, the stochas-
tic NLS equation is replaced by a finite number of coupled stochastic differential
equations for the soliton parameters. Thus, the original infinite dimensional prob-
lem is reduced to a finite dimensional one for which powerful methods can be
used.

It seems very difficult to justify theoretically this method. Our argument is rig-
orous. Soliton ansatz are also used, but only to provide lower bounds. Surprisingly,
the upper bound which is obtained in a totally different way is of the same order
as the lower bound with respect to different physically relevant parameters: the
length of the fiber T , the initial amplitude of the signal A and the parameter R

indexing the large fluctuation event. Moreover, our results are comparable to the
ones available in the physics literature.

We recover, for instance, the fact that the law of the mass is not Gaussian. Con-
cerning the arrival time, the order in R we obtain proves that the log of the tails
are undistinguishable from the log of Gaussian tails. The Gaussianity of the arrival
time is a well studied issue in physics. In [24], assuming that the timing jitter is the
most troublesome process, an upper limit of the information rate is derived based
on the Gaussian assumption and variance computations. In [33] the log of the tails
of the amplitude and arrival time are evaluated numerically via an importance sam-
pling Monte Carlo estimator and using an ansatz approximation. It is obtained that
the log of tails of the arrival time is the same as the log of a Gaussian tail, while the
log of the tail of the amplitude differs significantly from that of Gaussian tails. In
[1, 14, 28] it is shown that the arrival time can be considered as Gaussian in the first
order only while in [14, 20, 32, 37] justifications for a deviation from Gaussianity
when there is filtering or soliton interaction are given.

Assuming that the seemingly Gaussian arrival time is indeed Gaussian, we ob-
tain the same order in T as physicists. In [5, 17, 24] the variance of the arrival time
is studied. In [24] it is proved to be of the order of T 3 (superdiffusion) and the tim-
ing jitter is connected to a shift in the soliton carrier frequency which we exploit in
the construction of ansatz. In [17], where both independent complex additive and
real multiplicative noises appear in the equation, the contribution of each noise to
the variance of the arrival time is also of the order T 3.
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We are also able to compare the tails of the arrival time to the tails of the mass at
the end of the line when the noise is additive. We obtain that the tails of the arrival
time are thicker than that of the mass. Thus, timing jitter is the dominant factor as
suggested by Gordon and Haus in [24].

Let us also mention that recent articles [14, 19, 31] give approximate PDF of
the mass, as well as of the joint law of the mass and arrival time at T with initial
datum �0

A. Our results compare to theirs in many ways. In the first article the PDF
is obtained using the Fokker–Planck equation and again approximating the pulse
by a soliton with finite random modulations evolving according to dynamically
coupled SDEs. In [19] the PDF is obtained via a saddle point approximation of a
finite dimensional approximation of the infinite dimensional Martin–Siggia–Rose
effective action, relying on ansatz. Theory for infinite dimensional effective action
is developed in [27], but it has not been used so far for the problem at hand. These
infinite dimensional effective actions in physics are intimately related to the rate
function of a sample path large deviation principle (LDP). Paths minimizing the
action are then called optimal fluctuations or instantons generalizing the quantum
mechanics instantons studied in [21] using large deviation techniques.

With our large deviations approach, we study the tails of the CDF and not the
bulk of the distribution as with PDFs. The bulk seems less interesting for a study of
the rare events causing error in transmission. We obtain accurate rigorous results
without using directly the spectral properties of the nonlinear Schrödinger opera-
tor. Though applied here to the problem of the error in transmission and for specific
and simplified equations, this approach could be used for more general models. Its
application to the exit time off neighborhoods of the soliton or randomly modu-
lated soliton for stochastic Korteweg–de Vries equations will be given elsewhere.

2. Notation and preliminaries. For p ≥ 1, Lp is the classical Lebesgue space
of complex valued functions on R and W1,p is the associated Sobolev space of
Lp functions with first order derivatives, in the sense of distributions, in Lp . If
I is an interval of R, (E,‖ · ‖E) a Banach space and r belongs to [1,∞], then
Lr (I ;E) is the space of strongly Lebesgue measurable functions f from I into E

(see [18]) such that t → ‖f (t)‖E is in Lr (I ). The space L2 with the inner product
defined by (u, v)L2 = Re

∫
R

u(x)v(x) dx is a Hilbert space. The Sobolev spaces
Hs are the Hilbert spaces of functions of L2 with partial derivatives up to order s

in L2. When s is fractional it is defined classically via the Fourier transform. When
the functions are real valued we specify it, for example, we write Hs(R,R). The
following Hilbert spaces of spatially localized functions

	 = {f ∈ H1 :x 
→ xf (x) ∈ L2},
	1/2 = {

f ∈ H1 :x 
→ √|x|f (x) ∈ L2}
are also introduced and endowed with the norms

‖f ‖2
	 = ‖f ‖2

H1 + ‖x 
→ xf (x)‖2
L2,

‖f ‖2
	1/2 = ‖f ‖2

H1 + ∥∥x 
→ √|x|f (x)
∥∥2

L2 .
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We denote by ‖
‖Lc(A,B) the norm of 
 as a linear continuous operator from
A to B , where A and B are normed vector spaces. We recall that 
 is a Hilbert–
Schmidt operator from H to H̃ , where H and H̃ are Hilbert spaces, if it is a linear
continuous operator such that, given a complete orthonormal system (eH

j )∞j=1 of

H ,
∑∞

j=1 ‖
eH
j ‖2

H̃
< ∞. We denote by L2(H, H̃ ) the space of Hilbert–Schmidt

operators from H to H̃ endowed with the norm

‖
‖L2(H,H̃ )
= tr(

∗) =

∞∑
j=1

‖
eH
j ‖2

H̃
.

We also recall that a cylindrical Wiener process Wc in a Hilbert space H is such
that, for any complete orthonormal system (ej )

∞
j=1 of H , there exists a sequence of

independent Brownian motions (βj )
∞
j=1 such that Wc = ∑∞

j=1 βjej . This sum does

not converge in H1 but in any Hilbert space U such that the embedding H ⊂ U

is Hilbert–Schmidt. The image of the process Wc by a linear mapping 
 on H is
a well defined process in H when the mapping is Hilbert–Schmidt on H , that is,

 ∈ L2(H) = L2(H,H). Then, W = 
Wc is such that W(1) is a well defined
Gaussian random variable with covariance operator 

∗. A detailed presentation
of Hilbert space valued Wiener processes, the stochastic integration in that setting
and SPDEs is given, for instance, in [8], Chapter 4.

We recall that a rate function I is a lower semicontinuous function and that a
good rate function I is a rate function such that, for every positive c, {x : I (x) ≤ c}
is a compact set.

Let us now recall some mathematical aspects of the stochastic NLS equations.
The equations, written as SPDEs in the Itô form, are in the additive case

iduε,u0 − (�uε,u0 + |uε,u0 |2uε,u0) dt = √
ε dW,(2.1)

and in the multiplicative case

iduε,u0 − (�uε,u0 + |uε,u0 |2uε,u0) dt = √
εuε,u0 ◦ dW.(2.2)

The symbol ◦ stands for the Stratonovich product. It is convenient to use the Itô
product so that we write the equivalent Itô form of the equation

iduε,u0 − (�uε,u0 + |uε,u0 |2uε,u0) dt = √
εuε,u0 dW − i

2
εF
uε,u0,(2.3)

where, given (ej )
∞
j=1 an orthonormal basis of L2, F
(x) = ∑∞

j=1(
ej )
2(x). The

term (ε/2)F
(x) is the Itô correction necessary to transform the Stratonovich
product into a Itô one. Note that F
 does not depend on the basis.

As mentioned earlier, in the case of equation (2.3) (see [10]), the mass

N(uε,u0(t)) = ‖uε,u0(t)‖2
L2, t > 0,
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is a conserved quantity. Precise assumptions on 
 such that W = 
Wc are made
below. These equations are supplemented with an initial datum

uε,u0(0) = u0.

In this paper we consider initial data in 	 ⊂ H1 and work with the solution con-
structed in [10]. Since we work with a subcritical nonlinearity, we could also con-
sider solutions in L2 with initial data in L2. However, the H1-setting is preferred
in order to be able to consider the spaces 	 and 	1/2 and study the arrival time of
the pulse

Y(uε,u0(t)) =
∫

R

x|uε,u0(t, x)|2 dx, t ≥ 0,

defined when uε,u0(t) belongs to 	1/2.
We are concerned by weak solutions or, equivalently, by mild solutions which,

in the additive case, satisfy

uε,u0(t) = U(t)u0 − i

∫ t

0
U(t − s)(|uε,u0(s)|2uε,u0(s)) ds

(2.4)

−i
√

ε

∫ t

0
U(t − s) dW(s),

where (U(t))t∈R stands for the Schrödinger group, U(t) = e−it�, t ∈ R. The last
term is called the stochastic convolution. In the multiplicative case, the mild equa-
tion is

uε,u0(t) = U(t)u0 − i

∫ t

0
U(t − s)(|uε,u0(s)|2uε,u0(s)) ds

−i
√

ε

∫ t

0
U(t − s)uε,u0(s) dW(s)(2.5)

+ (ε/2)

∫ t

0
U(t − s)F
uε,u0(s) ds,

where the stochastic integral is an Itô integral.
The noise is the time derivative in the sense of distributions of the Wiener

process W . It corresponds to a white noise in time. A space-time white noise would
correspond to 
 equal to the identity. It is, however, the noise mainly considered
in optics. We cannot handle such rough noises and make the assumption that the
noises are colored in space in order to obtain well-posedness. The basic limita-
tion is that, unlike semi-groups like the Heat semi-group, the Schrödinger group
is an isometry and does not allow smoothing in the Sobolev spaces based on L2.
For instance, in the additive case, it can be seen that the stochastic convolution
is a well defined process with paths in L2 if and only if 
 is a Hilbert–Schmidt
operator on L2. In that case, however, we will, for computational issues, consider
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sequences of noises that mimic the white noise in the limit. This statement will be
made more precise.

In fact, we make even stronger assumptions. In the additive case we assume that
W is a Wiener process in 	, in other words, we require that 
 ∈ L2(L

2,	). In the
multiplicative case, it is imposed that W is a Wiener process in Hs(R,R) where s

satisfies s > 3/2. It allows to consider paths in 	1/2.
We know that the Cauchy problem is globally well posed in H1; see [10] for a

general discussion on the local well posedness and the global existence for more
general nonlinearities and dimensions. Note that in the deterministic case, the NLS
equation considered here is integrable thanks to the inverse scattering method. We
do not use these techniques in this article. Results on the influence of the noise on
the blow-up time for more general nonlinearities and dimensions are given in [11,
12]. In [4, 13] the ideal white noise and results on the influence of a noise on the
blow-up are studied numerically.

Sample path LDPs for stochastic NLS equations are proved in [22, 23]. These
LDPs are stated in the topology of C([0, T ];H1) for T > 0 and do not allow to
treat the arrival time of the solution. We shall generalize these and give LDPs in
C([0, T ];	1/2). The rate function of the LDP in the additive case is defined in
terms of the mild solution of the control problem⎧⎨

⎩ i
du

dt
= �u + |u|2u + 
h,

u(0) = u0 ∈ 	 and h ∈ L2(0, T ;L2).

(2.6)

We denote the solution by u = Sa,u0(h). The mapping h → Sa,u0(h) is called the
control map and (2.6) the control equation.

In the multiplicative case, the control equation is

i
du

dt
= �u + |u|2u + u
h,(2.7)

whose mild solution is denoted by u = Sm,u0(h). The mapping Sm,u0 is again the
control map and (2.7) the control equation.

In this article, when describing properties which hold both in the additive and
multiplicative cases, we use the symbol S(u0, h) to denote either Sa,u0(h) or
Sm,u0(h).

Let us now state the sample path LDPs. As already mentioned, these are slight
generalizations of the LDPs given in [22, 23]. For the reader’s convenience, we
give the proof for the case of an additive noise in Section 5. The case of a mul-
tiplicative noise is more involved, but does not present new difficulties compared
to the proof given in [23]. In order to keep the length of the article reasonable, we
only give the new ingredients necessary to adapt the proof.

THEOREM 2.1. Assume that 
 belongs to L2(L2,	) in the additive case
and 
 ∈ L2(L2,Hs(R,R)) with s > 3/2 in the multiplicative case. Assume also
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that the initial datum u0 is in 	. Then the solutions of the stochastic nonlinear
Schrödinger equations (2.4) and (2.5) are almost surely in C([0, T ];	1/2). More-
over, they define C([0, T ];	1/2) random variables and their laws (μuε,u0

)ε>0 sat-
isfy a LDP of speed ε and good rate function

Iu0(w) = 1
2 inf

h∈L2(0,T ;L2):w=S(u0,h)
‖h‖2

L2(0,T ;L2)
,

where S(u0, ·) = Sa,u0(·) in the additive case and S(u0, ·) = Sm,u0(·) in the mul-
tiplicative case, and with the convention that inf ∅ = ∞. It means that, for every
Borel set B of C([0, T ];	1/2), we have the lower bound

− inf
w∈ ◦

B

Iu0(w) ≤ lim
ε→0

ε log P(uε,u0 ∈ B)

and the upper bound

lim
ε→0

ε log P(uε,u0 ∈ B) ≤ − inf
w∈B

Iu0(w).

These sample path LDPs allow, for example, to evaluate the probability that,
originated from a soliton profile

�0
A(x) = √

2A sech(Ax),

the random solution be significantly different from the deterministic soliton solu-
tion

�A(t, x) = �0
A(x) exp(−iA2t).

Indeed, for δ and η positive and ε small enough, the LDP implies that

exp(−C1/ε) ≤ P
(‖uε,�0

A − �A‖C([0,T ];	1/2) > δ
) ≤ exp(−C2/ε),

where

C1 = inf
w:‖w−�A‖C([0,T ];	1/2)

>δ
I�0

A(w) + η

and

C2 = inf
w:‖w−�A‖C([0,T ];	1/2)

≥δ
I�0

A(w) − η.

Recall that, since the rate function is a good rate function, if B is a closed set
and infw∈B I�0

A(w) < ∞, then there is an f in B , optimal fluctuation, such that
I�0

A(f ) = infw∈B I�0
A(w). Thus, if B does not contain the deterministic solution,

then necessarily infw∈B I�0
A(w) > 0. Consequently, η may be chosen such that C2

is positive and the above probability of a deviation from the deterministic path is
exponentially small in the small ε limit.
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In this article we are interested in estimating the probability of particular devia-
tions from the deterministic paths. Namely, we wish to study how the mass and the
arrival time of a solution at coordinate T deviate from their value in the “frozen”
deterministic system (i.e., when ε = 0). In the absence of noise, the mass is a con-
served quantity and for initial data being either 0 or �0

A the arrival time remains
equal to zero.

We know from [22] that we may use the contraction principle to deduce from
LDP for the paths a LDP for the mass at T and obtain a LDP with speed ε and
good rate function for an initial datum u0

I
u0
N (m) = 1

2 inf
h∈L2(0,T ;L2):N(Sa,u0 (h)(T ))=m

{‖h‖2
L2(0,T ;L2)

}
.

In the case of a multiplicative noise, the mass is a conserved quantity. Thus, in this
case, the mass cannot deviate from the constant value corresponding to that of the
initial datum.

Similarly, the mapping Y is continuous from 	1/2 into R. We may thus define
by direct image the measures (μY(uε,u0 (T )))ε>0 for an initial datum u0 in 	. We
obtain by contraction that they satisfy a LDP of speed ε and good rate function

I
u0
Y (y) = 1

2 inf
h∈L2(0,T ;L2):Y(S(u0,h)(T ))=y

{‖h‖2
L2(0,T ;L2)

}
,

the control map S is either that of the additive or multiplicative case.
Let us briefly explain our strategy to estimate the probability of some event. Let

us consider, for instance, the event Dε = {Y(uε,0(T )) ∈ [a, b]}, where [a, b] is an
interval which does not contain 0. We use the LDP to obtain

− inf
y∈(a,b)

I 0
Y (y) ≤ lim

ε→0
ε log P(Dε)

(2.8)
≤ lim

ε→0
ε log P(Dε) ≤ − inf

y∈[a,b] I
0
Y (y).

To approximate from above the upper bound, we use energy type inequalities.
These give a lower bound on the minimum L2 norm of the control h required to
change the deterministic behavior and have the arrival time in [a, b] at time T .
Namely, we obtain a positive constant c such that

if Y(S(u0, h)(T )) ∈ [a, b] then 1
2‖h‖2

L2(0,T ;L2)
≥ c.

This clearly implies

lim
ε→0

ε log P(Dε) ≤ −c.

The second step is to find a particular function h such that Y(S(u0, h)(T )) ∈ (a, b)

and c̃ = (1/2)‖h‖2
L2(0,T ;L2)

is as small as possible. Then

−c̃ ≤ lim
ε→0

ε log P(Dε).
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In this second step, we minimize on a smaller set of controls which gives rise to a
problem a from the calculus of variations.

The difficulty is to have sufficiently sharp energy estimates and to find a good
solution to the control problem so that c and c̃ are as close as possible. We see
below that we are able to do so in some interesting situations and derive good
estimates on such probabilities.

Note that proceeding as in [22] for the mass, we may prove in the additive
case that infy∈J I

u0
Y (y) < ∞ for every nonempty interval J and any u0 provided

the range of 
 is dense. Indeed, for every real number a, a solution of the form
u(t, x) = (1 + atx)u0 satisfies Y(u(T )) = aT π2/3. Plugging this solution into
equation (2.6), we find a control such that the solution reaches any interval at
time T . Using the continuity of h 
→ Y(Sa,u0(h)(T )) from L2(0, T ;L2) into R

and the density of the range of 
, we obtain infy∈J I
u0
Y (y) < ∞. This shows that

the lower bound is nontrivial. With arguments given previously, we know that the
upper bound is nontrivial as well.

REMARK 2.2. Using similar arguments as in [22], we can prove that, for every
positive R besides an at most countable set of points, we can replace lim and lim
by lim in the LDP and obtain

lim
ε→0

ε log P
(
Y(uε,u0(T )) ≥ R

)

= −(1/(2ε)) inf
h∈L2(0,T ;L2):Y(S(u0,h)(T ))≥R

{‖h‖2
L2(0,T ;L2)

}
,

lim
ε→0

ε log P
(
Y(uε,u0(T )) ≤ −R

)

= −(1/(2ε)) inf
h∈L2(0,T ;L2):Y(

S(u0,h)(T )
)≤−R

{‖h‖2
L2(0,T ;L2)

}
.

This uses the fact that a monotone and bounded function is continuous almost
everywhere.

We end this section with some remarks which will be useful in the development
of our method when we consider the arrival time of the solution. Let us consider
the case when the initial datum is �0

A. The probability of tail events of the arrival
time are related to the behavior of Y(S(�0

A,h)).
An equation for the motion of the arrival time is given in [38] in the case of an

external potential. The first step consists in multiplying the control PDE by −ixu,
taking the real part, and integrating by part the term involving the Laplace operator.
We then obtain for the control PDE associated to the multiplicative case

d

dt
Y(Sm,�0

A(h)(t)) = 2Re

(
i

∫
R

Sm,�0
A(h)(t, x) ∂xSm,�0

A(h)(t, x) dx

)
,(2.9)



SMALL NOISE ASYMPTOTIC OF THE TIMING JITTER 189

while in the additive case we obtain

d

dt
Y(Sa,�0

A(h)(t)) = 2Re

(
i

∫
R

Sa,�0
A(h)(t, x)∂xSa,�0

A(h)(t, x) dx

)

(2.10)

− 2Re

(
i

∫
R

xSa,�0
A(h)(t, x)(
h)(t, x) dx

)
.

Below, we use the notation

P(u) = 2Re

(
i

∫
R

u(x)∂xu(x) dx

)
, u ∈ H1.

As a consequence of (2.9), we see that, in the multiplicative case, the arrival
time of the solution of the control problem cannot move unless its phase depends
on the space variable. For instance, if the control is chosen so that the solution
S(�0

A,h) is a modulated soliton of type (1.2) with varying amplitude and group
velocity,

S(�0
A,h)(t) = √

2A(t) sech
(
A(t)(x − x0) + 2A(t)V (t)t

)
× exp

(−i
(
A(t)2 − V (t)2)

t + iV (t)(x − x0) + iθ0
)
,

we have the well-known identity

d

dt
Y(S(�0

A,h)(t)) = −2V (t)N(Sm,�0
A(h)(t)) = −8V (t)A(t).

It will be convenient to choose controlled solutions of the form above. Since the
initial datum is �0

A, we necessarily have V (0) = 0, hence, V cannot be chosen
constant, otherwise the arrival time does not change. We will see that it is sufficient
to have a constant, amplitude A in order to get sharp bounds. Thus, we will use
modulated solitons as solutions of the control problem with constant amplitude
when studying the motion of the arrival time.

The first idea to find a control giving a solution whose arrival time or mass verify
some desired property is to take the above modulated soliton and plug it into the
control equation. This gives an explicit form of the control in terms of the various
parameters. Then, we compute the space-time L2 norm of this control. We obtain
a function of the parameters which we can try to minimize thanks to the calculus
of variations. This approach is not easy to perform, the function to minimize has a
complicated form and is often singular. However, we are not interested in finding
the exact extremal of the function and we use this method in an heuristic way. This
allows us to guess good controls with low enough space-time L2 norm compared to
the upper bound and such that the controlled path is a modulated soliton satisfying
the desired constraints. We will see that this method is successful.

Let us consider the following controlled nonlinear Schrödinger equation:

i
du

dt
= �u + |u|2u + λ(t)xu(2.11)
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with initial datum �0
A. The function λ is taken in L1(0, T ;R). This corresponds

to the multiplicative control equation with 
h = λ(t)x or to the additive one with

h = λ(t)xu. We use well-known transformations to compute explicitly the so-
lution of (2.11) which we denote by �A,λ. We first may check that the func-
tions v1 and v2 defined by v1(t, x) = exp(i(

∫ t
0 λ(s) ds)x)u(t, x) and v2(t, x) =

exp(−i
∫ t

0 (
∫ s

0 λ(τ) dτ)2 ds)v1(t, x) (gauge transform) satisfy the PDEs

i
∂v1

∂t
= ∂2v1

∂x2 + |v1|2v1 −
(∫ t

0
λ(s) ds

)2

v1 − 2i

(∫ t

0
λ(s) ds

)
∂v1

∂x

and

i

(
∂v2

∂t
+ 2

(∫ t

0
λ(s) ds

)
∂v2

∂x

)
= ∂2v2

∂x2 + |v2|2v2

with initial datum �0
A. We conclude using the methods of characteristics that v3

defined by

v3(t, x) = v2

(
t, x + 2

∫ t

0

∫ s

0
λ(u)duds

)

is a solution of the usual NLS equation with initial datum �0
A. Thus, we obtain

that v3(t, x) = �A(t, x) and that the solution of the Cauchy problem associated to
(2.11) is

�A,λ(t, x) = √
2A sech

(
A

(
x − 2

∫ t

0

∫ s

0
λ(τ) dτ ds

))

× exp
[
−iA2t + i

∫ t

0

(∫ s

0
λ(τ) dτ

)2

ds

− ix

∫ t

0
λ(s) ds + 2i

(∫ t

0
λ(s) ds

)(∫ t

0

∫ s

0
λ(τ) dτ ds

)]
.

We obtain a modulated soliton with group velocity given by V (t) = ∫ t
0 λ(s) ds. In

the additive case, it is possible to obtain a control such that the solution has the
same arrival time and group velocity and such that the space-time L2 norm of the
control is simpler to compute. It is obtained thanks to the observation that using
the gauge transform the solution of the Cauchy problem

⎧⎨
⎩

i
dv

dt
= �v + |v|2v + λ(t)

(
x − 2

∫ t

0

∫ s

0
λ(τ) dτ ds

)
v,

v(0) = �0
A,

(2.12)

is given by

�̃A,λ(t, x) = exp
(

2i

∫ t

0
λ(s)

∫ s

0

∫ τ

0
λ(σ)dσ dτ ds

)
�A,λ(t, x).
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REMARK 2.3. For the controls chosen above, relation (2.9) holds also in the
additive case. Thus, the second term in (2.10) which, at first glance, could be useful
to act on the arrival time is in fact useless.

Also, it could be thought that the choice of more complicated group velocities
could be useful. We have tried to consider a space dependent group velocity, but
the calculus of variations approach indicates that optimality is reached when it
does not depend on space.

3. Tails of the mass and arrival time with additive noise. In the case of an
additive noise, both the mass and arrival time may deviate from the deterministic
behavior and result in error in transmission.

We study tails and thus the probability of a deviation from the mean. The con-
stant R below quantify this deviation. We are not really interested in large R. In
the case of the mass, for example, interesting cases are when R lies in (0,4). But,
since ε goes to zero and the factor in the exponential is of the order of 1/ε while
R is of order 1, it results in very unlikely events. These significant excursions of
the mass and arrival time are exactly large deviation events.

Moreover, another parameter is particularly interesting. It is T the length of the
fiber optical line. It is assumed to be large. For example, we could think of a fiber
optical line between Europe and America.

We first recall the results obtained in [22] for the tails of mass of the pulse at the
end of the line. We repeat the proofs for the reader’s convenience. The aim is to
compare these tails with the tails of the arrival time obtained thereafter. We show
that indeed the timing jitter is the dominant effect in the error in transmission
when the noise is additive. The initial datum may be u0 = 0 or u0 = � , where
�(x) = √

2 sech(x). We could consider a soliton profile with any amplitude A

as well but, for simplicity, we consider the case A = 1. However, we consider
below the parameter A for the timing jitter in order to compare with results from
physics. Indeed, this dependance is made explicit in the case of the timing jitter
in the physics literature. Let us begin with upper bounds of the tails. As already
mentioned, they are obtained thanks to energy estimates. For the second bound,
we consider the case of the emission of a signal. In that case only a decrease of the
mass is troublesome and causes error in transmission. Thus, the bound given only
accounts for a significant decrease of the mass.

PROPOSITION 3.1. For every positive T and R [R in (0,4) for the second
inequality] and every operator 
 in L2(L2,H1), the following inequalities hold:

lim
ε→0

ε log P
(
N(uε,0(T )) ≥ R

) ≤ −R/
(
8T ‖
‖2

Lc(L2,L2)

)
,

lim
ε→0

ε log P
(
N(uε,�(T )) − 4 ≤ −R

) ≤ −R2/
(
8T ‖
‖2

Lc(L2,L2)
(4 + R)

)
.
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PROOF. Multiplying by −iu the equation

i
du

dt
− �u − λ|u|2u = 
h,

integrating over time and space and taking the real part gives, for t ∈ [0, T ],
‖u(t)‖2

L2 − ‖u0‖2
L2 = 2Re

(
−i

∫ t

0

∫
R

((
h)(s, x)u(s, x)) dx ds

)
(3.1)

and by the Cauchy–Schwarz inequality,

‖u(t)‖2
L2 − ‖u0‖2

L2 ≤ 2‖
‖Lc(L2,L2)‖h‖L2(0,T ;L2)‖u‖L2(0,T ;L2).(3.2)

We integrate once more with respect to t ∈ [0, T ] and obtain

‖u‖2
L2(0,T ;L2)

− T ‖u0‖2
L2 ≤ 2T ‖
‖Lc(L2,L2)‖h‖L2(0,T ;L2)‖u‖L2(0,T ;L2).(3.3)

For the first inequality, u0 = 0 and u = Sa,0(h). By (3.3),

‖Sa,0(h)‖2
L2(0,T ;L2)

≤ 2T ‖
‖Lc(L2,L2)‖h‖L2(0,T ;L2).

Then, taking t = T in (3.2), we deduce

‖Sa,0(h)(T )‖2
L2 ≤ 4T ‖
‖2

Lc(L2,L2)
‖h‖2

L2(0,T ;L2)
.

Thus, if N(Sa,0(h)(T )) = ‖Sa,0(h)(T )‖2
L2 = m, then

‖h‖2
L2(0,T ;L2)

≥ m

4T ‖
‖2
Lc(L2,L2)

.

It follows

I 0
N(m) = (1/2) inf

h∈L2(0,T ;L2):N(Sa,0(h)(T ))=m

{‖h‖2
L2(0,T ;L2)

}

≥ m/
(
8T ‖
‖2

Lc(L2,L2)

)
.

Now, by the LDP for the mass, we have

lim
ε→0

ε log P
(
N(uε,0(T )) ≥ R

) ≤ − inf
m∈[R,∞] I

u0
N (m)

and the result follows.
For the second inequality, u0 = � and u = Sa,�(h). Since ‖�‖2

L2 = 4, (3.3)
rewrites

‖u‖2
L2(0,T ;L2)

− 2T ‖
‖Lc(L2,L2)‖h‖L2(0,T ;L2)‖u‖L2(0,T ;L2) − 4T ≤ 0.

Therefore,

‖u‖L2(0,T ;L2) ≤ T ‖
‖Lc(L2,L2)‖h‖L2(0,T ;L2)

×
(

1 +
√√√√1 + 4

T ‖
‖2
Lc(L2,L2)

‖h‖2
L2(0,T ;L2)

)
.
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By (3.2) with t = T we deduce that if N(Sa,0(h)(T )) = ‖Sa,0(h)(T )‖2
L2 ≤ 4 − R,

then

R ≤ 2T ‖
‖2
Lc(L2,L2)

‖h‖2
L2(0,T ;L2)

(
1 +

√√√√1 + 4

T ‖
‖2
Lc(L2,L2)

‖h‖2
L2(0,T ;L2)

)
.

We finally obtain

‖h‖2
L2(0,T ;L2)

≥ R2

4T ‖
‖2
Lc(L2,L2)

(4 + R)
.

The upper bound follows. �

Let us now consider lower bounds. As explained above, our method is to find
solutions of the control problem with mass at coordinate T satisfying constraints
and such that the L2 norm of the control is as small as possible. We find these
controlled solutions in the form of modulated solitons. We have found that it is
sufficient that only the amplitude varies. We take the solution of (2.6) of the form

√
2A(t) exp

(
−i

∫ t

0
A2(s) ds

)
sech(A(t)x).(3.4)

This is associated to the control


hA(t, x) = i(A′/A)(t)�A(t, x)

− i
√

2A′(t) exp
(
−i

∫ t

0
A2(s) ds

)
A(t)x(sinh/cosh2)(A(t)x).

Unfortunately, the right-hand side is in general not in the range of 
. Moreover,
unless we make artificial assumptions on 
, it is not possible to get information
on the norm of h. In our result below, we proceed by approximation and consider
a sequence of operators 
n approximating the identity on a sufficiently large set
containing the controls.

Let us assume for the moment that we can consider the space-time white noise.
Then, the mass of the solution (3.4) at time T is equal to 4A(T ) and the L2 norm
of the control is given by

‖hA‖2
L2(0,T ;L2)

= 1

9
(12 + π2)

∫ T

0

(A′(t))2

A(t)
dt.(3.5)

The Euler–Lagrange equation associated to the problem of minimizing this quan-
tity is

2
A′′

A
=

(
A′

A

)2

.

Multiplying this identity by A2 and differentiating, we obtain A′′′ = 0, so that A

is a second degree polynomial and it is easy to see that it has to be of the form
A0(t) = α(t − β)2.
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For the problem of the zero initial boundary condition, we have A0(0) = 0 and
4A0(T ) > R. Hence, we deduce the candidates A0(t) = R̃( t

2T
)2 for R̃ > R arbi-

trary and R defined as for the upper bounds. Plugging such a function into (3.5)
gives

‖hA0‖2
L2(0,T ;L2)

= 1

9
(12 + π2)

R̃

T
.(3.6)

This would give immediately a lower bound if 
 were the identity. Since we can-
not treat this case, we proceed by approximation. The assumption we make on
the covariance involves the following sets of time dependent functions. We first
introduce, for D ⊂ [R,R + 1],

A1
D= {A : [0, T ] → R, there exists R̃ ∈ D such that A(t) = R̃(t/(2T ))2}.

The functions in A1
D are the varying amplitude of the solutions corresponding to

controls in the set

C1
D =

{
h ∈ L2(0, T ;L2), there exists A ∈ A1

D

h(t, x) = i(A′/A)(t)�A(t, x)

−i
√

2A′(t) exp
(
−i

∫ t

0
A2(s) ds

)
A(t)x(sinh/cosh2)(A(t)x)

}
.

For the case of a soliton profile as initial data, a similar argument leads us to define

A2
D = {

A : [0, T ] → R, there exists R̃ ∈ D such that

A(t) = (
8 − R̃ − 4

√
4 − R̃

)
(t/(2T ))2 + (−4 + 2

√
4 − R̃

)
(t/(2T )) + 1

}
.

The set of controls C2
D is defined as above by replacing A1

D by A2
D .

We have the following proposition from [22]. The assumptions can easily be
fulfilled. They are such that the noise is as close as possible to the space-time
white noise considered in physics that we are not able to treat mathematically.

PROPOSITION 3.2. Let T and R be positive numbers [R in (0,4) for the
second inequality], take D dense in (R,R + 1) and a sequence of operators
(
n)n∈N in L2(L2,L2) such that for every h ∈ C1

D we have 
nh converges to
h in L1(0, T ;L2). Then we obtain

lim
n→∞,ε→0

ε log P
(
N(uε,0,n(T )) ≥ R

) ≥ −R(12 + π2)/(18T ).

Replacing in the above C1
D by C2

D we obtain

lim
n→∞,ε→0

ε log P
(
N(uε,�,n(T )) − 4 ≤ −R

)

≥ −2
(
8 − R − 4

√
4 − R

)
(12 + π2)/(36T ).

The exponent n is there to recall that 
 is replaced by 
n.
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PROOF. We only treat the first inequality, the second is similar. Recall that by
the LDP for the mass, we know that, for a fixed n,

lim
ε→0

ε log P
(
N(uε,0,n(T )) ≥ R

) ≥ − inf
m>R

I 0
N,n(m),(3.7)

where

I 0
N,n(m)= 1

2 inf
h∈L2(0,T ;L2):N(Sa,0,n(h)(T ))=m

{‖h‖2
L2(0,T ;L2)

}
,

where n means that 
 is replaced by 
n in the control equation.
We take R̃ > R and hA0 defined above. Though the stochastic equation is not

defined when 
 = I , the control map makes sense for any h in L2(0, T ;L2). We
denote it by Sa,u0

WN . By classical results (see [6], [10]), Sa,0
WN(h) is continuous with

respect to h ∈ C([0, T ];L2(R)) to C([0, T ];L2(R)). Thanks to our assumptions,
we deduce that

Sa,0,n(hA0) = Sa,0
WN(
nhA0) → Sa,0

WN(hA0)

in C([0, T ];L2(R)). In particular, since N(Sa,0
WN(hA0)(T )) = R̃, for n large

enough, we have N(Sa,0,n(hA0)(T )) ≥ R and the infimum in (3.7) is larger than

1

2
‖hA0‖2

L2(0,T ;L2)
= 1

18
(12 + π2)

R̃

T
.

We conclude since R̃ can be as close as we want to R.
Note that the result in Proposition 3.1 depends on 
 only through its norm as

a bounded operator in L2. It is not difficult to see that there exists sequences of
operators (
n)n∈N satisfying the assumptions of Proposition 3.2, that is, which are
Hilbert–Schmidt from L2 to L2 and 
n approximates the identity on the good set of
controls, and are uniformly bounded as operators on L2 by a constant independent
on T . For such sequences of operators, the upper and lower bounds given above
agree up to constants in their behavior in large T . �

It is obtained in [19], for the ideal white noise and using the heuristic arguments
recalled in the Introduction, that the probability density function of the amplitude
of the pulse at coordinate T when the initial datum is zero is asymptotically that
of an exponential law of parameter εT /2. The amplitude is a constant times the
mass for the modulated soliton solutions considered [19]. Integrating this den-
sity over [R/2,∞) and taking into account the different normalization, we obtain
limε→0 ε log P(N(uε,0(T )) ≥ R) = −R/T . It is in between our two bounds and
very close to our lower bound. A surprising fact is that we obtain our result by
parameterizing only the amplitude, whereas in [19] a much more general parame-
trization is used. Both bounds exhibit the right behavior in R and T . Moreover, the
order in R confirms physical and numerical results that the law is not Gaussian.
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On a log scale the order in R is that of tails of an exponential law. In such a case
the Gaussian approximation leads to incorrect tails and error estimates.

Let us now comment on our results in the case of a soliton profile as initial
datum. In [19], the error probability when the size of the measurement window is
of the order of the coordinate T is obtained. It is given for some constant c(R) by
limε→0 ε log P(N(uε,�(T )) − 4 ≤ −R) = −c(R)/T . It exhibits the same behavior
in T as in our calculations. The discussion on the behavior with respect to R is
less clear. Our bounds are not of the same order. In [14, 31] the PDF of the mass at
coordinate T for a soliton profile as initial datum is not Gaussian. The numerical
simulations in [33] relying on the ansatz approximation also exhibit a significant
difference between the log of the tails of the amplitude and that of a Gaussian law.
Our lower bound indicates that again the tails are thicker than Gaussian tails. Thus,
we give a rigorous proof of the fact that a Gaussian approximation is incorrect.

Finally, it is natural to obtain that the tails of the mass are increasing functions
of T since the higher is T , the less energy is needed to form a signal whose mass
gets above a fixed threshold at T . Replacing above by under, the same holds in the
case of a soliton as initial datum.

REMARK 3.3. The H1 setting is not required here. We could as well work
with L2 solutions and a LDP in L2. However, it is required to work in H1 for the
study of the arrival time below.

We now estimate the tails of the arrival time. As for the mass, the rate is hard to
handle since it involves an optimal control problem for controlled NLS equations.
We again deduce the asymptotic of the tails from the LDP looking at upper and
lower bounds. We consider that the initial datum is �0

A since only in this case the
timing jitter might be troublesome.

Let us begin with an upper bound. It is deduced from the equation of motion of
the arrival time in the controlled NLS equation (2.10).

PROPOSITION 3.4. For every positive T , A and R and every operator 
 in
L2(L2,	), the following inequality holds:

lim
ε→0

ε log P
(
Y(uε,�0

A(T )) ≥ R
)

≤ − R2

8T (2T + 1)2(4A + R/(2T + 1))‖
‖2
Lc(L2,	)

.

PROOF. Differentiating the right hand side of (2.10) with respect to time and
replacing the time derivative of the solution with the corresponding terms of the
equation we obtain

d

dt
P(Sa,�0

A(h)(t)) = 4Re

∫
R

Sa,�0
A(h)(t, x)(∂x
h)(t, x) dx.
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Indeed, by successive integration by parts, all terms cancel besides the one involv-
ing the forcing term. Since Y(�0

A) = 0 and P(�0
A) = 0, thanks to (2.10), we obtain

the identity

Y(Sa,�0
A(h)(t)) = 4Re

(∫ t

0

∫ s

0

∫
R

Sa,�0
A(h)(σ, x)(∂x
h)(σ, x) dx dσ ds

)

− 2Re

(
i

∫ t

0

∫
R

xSa,�0
A(h)(s, x)(
h)(s, x) dx ds

)
.

From this identity it follows that the controls h in the minimizing set of the LDP
applied to the event we consider necessarily satisfy

R ≤ Y(Sa,�0
A(h)(T )) ≤ 4T ‖
‖Lc(L2,H1)‖h‖L2(0,T ;L2)‖Sa,�0

A(h)‖L2(0,T ;L2)

+ 2‖
‖Lc(L2,	)‖h‖L2(0,T ;L2)‖Sa,�0
A(h)‖L2(0,T ;L2).

Moreover, arguing as in the proof of Proposition 3.1,

‖Sa,�0
A(h)‖L2(0,T ;L2) ≤ T ‖
‖Lc(L2,L2)‖h‖L2(0,T ;L2)

× (
1 +

√
1 + 4A/

(
T ‖
‖2

Lc
(
L2,L2)‖h‖2

L2(0,T ;L2)

))
.

A lower bound on (1/2)‖h‖2
L2(0,T ;L2)

follows easily since x 
→ x(1 + √
1 + 4/x)

is increasing on R
∗+. The result follows. �

A lower bound is obtained considering controls suggested at the end of Section
2 and minimizing on the smaller set of controls. We define the following set of
control for A,T positive and D a subset of (0,∞):

HD
A,T =

{
h ∈ L2(0, T ;L2), h(t, x) = λ(t)

(
x − 2

∫ t

0

∫ s

0
λ(τ) dτ ds

)
�̃A,λ(t, x),

with λ(t) = 3R̃(T − t)/(8AT 3), R̃ ∈ D

}
.

PROPOSITION 3.5. Let T , A and R be positive. Assume that, for a dense
subset D of [R,R + 1], (
n)n∈N is a sequence of operators in L2(L2,	) such
that for any h in HD

T,A, 
nh converges to h in L1(0, T ;	). Then we have the
following inequality where the exponent n is there to recall that 
 is replaced
by 
n:

lim
n→∞,ε→0

ε log P
(
Y(uε,�0

A,n(T )) ≥ R
) ≥ −π2R2/(128T 3A3).

PROOF. We proceed as for Proposition 3.2. By the LDP for the arrival time Y,
we know that for a fixed n a lower bound is given by

− inf
y>R

I
�0

A

Y,n (y),
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where

I
�0

A

Y,n (y)= 1
2 inf

h∈L2(0,T ;L2):Y(Sa,�0
A

,n
(h)(T ))=y

{‖h‖2
L2(0,T ;L2)

}
.

Again, n is there to recall that in the control equation, 
 is replaced by 
n. To

minorize this quantity, we again first treat the case 
 = I and denote by S
a,�0

A

WN the
control map when 
 = I .

It is not difficult to see that S
a,�0

A

WN (h) belongs to L∞([0, T ];	) when h be-

long to L1(0, T ;	). Moreover, the norm of S
a,�0

A

WN (h) in L∞([0, T ];	) is bounded
in terms of the norm of h in L1(0, T ;	). A standard argument to prove this is
to compute the second derivative with respect to time of the variance V(u) =∫
R

x2|u(t, x)|2 dx with u = S
a,�0

A

WN (h). Using the argument detailed in the proof
of the LDP in Section 5 below, this implies that, for each t , the mapping h →
S

a,�0
A

WN (h)(t) is continuous from L1(0, T ;	) to 	1/2. Therefore, for h ∈ HD
T,A,

Y(Sa,�0
A,n(h)(T )) = Y(S

a,�0
A

WN (
nh)(T ))
(3.8)

→ Y(S
a,�0

A

WN (h)(T )) when n → ∞.

Proceeding as above, we are thus led to find a control h with minimum energy

verifying the constraint Y(S
a,�0

A

WN (h)(T )) ≥ R̃ for some R̃ > R.
We search this control in the set H̃T ,A defined as HT ,A, but where λ is not

specified and only assumed to belong to L2(0, T ;R):

H̃T ,A =
{
h ∈ L2(0, T ;L2),

h(t, x) = λ(t)

(
x − 2

∫ t

0

∫ s

0
λ(τ) dτ ds

)
�̃A,λ(t, x), λ ∈ L2(0, T ;R)

}
.

We have seen at the end of Section 2 that S
a,�0

A

WN (h) = �̃A,λ for h ∈ H̃T ,A. Also,
an easy computation gives Y(�̃A,λ(T )) = 8A

∫ T
0

∫ t
0 λ(s) ds dt and, for h ∈ H̃T ,A,

‖h‖2
L2(0,T ;L2)

= (π2/(3A))
∫ T

0 λ2(s) ds. We deduce

inf
h∈L2(0,T ;L2):Y(S

a,�0
A

WN (h)(T ))≥R̃

‖h‖2
L2(0,T ;L2)

≤ inf
h∈H̃T ,A:Y(S

a,�0
A

WN (h)(T ))≥R̃

‖h‖2
L2(0,T ;L2)

= inf
λ∈L2(0,T ;R):∫ T

0
∫ t

0 λ(s) ds dt≥R̃/(8A)

(
π2/(3A)

) ∫ T

0
λ2(t) dt.
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Note that the constraint
∫ T

0
∫ t

0 λ(s) ds dt ≥ R̃/8A is not a usual boundary condition
in the calculus of variations. We therefore simply try to find a good guess that leads
to a lower bound of the the same order in the parameters as the upper bound. We
use the quantity L

T ,A,R̃
(λ) defined by

L
T ,A,R̃

(λ) = (
π2/(3A)

) ∫ T

0
λ2(t) dt − γ

∫ T

0

∫ t

0
λ(s) ds dt,

where γ belongs to R. We then impose that our guess λ∗
T ,A,R̃

is a critical point

of L
T ,A,R̃

(λ) and that it satisfies the constraint
∫ T

0
∫ t

0 λ(s) ds dt = R̃/(8A). We
obtain

λ∗
T ,A,R̃

(t) = 3R̃(T − t)/(8AT 3).

We do not claim that the minimization problem is solved, we simply write

inf
λ∈L2(0,T ;R):∫ T

0
∫ t

0 λ(s) ds dt≥R̃/(8A)

(
π2/(3A)

) ∫ T

0
λ2(t) dt

≤ (
π2/(3A)

) ∫ T

0
(λ∗

T ,A,R̃
(t))2 dt = π2R̃2/(64A3T 3).

Let us set

h∗
R̃
(t, x) = λ∗

T ,A,R̃
(t)

(
x − 2

∫ t

0

∫ s

0
λ∗

T ,A,R̃
(τ ) dτ ds

)
�̃A,λ∗

T ,A,R̃
(t, x).

By (3.8), we have, for R̃ ∈ D,

Y(Sa,�0
A,n(h∗

R̃
)(T )) → Y(S

a,�0
A

WN (h∗
R̃
)(T )) when n → ∞.

Therefore, for n large enough,

Y(Sa,�0
A,n(h∗

R̃
)(T )) > R.

We deduce

inf
x>R

I
�0

A

Y,n (x) ≤ π2R̃2/(64A3T 3)

and take the lim in n in the lower bound. Since this is true for R̃ in a dense subset
of [R,R + 1], we deduce the result. �

The upper and lower bounds given in Propositions 3.4 and 3.5 are in perfect
agreement in their behavior with respect to R and to T when T is large. Indeed,
as T is large compared to R, the upper bound in Proposition 3.4 is of the order of
−R2/(128T 3A‖
‖2

Lc(L2,	)
). However, we have to be careful before doing such

a comparison. Indeed, unlike for the mass, it does not seem that there exists a
sequence of operators (
n)n∈N satisfying the assumptions of Proposition 3.5 and
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such that ‖
n‖Lc(L2,	) is bounded uniformly in n. This explains why the behavior
in A in the lower and upper bound seem contradictory for large A. We believe,
however, that there exists a sequence satisfying the assumptions of Proposition 3.5
and such that ‖
n‖Lc(L2,	) is bounded independently with respect to R and T , but
not to A.

It is, however, possible to obtain bounds that match with respect to their order in
A. Unlike the framework of Proposition 3.5, suppose we consider the sequence of
operators 
n = (I − � + |x|2I + 1

n
(−� + |x|2I )k)−1/2 such that 
nh → 
h

for any h and 
 = (I − � + |x|2I )−1/2. We may prove that for sufficiently
large k 
n are 	-valued Hilbert–Schmidt operators. Also then ‖
n‖Lc(L2,	) ≤
‖
‖Lc(L2,	) = 1 and, thus, 
n are bounded uniformly in n. We argue as in the
above using that

Y(S
a,�0

A

WN (
nh
∗
R̃
)(T )) → Y(S

a,�0
A

WN (
h∗
R̃
)(T )) when n → ∞.

Then for n large enough, the lower bound is given by −‖h∗
R̃
‖2

L2(0,T ;	)
/2. Then for

large A, that is, very localized initial pulse allowing theoretically higher transmis-
sion rate, the order up to a multiplicative constant is now that of the square of the
norm of the gradient. It is thus now −R̃/(T 3A) which matches the order of the
upper bound.

Let us now compare our result with the results obtained in the physics literature.
First, we note that we obtain that on a log scale the tails are equivalent to Gaussian
tails. This is indeed the kind of result obtained by arguments from the physical
theory of perturbation of solitons. We are missing the pre exponential factors to
conclude whether or not the tails are Gaussian. Sharp large deviations could allow
to obtain these factors.

Now, suppose the law were indeed Gaussian, then the asymptotic of the tails
may be written in terms of the variance. By doing so, we find that the variance of
the timing jitter is of the order T 3. It agrees perfectly with the initial results of [24].
Also, the order in A—for the lower bound—and T seems to agree perfectly with
the orders of the contribution of the additive noise to the variance of the timing
jitter in equation (3.18) in [17]. However it is not clear that we wish to obtain
the 1/A3 order since in [24, 28], where the model is instead a juxtaposition of
deterministic evolutions with random initial data in between amplifiers, the order
in A is −c/A. It is what we obtain above when we assume for consistency of the
assumptions that in the limit the noise remains localized.

We end this section noticing that our result confirms the fact that, in the presence
of additive noise, the timing jitter is more troublesome than the fluctuation of the
mass when we consider the problem of losing a signal. Indeed, for A = 1, we
have found that the tails of the arrival time are the order of exp(−c1(R)/(εT 3)),
while that of the mass are of the order of exp(−c2(R)/(εT )), which is clearly
negligible compared to the first for large T . In other words the tails of the arrival
time are much thicker than that of the mass, implying much more frequent large
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fluctuations of the arrival time than of the mass. Error in soliton transmission is
much more likely to be due to timing jitter rather than decay of the mass of the
pulse. Recall that T is the length of a fiber optical line and is thus assumed to be
very large. This result is called the Gordon–Haus effect in the physics literature.

REMARK 3.6. From an engineering point of view, it is possible to exponen-
tially reduce the probability of undesired deviations of the arrival time by introduc-
ing inline control elements; see, for example, [19]. We could also use ideas given
in [36] and optimize on such external fields for a limited cost or penalty functional.
The new optimal control problem requires then double optimization.

REMARK 3.7. Note that the methodology developed herein could probably
be applied to the determination of the small noise asymptotic of the tails of the
position of an isolated vortex, defined by

∮ ∇ argu(t, x) · dl, in Bose condensates
or superfluid Helium as in [34]. There the physical perturbation approach along
with the Fokker–Planck equation are used. The small noise acts as the small tem-
perature.

4. Tails of the arrival time in the multiplicative case. In the case of the
multiplicative noise, the mass is a conserved quantity and we restrict our attention
to the study of the law of the arrival time of the pulse when the initial datum is the
soliton profile �0

A.
Again, let us begin with upper bounds. They are obtained from an equation for

the motion of the arrival time in the controlled NLS equation.
From relation (2.9) and integration by parts, we obtain the equation in [38],

d2

dt2 Y(Sm,�0
A(h)(t)) = 2

∫
R

|Sm,�0
A(h)(t, x)|2(∂x
h)(t, x) dx.(4.1)

We may thus deduce the next proposition.

PROPOSITION 4.1. For every positive T , A and R and every operator 
 in
L2(L2,Hs(R,R)), where s > 3/2 the following inequality holds:

lim
ε→0

ε log P
(
Y(uε,�0

A(T )) ≥ R
) ≤ −

(
3

16

)2 R2

2A2T 3‖
‖2
Lc(L2,W1,∞(R,R))

.

PROOF. From equation (4.1), the fact that d
dt

Y(Sm,�0
A(h))|t=0 = P(�0

A) = 0,
that for such values of s the Sobolev injection of Hs(R,R) into W1,∞(R,R) is
continuous (see [18]), and that the mass is conserved and thus remains equal to 4,
we obtain

d

dt
Y(Sm,�0

A(h)(t)) ≤ 8A‖
‖Lc(L2,W1,∞(R,R))‖h‖L1(0,t;L2)

≤ 8A
√

t‖
‖Lc(L2,W1,∞(R,R))‖h‖L2(0,T ;L2).
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Then, since Y(�0
A) = 0, we obtain integrating the above inequality that

R ≤ Y(Sm,�0
A(h)(T )) ≤ (16AT 3/2/3)‖
‖Lc(L2,W1,∞(R,R))‖h‖L2(0,T ;L2)

and the conclusion follows. �

Let us now consider lower bounds. We need to find controls which have the
desired effect on the arrival time. We have seen that, in the additive case, good
controls are given by functions in HD

A,T . Recalling the transformations on the
equation made at the end of Section 2, we can equivalently take controls of the
form λ(t)x�A,λ which correspond to the solution �A,λ. Thus, in the multiplica-
tive case, a good control is given by h(t, x) = λ(t)x. Unfortunately these controls
do not belong to the range of 
 nor to L2(0, T ;L2) and are not admissible. We
have not been able to justify the choice of such controls by an approximation ar-
gument.

We therefore impose a new assumption that 
 takes its values in Hs(R,R)⊕xR.
In other words, we consider the slightly different equation

idũε,u0 = (�ũε,u0 + |ũε,u0 |2ũε,u0) dt
(4.2)

+ ũε,u0 ◦ √
ε dW(t) + √

εxũε,u0 ◦ dβ(t),

where β is a standard Brownian motion independent of W and the corresponding
controlled PDE

i
d

dt
S̃u0(h1, h2) = �S̃u0(h1, h2) + |S̃u0(h1, h2)|2S̃u0(h1, h2)

+ S̃u0(h1, h2)
h1 + xS̃u0(h1, h2)h2,

where h1 belongs to L2(0, T ;L2) and h2 belongs to L2(0, T ;R), the initial da-
tum is u0 and in the sequel u0 = �0

A. We may guess by successive applications
of the Itô formula, multiplying ũε,u0 by the random phase term exp(ix

√
εβ(t)),

and similar transformations as in Section 2 (stochastic gauge transform, stochastic
methods of characteristics, . . .) that we should consider the function

exp
(
ix

√
εβ(t) − iε

∫ t

0
β2(s) ds

)
ũε,u0

(
t, x + 2

√
ε

∫ t

0
β(s) ds

)
.

It indeed satisfies equation (2.3) with the same initial datum. We deduce that

ũε,u0(t, x) = exp
(
−ix

√
εβ(t) + iε

∫ t

0
β2(s) ds + 2iεβ(t)

∫ t

0
β(s) ds

)

× uε,u0

(
t, x − 2

√
ε

∫ t

0
β(s) ds

)
.
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A similar computation shows that

S̃u0(h1, h2)(t, x) = exp
(
−ix

√
ε

∫ t

0
h2(s) ds + i

∫ t

0

(∫ s

0
h2(u) du

)2

ds

+ 2i

∫ t

0
h2(s) ds

∫ t

0

∫ s

0
h2(u) duds

)

× Sm,u0(h1)

(
t, x − 2

∫ t

0

∫ s

0
h2(u) du

)
.

The functions ũε,u0 and S̃u0(h1, h2) are well-defined functions of L2(0, T ;	) and
we may compute their arrival times. We obtain a lower bound of the asymptotic of
the tails of the arrival time of the new solutions.

PROPOSITION 4.2. For every positive T , A and R and every operator 
 in
L2(L2,Hs(R,R)) where s > 3/2, the following inequality holds:

lim
ε→0

ε log P
(
Y(ũε,�0

A(T )) ≥ R
) ≥ −3R2/(128A2T 3).

PROOF. Consider the mapping F from C([0, T ];	1/2) × C([0, T ];R) into R

such that

F(u, b) =
∫

R

|x|
∣∣∣∣u

(
T , x − 2

∫ T

0
b(s) ds

)∣∣∣∣
2

dx.

Take u and u′ in C([0, T ];	1/2) and b and b′ in C([0, T ];R), then by the triangle
and inverse triangle inequalities and the change of variables, we obtain

|F(u, b) − F(u′, b′)|

≤
∫

R

∣∣∣∣∣
∣∣∣∣x + 2

∫ T

0
b(s) ds

∣∣∣∣ −
∣∣∣∣x + 2

∫ T

0
b′(s) ds

∣∣∣∣
∣∣∣∣∣|u(T , x)|2 dx

+
∣∣∣∣∣
∫

R

∣∣∣∣x + 2
∫ T

0
b′(s) ds

∣∣∣∣(|u(T , x)|2 − |u′(T , x)|2) dx

∣∣∣∣∣
≤ 2

∣∣∣∣
∫ T

0
b(s) ds −

∫ T

0
b′(s) ds

∣∣∣∣
∫

R

|u(T , x)|2 dx

+
∫

R

|x| ∣∣|u(T , x)| − |u′(T , x)|∣∣(|u(T , x)| + |u′(T , x)|)dx

+ 2
∣∣∣∣
∫ T

0
b′(s) ds

∣∣∣∣
∫

R

∣∣|u(T , x)| − |u′(T , x)|∣∣(|u(T , x)| + |u′(T , x)|)dx.

We conclude from the inverse triangle and Hölder inequalities that F is continuous.
We may then push forward by the contraction principle the LDP for the paths of
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uε,�0
A and of

√
εβ by the mapping F using a slight modification of the result of

exercise 4.2.7 of [9] and obtain a LDP for the laws of Y(ũε,�0
A(T )) which is that

of F(uε,�0
A,

√
εβ) of speed ε and good rate function defined as a function of the

rate function of the original solutions and of the rate function Iβ of the sample path
LDP for

√
εβ:

Ĩ
�0

A

Y (x) = inf
(u,b):F(u,b)=x

(
Iu0(u) + Iβ(b)

)

≤ 1
2 inf

(h1,h2):F(Sm,�0
A(h1),

∫ ·
0 h2(s)ds)=x

{‖h1‖2
L2(0,T ;L2)

+ ‖h2‖2
L2(0,T ;R)

}

≤ 1
2 inf

(h1,h2):Y(S̃�0
A(h1,h2)(T ))=x

{‖h1‖2
L2(0,T ;L2)

+ ‖h2‖2
L2(0,T ;R)

}
.

Thus, considering solely controls of the from (0, h2), we minimize in h2 for γ

in R,
∫ T

0
h2

2(t) dt − γ

∫ T

0

∫ t

0
h2(s) ds,

where we impose that

Y(�A,h2(T )) = 8A

∫ T

0

∫ t

0
h2(s) ds = R̃ > R.

The conclusion follows. �

REMARK 4.3. We may check that Y(uε,�0
A) = Y(ũε,�0

A) − 8
√

ε
∫ T

0 β(s) ds

and that
∫ T

0 β(s) ds is a centered Gaussian random variable with variance T 3/3.

The corresponding upper bound for this modified stochastic NLS equation is

lim
ε→0

ε log P
(
Y(ũε,�0

A(T )) ≥ R
) ≤ −(3/16)2 R2

A2T 3(‖
‖2
Lc(L2,W1,∞(R,R))

∨ 1)
.

Note that the lower bound does not require to consider a sequence of operators
(
n)n∈N and we may indeed compare the upper and lower bounds. They are of the
same order in T and in A. Note also that, as in the additive case, we obtain that on
a log scale the tails are equivalently that of Gaussian tails. Also, our tails are of the
order in T that we expect from the contribution of the multiplicative noise to the
variance of the timing jitter in equation (3.18) in [17].

However, concerning the amplitude, it is not of the order of −c/A4 as we would
expect from [17]. This is probably due to the fact that we have considered a colored
noise with a term x d

dt
β that grows linearly in time (the x variable).
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5. Proof of Theorem 2.1. We herein denote the variance of f in 	 by V(f ) =∫
R

|x|2|f (x)|2 dx.
Let us start with the additive case. We denote by vu0(z) the solution of⎧⎨

⎩ i
dv

dt
= �v + λ|v − iz|2σ (v − iz),

u(0) = u0 ∈ 	,

where z belongs to X(T,2σ+2,	) = C([0, T ];	)∩ Lr (0, T ;W1,2σ+2) and r is such
that 2/r = 1/2 − 1/(2σ + 2). We also denote by Gu0 the mapping

z 
→ vu0(z) − iz.

Note that uε,u0 = Gu0(
√

εZ), where Z is the stochastic convolution defined by
Z(t) = ∫ t

0 U(t − s) dW(s).
We can check from similar arguments (as those of the proof of Proposition 1 in

[22]) that the stochastic convolution is a X(T,2σ+2,	) random variable whose law
μZ is a centered Gaussian measure. Let z belong to X(T,2σ+2,	), take s < t < T ,
the triangle along with the Hölder inequalities, then compute∣∣∣∣
∫

R

|x|(|Gu0(z)(t, x)|2 − |Gu0(z)(s, x)|2)
dx

∣∣∣∣
≤

∫
R

|x|(|Gu0(z)(t, x)| + |Gu0(z)(s, x)|)∣∣(|Gu0(z)(t, x)| − |Gu0(z)(s, x)|)∣∣dx

≤ ‖Gu0(z)(t) − Gu0(z)(s)‖L2

√
V

(|Gu0(z)(t)| + |Gu0(z)(s)|)

≤ 2
√

2‖Gu0(z)(t) − Gu0(z)(s)‖L2

× (√
V(vu0(z)(t)) + √

V(vu0(z)(s)) + √
V(z(t)) + √

V(z(s))
)
.

The application of the Gronwall inequality in the proof of Proposition 3.5 in
[11], along with the Sobolev injection allow to prove that Gu0(z) belongs to
C([0, T ];	1/2). The computation above also shows that Gu0 is continuous from
X(T,2σ+2,	) to C([0, T ];	1/2). The general result on LDP for Gaussian measures
gives the LDP for the measures μZε , the direct images of μZ under the transfor-
mation x 
→ √

εx on X(T,2σ+2,	). We conclude with the contraction principle.
In the multiplicative case, it is also required to revisit the proof of the LDP in

[23]. As mentioned in Section 2, we only emphasize the adaptations of the proof
of [23] required to state a LDP in C([0, T ];	1/2). Note that in the following 
h is
replaced by ∂f

∂t
, where f belongs to H1

0(0, T ;Hs(R,R)) which is the subspace of
C([0, T ];Hs(R,R)) of functions zero at time 0, square integrable in time and with
square integrable in time derivative. The control map is then denoted by S̃m,u0(f ).

We may check using the above calculation and the fact that, for every t ∈ [0, T ],
S̃m,u0(f )(t) belongs to 	 that

V(S̃m,u0(f )(t)) ≤ (
4‖S̃m,u0(f )(t)‖2

C([0,T ];H1)
+ V(u0)

)
eT ;
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(see the arguments of the proof of Proposition 3.2 in [12]) used for the control map,
that the control map is continuous from the sets of levels of the rate function of the
Wiener process less or equal to a positive constant, with the topology induced by
that of C([0, T ];Hs(R,R)), to C([0, T ];	1/2). The only difference in the proof
of Proposition 4.1 in [23], the Azencott lemma (also called the Freidlin–Wentzell
inequality or almost continuity of the Itô map) is in step 2. It is the reduction to
estimates on the stochastic convolution. We use

V(vε,ũ0(t)) ≤ (
4‖vε,ũ0(t)‖2

C([0,T ];H1)
+ V(ũ0)

)
eT

(see the proof of Proposition 3.2 in [12]), where vε,ũ0 satisfies vε,ũ0(0) = ũ0 and

idvε,ũ0 =
(
�vε,ũ0 + λ|vε,ũ0 |2σ vε,ũ0 + ∂f

∂t
vε,ũ0 − (iε/2)F
vε,ũ0

)
dt

+ √
εvε,ũ0 dWε,

f (·) = ∫ ·
0 
h(s) ds, Wε(t) = W(t) − (1/

√
ε)

∫ t
0

∂f
∂s

ds = W(t) − (1/
√

ε) ×∫ t
0 
h(s) ds, F
(x) = ∑∞

j=1(
ej (x))2 and (ej )
∞
j=1 is any complete orthonormal

system of L2. The bound remains the same as in [12] because of the cancelation of
the extra term in the application of the Itô formula and the cancelation of the Itô–
Stratonovich correction with the second order Itô correction term when the Itô for-
mula is applied to the truncated variance Vr(v) = ∫

R
exp(−r|x|2)|x|2|v(x)|2 dx.

�
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