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Kingman derived the Ewens sampling formula for random partitions de-
scribing the genetic variation in a neutral mutation model defined by a Pois-
son process of mutations along lines of descent governed by a simple coa-
lescent process and observed that similar methods could be applied to more
complex models. Möhle described the recursion which determines the gen-
eralization of the Ewens sampling formula in the situation where the lines
of descent are governed by a �-coalescent, which allows multiple mergers.
Here, we show that the basic integral representation of transition rates for
the �-coalescent is forced by sampling consistency under more general as-
sumptions on the coalescent process. Exploiting an analogy with the theory
of regenerative partition structures, we provide various characterizations of
the associated partition structures in terms of discrete-time Markov chains.

1. Introduction. The theory of random coalescent processes starts with King-
man’s series of papers [20–22] in 1982. The idea comes from biological studies
for genealogy of haploid model [5]: given a large population with many gener-
ations, you track backward in time the family history of each individual in the
current generation. As you track further, the family lines coalesce with each other,
eventually all terminating at a common ancestor of current generation. The same
mathematical process may be interpreted in another way as describing collisions
of an aggregating system of physical particles. In Kingman’s coalescent process
[20], each collision only involves two parts. This idea is extended to coalescent
with multiple collisions in [29, 30], where every collision can involve two or more
parts. This model is further developed into the theory of coalescent with simulta-
neous multiple collisions in [25, 33]. See [3, 4, 6, 9, 31, 32, 34, 36] for related
developments.

Kingman [22] indicated a basic connection between random partitions of nat-
ural interest in genetics, and coalescent processes. Suppose, in the haploid case,
the family line of current generation is modeled by Kingman’s coalescent and the
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mutations are applied along the family lines by using a Poisson process with rate
θ/2 for some nonnegative number θ . Define a partition by saying that two individ-
uals are in the same block if there is no mutation along their family lines before
they coalesce. Then the resulting random partition is governed by the Ewens sam-
pling formula with parameter θ ; see [28], Section 5.1, Exercise 2, and [2, 27] for
a review and for more on this idea. Recently, Möhle [23] applied this idea to the
genealogy tree modeled by coalescents with multiple collisions and simultaneous
multiple collisions. He studied the resulting family of partitions and derived a re-
cursion which determines them. In [24], Möhle showed that the partition derived
from coalescent with multiple collisions is regenerative in the sense of [13–15]
if and only if the underlying coalescent is Kingman’s coalescent or a hook case,
corresponding to the extreme cases when the characterization measure � of coa-
lescent with multiple collisions concentrates at 0 or 1, respectively. In particular,
the intersection of Möhle’s family of partitions with Pitman’s two-parameter fam-
ily is the one-parameter Ewens’ family.

Here, we offer a different approach to the family of random partitions generated
by Poisson marking along the lines of descent of a �-coalescent. We study par-
titions with an additional feature, assigning each part one of two possible states:
active or frozen. We introduce a new class of continuous-time partition-valued
coalescent processes called coalescents with freeze, which are characterized by
an underlying measure determining collision rates, together with a freezing rate.
Every coalescent with freeze has a terminal state with all blocks frozen, called the
final partition of this process, whose distribution is characterized by the recursion
of Möhle [23]. In the spirit of [15, 13], we focus here on the discrete-time chains
embedded in the coalescent with freeze and from the consistency of their transi-
tion operators, we derive a backward recursion satisfied by the decrement matrix,
analogous to [15], Theorem 3.3. This decrement matrix determines the partition
through Möhle’s recursion. As in [15], we use algebraic methods to derive an in-
tegral representation for the decrement matrix. Also, adapting an idea from [13],
we establish a uniqueness result by constructing another Markov chain, with state
space the set of partitions of a finite set, whose unique stationary distribution is
the law of the final partition restricted to this set. We analyze in detail the case
of coalescent with freeze when no simultaneous multiple collisions are permitted,
leaving the more general case to another paper.

The remainder of the paper is organized as follows. Some notation and back-
ground are introduced in Section 2, together with a review of Möhle’s result.
In Section 3, the coalescent with freeze is defined and the relation between our
method and Möhle’s method is discussed. In Section 4, we detail the study of
coalescent with freeze in terms of the freeze-and-merge (FM) operators of the em-
bedded finite discrete chain, whose consistency with sampling derives a backward
recursion for the decrement matrix. In Section 5, the Markov chain with sample-
and-add (SA) operation is introduced and the law of the partition in our study is
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identified as the unique stationary distribution of this chain. In Section 6, we de-
rive the integral representation for an infinite decrement matrix. This gives another
approach to Möhle’s partitions via consistent freeze-and-merge chains, which may
be seen as discrete-time jumping processes associated with the �-coalescent with
freeze. Section 7 provides an alternate approach to the representation of an infinite
decrement matrix in terms of a positivity condition on a single sequence. Section 8
offers some results about the structure of the random set of freezing times derived
from a coalescent with freeze. Finally, in Section 9, we point out some striking
parallels with our previous work on regenerative partition structures which guided
this study.

2. Some notation and background. Following the notation of [28], for any
finite set F , a partition of F into � blocks, also called a finite set partition, is an
unordered collection of nonempty disjoint sets {A1, . . . ,A�} whose union is F .
In particular, we consider partitions of the set [n] := {1,2, . . . , n} for n ∈ N. We
use P[n] to denote the set of all partitions of [n]. A composition of the positive inte-
ger n is an ordered sequence of positive integers (n1, n2, . . . , n�) with

∑�
i=1 ni = n,

where � ∈ N is the number of parts. We use Cn to denote the set of all composi-
tions of n and Pn to denote the set of nonincreasing compositions of n, also called
partitions of n.

Let πn = {A1,A2, . . . ,A�} denote a generic partition of [n]; we may write
πn � [n] to indicate this fact. The shape function from partitions of the set [n]
to partitions of the positive integer n is defined by

shape(πn) = (|A1|, |A2|, . . . , |A�|)↓,(2.1)

where |Ai | is the size of block Ai which represents the number of elements in the
block and “↓” means arranging the sequence of sizes in nonincreasing order.

A random partition �n of [n] is a random variable taking values in P[n]. It
is called exchangeable if its distribution is invariant under the action on partitions
of [n] by the symmetric group of permutations of [n]. Equivalently, the distribution
of �n is given by the formula

P(�n = {A1,A2, . . . ,A�}) = pn(|A1|, |A2|, . . . , |A�|)(2.2)

for some symmetric function pn of compositions of n. We call pn the exchange-
able partition probability function (EPPF) of �n.

An exchangeable random partition of N is a sequence of exchangeable set par-
titions �∞ = (�n)

∞
n=1 with �n � [n], subject to the consistency condition

�n|m = �m,(2.3)

where the restriction operator |m acts on P[n], n > m, by deleting elements
m + 1,m + 2, . . . , n. The distribution of such an exchangeable random partition
of N is determined by the function p defined on the set of all integer compositions
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C∞ := ⋃∞
i=1 Ci , which coincides with the EPPF pn of �n when acting on Cn. This

function p is called the infinite EPPF associated with �∞ = (�n)
∞
n=1. The con-

sistency condition (2.3) translates into the following addition rule for the EPPF p:
for each positive integer n and each composition (n1, n2, . . . , n�) of n,

p(n1, n2, . . . , n�) = p(n1, n2, . . . , n�,1) +
�∑

i=1

p(n1, . . . , ni + 1, . . . , n�),(2.4)

where (n1, . . . , ni +1, . . . , n�) is formed from (n1, . . . , n�) by adding 1 to ni . Con-
versely, if a nonnegative function p on compositions satisfies (2.4) and the normal-
ization condition p(1) = 1, then by Kolmogorov’s extension theorem, there exists
an exchangeable random partition �∞ with EPPF p.

Similar definitions apply to a finite sequence of consistent exchangeable random
set partitions (�m)nm=1 with �m � [m], where n is some fixed positive integer. The
finite EPPF p of such a sequence can be defined as the unique recursive extension
of pn by the addition rule (2.4) to all compositions (n1, n2, . . . , n�) of m < n.

Let P∞ denote the set of all partitions of N. We identify each π∞ ∈ P∞ as the
sequence (π1, π2, . . .) ∈ P[1] × P[2] × · · ·, where πn = π∞|n is the restriction of
π∞ to [n] obtained by deleting all elements greater than n. Endow P∞ with the
topology it inherits as a subset of P[1] × P[2] × · · · with the product of discrete
topologies, so the space P∞ is compact and metrizable. Following [9, 20, 29],
call a P∞-valued stochastic process (�∞(t), t ≥ 0) a coalescent if it has càdlàg
paths and �∞(s) is a refinement of �∞(t) for every s < t . For a nonnegative finite
measure � on the Borel subsets of [0,1], a �-coalescent is a P∞-valued Markov
coalescent (�∞(t), t ≥ 0) whose restriction (�n(t), t ≥ 0) to [n] is for each n a
Markov chain such that when �n(t) has b blocks, each k-tuple of blocks of �n(t)

is merging to form a single block at rate λb,k , where

λb,k =
∫ 1

0
xk−2(1 − x)b−k�(dx) (2 ≤ k ≤ b < ∞).(2.5)

The measure � which characterizes the coalescent is derived from the consis-
tency requirement, that is, for any positive integers 0 < m < n < ∞ and πn � [n],
the restricted process (�n(t)|m, t ≥ 0) given �n(0) = πn has the same law as
(�m(t), t ≥ 0) given �m(0) = πn|m. This condition is fulfilled if and only if the
array of rates (λb,k) satisfies

λb,k = λb+1,k + λb+1,k+1 (2 ≤ k ≤ b < ∞).(2.6)

The integral representation (2.5) can be derived from (2.6) via de Finetti’s Theorem
[29], Lemma 18.

When � = δ0, this reduces to Kingman’s coalescent [20–22] with only bi-
nary merges. When � is the uniform distribution on [0,1], the coalescent is the
Bolthausen–Sznitman coalescent [4]. In [33], this construction is further developed
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to build the �-coalescent, where the measure � on infinite simplex characterizes
the rates of simultaneous multiple collisions.

Möhle [23] studied the following generalization of Kingman’s model [22]. Take
a genetic sample of n individuals from a large population and label them as
{1,2, . . . , n}. Suppose that the ancestral lines of these n individuals evolve by the
rules of a �-coalescent and that given the genealogical tree, whose branches are
the ancestral lines of these individuals, mutations occur along the ancestral lines
according to a Poisson point process with rate ρ > 0. The infinitely-many-alleles
model is assumed, which means that when a gene mutates, a brand new type ap-
pears. Define a random partition of [n] by declaring individuals i and j to be in the
same block if and only if they are of the same type, that is, if either i = j or there
are no mutations along the ancestral lines of i and j before these lines coalesce.
These random partitions are exchangeable, and consistent as n varies. The EPPF of
this random partition is the unique solution p with p(1) = 1 of Möhle’s recursion:
for each positive integer n and each composition (n1, n2, . . . , n�) of n,

p(n1, n2, . . . , n�) = q(n : 1)

n

∑
j :nj=1

p(. . . , n̂j , . . .)

(2.7)

+
n∑

k=2

q(n :k)
∑

j :nj≥k

(nj

k

)
(n
k

) p(. . . , nj − k + 1, . . .),

where (. . . , n̂j , . . .) is formed from (n1, n2, . . . , n�) by removing part nj ,
(. . . , nj − k + 1, . . .) is formed from (n1, n2, . . . , n�) by only changing nj to
nj − k + 1 and q(b :k) is the stochastic matrix

q(b :k) = 
(b :k)


(b)
(1 ≤ k ≤ b ≤ n),(2.8)

where


(b : 1) = ρb,(2.9)


(b :k) =
(

b

k

)
λb,k =

(
b

k

)∫ 1

0
xk−2(1 − x)b−k�(dx) (2 ≤ k ≤ b),(2.10)


(b) =
b∑

k=1


(b :k) =
∫ 1

0

1 − (1 − x)b − bx(1 − x)b−1

x2 �(dx) + ρb.(2.11)

If, at some time t ≥ 0, there are exactly b lines of descent whose associated
genealogical trees of depth t contain no mutations, then 
(b : 1) is the total rate
of mutations along one of these b lines, 
(b :k) is the total rate of k-fold merges
among these lines and 
(b) is the total rate of events of either kind.

Möhle [23] derived the recursion (2.7) by conditioning on whether the first event
met tracing back in time from the current generation is a mutation or collision. On
the left-hand side of (2.7), p(n1, n2, . . . , n�) is the probability of ending up with
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any particular partition πn of the set [n] into � blocks of sizes (n1, n2, . . . , n�). On
the right-hand side, q(n : 1) is the chance that starting from the current generation,
one of the n genes mutates before any collision; for this to happen together with the
specified partition of [n], the individual with this gene must be chosen from those
among the singletons of πn, with chance 1/n for each different choice, and after
that, the restriction of the coalescent process to a subset of [n] of size n − 1 must
end up generating the restriction of πn to that set. Similarly, q(n :k) is the chance
that the first event met is k out of n genes coalescing to the same block. Again,
the k individuals bearing these k genes must be chosen from a block of πn of size
nj ≥ k, so the chance for possible choices from a block with size nj is

(nj

k

)
/
(n
k

)
and given exactly which k individuals are chosen, the restriction of the coalescent
process to some set of n−k+1 lines of descent must end up generating a particular
partition of these n − k + 1 lines into sets of sizes (. . . , nj − k + 1, . . .). The
multiplication of various probabilities is justified by the strong Markov property of
the �-coalescent at the time of the first event and by the special symmetry property
that lines of descent representing blocks of individuals coalesce according to the
same dynamics as if they were singletons.

In this paper, we step back from these detailed dynamics of the �-coalescent
with mutations to consider the following questions related to Möhle’s recur-
sion (2.7) and associated partition-valued processes. We choose to ignore the spe-
cial form (2.8) of the matrix (q(n :k);1 ≤ k ≤ n < ∞) derived from the (�,ρ)

and analyze Möhle’s recursion (2.7) as an abstract relation between a stochastic
matrix q and a function of compositions p. In particular, we ask the following
questions:

1. For which probability distributions q(n :k), 1 ≤ k ≤ n, on [n] is Möhle’s re-
cursion (2.7) satisfied by the EPPF p of some exchangeable random partition
of [n] and is this p uniquely determined?

2. How can such random partitions be characterized probabilistically?
3. Can such random partitions of [n] be consistent as n varies for any q other than

that derived from (�,ρ) as above?

We stress that in the first two questions, the recursion (2.7) is only required to
hold for a single value of n, while in the third question, (2.7) must hold for all
n = 1,2, . . . . The answer to the first question is that for each fixed probability dis-
tribution q(n :k), 1 ≤ k ≤ n, on [n], Möhle’s recursion (2.7) determines a unique
EPPF p for an exchangeable random partition of [n] (Theorem 4.6). Answering
the second question, we characterize the distribution of this random partition in
two different ways: first, as the terminal state of a discrete-time Markovian coales-
cent process, the freeze-and-merge chain introduced in Section 4, and second, as
the stationary distribution of a partition-valued Markov chain with quite a differ-
ent transition mechanism, the sample-and-add chain introduced in Section 5. The
answer to the third question is positive if we restrict n to some bounded range of
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values, for some, but not all, q (see Section 4), but negative if we require consis-
tency for all n (Theorem 6.2): if an infinite EPPF p solves Möhle’s recursion (2.7)
for all n for some triangular matrix q with nonnegative entries, then q must have
the form (2.8) for some (�,ρ).

We were guided in this analysis by a remarkable parallel between this theory
of finite and infinite partitions subject to Möhle’s recursion (2.7) and the theory of
regenerative partitions developed in [13–15]. Many of these parallels are summa-
rized in Section 9.

There is an important distinction between the recursions (2.4) and (2.7). The
recursion (2.4) has many solutions since it is a backward recursion, from larger
values of n to smaller. By contrast, (2.7) is a forward recursion, from smaller values
of n to larger. Consequently it is obvious that given an arbitrary infinite triangular
stochastic matrix q (2.7) has a unique solution p with the initial value p(1) = 1.
In principle, the recursion (2.7) has probabilistic meaning for arbitrary q since it
determines a sequence of exchangeable partitions of [n]’s for n in some finite or
infinite range. Distributions of these partitions are obtained algebraically by fully
expanding p through q . However, typically, these partitions of n are not consistent
with respect to restrictions, so in the infinite case, they might not determine the
distribution of a partition of N.

3. Coalescents with freeze. We consider the structure of a partition of a set
(resp., of an integer) with each of its blocks (or parts) assigned one of two possible
conditions which we call active and frozen. We call such a combinatorial object
a partially frozen partition of a set or of an integer. This added marking system
makes it possible to provide a natural generalization of partition structures derived
from a coalescent with Poisson mutations along the branches of a genealogical
tree. We use the symbol �∗

n for the pure singleton partition of [n] with all blocks
active and �∗∞ for the sequence (�∗

n)∞n=1. As special cases of partially frozen par-
titions, we include the possibility that all blocks may be active, or all frozen. Ig-
noring the conditions of the blocks of a partially frozen partition, π∗ induces an
ordinary partition π .

The ∗-shape of a partially frozen partition π∗
n of [n] is the corresponding par-

tially frozen partition of n and the ordinary shape is defined in terms of the induced
partition πn.

For each positive integer n, we denote by P ∗[n] the set of all partially frozen
partitions of [n]. Let P ∗∞ be the set of all partially frozen partitions of N. We
identify each element π∗∞ ∈ P ∗∞ as the sequence (π∗

1 , π∗
2 , . . .) ∈ P ∗[1] × P ∗[2] × · · ·,

where π∗
n is π∗∞|n, the restriction of π∗∞ to [n]. Endowing P ∗∞ with the topology it

inherits as a subset of P ∗[1] × P ∗[2] × · · ·, the space P ∗∞ is compact and metrizable.
We call a random partially frozen partition of [n] exchangeable if its distribution
is invariant under the action of permutations of [n]. Similarly to [9, 20], we call a
P ∗∞-valued stochastic process (�∗∞(t), t ≥ 0) a coalescent if it has càdlàg paths
and �∗∞(s) is a *-refinement of �∗∞(t) for every s < t , meaning that the induced
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partition �∞(s) is a refinement of �∞(t) and the set of frozen blocks of �∗∞(s)

is a subset of the set of frozen blocks of �∗∞(t).
The construction of an exchangeable random partition of N by cutting branches

of the merger-history tree of a �-coalescent (�∞(t), t ≥ 0) by mutations with
rate ρ can now be formalized as follows. For each i ∈ N, let τi denote the random
time at which a mutation first occurs along the line of descent to leaf i of the tree
and declare the block of �∞(t) containing i to be active if τi > t and frozen if
τi ≤ t . This defines a P ∗∞-valued Markov process (�∗∞(t), t ≥ 0). As t → ∞,
the state �∗∞(t) approaches a limit �∗∞(∞) with all blocks frozen. This is the
exchangeable random partition generated by the exchangeable sequence of random
variables (τi, i ∈ N), meaning that two integers i and j are in the same block of
�∗∞(∞) if and only if τi = τj . Assuming that �∗∞(0) = �∗∞, it should be clear that
the EPPF of �∗∞(∞) is that defined by Möhle’s recursion (2.7). The following two
theorems present more formal statements.

THEOREM 3.1. Let (λb,k,2 ≤ k ≤ b < ∞), (ρn,1 ≤ n < ∞) be two arrays
of nonnegative real numbers. There exists, for each π∗∞ ∈ P ∗∞, a P ∗∞-valued
coalescent (�∗∞(t), t ≥ 0) with �∗∞(0) = π∗∞, whose restriction, for each n,
(�∗

n(t), t ≥ 0) to [n] is a P ∗[n]-valued Markov chain starting from π∗
n = π∗∞|n,

and which evolves with the rules

• at each time t ≥ 0, conditionally given �∗
n(t) with b active blocks, each k-tuple

of active blocks of �∗
n(t) is merging to form a single active block at rate λb,k

and
• each active block turns into a frozen block at rate ρn,b

if and only if the integral representation (2.5) holds for some nonnegative finite
measure � on the Borel subsets of [0,1] and ρn,b = ρ for some nonnegative
real number ρ. This P ∗∞-valued process (�∗∞(t), t ≥ 0) directed by (�,ρ) is a
strong Markov process. For ρ = 0, this process reduces to the �-coalescent and
for ρ > 0, the process is obtained by superposing Poisson marks at rate ρ on the
merger-history tree of a �-coalescent and freezing the block containing i at the
time of the first mark along the line of descent of i in the merger-history tree.

PROOF. Just as in [29], consistency of the rate descriptions for different n

implies that (2.6) holds, hence the integral representation (2.5) and equality of the
ρn,b’s are also obvious by consistency. �

DEFINITION 3.2. Call this P ∗∞-valued Markov process directed by a non-
negative integer ρ and a nonnegative finite measure � on [0,1] the �-coalescent
freezing at rate ρ, or the (�,ρ)-coalescent for short. Call a (�,ρ)-coalescent
starting from state �∗∞ a standard �-coalescent freezing at rate ρ, where �∗∞ is
the pure singleton partition with all blocks active.
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Consider the finite coalescent with freeze (�∗
n(t), t ≥ 0) which is the restriction

of a standard �-coalescent freezing at rate ρ to [n]. According to the description
above, all active blocks will coalesce by the rules of a �-coalescent, except that
every active block enters the frozen condition at rate ρ and after that, the block will
stay frozen forever. Hence, it is clear that as long as the freezing rate ρ is positive,
in finite time, the process (�∗

n(t), t ≥ 0) will eventually reach a final partition E∗
n ,

with all of its blocks in the frozen condition.
Now, recall Möhle’s model [23], as reviewed in Section 2. The ancestral lines

of n labeled genes of current generation coalesce as a �-coalescent and mutations
occur along each ancestral line as Poisson point process with rate ρ > 0. Hence,
the final partition of [n] is defined so that if the ancestral line of an individual is
interrupted by a mutation before the line coalesces with any other ancestral lines,
the individual will be a singleton in the partition. This corresponds to the idea of
freezing here: tracing the evolution of a particle starting from time 0, if a particle
freezes before coalescing with others, it will enter as a singleton block in the final
partition of the process.

Going into further detail, let us look at the discrete chain embedded in
�-coalescent freezing at rate ρ. By definition, for each time t ≥ 0, �∗

n(t) is a
partially frozen exchangeable random partition of [n], hence its induced form
�n(t) gives an exchangeable random partition of [n], as does the final partition
E∗

n = �∗
n(∞) and its induced form En. Set E∗∞ := (E∗

n) as the final partition of
(�∗∞(t), t ≥ 0) and denote its induced partition by E∞ = (En).

Following the terminology in [15, 13], we call a triangular stochastic ma-
trix a decrement matrix. We use the notation qn = (q(b :k);1 ≤ k ≤ b ≤ n) or
q∞ = (q(n :k);1 ≤ k ≤ n < ∞) to indicate whether we wish to consider finite
or infinite matrices. Thus the entries of a decrement matrix are nonnegative and
satisfy

∑b
k=1 q(b :k) = 1 for all b in the required range. The following facts

can be read from the existence of (�∗∞(t), t ≥ 0) and Möhle’s analysis recalled
around (2.7).

THEOREM 3.3 ([23], Theorem 3.1). The induced final partition E∞ =
(En)

∞
n=1 of a standard �-coalescent freezing at rate ρ > 0 is an exchangeable

infinite random partition of N whose EPPF p is the unique solution of Möhle’s
recursion (2.7) with coefficients from the infinite decrement matrix q∞ defined
through (�,ρ) as in (2.8).

4. Freeze-and-merge operations. Given a stochastic process X indexed by
a continuous-time parameter t ≥ 0, assuming X has right continuous piecewise
constant paths, the jumping process derived from X is the discrete-time process

X̂ = (X̂(0), X̂(1), . . .) = (X(T0),X(T1),X(T2), . . .),

where T0 := 0 and Tk for k ≥ 1 is the least t > Tk−1 such that X(t) 	= X(Tk−1),
if there is such a t , and Tk = Tk−1 otherwise. The processes X of interest here
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will ultimately arrive in some absorbing state and then so too will X̂. In particular,
the finite coalescent with freeze (�∗

n(t), t ≥ 0), obtained by restriction to [n] of
a �-coalescent freezing at positive rate ρ, is a Markov chain with transition rate(b
k

)
λb,k for a k-merge and rate bρ for a freeze, where b is the number of active

blocks at time t and the λb,k’s are as in (2.5). The jumping process �̂∗
n is then a

Markov chain governed by the following freeze-and-merge operation FMn which
acts on a generic partially frozen partition π∗

n of [n] as follows: if π∗
n has b > 1

active blocks, then:

• with probability q(b :k), some k of b active blocks are chosen uniformly at
random and merged into a single active block (for 2 ≤ k ≤ b);

• with probability q(b : 1), an active block is chosen uniformly at random from b

blocks and turned into a frozen block.

In the case b = 1, only the second option is possible, that is, q(1 : 1) = 1, and when
all blocks of π∗

n are in frozen condition, the operation is defined to be the identity.
For the �-coalescent freezing at positive rate ρ, we know that

(i) the decrement matrix q is of the special form (2.8);
(ii) the continuous-time processes �∗

n(t) are Markovian and consistent as n

varies, meaning that �∗
m(t) for m < n coincides with �∗

n(t)|m, the restriction of
�∗

n(t) to [m].
Note that FMn always reduces the number of active blocks. In particular, it trans-
forms a partition of [n] with b > 1 active blocks into some other partition of [n]
with b − 1 active blocks with probability q(b : 1) + q(b : 2).

To view Möhle’s recursion (2.7) in greater generality, we consider this freeze-
and-merge operation FMn for n some fixed positive integer and qn a finite decre-
ment matrix. Let (�̂∗

n(k), k = 0,1,2, . . .) be the Markov chain obtained by iterat-
ing FMn starting from �̂∗

n(0) = �∗
n . Since FMn is defined in terms of ∗-shapes,

each �̂∗
n(k) is a partially frozen exchangeable partition of [n]. The FMn-chain

is strictly transient, in the sense that it never passes through the same state un-
til it reaches a partially frozen partition E∗

n , all of whose blocks are frozen. Let
En be the induced partition of [n], which we call the final partition, and con-
sider En as the outcome of a random transformation of exchangeable partitions
�n 
→ �∗

n 
→ E∗
n 
→ En.

Observe that for m = 1, . . . , n, the first m rows of the decrement matrix qn

comprise a decrement matrix qm which itself defines a freeze-and-merge operation
FMm on partially frozen partitions of [m]. Hence, for given qn, we can also define
a final partition Em of the FMm-chain. Note that FMn is essentially an operation
on the set of active blocks, regardless of their contents, sizes and the configuration
of frozen blocks.

LEMMA 4.1. Given an arbitrary decrement matrix qn, let p be the function on⋃n
m=1 Cm whose restriction to Cm is the EPPF of Em, the final partition generated
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by the FMm chain, for 1 ≤ m ≤ n. Then p satisfies Möhle’s recursion (2.7) for
each composition (n1, n2, . . . , n�) ∈ Cn.

PROOF. A particular realization of En with shape(En) = (n1, . . . , n�) occurs
when either

(a) some block {j} of En appears as a frozen singleton in FMn(�
∗
n) and all other

singletons {i} 	= {j} evolve to form a partition with shape (. . . , 1̂, . . .), or
(b) the first iteration of FMn merges some singletons {j1}, . . . , {jk} (k > 1) in a

single active block which completely enters one of the blocks of En.

By the definition of p and the last remark before the lemma, the probability of
event (a) is

1

n
· q(n : 1)p(. . . , 1̂, . . .)

because after {j} gets frozen, the operation FMn is reduced to FMn−1 acting on
partially frozen partitions of [n] \ {j}. Similarly, the probability of (b) is

1(n
k

) · q(n :k)p(. . . , n − k + 1, . . .)

because after creation of the active block {j1, . . . , jk}, the iterates of FMn can
be identified with those of FMn−k+1 acting on partially frozen partitions of
[n] \ {j2, . . . , jk}. Summation over all possible choices yields (2.7). �

In the general setting of Lemma 4.1, the sequence of exchangeable final parti-
tions (Em)nm=1 need not be consistent with respect to restrictions. We turn next to
the constraints on q imposed by the following, stronger, consistency condition.

DEFINITION 4.2. For a decrement matrix qn and 1 ≤ m < n, call the tran-
sition operators FMn and FMm derived from qn consistent if whenever �̂∗

n is a
Markov chain governed by FMn, the jump process derived from the restriction
of �̂∗

n to [m] is a Markov chain governed by FMm. Call the decrement matrix qn

consistent if this condition holds for every 1 ≤ m < n.

As the leading example, it is clear from consistency of the continuous-time
chains (�∗

n(t), t ≥ 0) which represent a (�,ρ)-coalescent that for every n, the
corresponding decrement matrix qn is consistent. The following lemma collects
some general facts about consistency. The proofs are elementary and left to the
reader. Let FMn(π

∗
n ) denote the random partition obtained by the action of FMn

on an initial partially frozen partition π∗
n of [n].

LEMMA 4.3. Given a particular decrement matrix qn, we have the following:
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(i) For fixed 1 ≤ m < n, the transition operators FMm and FMn are consistent
if and only if for each partially frozen partition π∗

n of [n], there is the equality in
distribution

FMm(π∗
n |m)

d= FMn(π
∗
n )||m,

where on the left-hand side π∗
n |m is the restriction of π∗

n to [m] and on the right-
hand side, the notation ||m means the restriction to [m] conditional on the event
FMn(π

∗
n |m) 	= π∗

n |m that FMn freezes or merges at least one of the blocks of π∗
n

containing some element of [m].
(ii) If FMm−1 and FMm are consistent for every 1 < m ≤ n, then so are FMm

and FMn for every 1 < m ≤ n; that is, qn is consistent.

LEMMA 4.4. A decrement matrix qn is consistent if and only if it satisfies the
backward recursion

q(b :k) = k + 1

b + 1
q(b + 1 :k + 1) + b + 1 − k

b + 1
q(b + 1 :k)

+ 1

b + 1
q(b + 1 : 1)q(b :k) + 2

b + 1
q(b + 1 : 2)q(b :k)(4.1)

(2 ≤ k ≤ b < n),

q(b : 1) = b

b + 1
q(b + 1 : 1) + 1

b + 1
q(b + 1 : 1)q(b : 1)

(4.2)

+ 2

b + 1
q(b + 1 : 2)q(b : 1) (1 ≤ b < n).

Consequently, each probability distribution q(n : ·) on [n] determines a unique
consistent decrement matrix qn with this nth row.

PROOF. Consider FMn and FMn−1 applied to �∗
n and �∗

n−1, that is, the parti-
tions into singletons, all in the active condition. For k ≤ n − 1, FMn−1 operates by
coalescing {1, . . . , k} into an active block with probability

q(n − 1 :k)(n−1
k

) .(4.3)

As for the jumping process of (FMn restricted to [n − 1]), the probability of a co-
alescence of {1, . . . , k} into an active block is the sum of the following four parts,
depending on the development of the FMn chain. Let T1 be the time of the first
change in the restriction of the FMn chain to [n − 1]. To obtain the required coa-
lescence, either (i) T1 = 1 and the state after a single step of FMn comes from �∗

n

by coalescing {1, . . . , k, n} or {1, . . . , k}, these occurring with probability

q(n : k + 1)( n
k+1

) + q(n :k)(n
k

) ,(4.4)
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or (ii) T1 = 2 with FMn acting on �∗
n by first freezing {n} then coalescing

{1,2, . . . , k}, or first coalescing {n} with one of the other n − 1 singletons, leav-
ing 1,2, . . . , k in k distinct blocks, then coalescing these k blocks at the next step,
these occurring with probability

q(n : 1)

n
· q(n − 1 :k)(n−1

k

) + (n − 1)q(n : 2)(n
2

) · q(n − 1 :k)(n−1
k

) .(4.5)

Equate (4.3) with the sum of (4.4) and (4.5) to get (4.1) for b = n− 1. In much the
same way, FMn−1 may act on �∗

n−1 by freezing {1} with probability

q(n − 1 : 1)

n − 1
.(4.6)

While for the jumping process of (FMn restricted to [n−1]), to obtain the required
form, either (i) T1 = 1 and FMn acts on �∗

n by freezing {1} with probability

q(n : 1)

n
,(4.7)

or (ii) T1 = 2 and the result is obtained from �∗
n by first freezing {n} then freez-

ing {1}, or first coalescing {n} with one of other n − 1 singletons then freezing the
block containing 1, these ways occurring with probability

q(n : 1)

n
· q(n − 1 : 1)

n − 1
+ (n − 1)q(n : 2)(n

2

) · q(n − 1 : 1)

n − 1
.(4.8)

Equate (4.6) with the sum of (4.7) and (4.8) to get (4.1) for b = n − 1. Combine
them to get (4.2) for b = n − 1. The recursions for b < n follow by replacing n by
b + 1.

Conversely, granted the recursions (4.1) and (4.2), in order to prove consistency,
it is sufficient to check the case m = n − 1 and this is done by application of
Lemma 4.3. �

LEMMA 4.5. For 1 ≤ m ≤ n, let Em be the final partition of the FMn-chain
starting in state �∗

m. If the decrement matrix qn is consistent, then the finite se-
quence of exchangeable random set partitions (Em)nm=1 is consistent in the sense
that

Em
d= En|m.

The finite EPPF p of (Em)nm=1 then satisfies Möhle’s recursion (2.7) for all com-
positions of m ≤ n in the left-hand side.

PROOF. The consistency in distribution is clear. To show (2.7), it suffices to
look at the case with compositions of n on the left-hand side, for which Lemma 4.1
applies. �

Here is our principal result regarding finite partitions which satisfy (2.7).
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THEOREM 4.6. For a positive integer n > 1 and arbitrary probability distri-
bution q(n : ·) on [n],

(i) there exists a unique finite EPPF p for a consistent sequence of random set
partitions (�m)nm=1 which satisfies Möhle’s recursion (2.7) for all compositions
of n;

(ii) this finite EPPF p satisfies Möhle’s recursion (2.7) for all compositions
of positive integers m < n with coefficients q(m : ·) derived from q(n : ·) by the
recursion (4.1), (4.2);

(iii) for each 1 ≤ m ≤ n, the distribution of �m determined by the restriction of
this EPPF p to compositions of m is that of the final partition of the FMm Markov
chain with decrement matrix qm defined by (ii), starting from state �∗

m.

PROOF. We apply Lemma 4.5. Given arbitrary probability distribution q(n : ·)
on [n], we can define all q(m : ·), 1 ≤ m < n, by the backward recursion (4.1)
and (4.2). We then use the decrement matrix qn with these rows to build a sequence
of Markov chains: for each m, the chain (�m(k), k = 0,1,2, . . .) starts from �∗

m

and evolves according to FMm. The sequence of induced final partitions (Em)nm=1
of these chains has EPPF p which satisfies recursion (2.7). Hence, the existence
part of (i) follows. We postpone the proof of uniqueness in part (i) to the next
section. The assertions (ii) and (iii) follow directly from this construction. �

5. The sample-and-add operation. Given a probability distribution q(n : ·)
on [n], we now interpret Möhle’s recursion (2.7) as the system of equations for
the invariant probability measure of a particular Markov transition mechanism on
partitions of [n] and show that this invariant probability distribution is unique. This
will complete the proof of Theorem 4.6.

Consider the following sample-and-add random operation on P[n], denoted
by SAn. We regard a generic random partition �n � [n] as a random allocation
of balls labeled 1, . . . , n to some set of nonempty boxes, which the operation SAn

transforms into some other random allocation �′
n. Fix q(n : ·), a probability distri-

bution on [n], and let Kn be a random variable with this distribution q(n : ·). Given
Kn = k and �n = πn, we have the following:

• if k = 1, first delete a single ball picked uniformly at random from the balls
allocated according to πn to make an intermediate partition of some set of n− 1
balls, then add to this intermediate partition a single box containing the deleted
ball;

• if k = 2, . . . , n, delete a sequence of k−1 of the n balls from πn by uniform ran-
dom sampling without replacement to obtain an intermediate partition of some
set of n − k + 1 balls, then mark a ball picked uniformly from these n − k + 1
balls and add the k − 1 sampled balls to the box containing the marked ball.
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In either case, empty boxes are deleted in case any appear after the sampling step.
The resulting partition of [n] is �′

n. For each q(n : ·), this defines a Markovian
transition operator SAn on partitions of [n].

LEMMA 5.1. Let �n be an exchangeable random partition of [n] with finite
EPPF p defined as a function of compositions of m for 1 ≤ m ≤ n. Let �′

n be
derived from �n by the SAn operation determined by some arbitrary probability
distribution q(n : ·) on [n]. Then �′

n is an exchangeable random partition of [n]
whose EPPF p′ is determined on compositions of [n] by the formula

p′(n1, n2, . . . , n�) = q(n : 1)

n

∑
j :nj=1

p(. . . , n̂j , . . .)

(5.1)

+
n∑

k=2

q(n :k)
∑

j :nj≥k

(nj

k

)
(n
k

) p(. . . , nj − k + 1, . . .).

[Note that the right-hand side of (5.1) is identical to the right-hand side of Möhle’s
recursion (2.7).]

PROOF. Let Kn with distribution q(n : ·) be the number of balls deleted in the
SAn operation. For each partition π ′

n of [n], we can compute

P(�′
n = π ′

n) =
n∑

k=1

q(n :k)P(�′
n = π ′

n|Kn = k).(5.2)

Assuming that π ′
n has boxes of size n1, . . . , n� and that the SAn operation acts on

an exchangeable �n with EPPF p, we deduce (5.1) from (5.2) and

P(�′
n = π ′

n|Kn = 1) = 1

n

∑
j :nj=1

p(. . . , n̂j , . . .),(5.3)

P(�′
n = π ′

n|Kn = k) = ∑
j :nj≥k

(nj

k

)
(n
k

) p(. . . , nj − k + 1, . . .), k ≥ 2.(5.4)

First, consider (5.4). For the event (�′
n = π ′

n) to occur, there must be some j with
nj ≥ k. For each such j , corresponding to a box of π ′

n with at least k balls, the
result (�′

n = π ′
n) might be obtained by the addition of k − 1 balls to that box.

The sequence of labels of these balls, in order of their choice, can be any one of
nj (nj −1) · · · (nj − k +2) sequences and the final ball chosen to mark the box can
be any one of nj −k+1 balls, making k!(nj

k

)
choices out of a total of k!(n

k

)
possible

choices. Given one of these k!(nj

k

)
choices of k balls, let Mk−1 be the set of labels

of the k − 1 balls that are moved. Then the event (�′
n = π ′

n) occurs if and only
if the restriction of �n to [n] − Mk−1 equals the restriction of π ′

n to [n] − Mk−1,
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which is a particular partition of n − k + 1 labeled balls into boxes of n̄1, . . . , n̄�

balls, where n̄i = ni1(i 	= j) + (nj − k + 1)1(i = j). The conditional probability
of (�′

n = π ′
n), given Kn = k and which of the k!(nj

k

)
possible choices of k balls is

made, is therefore p(. . . , nj − k + 1, . . .), by the assumed exchangeability of �n

and the definition of the EPPF p of �n on compositions of m ≤ n by restriction
of �n to subsets of size m. The evaluation (5.4) is now apparent and (5.3) is also
apparent by a similar, but easier, argument. �

PROPOSITION 5.2. For each probability distribution q(n : ·) on [n], the cor-
responding SAn transition operator on partitions of [n] has a unique stationary
distribution. A random partition with this stationary distribution is exchangeable
and its EPPF is the finite unique EPPF p that satisfies Möhle’s recursion (2.7),
that is, (5.1) with p′ = p.

PROOF. If q(n : 1) = 1, then SAn eventually terminates with singleton parti-
tion, so the stationary distribution is degenerate and concentrated on the singleton
partition. If q(n : 1) = 0, then SAn eventually terminates with one-block partition,
so the stationary distribution is degenerate and concentrated on the one-block parti-
tion. If 0 < q(n : 1) < 1, then we also have q(n :k) > 0 for some k > 1; in this case,
the stationary law is again unique because all states communicate (e.g., the pure-
singleton partition �n is reachable from everywhere and can reach any partition in
finitely many steps, as is easily verified). Observe that passing to shapes projects
the SAn chain with state space partitions of the set [n] onto another Markov chain
whose state space is the set of partitions of the integer n. It easily follows that the
unique stationary distribution of SAn governs an exchangeable random partition
of [n]. The previous lemma shows that its EPPF p solves Möhle’s recursion. Fi-
nally, if an EPPF p solves Möhle’s recursion, then it provides a stationary state
for the SAn chain. Hence, the uniqueness result follows for solutions of Möhle’s
recursion by an EPPF p. �

5.1. Special cases. The following are two special cases of SAm operation.
Ewens’ partition [1, 10] appears when q(n : ·) may have only two positive en-

tries,

q(n : 1) = 2ρ

n − 1 + 2ρ
and q(n : 2) = n − 1

n − 1 + 2ρ

for each n ≥ 2. It is easy to realize that the SAn operation in this case is reduced to
the following operation with u = 2ρ/(n−1+2ρ): given a number 0 ≤ u ≤ 1 and a
partition of [n] as allocation of n labeled balls, we first uniformly sample two balls
named A and D without replacement from the n balls (so A = D is excluded),
then put ball A back where it was, and finally:

• with probability u, append a new box containing the single ball D,
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• with probability 1 − u, add the ball D to the box containing the ball A.

In this case, if we consider the FM operator determined by q , it is clear that only bi-
nary merges happen. That the stationary partition �n follows the Ewens’ sampling
formula with parameter θ = (n − 1)u/(1 − u) is seen by the “Chinese restaurant”
rule [28] for transition from �n−1 to �n, or can easily be concluded from the
formula. The coincidence of the stationary distribution of this SAn chain with the
law of the induced final partition En of the associated FMn chain confirms, in this
case, the well-known fact that Kingman’s coalescent with mutations terminates at
Ewens’ partition.

The SAn-chain resembles Moran’s novel mutation chain [26, 35, 37]. Transi-
tions of the latter are the following: given a number 0 ≤ u ≤ 1 and a partition of [n]
as allocation of labeled balls, first choose two balls named A and D uniformly and
independently from the n balls (so A = D is not excluded), then follow the rules

• with probability u, append a new box with a single ball C,
• with probability 1 − u, add a ball C to the box that contains ball A,

then assign to ball C the same label as that of D and finally remove ball D. It is
well known [35] that the stationary law of Moran’s chain corresponds to Ewens’
partition with parameter nu/(1 − u).

Hook partitions. Another extreme case appears when q(n : ·) may have only
two positive entries,

q(n : 1) = nρ

1 + nρ
and q(n :n) = 1

1 + nρ
.

In this case, SAn creates some number of singletons and then after some number
of steps puts all balls in a single box. If 0 < q(n : 1) < 1, the stationary distribution
concentrates on partitions with a hook shape (m,1,1, . . . ,1). This partition results
from the �-coalescent with freeze when � = δ1 is a Dirac mass at 1.

6. Infinite partitions. In this section, we pass from finite partitions to the
projective limit and arrive at the desired integral representation of infinite decre-
ment matrix q∞ satisfying recursion (4.1) and (4.2). This gives another approach
to Möhle’s partitions via consistent freeze-and-merge chains, which may be seen
as discrete-time jumping processes associated with the �-coalescent with freeze.

An infinite sequence of freeze-and-merge operations FM := (FMn, n = 1,2, . . .)

which satisfies the condition in Definition 4.2 for all positive integers
1 ≤ m < n < ∞ is called consistent. By Lemma 4.4, such a sequence FM is de-
termined by an infinite decrement matrix q∞ which satisfies the recursion (4.1),
(4.2).

For each n = 1,2, . . . , the Markov chain starting from �∗
n and driven by FMn

terminates with an induced final partition �n. These comprise an infinite partition
�∞ = (�n)

∞
n=1 which we call the final partition associated with consistent FM.

In the case q(2 : 1) = 0, the final partition is the trivial one-block partition.
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LEMMA 6.1. For every infinite decrement matrix q∞ with entries satisfying
the recursion (4.1), (4.2), there exist a nonnegative finite measure � on [0,1] and a
nonnegative real number ρ which satisfy (�,ρ) 	= (0,0) and are such that the rep-
resentation q(n :k) = 
(n :k)/
(n) (1 ≤ k ≤ n) holds with 
 as in (2.9)–(2.11).
The data (�,ρ) are unique up to a positive factor.

PROOF. Suppose that q solves (4.1), (4.2) and that q(2 : 2) < 1. Let 
(n),
n = 1,2, . . . , satisfy


(n)


(n + 1)
= 1 − 1

n + 1
q(n + 1 : 1) − 2

n + 1
q(n + 1 : 2)(6.1)

for n ≥ 1; because the right-hand side is strictly positive, this recursion has a
unique solution with some given initial value 
(1) = ρ, where ρ > 0. For 2 ≤
k ≤ n, set


(n :k) := q(n :k)
(n),

then from (6.1) and (4.1),


(n :k) = k + 1

n + 1

(n + 1 :k + 1) + n + 1 − k

n + 1

(n + 1 :k) (2 ≤ k ≤ n < ∞).

Apart from a shift by 2, this is the well-known Pascal-triangle recursion appear-
ing in connection with de Finetti’s theorem and the Hausdorff moment prob-
lem, hence (2.10) holds for some nonnegative measure � on Borel sets of [0,1].
From (4.2), we find that

ρ = 
(1)q(1 : 1)

1
= · · · = 
(n)q(n : 1)

n
= · · ·

and from
n∑

k=1


(n)q(n :k) = 
(n),

we deduce (2.11) and q(n : 1) = ρn/
(n). Setting, by definition, 
(n : 1) := ρn,
we are done. For the special case q(2 : 2) = 1, it is easy to observe that ρ = 0
and we get � = δ0 by means of similar analysis. �

Recording this lemma together with previous results, we have the following.

THEOREM 6.2. Let (�n)
∞
n=1 be a nontrivial exchangeable random partition

of N, different from the trivial one-block partition. The following are then equiva-
lent:

(i) the EPPF p satisfies the recursion (2.7) with some infinite decrement ma-
trix q∞;
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(ii) this matrix is representable as q(n :k) = 
(n :k)/
(n) with 
 defined
by (2.9)–(2.11) and some nontrivial (�,ρ), which is unique up to a positive factor;

(ii) this �∞ is induced by the final partition of some standard �-coalescent
freezing at rate ρ;

(iii) this �∞ is the final partition of some consistent FM operation.

Complementing this result, we have the following uniqueness assertion.

LEMMA 6.3. The correspondence q 
→ p between infinite decrement matrices
with q(2 : 1) > 0 satisfying consistency (4.1), (4.2) and the EPPF’s is bijective.

PROOF. We only need to show that p, which by Lemma 4.5 must solve (2.7),
uniquely determines q . For general infinite partitions, q(2 : 1) = p(1,1) > 0 im-
plies that p(1,1, . . . ,1) > 0. This applied to the singleton shapes, together with

p(1, . . . ,1) = q(n : 1)q(n − 1 : 1) · · ·q(2 : 1),

shows that the q(n : 1)’s are uniquely determined by p. To show that q(n :m)

for 1 ≤ m ≤ n − 1 is also determined by p, we exploit the formula

p(m,1, . . . ,1) = q(n :m)(n
m

) p(1, . . . ,1) +
m−1∑
k=2

q(n :k)

(m
k

)
(n
k

) p(m − k + 1,1, . . . ,1)

+ q(n : 1)
n − m

n
p(m, 1̂,1, . . . ,1)

and argue by induction in m = 2,3, . . . , n − 1. �

Thus if an exchangeable infinite partition can be realized as the induced final
partition of a consistent FM-operation, then this FM-operation is unique. The re-
alization via a (�,ρ)-coalescent process is unique up to a positive multiple of the
parameters, which corresponds to a linear time-change of the coalescent. If there
is no freeze, then the uniqueness fails since any �-coalescent terminates with the
trivial one-block partition.

We classify the cases where some of the entries of q are zeros. It is assumed
that the starting partition is �∗∞.

(i) If q(n : 1) = 1 holds for n = 2, then the same holds for n ≥ 2. This is the
pure-freeze coalescent with � = 0, hence E∞ = �∞.

(ii) If q(n : 1) = 0 holds for n = 2, then the same holds for n ≥ 2. This is a
�-coalescent with no freeze, hence E∞ is the one-block partition.

(iii) If q(n : 1) > 0, q(n : 2) > 0 and q(n : 1) + q(n : 2) = 1 hold for n = 3, then
the same relations hold for n ≥ 3. This is the case of Kingman’s coalescent with
freeze, where � is a positive mass at 0 and E∞ is Ewens’ partition.
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(iv) If q(n : 1) > 0, q(n :n) > 0 and q(n : 1) + q(n :n) = 1 hold for n = 3, then
they also hold for n ≥ 3. In this case, � is a positive mass at 1 and E∞ is a hook
partition.

The “generic” case is characterized by q(3 : 1) > 0, q(3 : 2) > 0, q(3 : 3) > 0, in
which case 0 < q(n :m) < 1 for all 1 ≤ m ≤ n < ∞.

7. Positivity. This section provides a construction of decrement matrices q∞
satisfying the consistency condition (4.1), (4.2), from a single sequence of real
numbers satisfying a positivity condition. For (c(n), n = 0,1,2, . . .) a sequence of
real numbers, the backward difference operator ∇ is defined as

c(n) := c(n) − c(n + 1)

and for any j = 0,1,2, . . . , its iterates act as

j c(n) =
j∑

i=0

(−1)i
(

j

i

)
c(n + i).

Now, let (
(n), n = 1,2, . . .) be a sequence of real numbers and let ρ be a
positive real number. Define, for each n,


(n : 1) := ρn(7.1)

and


(n) := 
(n) − ρn.(7.2)

Define

(n) := 
(n)

n
(7.3)

and let


(n :m) := −
(

n

m

)
m−2 (n − m + 1), 2 ≤ m ≤ n.(7.4)

With these definitions, it can be verified that for each n,


(n) = 
(n : 1) + 
(n : 2) + · · · + 
(n :n).(7.5)

Hence, if all 
(n) are positive and all 
(n :m) are nonnegative, then the matrix
with entries

q(n :m) := 
(n :m)


(n)
, 1 ≤ m ≤ n,(7.6)

is a well-defined infinite decrement matrix. More than that, we have the following
observation.
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LEMMA 7.1. Suppose that a sequence of positive real numbers ρ, 
(n),
n = 1,2, . . . , is such that each entry 
(n : 1), 
(n :m) in (7.1), (7.4) is nonnega-
tive. Then the matrix (7.6) satisfies the recursion (4.1), (4.2).

PROOF. The definition (7.4) of 
(n :m) implies the recursion


(n :m) = m + 1

n + 1

(n + 1 :m + 1) + n − m + 1

n + 1

(n + 1 :m),

(7.7)
2 ≤ m ≤ n.

Using this relation, the first recursion (4.1) can be reduced to

2
(n + 1 : 2) = (n + 1)
(

(n + 1) − 
(n)

) − 
(n + 1 : 1),

which follows from the definition of 
(n + 1 : 2) and 
(n + 1 : 1). The second
recursion is actually the definition of 
(n + 1 : 2) after we substitute in all of the

(n : 1), 
(n + 1 : 1) terms. �

The above lemma shows that given a sequence of positive real numbers with
some additional positivity property, we can recover Möhle’s partition structure by
first defining a consistent decrement matrix and then using the recursion (2.7). By
Lemma 6.1, we know that every decrement matrix satisfying consistency condi-
tion (4.1), (4.2) has an integral representation which is unique up to a positive fac-
tor, so it is clear that we also have integral representation for the sequence of 
(n)

given here.

PROPOSITION 7.2. A sequence of positive real numbers ρ, 
(n), n =
1,2, . . . , is such that each entry 
(n : 1), 
(n :m) as in (7.1)–(7.4) is nonneg-
ative if and only if these numbers admit the integral representation (2.9)–(2.11)
for some nonnegative finite measure � on [0,1], which is then unique.

8. Freezing times. In this section, (�∗(t), t ≥ 0) is a standard (�,ρ)-coales-
cent, with (�(t), t ≥ 0)-induced ordinary partition-valued process and final parti-
tion E∞. We assume that both � and ρ are nonzero. The process (�0(t), t ≥ 0)

will denote the standard �-coalescent. We presume that all (�,ρ)-coalescents are
defined consistently as ρ varies so that the �(t)’s and E∞ get finer as the freezing
rate ρ increases, in particular, each partition �(t) being finer than �0(t) for each
t ≥ 0 and ρ > 0.

8.1. Age ordering. Assigning each individual j ∈ N the freezing time τj

(when the active block containing j gets frozen), the final partition E∞ is de-
fined by sending i, j to the same block if and only if τi = τj . The correspondence
j 
→ τj induces a total order on the set of blocks of E∞: we say that the block
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containing j is older than the block containing i if τi < τj . With this age ordering,
E∞ is an ordered exchangeable partition of N, as studied in [7, 8, 12, 14, 15].

We preserve the notation E∞ = (En) to denote the partition with this additional
feature of total order on the set of blocks. The law of ordered partition E∞ is deter-
mined by an exchangeable composition probability function (ECPF) c(n1, . . . , n�)

on compositions of n. The ECPF c must satisfy an addition rule similar to (2.4),
but, unlike p, need not be symmetric. The EPPF p of unordered partition is recov-
ered from c by symmetrization; see [15] for details.

With each j , we associate a random open interval ]aj , bj [, where

aj = lim
n→∞ #{i ≤ n : τi < τj }/n,

(8.1)
bj − aj = lim

n→∞ #{i ≤ n : τi = τj }/n

and the existence of the frequencies is guaranteed by de Finetti’s theorem. Thus aj

is the total frequency of blocks preceding the block containing j and bj −aj is the
frequency of the block containing j . The random open set U = ⋃

j ]aj , bj [ is the
paintbox representing E∞. The partition E∞ can be uniquely recovered from U

by a simple sampling scheme [12, 15, 19, 20].
For instance, when � = δ0, the complement closed set is

Uc = {1, Y1, Y1Y2, . . . ,0}
for Yk’s independent random variables whose distribution is beta(2ρ,1). This case
has been thoroughly studied [7, 8] and it is well known that the arrangement of the
block sizes in age order is inverse to the arrangement in size-biased order. In the
case � = δ1, the set U has only one interval, ]Y,1[, where Y has a beta distribution.

8.2. Properties of the final partition. Some properties of U for a (�,ρ)-coales-
cent with ρ > 0 follow from known results about the �-coalescents [29]. We shall
only discuss the case �{1} = 0 since the case �{1} > 0 only differs by an inde-
pendent exponential killing and its properties easily follow those that in the case
�{1} = 0. Let

µr :=
∫ 1

0
xr�(dx).

Denote by Leb the Lebesgue measure on [0,1]. In the event Leb(U) < 1, the or-
dered partition E∞ with paintbox U has a positive total frequency of singletons
blocks and in the event Leb(U) = 1, there are no singleton blocks at all.

PROPOSITION 8.1. If µ−1 < ∞, then with probability one:

(i) �0(t) has singletons for each t > 0;
(ii) �∗(t) has active singletons for each t > 0;

(iii) �∗(t) has frozen singletons for each t > 0;
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(iv) E∞ has singleton blocks.

If µ−1 = ∞, then the opposites of (i)–(iv) hold with probability one.

PROOF. By [29], Lemma 25, if µ−1 < ∞, then �0(t) has singletons almost
surely and if µ−1 = ∞, the partition has no singletons almost surely. Now, if �0(t)

has singletons, each of them is active with probability 0 < e−ρt < 1, independently
of the others, thus the partially frozen partition �∗(t) has singletons in both con-
ditions and the frozen ones are also singleton blocks of E∞. Conversely, if, with
positive probability, E∞ has singletons, then for some t with positive probability,
�∗(t) has frozen singletons, then, perhaps for some other t , with positive probabil-
ity, �∗(t) has active singletons, but in this event, the partition �0(t) has singletons,
hence µ−1 = ∞ cannot hold. �

By [29], Proposition 23, the �-coalescent either comes down from infinity [the
number of blocks in �0(t) is finite almost surely for every t > 0] or stays infinite
(the number of blocks is finite).

PROPOSITION 8.2. If the �-coalescent stays infinite, then the (�,ρ)-coales-
cent has infinitely many active blocks at any time, therefore:

(i) the set of freezing times {τj } is dense in R+;
(ii) the closed set Uc has empty interior and no isolated points.

If the �-coalescent comes down from infinity, then the (�,ρ)-coalescent satisfies:

(i′) the set of freezing times {τj } is bounded and only accumulates near 0;
(ii′) the closed set Uc only accumulates near 0.

PROOF. Let Jk be the minimal element in some block Ak of �0(t). Then
Jk is also the minimal element in some block Bk ⊂ Ak of �∗(t). Since the
block containing Jk changes the condition from active to frozen independently
of the �-coalescent, with positive probability 1 − e−ρt , the block Bk is active. For
k = 1,2, . . . , these events are independent, hence �∗(t) has infinitely many active
blocks. But the same is true for t + ε, hence, arguing as in Proposition 8.1, we see
that infinitely many of the active Bk’s get frozen before t + ε, hence (i). More-
over, infinitely many of the active Bk’s are nonsingleton and hence, by the law of
large numbers for exchangeable trials, have positive frequency. Assertion (ii) now
follows from this remark, (i) and (8.1). �

9. Comparison with regenerative partitions and Markovian fragmenta-
tions. This section is mainly devoted to parallels and differences between
Möhle’s partitions and regenerative partitions [13–15]. A novel feature discussed
here is a realization of regenerative partitions by a simple continuous-time coales-
cent process.
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9.1. Continuous-time realization and EPPF. Consider a P ∗∞-valued Markov-
ian process (�∗∞(t), t ≥ 0) which starts with �∗∞ and evolves by the following
rules. Any number of active singleton blocks can merge to form a single frozen
block, which suspends further evolution immediately. In particular, an active sin-
gleton block can turn into a frozen singleton block, an event interpreted as unary
merge. If �n(t) has b active blocks, then each k-tuple is merging at the same rate
so that the total rate for a k-merge is 
(b :k) for 1 ≤ k ≤ b < ∞, and 
(1 : 1) > 0.

Eventually, there are only frozen blocks whose configuration determines a
final partition E∞. Setting 
(b) := 
(b : 1) + · · · + 
(b :b) and q(n :k) :=

(n :k)/
(n), the EPPF of E∞ satisfies

p(n1, n2, . . . , n�) =
�∑

j=1

1( n
nj

)q(n :nj )p(. . . , n̂j , . . .)(9.1)

for any composition (n1, n2, . . . , n�) of n, which is a recursion analogous to (2.7).
This allows an explicit formula,

p(n1, n2, . . . , n�) = ∑
σ

q(Nσ(1) :nσ(1)) · · ·q(Nσ(�) :nσ(�))( n
n1,...,n�

) ,(9.2)

where the sum is over all permutations σ : [�] → [�], and Nσ(j) = nσ(j) + · · · +
nσ(�).

9.2. Subordinator. Exchangeability implies the existence of a nonnegative fi-
nite measure on [0,1] such that


(b :k) =
(

n

k

)∫ 1

0
xk−1(1 − x)b−k�(dx),(9.3)

a representation to be compared with (2.10). The cumulative rate for some transi-
tion when �n(t) has b active blocks equals


(b) := 
(b : 1) + · · · + 
(b :b) =
∫ 1

0

1 − (1 − x)b

x
�(dx).

The last formula is an integral representation of a Bernstein function, hence
the measure �(dx)/x can be associated with some subordinator [16]. Explicitly,
by de Finetti’s theorem, there exists the limit proportion St of integers in [n] that
comprise the active blocks of �∗

n(t) as n → ∞. The process (− log(1 −St ), t ≥ 0)

is a subordinator with S0 = 0 and distribution determined by

E[(1 − St )
λ] = e−t
(λ), t ≥ 0, λ ≥ 0,

which is a version of the Lévy–Khintchine formula in the form of the Mellin trans-
form. The subordinator has a drift if � has an atom at 0.
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Putting the blocks of E∞ in increasing order of their freezing times yields an
ordered exchangeable partition with ECPF

p(n1, . . . , n�) =
�∏

j=1

q(Nj :nj )(Nj

nj

) ,

where Nj := nj +· · ·+n�. The closed range of the process (St ) is the complement
Uc to the paintbox U of the ordered partition E∞.

9.3. Related Markov chains.

9.3.1. Transient. For regenerative partitions, the analogue of FMn introduced
in Section 4 is the following. Let q∞ = {q(b :k),1 ≤ k ≤ b < ∞} be a decrement
matrix. If there are b active blocks in a partially frozen partition of [n], then with
probability q(b :k), any k of b active blocks are chosen uniformly at random and
merged into a single frozen block. Consistency translates as the recursion

q(b :k) = k + 1

b + 1
q(b + 1 :k + 1) + b + 1 − k

b + 1
q(b + 1 :k)

(9.4)

+ 1

b + 1
q(b + 1 : 1)q(b :k)

with q(1 : 1) = 1, which leads to

q(b :k) = 
(b :k)/
(b), (1 ≤ k ≤ b < ∞),

where 
 has the integral representation (9.3) with some measure �, unique up to
a positive multiple.

9.3.2. Recurrent. The analogue of the operation SAn introduced in Section 5,
acting on ordinary partitions of [n], is the following [13]. Given a decrement ma-
trix q , let Kn follow q(n : ·). Choose a value k for Kn, then starting from some
partition πn of [n], sample k balls from πn uniformly without replacement and
then append a new box with these k balls to the remaining partition of n − k balls.
According to an ordered version of the algorithm acting on ordered partitions, the
balls are sampled from a totally ordered series of boxes and the newly created box
is always arranged as the first box in the series.

In contrast to the SAn operation, these Markov chains on partitions of [n] are
consistent under restrictions as n varies. To see that the operations SAn are not
consistent as n varies [excluding the hook case q(n : 1) + q(n :n) ≡ 1], fix n > 2
and let πn+1 be a partition having a singleton block {n + 1}. There is a chance that
some 2 ≤ r ≤ n balls are sampled from πn+1 and added in the box {n + 1}. In this
case, the restriction of SAn+1 to [n] creates a novel nonsingleton box, which is not
a legitimate option for SAn.

In [13], it was shown that the unique stationary [n]-partition is the one given
by (9.2).
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EXAMPLE. When

q(n : 1) = nρ

1 + nρ
, q(n :n) = 1

1 + nρ
,

the operation will create a new singleton block with probability q(n : 1) and will
merge everything in one block with probability q(n :n). So the stationary distrib-
utions will concentrate on hook partitions. The decrement matrix for this chain is
the same as for SAn.

EXAMPLE. When

q(n : m) =
(

n

m

) [θ ]n−mm!
[θ + 1]n−1n

,

with θ = 2ρ, the invariant partition is Ewens’, with parameter θ . The decrement
matrix for this chain is different from the one for SAn, which also leads to Ewens’
distribution.

9.4. Comparing recursions of EPPF. Both (2.7) and (9.1) are forward recur-
sions, which determine Möhle’s partitions and regenerative partitions, respectively.
They carry a striking parallel, except that the latter allows an explicit formula (9.2).
In both cases, it is clear that each of these functions p can be written as a linear
combination of products of entries of the decrement matrix. To illustrate the simi-
larity between the two recursions (2.7) and (9.1), we list the first few values of p

in terms of the decrement matrix q , first for Möhle’s recursion (2.7):

p(1) = 1,

p(2) = q(2 : 2),

p(1,1) = q(2 : 1),

p(3) = q(3 : 3) + q(3 : 2)q(2 : 2),

p(2,1) = p(1,2) = 1
3q(3 : 2)q(2 : 1) + 1

3q(3 : 1)q(2 : 2),

p(1,1,1) = q(3 : 1)q(2 : 1),

p(4) = q(4 : 4) + q(4 : 3)q(2 : 2) + q(4 : 2)q(3 : 3)

+ q(4 : 2)q(3 : 2)q(2 : 2),

p(3,1) = p(1,3) = 1
4q(4 : 3)q(2 : 1) + 1

6q(4 : 2)q(3 : 2)q(2 : 1)

+ 1
2q(4 : 2)q(3 : 1)q(2 : 2) + 1

4q(4 : 1)q(3 : 3)

+ 1
12q(4 : 1)q(3 : 2)q(2 : 2),

p(2,1,1) = p(1,2,1) = p(1,1,2)

= 1
6q(4 : 2)q(3 : 1)q(2 : 1) + 1

6q(4 : 1)q(3 : 2)q(2 : 1)
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+ 1
6q(4 : 1)q(3 : 1)q(2 : 2),

p(1,1,1,1) = q(4 : 1)q(3 : 1)q(2 : 1).

The condition on q∞ equivalent to consistency of p while n varies has been de-
scribed in Lemma 4.4.

Similarly, the first few values of the p determined by a decrement matrix q via
the recursion (9.1) associated with a regenerative partition structure are

p(1) = 1,

p(2) = q(2 : 2),

p(1,1) = q(2 : 1),

p(3) = q(3 : 3),

p(2,1) = p(1,2)

= 1
3q(3 : 2) + 1

3q(3 : 1)q(2 : 2),

p(1,1,1) = q(3 : 1)q(2 : 1),

p(4) = q(4 : 4),

p(3,1) = p(1,3)

= 1
4q(4 : 3) + 1

4q(4 : 1)q(3 : 3),

p(2,1,1) = p(1,2,1)

= p(1,1,2) = 1
6q(4 : 2)q(2 : 1)

+ 1
6q(4 : 1)q(3 : 2) + 1

6q(4 : 1)q(3 : 1)q(2 : 2),

p(1,1,1,1) = q(4 : 1)q(3 : 1)q(2 : 1).

The parallel condition on q∞ equivalent to consistency of p while n varies is
described in (9.4).

Looking at these displays, both similarities and differences may be observed. In
particular, the formulas for singleton partitions (1,1, . . . ,1) are identical. As is to
be expected, the simpler recursion (9.1) for regenerative partitions generates sim-
pler algebraic expressions than Möhle’s recursion (2.7). See [13], equation (16),
for the general formula for the shape function associated with (9.1).

9.5. Comparing decrement matrices. In [15], we found very similar recur-
sions for entries of a decrement matrix which characterizes a regenerative compo-
sition structure, hence a regenerative partition structure in [13]. According to [15],
Proposition 3.3, a nonnegative matrix q is the decrement matrix of some regenera-
tive composition structure if and only if q(1 : 1) = 1 and (9.4) holds for 1 ≤ k ≤ b.
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Comparing with Lemma 4.4 above, the difference from our recursions here is that
we have a separate recursion for q(b : 1) and that we have an extra term

2

b + 1
q(b + 1 : 2)q(b :k)

in the right-hand side of recursions for q(b :k), k ≥ 2. Both are backward re-
cursions. For the purpose of illustration, supposing that we are given q(4 :k),
k = 1,2,3,4, the entries q(b : ·) with b ≤ 3 of decrement matrix for regenerative
composition structure would be

q(3 : 3) = 4q(4 : 4) + q(4 : 3)

4 − q(4 : 1)
,

q(3 : 2) = 3q(4 : 3) + 2q(4 : 2)

4 − q(4 : 1)
,

q(3 : 1) = 2q(4 : 2) + 3q(4 : 1)

4 − q(4 : 1)
,

q(2 : 2) = 3q(3 : 3) + q(3 : 2)

3 − q(3 : 1)
= 6q(4 : 4) + 3q(4 : 3) + q(4 : 2)

6 − 3q(4 : 1) − q(4 : 2)
,

q(2 : 1) = 2q(3 : 2) + 2q(3 : 1)

3 − q(3 : 1)
= 3q(4 : 3) + 4q(4 : 2) + 3q(4 : 1)

6 − 3q(4 : 1) − q(4 : 2)
.

For the decrement matrix of the partition structure studied here, we have

q(3 : 3) = 4q(4 : 4) + q(4 : 3)

4 − q(4 : 1) − 2q(4 : 2)
,

q(3 : 2) = 3q(4 : 3) + 2q(4 : 2)

4 − q(4 : 1) − 2q(4 : 2)
,

q(3 : 1) = 3q(4 : 1)

4 − q(4 : 1) − 2q(4 : 2)
,

q(2 : 2) = 3q(3 : 3) + q(3 : 2)

3 − q(3 : 1) − 2q(3 : 2)
= 6q(4 : 4) + 3q(4 : 3) + q(4 : 2)

6 − 3q(4 : 1) − 5q(4 : 2) − 3q(4 : 3)
,

q(2 : 1) = 2q(3 : 1)

3 − q(3 : 1) − 2q(3 : 2)
= 3q(4 : 1)

6 − 3q(4 : 1) − 5q(4 : 2) − 3q(4 : 3)
.

9.6. Comparison with Markovian fragmentations. The theory of homoge-
neous and self-similar Markovian fragmentation processes due to Bertoin [2] is
formulated much like the present theory of coalescents, in terms of consistent
partition-valued processes. Ford ([11], Proposition 41) provides a sampling con-
sistency condition for decrement matrices associated with discrete fragmentation
processes which is an extremely close relative of our Lemma 4.4. The article [18]
provides an integral representation for such decrement matrices, analogous to our
results for the decrement matrices associated with regenerative partition structures
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and with Markovian coalescents, and embeds Ford’s result in the broader context
of continuous-time fragmentation processes and continuum random trees. A miss-
ing element of the fragmentation discussion is some way of deriving a partition
structure by a recursion like (2.7) or (9.1). But we expect such a partition structure
and an associated recursion may be associated with a suitably defined Markovian
fragmentation with freeze, such as that introduced in [17].
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