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SOME RELATIONS BETWEEN MUTUAL INFORMATION AND
ESTIMATION ERROR IN WIENER SPACE

BY EDDY MAYER-WOLF1 AND MOSHE ZAKAI

Technion

The model considered is that of “signal plus white noise.” Known con-
nections between the noncausal filtering error and mutual information are
combined with new ones involving the causal estimation error, in a general
abstract setup. The results are shown to be invariant under a wide class of
causality patterns; they are applied to the derivation of the causal estimation
error of a Gaussian nonstationary filtering problem and to a multidimensional
extension of the Yovits–Jackson formula.

1. Introduction. The classical “additive Gaussian channel” model consists of
an m-dimensional “white noise” {nt , t ∈ [0, T ]}, an m-dimensional (not necessar-
ily Gaussian) independent “signal process” {xt , t ∈ [0, T ]} and the “received sig-
nal” yt = √

γ xt + nt , where γ is the signal to noise parameter. (It also deals with
the stationary version where [0, T ] is replaced by (−∞,∞) and xt is assumed to
be a stationary process.) In the context of filtering theory, the main entities are the
noncausal estimate and its associated estimation mean square error

ε̃2(γ ) =
∫ T

0
E

∣∣xt − E(xt |yθ , θ ∈ [0, T ])∣∣2 dt(1.1)

as well as the causal estimate and its associated filtering mean square error

ε̂2(γ ) =
∫ T

0
E

∣∣xt − E(xt |yθ , θ ∈ [0, t])∣∣2 dt.(1.2)

Another aspect of the white Gaussian channel is the “mutual information”
I (x, y) between the signal process and the received message defined by

I (x, y) = E log
dP (x, y)

d(P (x) × P(y))
(1.3)

where the argument of the logarithm is the Radon–Nikodym derivative between
the joint measure of x· and y· and the product measure induced by x· and y·. This
notion was introduced by Shannon and is essential in the definition of channel
capacity, which in turn determines the possibility of transmitting signals through
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the channel with arbitrarily small error. The mutual information between “random
objects” has been thoroughly analyzed and explicit results have been obtained,
particularly for Gaussian signals and noise (cf. [7]).

Recently, Guo, Shamai and Verdu [3] derived interesting new results for the
Gaussian channel relating the mutual information with the noncausal estimation
error. These results were extended in [13] to include the abstract Wiener space
setup, thus extending considerably the applicability of the new relations. As for
the causal estimation problem, some general results are known, starting with the
Yovits–Jackson formula [12], see Snyders [8, 9] for further results in this direction.
Moreover, the relation between mutual information and the causal error appeared
in the literature in the early 1970s [1, 5]. The possibility of extending these results
to the abstract Wiener space was pointed out in [13].

The purpose of this paper is to consider the “noise” as a general Gaussian ran-
dom vector and to establish connections between the causal estimation error and
mutual information in this abstract setting. In addition, some new consequences
of these connections are obtained, such as the concavity of the causal estimation
error as a function of the noise-to-signal ratio (Corollary 3.3) as well as an explicit
expression for the causal error in the estimation of a general (not necessarily sta-
tionary) Gaussian signal (Theorem 4.1), from which the Yovits–Jackson formula
for a stationary Gaussian signal process follows quite directly (Proposition 4.3).

The context of an abstract Wiener space, apart from its intrinsic elegance, ac-
commodates a wide range of signal models involving, for example, vector valued
processes time reversed in some of its coordinates. We feel that this flexibility jus-
tifies the inclusion of the necessary abstract and sometimes tedious Wiener space
analysis background in Section 2 and Section 3.1. On the other hand, as pointed
out in the next section, the main results can also be of value to the reader who
prefers to interpret their ingredients as concrete one dimensional processes.

We now outline the contents of this paper. In the next section the basic ab-
stract Gaussian channel setup is introduced and some preliminary adaptedness
results in the associated abstract Wiener space are established. In Section 3 the
results of [1] and [5] are extended to the abstract Wiener space which, however,
does not have any intrinsic notion of causality. Accordingly, it is equipped with a
time structure by adding an appropriate “chain of projections” (namely, a contin-
uous increasing resolution of the identity). It turns out that the causal estimation
error is independent of the particular choice of the chain of projections, and is
closely related to the mutual information I (x, y). Moreover, this relation persists
when the independence assumption between the signal x and the noise n is relaxed
to allow for nonanticipative dependence, as in [5]. These results when combined
with the earlier results on the nonadapted error yield a direct relation between
the causal and noncausal errors. In Section 4 we derive the formulae alluded to
in the previous paragraph, namely ε̂2(γ ) = γ −1 ∑

i log(1 + λiγ ) for a Gaussian
process xt on [0, T ] whose correlation function has an eigenfunction expansion∑

i λiϕi(s)ϕj (t), and the multidimensional version of the Yovits–Jackson formula
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ε̂2(γ ) = (2πγ )−1 ∫ ∞
−∞ log det(I +γ σ(ξ)) dξ for a stationary Gaussian signal with

(matricial) spectral density σ .

2. Preliminaries. This work studies the basic signal plus noise model, which
will now be formally described, modeled on the abstract Wiener space to allow for
maximal generality as mentioned in the Introduction. However, many of the pa-
per’s statements—including Theorem 3.1, Corollary 3.3 and the contents of Sec-
tion 4—can be appreciated even in the simplest instance [cf. with (2.5)]

yt = ut + wt, 0 ≤ t ≤ T(2.1)

(where the noise is represented by the Brownian motion {wt } and, at each
t ∈ [0, T ], the signal ut depends at most on a “hidden” process {xt } independent of
{wt } and, via feedback, on y’s “past” {ys,0 ≤ s ≤ t}, i.e., ut = U(xT

0 , yt
0)), without

the need to master the details of the abstract setup whose data we now list:

M1. A complete filtered probability space (	,F , {Ft ,0 ≤ t ≤ 1},P ).
M2. A random variable x defined on (	,F ,P ) taking its values in a Polish space

X and inducing on it its image measure µx.
M3. A centered nondegenerate Gaussian random variable w defined on (	,F ,P ),

independent of x, taking values in a Banach space 
 with image measure
µw, and separable associated reproducing kernel Hilbert space H. The non-
degeneracy assumption means that H is densely embedded in 
, namely,
(
,H,µw) is an abstract Wiener space and 
∗ ⊂>H ⊂>
.

M4. A time structure on (
,H,µw) in the form of a continuous strictly increasing
coherent resolution of the identity {πt ,0 ≤ t ≤ 1} of H , namely a (continu-
ous, increasing) family of orthogonal projections on H ranging from π0 = 0H

to π1 = IdH , such that πt

∗ ⊂ 
∗ and 
〈w, πt l〉
∗ is Ft -adapted, for all

0 ≤ t ≤ 1 and l ∈ 
∗.

With such a time structure one can mimic the standard resolution of identity
(πth)· = h·∧t in classical Wiener space C0[0,1] (in fact (cf. [11], Theorem 5.1)
any abstract Wiener space thus equipped with a resolution of the identity is equiv-
alent “in a suitable sense” to C0([0,1];R

d), for some d ∈ N ∪ ∞. This will not be
used in the sequel):

(i) Any 
-valued random variable z induces a filtration {F z
t ,0 ≤ t ≤ 1}

in (	,F )

F z
t = σ(
〈z, πt l〉
∗, l ∈ 
∗), 0 ≤ t ≤ 1.(2.2)

(The above adaptedness requirement can be expressed as F·w ⊂ F· ).
(ii) Given a generic subfiltration {Gt ,0 ≤ t ≤ 1} of {Ft ,0 ≤ t ≤ 1}, an


-valued random variable z is said to be (π·,G·)-adapted if 
〈z, πt l〉
∗ is
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Gt -measurable, for all 0 ≤ t ≤ 1 and l ∈ 
∗. Examples of (π·,G·)-adapted ran-
dom variables are provided in increasing generality, for a partition {0 = t0 < · · · <
tn= 1} of [0,1] (and with πt

s := πt − πs ) by

h =
n−1∑
k=0

akhk, ak ∈ L2(	,Gtk , P ), hk ∈ π
tk+1
tk

(H),(2.3)

h =
n−1∑
k=0

hk, hk ∈ L2(	,Gtk , P ;πtk+1
tk

(H)),(2.4)

(iii) A mapping g :
 → 
 is π·-nonanticipative if g(z) is (π·,F z· )-adapted for
any 
-valued z, that is, if 
〈g(z),πt l〉
∗ is F z

t -measurable for all such z, l ∈ 
∗
and 0 ≤ t ≤ 1.

M5. A jointly measurable mapping U :X ×
 → H , π·-nonanticipative in its sec-
ond variable, and a pair of F·-adapted random variables u ∈ L2(P ;H) and y
(
-valued) which satisfy the simultaneous equations{

y = u + w,

u = U(x,y),
P -a.s.(2.5)

Equivalently {(ux,yx), x ∈ X} is an F·-adapted H×
-valued random field with
ux ∈ L2(P ;H) µx -a.s., and which satisfy{

yx(θ) = ux(θ) + w(θ),

ux(θ) = U(x,yx(θ)),
µx ⊗ P -a.s.(2.6)

the connection between (2.5) and (2.6) being u(θ) = ux(θ)|x=x.

We now present for later use two facts related to the objects introduced above.

LEMMA 2.1. For any h, k ∈ H , the function m(t) := (h,πtk)H is continuous
and has bounded variation on [0,1].

PROOF. The continuity of m follows from that of t → πt . In addition,

m(t) = (πth,πtk)H = 1
4

(‖πt(h + k)‖2
H − ‖πt(h − k)‖2

H

)
so that m has bounded variation, being the difference of two increasing functions.

�

LEMMA 2.2. The random variables of the form (2.3) [thus those of the
form (2.4) as well] generate the same σ -algebra as the one generated by the family
of all (π·,G·)-adapted random variables. This σ -algebra will be denoted Aπ·,G·.

PROOF. By density arguments it suffices to check that 0 is the only
(π·,G·)-adapted element u in L2(P ;H) orthogonal to all the random variables
of form (2.3). Indeed, for any s ≤ t in [0,1] and h ∈ H and a ∈ L2(	,Fs,P )

0 = E
(
a(πt − πs)h,u

)
H = Ea

(
(πth,u)H − (πsh,u)H

)
.
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This means that (πth,u)H is a (continuous) martingale, which in addition has zero
bounded variation a.s., by Lemma 2.1. Since it is 0 a.s. for t = 0, the same is true
for t = 1, and since h ∈ H is arbitrary it follows that u = 0. �

We shall be concerned with the causal and noncausal least mean square estima-
tors

ĥy = E(h|Aπ·,F y· ) and h̃y = E(h|F y
1 )(2.7)

of an H -valued random variable h ∈ L2(P ;H), typically h = u or h = x (the
notation Aπ·,F y· was introduced in Lemma 2.2). A central theme of this paper is

the relation between their respective associated mean square errors E|h − ĥy|2H
and E|h − h̃y|2H with the mutual information between x and y, now to be defined.

Mutual information. The following definition applies for two general random
variables x and y defined on a common probability space, the latter taking values
in a Polish space so that y’s regular conditional probability measure µy|x condi-
tioned on x is well defined. In our case, where x is given in M2 and y by the
equations (2.5), the key observation is that µy|x can be expressed in terms of the
image measures µyx of the elements yx, x ∈ X, introduced in (2.6):

µy|x = µyx |x=x P -a.s.(2.8)

DEFINITION 2.3. The mutual information between x and y is defined to be

I (x;y) =

E

(
log

dµy|x
dµy

(y)

)
, if µy|x � µy,P -a.s.

∞, otherwise.
(2.9)

Despite (2.9)’s apparent asymmetry, it turns out that I (x;y) = I (y;x). In fact,
the identities f (y|x)

f (y)
= f (x|y)

f (x)
= f (x,y)

f (x)f (y)
generalize easily beyond finite dimen-

sions: the following fact is well known and its proof is straightforward.

LEMMA 2.4.

µy|x � µy, µx- a.s. ⇐⇒ µx|y � µx, µy-a.s.

⇐⇒ µx,y � µx ⊗ µy

and when one and thus all of these hold,
dµy|x
dµy

(y) = dµx|y
dµx

(x) = dµx,y
dµx⊗µy

(x,y) P -a.s.

Whenever valid (i.e., as long as one does not get ∞ − ∞) it will be convenient
to write

I (x;y) = E log
dµy|x
dµw

(y) − E log
dµy

dµw
(y),(2.10)

since both terms in the difference can be derived from a generalized Girsanov
theorem.
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3. The connection between estimation errors and mutual information.
The main result of this section is the following theorem. It implies in particular
that the causal least mean square error does not depend on the resolution of iden-
tity which dictates the time structure.

THEOREM 3.1. Within the setup M1–M5, and recalling the notation (2.7),

I (x,y) = 1
2E|u − ûy|2H(3.1)

and in the particular case y = √
γ x + w of (2.5),

I (x,y) = γ

2
E|x − x̂y|2H .(3.2)

In the classical case 
 = C0[0, T ], (3.2) goes back to [1] and the more general
case (3.1) in which feedback is allowed was obtained in [5]. The new contribu-
tion here is the full extension of (3.1) to the abstract setup. The heart of its proof
consists in deriving, in the next subsection, expressions for the Radon–Nikodym
derivatives appearing in (2.10) from an abstract version of Girsanov’s formula. The
theorem’s proof will be finalized in Section 3.2.

In this context it is worth stating a recently obtained (for linear observations)
connection between the noncausal error and mutual information.

THEOREM 3.2 ([3, 13]). In the particular case y = √
γ x + w of (2.5)

dI (x,y)

dγ
= 1

2
E|x − x̃y|2H .(3.3)

Theorems 3.1 and 3.2 together yield the following interesting connection be-
tween the causal and noncausal errors (cf. [3] as well).

COROLLARY 3.3. For y = √
γ x+w denote ε̂2(γ ) = E|x− x̂y|2H and ε̃2(γ ) =

E|x − x̃y|2H . Then

ε̃2(γ ) = d(γ ε̂2(γ ))

dγ
, that is,

(3.4)

ε̂2(γ ) = γ0ε̂
2(γ0)

γ
+ 1

γ

∫ γ

γ0

ε̃2(β) dβ ∀γ0.

In addition, ε̂2( 1
η
) is a concave function of η. (We thank an anonymous referee who

pointed out an error in an earlier version of this statement, and in its proof.)
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PROOF. The identity (3.4) follows directly from (3.2) and (3.3). As for the
concavity, denote h(η) = ε̂2( 1

η
) = 2ηI (x,y). Then

h′(η) = 2I (x,y) + 2η

(
− 1

η2

)
dI (x,y)

dγ
= 2I (x,y) − ε̃2(1/η)

η
and

h′′(η) =
(
− 1

η2

)
dI (x,y)

dγ
− 1

η

d

dη

(̃
ε2

(
1

η

))
+ ε̃2(1/η)

η2 = −1

η

d

dη

(̃
ε2

(
1

η

))
≤ 0

since ε̃2(γ ) is clearly a nonincreasing function of γ . �

REMARK 3.4. Viewing ε̂2 as a function of 1
η

is equivalent to considering the
equally natural model y = x + √

ηw instead of y = √
γ x + w.

3.1. Girsanov theorem and Radon–Nikodym derivatives on 
. Throughout
this subsection, {Gt ,0 ≤ t ≤ 1} will be a generic subfiltration of {Ft ,0 ≤ t ≤ 1}
typically F w· or F y· as defined in (2.2). First, recall the standard Girsanov theo-
rem, in which 
 is the classical Wiener space C0([0,1]).

PROPOSITION 3.5. Let {bt ,0 ≤ t ≤ 1} be a standard G·-Brownian motion,
{at ,0 ≤ t ≤ 1} an G·-adapted stochastic process with ȧ· ∈ L2(0,1) a.s. and yt =
at + bt ,0 ≤ t ≤ 1. Denote


a = exp
(
−

∫ 1

0
ȧt dbt − 1

2

∫ 1

0
ȧ2
t dt

)
.(3.5)

If E
a = 1 then {yt ,0 ≤ t ≤ 1} is a standard G·-Brownian motion. Equiva-
lently (the Jacobi change of variable formula) E
aF(y·) = EF(b·), for any
F ∈ Cb(C0[0,1]).

In the context of an abstract Wiener space Itô’s integral is defined along the
same lines as in the classical case. We now proceed to summarize its construction
and refer the reader to [10], Section 2.6, for a more detailed account.

DEFINITION 3.6. An 
-valued random variable v is said to be a G·-abstract
Wiener process if, for all l ∈ 
∗, M

v,l
t := 
〈v, πt l〉
∗ is a zero mean (and nec-

essarily continuous, Gaussian) G·-martingale with quadratic variation 〈Mv,l〉t =
|πt l|2H ,0 ≤ t ≤ 1.

Note that w itself is an F w· -abstract Wiener process.
Any G·-abstract Wiener process v generates its associated zero mean Gaussian

random field {δvl := 
〈v, l〉
∗, l ∈ 
∗} with covariance structure Eδvl1δvl2 =
1
4(E
〈v, l1 + l2〉2


∗ − E
〈v, l1 − l2〉2

∗) = 1

4(|l1 + l2|2H − |l1 − l2|2H ) = (l1, l2)H
which can thus be extended by density to an H -indexed zero mean isonormal
Gaussian field {δvh,h ∈ H }.
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As defined in (i), (ii) and (iii) below, the integrator of Itô’s integral will be a
G·-abstract Wiener processes v, and in (iv) its “semimartingale” extension. The
integrands, now to be defined, will be (G·, π·)-adapted H -valued random variables
(eventually all of them).

(i) For h simple as in (2.3), that is, h = ∑n−1
k=0 akhk with 0 = t0 < · · · < tn = 1,

ak ∈ L2(	,Gtk , P ) and hk ∈ (πtk+1 − πtk )(H), define δvh = ∑n
k=1 akδvhk .

For any such h

Eδvh = 0, E(δvh)2 = E|h|2H .(3.6)

(ii) By (3.6) δv can be isometrically extended to the closure in L2(P ;H) of the
simple random variables, which turns out to be the set of (G·, π·)-adapted
elements of L2(P ;H). This extension satisfies (3.6) as well.

(iii) For any (G·, π·)-adapted H -valued random variable h, the sequence of
G·-stopping times τn = inf{t ∈ [0,1] s.t |πth|2H ≥ n} (inf ∅ = 1) increases to
1 as n → ∞, and δvh := limn→∞ δvπτnh exists almost surely.

(iv) Whenever z = v + u, where u is an H -valued random variable, define δzh :=
δvh + (u,h)H for any H -valued random variable h which is (G·, π·)-adapted.
This definition is independent of z’s representation.

In abstract Wiener space, (3.5) becomes, for any (G·, π·)-adapted h,


h := exp
(−δvh − 1

2 |h|2H
) = exp

(−δyh + 1
2 |h|2H

)
.(3.7)

PROPOSITION 3.7 ([10]). Let v be a G·-abstract Wiener process, h a (G·, π·)-
adapted H -valued random variable, and y = h + v. If E
h = 1 then y is
a G· - abstract Wiener process on (	,F ,
hP). In particular

E
hϕ(y) = Eϕ(v) ∀ϕ ∈ Cb(
).(3.8)

Moreover, y’s and v’s image measures µy and µv are mutually absolutely contin-
uous, and

dµy

dµv
(y) = 1

E(
h|F y
1 )

, P -a.s.(3.9)

[i.e.,
dµy
dµv

(ω) = 1
λh(ω)

,µy-a.s., where E(
h|F y
1 ) = λh(y).]

PROOF. The Girsanov statement (3.8) is a straightforward generalization
of the classical Girsanov theorem (Proposition 3.5), a proof of which can be
found in [10], Theorem 2.6.3. From (3.8) it follows for all ϕ ∈ Cb(
) that∫

 ϕ(ω)µv(dω) = E
hϕ(y) = Eλh(y)ϕ(y) = ∫


 λh(ω)ϕ(ω)µy(dω), and thus
µv � µy with dµv

dµy
= λh, µy-a.s.

Moreover, since 
 is strictly positive P -a.s., so is λh,µy-a.s., and thus µv-a.s.

as well. This means that µy ∼ µv and dµy
dµv

= 1
λh

µy-a.s. �
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Although the assumption E
h = 1 in Proposition 3.7 holds under weaker
Novikov-type requirements, the following stronger sufficient condition will suit
our needs.

LEMMA 3.8. Given a G·-abstract Wiener process v, if h ∈ L∞(P ;H) is
a (G·, π·)-adapted, then {
πt h,0 ≤ t ≤ 1} is a G·-martingale. In particular
E
h = 1.

PROOF. Assume first that h = ∑n
k=1 akhk is simple, and note that |ak| ≤ M

a.s. for some M < ∞ and k = 1, . . . , n, and that E
πt h ≤ EeM
∑n

k=1 |δvhk | < ∞,
for any 0 ≤ t ≤ 1 since δvh1, . . . , δvhn are Gaussian and independent. To show that
E(
πt h|Gs) = 
πs h for all s < t we may assume without loss of generality that

s = tm−1 and t = tm for some m. In this case 
πtmh = e−∑m
k=1(akδvhk−(1/2)a2

k |hk |2H )

and

E(
πtmh|Gtm−1)

= e−∑m−1
k=1 (akδvhk−(1/2)a2

k |hk |2H )E(e−amδvhm |Gtm−1)e
−(1/2)a2

m|hm|2H

= 
πtm−1 h

since am is Gtm−1 -measurable and δvhm ∼ N(0, |hm|2H) is independent of Gtm−1 .
If h is (G·, π·)-adapted and |h|H ≤ M < ∞ a.s., let hn be a sequence of sim-

ple adapted H -valued random variables such that hn → h in L2(θ,F ,P ;H) as
n → ∞. Then E(
πt hn

|Gs) = 
πshn
for any n ∈ N and s < t . Clearly 
πrhn

→

πrh in probability as n → ∞, for r = s and r = t . Since

E
2
πt hn

= E
πt 2hn
e|πhn |2H ≤ eM2

E
πt 2hn
= eM2

the conditional expectation converges as well and thus E(
πt h|Gs) = 
πsh.

�

PROPOSITION 3.9. If, in Proposition 3.7, G· can be taken to be F y· (i.e. v is an
F y· -abstract Wiener process), then µy and µv are mutually absolutely continuous,
with

dµy

dµv
(y) = 
−1

h
(= eδvh+1/2|h|2H = eδyh−1/2|h|2H )

, P -a.s.(3.10)

[In this case 
h is F
y

1 -measurable. The point here is that dµy
dµv

(y) = 
−1
h , as

in (3.9), without requiring E
h = 1 a priori.] The following proof is essentially
taken from [10] Theorem 2.4.2 (where y is referred to as an indirect shift of v) and
adapted here to the abstract Wiener space setup.

PROOF. Define τn = inf{t ∈ [0,1] s.t |πth|H ≥ n} (inf ∅ = 1) and let yn =
hn+v with hn = πτnh. Since |hn|H ≤ n a.s., Lemma 3.8 guarantees that E
hn

= 1



MUTUAL INFORMATION IN WIENER SPACE 1111

so that it follows from Proposition 3.7 that µyn ∼ µv and dµyn

dµv
(yn) = 
−1

hn
a.s.,

since 
hn
itself is F

y
1 -measurable, and also dµv

dµyn
(yn) = 
hn

. Thus, for any ϕ ∈
Cb(
), ∫

	
ϕ ◦ vdP =

∫



ϕ dµv =
∫



ϕ
dµv

dµyn

dµyn =
∫
	

ϕ ◦ yn
hn
dP

−→
n→∞

∫
	

ϕ ◦ y
h dP

since 
hn
→ 
h a.s., and thus by Scheffé’s lemma 
hn

dP → 
h dP in total
variation. This means that µv � µy and dµv

dµy
(y) = 
h, and since 
h > 0 a.s., the

reverse is true as well, namely µy � µv and dµy
dµv

(y) = 
−1
h . �

The assumption in Proposition 3.9 that v is an F y· -abstract Wiener process sug-
gests that y = h + v should be interpreted as a nonanticipative feedback model,
and can thus be expected to hold in the case (2.6):

PROPOSITION 3.10. Assume the setup M1–M5 in Section 2. Then for µx al-
most every x ∈ X, w in (2.6) is an F yx· -abstract Wiener process, µyx � µw and

dµyx

dµw
(yx) = exp

(
δwux + 1

2
|ux |2H

)
, P -a.s.(3.11)

For the model (2.5),
dµy|x
dµw

(y) = exp
(
δwu + 1

2
|u|2H

)
, P -a.s.,(3.12)

and in particular

E log
dµy|x
dµw

(y) = 1

2
E|u|2H .(3.13)

PROOF. Recall that w is an F·-abstract Wiener process (cf. Definition 3.6).
On the other hand, from (2.6) and bearing in mind that the mapping U(x, ·)
is nonanticipative, we conclude that F w

t ⊂ F
yx
t ⊂ Ft for all 0 ≤ t ≤ 1, so that

M
w,l
t = 
〈w, πt l〉
∗ is not only an F·-martingale for each l ∈ 
∗ but also an F yx· -

martingale, and with the same quadratic variation. In other words, w is an F yx· -
abstract Wiener process.

Thus Proposition 3.9 applies to yx = ux + w with h = ux and v = w [ux is
indeed F yx -adapted, again by (2.6) and U ’s nonanticipativity], and (3.11) follows.

As for (3.12) we first claim that
dµy|x
dµw

(y) = dµyx

d
µw(yx)|x=x. Indeed, for any

ψ ∈ Cb(
),

E(ψ(y)|x) = E
(
ψ(ux + w)|x)= Eψ(ux + w)|x=x = Eψ(yx)|x=x

= E

(
dµyx

dµw
(w)ψ(w)

)∣∣∣
x=x

= E

(
dµyx

dµw
(w)

∣∣∣
x=x

ψ(w)

)
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(where the independence of x and w was used in the second and last equalities),
from which it follows that µy|x � µw,µx-a.s., and thus µy � µw, and moreover
dµy|x
dµw

(w) = dµyx

dµw
(w)|x=x. By virtue of the absolute continuity itself,

dµy|x
dµw

(y) = dµyx

dµw
(y)

∣∣∣
x=x

= dµyx

dµw
(yx)

∣∣∣
x=x

as claimed. Combining this with (3.11), and recalling that u = ux |x=x, we obtain

dµy|x
dµw

(y) = exp
(
(δwux)

∣∣
x=x + 1

2
|u|2H

)
, P -a.s.

Note, from the definition of Itô’s integral δw and the independence of w and x, that
(δwux)|x=x = δwu. Thus E log

dµy|x
dµw

(y) = Eδwu + 1
2E|u|2H = 1

2E|u|2H by (3.6),
since |u|H was assumed to have finite second moment. �

Having found an expression for (2.10)s first term based on the representa-
tion (2.6), the starting point for the second term is necessarily (2.5). However, in
order to be able to apply Proposition 3.9 in this case (w is no longer an F y-abstract
Wiener process) it is necessary to replace (2.5) by y’s equivalent innovation repre-
sentation.

LEMMA 3.11. n := y − ûy = (u − ûy)+ w is an F y· -abstract Wiener process.

PROOF. Let l ∈ 
∗. We need to show that M
n,l
t := 
〈n, πt l〉
∗ is an

F y· -martingale with quadratic variation |πt l|2H . Indeed,

E(M
n,l
t − Mn,l

s |F y
s )

= E
(

〈n, (πt − πs)l〉
∗ |F y

s

)
= E

(

〈u − ûy, (πt − πs)l〉
∗ |F y

s

) + E
(
E

(

〈w, (πt − πs)l〉
∗

∣∣Fs

)|F y
s

)
We shall show that both terms above equal zero, assuming without loss of gen-
erality that s and t are dyadic. The second term is indeed zero since w is an
F·-abstract Wiener process. For the first term, denote by Aπ·,F y,n· the σ -algebra
generated by the H -valued random variables of the form (2.4) on the partition
P = { k

2n , k = 0, . . . ,2n} of [0,1], and

ûy,n = E
(
u|Aπ·,F y,n·

) =
2n−1∑
k=0

E
((

π(k+1)/2n − πk/2n

)
u
∣∣F y

k/2n

)
.

It follows from Lemma 2.2 that ûy,n → ûy in L2(P ;H), so that it suffices to show
that E(
〈u − ûy,n, (πt − πs)l〉
∗ |F y

s ) = 0 for every n large enough. Denote uk =
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(π(k+1)/2n − πk/2n)u and, by the dyadic assumption, s = k0
2n and t = k1

2n . Then

E
(

〈u − ûy,n, (πt − πs)l〉
∗

∣∣F y
s

)

=
k1−1∑
k=k0

E
(

〈uk − E(uk|F y

k/2n), l〉
∗
∣∣F y

k0/2n

)

=
k1−1∑
k=k0

E
(
E

(

〈uk − E(uk|F y

k/2n), l〉
∗
∣∣F y

k/2n

)|F y
k0/2n

) = 0.

As for the quadratic variation, note that Mt
n,l = (u − ûy, πt l)H + M

w,l
t . By

Lemma 2.1 the first term is almost surely continuous, has bounded variation and
thus zero quadratic variation, so that 〈Mn,l〉t = 〈Mw,l〉t = |πt l|2H . �

COROLLARY 3.12.

E log
dµy

dµw
= 1

2
E |̂uy|2H .(3.14)

PROOF. We may apply Proposition 3.9 to y = ûy + n to conclude that

dµy

dµw
= dµy

dµn
= exp

(
δnûy + 1

2
|̂uy|2H

)
.(3.15)

(Indeed, ûy is clearly F y· -adapted and n is an F y· -abstract Wiener process by
Lemma 3.11.) Since E(̂uy)2 ≤ Eu2 < ∞, and thus Eδnûy = 0, (3.15) im-
plies (3.14). �

3.2. Proof of Theorem 3.1. All that remains to prove (3.1) [and thus (3.2) as
well] is to insert (3.13) and (3.14) in (2.10) and thus obtain I (x,y) = 1

2E|u|2H −
1
2E |̂uy|2H = 1

2E|u − ûy|2H .

4. Gaussian signals. Consider the particular case of (2.5)

y = √
γ x + w,(4.1)

where x is assumed to be a zero mean Gaussian H -valued random variable with
correlation bilinear form r(h, k) = E(x, h)H (x, k)H ,h, k ∈ H , and associated cor-
relation operator R on H characterized by (Rh, k)H = r(h, k) for all h, k ∈ H .
The positive constant γ is commonly called the signal to noise ratio.

It is well known that R is nonnegative and of trace class. Its spectrum thus con-
sists of a nonincreasing summable sequence {λi}∞i=1 of nonnegative eigenvalues
with an associated family {ϕi}∞i=1 of orthonormal eigenvectors and

R =
∞∑
i=1

λiϕi ⊗ ϕi, that is, r(h, k) =
∞∑
i=1

λi(ϕi, h)H (ϕi, k)H ∀h, k ∈ H,
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which leads immediately to the representation

x =
∞∑
i=1

√
λiξiϕi, in L2(P ;H)(4.2)

where {ξi = (x, ϕi)H }∞i=1 is an i.i.d. N(0,1) sequence.

THEOREM 4.1. The least causal mean square error of x ∼ N(0,R) with y as
in (4.1) is given by

ε̂2(γ ) = E|x − x̂|2 = γ −1
∞∑
i=1

log(1 + λiγ ) = γ −1 log det(I + γ R).(4.3)

If x is only assumed to possess a covariance R (but not necessarily to be Gaussian),
then the right-hand side of (4.3) yields the least linear causal mean square error.

PROOF. Expanding y and w in the vectors {ϕi}, one obtains ηi = √
γ ξi + ωi

where ωi = (w, ϕi)H and ηi = (y, ϕi)H are independent for all i. From the orthog-
onality one concludes that

ε̃2(γ ) =
∞∑
i=1

E
(
ξi − E(ξi |ηi)

)2 =
∞∑
i=1

λi

1 + λiγ
(4.4)

(where the last equality is a standard one-dimensional calculation). Applying (3.4)
with γ0 = 0 we obtain (4.3) as claimed:

ε̂2(γ ) = 1

γ

∞∑
i=1

∫ γ

0

λi

1 + λiγ ′ dγ ′ = 1

γ

∞∑
i=1

log(1 + λiγ ).
�

Note that the formulae (4.3) and (4.4) yield the asymptotic expansions in pow-
ers of γ in terms of the coefficients sk = ∑

i λ
k
i (s1/k

k are known as R’s Schatten
norms):

ε̂2(γ ) ∼
∞∑

k=0

(−1)k
sk

k + 1
γ k and ε̃2(γ ) ∼

∞∑
k=0

(−1)kskγ
k.

It is of course not surprising that ε̂2(γ ) ∼ ε̃2(γ ) ∼ s1 = E|x|2H as γ → 0.
A more interesting consequence of these expansions is

COROLLARY 4.2.

lim
γ→0

E|x|2H − ε̂2(γ )

E|x|2H − ε̃2(γ )
= 2.
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In other words, the noncausal error increases to its limit in small signal to noise
ratio twice as fast as the causal error, regardless of the correlation operator. This is
not necessarily true if x is not assumed to be Gaussian.

The last application of Theorem 4.1 concerns the mean square causal estimation
error of a stationary multivariate Gaussian process {xt , t ∈ R} in additive white
noise. The so called Yovits–Jackson formula for this quantity has been obtained
in the scalar case under various assumptions and by different analytic methods, as
explained in the Introduction. Here it follows in full generality as a straightforward
consequence of Theorem 4.1.

PROPOSITION 4.3. Let {xt , t ∈ R} be a stationary zero mean n-dimensional
Gaussian process with continuous correlation function R(τ) := Ex0x

T
τ ∈ L1(R;

R
n×n) and spectral density S(ξ), and let yt = √

γ
∫ t

0 xs ds + wt , t ∈ R, where
{wt, t ∈ R} is a two-sided standard n-dimensional Brownian motion and γ > 0.
Furthermore, denote by yb

a the sigma algebra generated by {yt − ys, a ≤ s < t ≤
b}, for any −∞ ≤ a < b ≤ ∞. Then, for any fixed time θ ,

E
∣∣xθ − E(xθ |yθ−∞)

∣∣2 = (2πγ )−1
∫ ∞
−∞

log det
(
I + γ S(ξ)

)
dξ.(4.5)

PROOF. On each finite time interval [0, T ], this case can be modeled by
the classical Wiener space 
 = C0([0, T ];R

n) with w = w·, x = ∫ ·
0 xt dt and

y = y· = √
γ x + w. Let RT be the Toeplitz integral operator with kernel R(t − s)

and spectrum {λ(T )
i }∞i=1, and IT the identity operator, on L2([0, T ];R

n). By Theo-
rem 4.1, and in view of the stationarity,

1

T

∫ T

0
E

∣∣xθ − E(xθ |yθ
θ−t )

∣∣2 dt = 1

T

∫ T

0
E

∣∣xt − E(xt |yt
0)

∣∣2 dt

(4.6)

= 1

γ

(
1

T

∞∑
i=1

log
(
1 + γ λ

(T )
i

))

The integrand in the left-hand side converges, as t → ∞, to the left-hand side
of (4.5) by standard martingale theory, and thus so does the integral average itself.
The convergence of right-hand side is a consequence of a matrix-valued version
of the Kac–Murdock–Szegö theorem on RT ’s asymptotic eigenvalue distribution
(see [4], Section 4.4 or [2], page 139). Specifically, [6] Theorem 3.2, states (for-
mula (3.2) in [6] contains a typographical error; the integrand there should be
tr�(K(t)), as is evident throughout the subsequent proof) that as T → ∞ the
term in parenthesis converges to 1

2π

∫ ∞
−∞ log det(I + γ S(ξ)) dξ which concludes

the proof. (The cited theorem was applied to the function �(z) = log(1 + γ z),

z ∈ [0,E|x0|2], which is allowed in view of Remark 3.2 in [6].) �
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