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STRUCTURAL PROPERTIES OF PROPORTIONAL FAIRNESS:
STABILITY AND INSENSITIVITY

BY LAURENT MASSOULIÉ

Thomson Paris Research Lab

In this article we provide a novel characterization of the proportionally
fair bandwidth allocation of network capacities, in terms of the Fenchel–
Legendre transform of the network capacity region. We use this character-
ization to prove stability (i.e., ergodicity) of network dynamics under propor-
tionally fair sharing, by exhibiting a suitable Lyapunov function. Our stability
result extends previously known results to a more general model including
Markovian users routing. In particular, it implies that the stability condition
previously known under exponential service time distributions remains valid
under so-called phase-type service time distributions.

We then exhibit a modification of proportional fairness, which coincides
with it in some asymptotic sense, is reversible (and thus insensitive), and has
explicit stationary distribution. Finally we show that the stationary distrib-
utions under modified proportional fairness and balanced fairness, a sharing
criterion proposed because of its insensitivity properties, admit the same large
deviations characteristics.

These results show that proportional fairness is an attractive bandwidth
allocation criterion, combining the desirable properties of ease of implemen-
tation with performance and insensitivity.

1. Introduction. The abstract network bandwidth allocation (NBA) problem
can be formulated as follows. A network supports connections of distinct types,
indexed by r , the index r spanning the set of types R, assumed finite. Given the
number xr of users of each type r ∈ R, with xr ∈ N, the problem is to determine
the total capacity allocated to type r users, denoted be λr , with λr ∈ R+. The
quantity λr represents the rate at which data is received collectively by all users of
type r . The allocation vector λ := {λr}r∈R is constrained to lie in a set C ⊂ R

|R|
+ .

The set C is a suitable abstraction of all the physical capacity constraints of the
actual network under consideration. An example of a two-link network is repre-
sented in Figure 1. This network supports three types of users, data destined to
type-1 users going through link 1 only, data to type-2 users going through link 2
only, while data for type-3 users goes through the two links. Thus, when the two
links have unit capacities, the corresponding set C is given by {λ ∈ R

3+ :λi + λ3 ≤
1, i = 1,2}. This example can be extended to the case where the network consists
of an arbitrary number of links, and user types r are characterized by collections
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FIG. 1. Example of a two-link network supporting three types of users.

of links used by data destined to them. Denoting by L the collection of links, and
by c� the capacity of link � ∈ L, the corresponding network capacity region then
takes the form

C =
{
λ ∈ R

R+ :
∑
r∈R

A�rλr ≤ c�, � ∈ L

}
,

where A�r equals 1 or 0 according to whether type-r users require capacity at link �

or not. Such types of capacity constraints have been considered for instance in [13,
14], as suitable models of wired networks with fixed routing such as the Internet,
the matrix A then reflecting the route that data of users of given type follows
through the network. More general polyhedral capacity sets C arise when users
of a given type r can send data along several distinct routes through the network.
Yet more general, nonpolyhedral (albeit still convex) capacity sets can adequately
model the impact of interferences between data transmissions of distinct types in
wireless networks; see [4] for such examples.

In the present work we only require the set C to be convex, and nonincreasing,
that is to say, for any two vectors λ,λ′ ∈ R

R+ such that λr ≤ λ′
r , r ∈ R, then λ

belongs to C whenever λ′ does. These two assumptions are met in all the examples
above mentioned.

Mo and Walrand [19] introduced the following criterion for determining the
allocation vector λ. Given weights wr > 0, and a parameter α ≥ 0, the so-called
(w,α)-fair allocation vector is the solution to the optimization problem

max
λ∈C

∑
r∈R

xrUr(λr/xr),(1)

where

Ur(y) =
{ wr

1 − α
y1−α, if α �= 1,

wr log(y), if α = 1.
(2)

This parametric family of allocation criteria contains the so-called proportional
fairness criterion, introduced by Kelly [13], which corresponds to the special case
α = 1 and wr ≡ 1. In the limit α → ∞, the (w,α)-fair allocation coincides with
the so-called max-min fair allocation (see [2] for a definition).

The rationale for proportional fairness, as explained in [13], lies in the following
desirable decomposition property. Assume that the ultimate goal of bandwidth al-
location is to maximize the sum of utility functions, Ur , of the rates λr/xr allocated
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to users of class r , exactly as in equation (1), these utility functions being known
to the users but not to the network. Then the decomposition result of [13] states
that this can be done by letting on the one hand the network allocate bandwidth
according to proportional fairness, with weights wr specified by the network users,
and on the other hand the network users selecting these weights wr appropriately,
given their (privately known) utility functions Ur , and the network allocation in
response to distinct weights wr .

Alternatively, the unweighted proportional fairness allocation arises naturally
from results in bargaining theory, in contrast to the above justifications based on
microeconomic theory. Indeed, the results of Stefanescu and Stefanescu [27] (see
also [17] for further discussion) imply that it is the only allocation of bandwidth
that satisfies four natural axioms introduced by Nash [20] (namely, invariance with
respect to affine utility transformations, Pareto optimality, independence of irrele-
vant alternatives, and symmetry), assuming that users’ utility is a linear function of
the rate they receive. (Note the difference with the previous microeconomic frame-
work, which allowed arbitrary concave utility functions.) It is in fact the natural
extension of Nash’s bargaining solution, originally derived in the special context
of two users, to an arbitrary number of users.

The rationales for candidate NBA solutions we have just reviewed originate
from microeconomic theory of utility, and game (bargaining) theory, and assume a
static set of network users. There is another line of approach to the NBA problem,
which is essentially motivated by performance issues in a dynamic setting.

Specifically, assume that network users arrive and leave the system, the arrivals
of type r users being at the instants of a Poisson process of rate νr . Assume further
that users remain in the system until they have transferred a file of a given size, files
associated with type r users being exponentially distributed with parameter µr .
The state variable x = {xr}r∈R is then a Markov process, with nonzero transition
rates

xr → xr + 1 with rate νr,
(3)

xr → xr − 1 with rate µrλr .

A suitable rationale for selecting a NBA is to guarantee desirable properties of the
above Markov process. One such property is stability (or equivalently, ergodicity),
as it in turn implies that sojourn times of users are almost surely finite. Ergodicity
cannot be guaranteed for all sets of traffic parameters νr , µr and network capacity
sets C. In particular, letting ρr := νr/µr denote the load brought by type r-users,
when the vector ρ = {ρr}r∈R does not belong to the capacity set C, the process
cannot be ergodic (for a proof, see, e.g., [4]). When ρ is on the boundary of C,
Kelly and Williams [15] have established that the process cannot be positive re-
current, for sets C corresponding to wired networks with fixed routes. Their proof
extends to the case of general convex nonincreasing capacity sets C with minor
modifications.
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A reasonable performance requirement is thus that, provided the traffic inten-

sity vector ρ lies in the interior
◦
C of C, then the above Markov process is ergodic.

Such a property is in fact satisfied for all (w,α)-fair bandwidth allocation criteria,
as follows from the Lyapunov function-based stability proof of Bonald and Mas-
soulié [3] (see also de Veciana, Lee and Konstantopoulos [10] who first established
the result for the case of max-min fairness, Ye [29] and Key and Massoulié [16] for
an extension to more general utility functions Ur in the allocation definition (1)).

Thus, the requirement of achieving ergodicity for the largest possible set of
traffic intensity vectors ρ, being met by all (w,α)-fair NBA, does not distinguish
one such criterion as superior to the others.

A more stringent requirement has been suggested by Bonald and Proutière [5],
namely that not only the stability region (defined to be the set of vectors ρ such that
the system is ergodic) be maximal, but also that the corresponding Markov process
be insensitive to the distribution of sizes of the files transferred by each class of
users. Roughly speaking, insensitivity means that the stationary distribution of the
numbers of users in the system is unaffected if the service time distributions are
modified, provided their mean is left unchanged. For characterizations of insensi-
tive systems, we refer the reader to Schassberger [25] and references therein. In
particular, it holds that, when service rate to users of one type is shared equally
among such users, that is to say, under a processor sharing assumption, reversibil-
ity of the original Markov process ensures it is insensitive [5, 25].

If insensitivity holds, the system remains ergodic under the natural stability con-
dition for arbitrary phase-type (i.e., mixtures of convolutions of exponential distri-
butions; see, [1], page 80), not necessarily exponential, service time distributions.
Note that ergodicity under the natural stability conditions, and for general, nonex-
ponential service time distributions, has so far been established for the max-min
fairness NBA in a recent article of Bramson [6], but a similar result has been miss-
ing for all other (w,α) NBAs. Although restricted to max-min fairness, the results
of Bramson apply under very weak integrability assumptions on the service time
distributions, and are not restricted to phase-type distributions.

Bonald and Proutière have identified a new NBA, the so-called balanced fair-
ness allocation, which meets the two requirements of maximal stability region and
insensitivity, and moreover maximizes the fraction of time during which the system
is empty, among all allocations meeting these two requirements. They have further-
more identified special network topologies for which balanced fairness coincides
with proportional fairness, and have shown that for all other network topologies,
balanced fairness is distinct from any utility maximization NBA.

This leaves several questions open regarding the choice of an NBA. On the
one hand, utility maximization allocations, such as (w,α)-fairness or more specif-
ically proportional fairness, can be implemented in a distributed manner (see, e.g.,
the seminal paper by Kelly, Maulloo and Tan [14]), and are motivated by micro-
economic theory and game theory arguments in a static setting. In addition, they
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satisfy the criterion of maximal stability region in the dynamic setting, but do not
seem to meet the more stringent requirement of insensitivity. On the other hand,
balanced fairness does meet the latter requirement, but no simple distributed tech-
nique for realizing this NBA is known, if we except the special network topologies,
identified in [5], where it coincides with proportional fairness.

In the present work, we provide a novel characterization of proportional fair-
ness, and use it to improve upon this unsatisfactory state of affairs. Indeed, rely-
ing on this structural property, we show that the seemingly fortuitous coincidence
of balanced fairness and proportional fairness on specific network topologies in
fact reflects a deeper relationship between the two NBAs, that holds for any net-
work topology as captured by the set C. More precisely, we exhibit a third NBA,
namely modified proportional fairness, which coincides in some asymptotic sense
with proportional fairness. Under modified proportional fairness, the system is re-
versible, and hence insensitive. Furthermore, the steady state distributions under
modified proportional fairness and balanced fairness admit the same large devia-
tions characteristics, described by a simple explicit rate function.

As a by-product, we give a new proof of ergodicity of proportional fairness,
which extends to a more general model of network dynamics including Markovian
users routing. This in turn implies that the usual stability conditions still hold with
service time distributions that are of phase type rather than exponential.

In view of these results, proportional fairness is an attractive candidate as a de-
fault NBA. Indeed, it is motivated by the following factors: (1) the decomposition
property of [13], (2) axiomatic arguments from bargaining theory [27], (3) as an
implementable approximation to balanced fairness, meeting the additional criteria
of performance and insensitivity.

The structure of the paper is as follows. Section 2 gives the novel characteri-
zation of proportional fairness. Stability properties with Markovian user routing
are proven in Section 3. The special case of phase type service distributions is
discussed in Section 4. Section 5 establishes the relationships between balanced
fairness and modified proportional fairness, and in particular the fact that the corre-
sponding equilibrium distributions have the same large deviations characteristics.

2. Characterization of proportional fairness via convex duality. It is con-
venient to consider the logarithms of the allocated capacities λr , rather than the λr

themselves. Denote by K the subset of R
|R| in which these must lie, that is,

γ = {γr} ∈ K ⇔ λ = {exp(γr)} ∈ C.

Given γ , γ ′ in K , and ε ∈ (0,1), by convexity of the exponential function, for all
r ∈ R, one has

exp
(
εγr + (1 − ε)γ ′

r

) ≤ ε exp(γr) + (1 − ε) exp(γ ′
r ),

and thus since C is convex, nonincreasing, then so is K . Denote by γ PF(x) the vec-
tor of logarithms of proportionally fair allocations, that necessarily belong to K .
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Denote by δK the function that equals zero on K , and +∞ outside of K . The
original characterization of λPF(x) as a maximizer of

∑
r∈R xr log(λr) over λ ∈ C

readily implies that

γ PF(x) ∈ arg sup
γ∈RR

(〈γ, x〉 − δK(γ )
)
.(4)

Let now δ∗
K denote the Fenchel–Legendre convex conjugate function of δK , that

is,

δ∗
K(x) = sup

γ∈RR

(〈γ, x〉 − δK(γ )
)
.

Recall that the subgradient of a convex function J defined on R
n at a point x ∈ R

n,
which is denoted by ∂J (x), is the set consisting of all the vectors h such that, for
all y ∈ R

n,

J (x) + 〈h,y − x〉 ≤ J (y).

We then have the following compact characterization of the function γ PF.

LEMMA 1. The function γ PF satisfies for all x ∈ R
R+ ,

γ PF(x) ∈ ∂δ∗
K(x),(5)

where ∂δ∗
K(x) denotes the subgradient of the convex function δ∗

K at x.

PROOF. It follows from Theorem 23.5, page 218 in Rockafellar [22] that con-
ditions (4) and (5) are equivalent for any proper convex function δ∗

K . Recall that
a convex function is proper if it nowhere takes the value −∞, and it takes finite
values at some points. Both conditions hold for δ∗

K , which establishes the lemma.
�

This simple result allows to use the powerful theory of convex duality in the
study of the function x → γ PF(x). For instance, we have the following:

LEMMA 2. The function δ∗
K is continuously differentiable on (0,∞)R, and

thus on (0,∞)R, γ PF(x) coincides with the ordinary gradient of δ∗
K at x, and

depends continuously on x.

PROOF. By Theorem 25.1, page 242 in [22], at a point x where a convex func-
tion admits a unique subgradient, it is differentiable, and its subgradient reduces
to its ordinary gradient. The original allocation vector λPF(x) is uniquely defined
at x whenever xr > 0 for all r ∈ R, by strict concavity of the log function. Thus,
γ PF(x) is also uniquely defined at x ∈ (0,∞)R, and hence it coincides with the
ordinary gradient of δ∗

K at x.
Furthermore, by Theorem 25.5, page 246 in [22], the gradient of a proper convex

function is continuous on the domain where the function is differentiable. The
claimed continuity of the allocation vector γ PF(x) on x ∈ (0,∞)R follows. �
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Introduce now the alternative NBA, denoted PF′ for modified proportional fair-
ness, and defined by

λPF′
r (x) =

{
exp

(
δ∗
K(x) − δ∗

K(x − er)
)
, if xr > 0,

0, otherwise.

Define the function L on R
R+ by

L(x) = δ∗
K(x) − ∑

r∈R

log(ρr)xr ,(6)

where ρr = νr/µr , r ∈ R. It is readily verified that, under the PF′ allocation strat-
egy, the Markov process is reversible, and thus insensitive. Indeed, one easily
shows that the measure πPF′

on Z
R+ by

πPF′
(x) = exp(−L(x))(7)

verifies the detailed balance equations

πPF′
(x + er)µrλ

PF′
r (x + er) = πPF′

(x)νr , r ∈ R, x ∈ Z
R+ .

The natural stability condition is, as discussed previously, the following:

ρ ∈ ◦
C .(8)

The following lemma gives useful properties satisfied by function L:

LEMMA 3. The function L is lower semicontinuous on R
R, and continuous

on R
R+ . Furthermore, under assumption (8), there exist positive constants a,A > 0

such that for all x ∈ R
R+ ,

a‖x‖∞ ≤ L(x) ≤ A‖x‖∞,(9)

where ‖x‖∞ := supr∈R |xr |.
PROOF. The function δ∗

K is lower semicontinuous, as the Fenchel–Legendre
conjugate of a proper convex function (by Theorem 12.2, page 104 in [22]). The
sum of an affine—and hence continuous—function with a lower semicontinuous
function is lower semicontinuous. Thus L is lower semicontinuous.

Continuity of L on R
R+ follows from Theorem 2.35, page 59 in Rockafellar and

Wets [23] and the fact that it is convex, lower semicontinuous, and finite on R
R+ .

Under the stability condition (8), there exists some ε > 0 such that (1+ε)ρ ∈ C.
Thus,

δ∗
K(x) ≥ ∑

r∈R

xr log
(
(1 + ε)ρr

)
.

It follows that

L(x) ≥ log(1 + ε)
∑
r∈R

xr .
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This provides the first inequality in (9). In order to establish the second inequality,
use the homogeneity property of L to write

L(x) = ‖x‖∞L(‖x‖−1∞ x) ≤ ‖x‖∞ sup
y∈R

R+ ,‖y‖∞=1

L(y).

The supremum of a continuous function on a compact set is finite, which yields
the second half of (9). �

It follows from equation (9) that, under condition (8), the stationary measure (7)
can be normalized to a probability measure, which then implies stability (ergod-
icity) of the Markov process under the modified proportional fairness NBA, when
(8) holds.

Fix now y ∈ R
R+ , and let x = ny, where n is large. The heuristic calculation

λPF′
r (x) = exp

(
nδ∗

K(y) − nδ∗
K(y − n−1er)

)
≈ exp(∂rδ

∗
K(y))

= λPF
r (x),

based on the homogeneity property of δ∗
K , according to which δ∗

K(ny) = nδ∗
K(y),

and a heuristic Taylor approximation, suggests that the behavior of the systems
under PF and PF′ are similar, at least far from the origin. At this stage we content
ourselves with making the following conjecture:

CONJECTURE 1. Let XPF and XPF′
denote the number of customers in steady

state under PF and PF’, respectively. We conjecture that the rescaled vectors
n−1XPF and n−1XPF′

satisfy, as n → ∞, a large deviations principle with the
same rate function L as defined in (6).

Remark that the vector of allocations λPF′
r (x) belongs to the convex set C for all

x ∈ Z
R+ , in view of the following property of the function δ∗

K :

LEMMA 4. The function δ∗
K is such that, for all x ∈ R

R+ , and all εr > 0, r ∈ R,{
δ∗
K(x) − δ∗

K(x − εrer)

εr

}
∈ K.(10)

It is understood in this expression that a vector u with coordinates in {−∞} ∪ R

belongs to K when the vector eu with coordinates eur belongs to the original
convex set C, and e−∞ = 0.

PROOF. Let x ∈ R
R+ . Assume first that all the coordinates xr are strictly posi-

tive. It follows that the vector u achieving the supremum in the original definition
of δ∗

K(x) is uniquely defined. By Lemma 1 above, and Theorem 25.1, page 242
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in [22], it follows that δ∗
K is differentiable at x, its (ordinary) gradient being the

vector u achieving that supremum. Also, the function ε → ε−1[δ∗
K(x) − δ∗

K(x −
εer)] is nonincreasing in ε > 0, and achieves its maximum as ε ↘ 0, where
it equals the coordinate ur of the gradient (see Theorem 23.1, pages 213–214
in [22]). By monotonicity of the set K , it follows that δ∗

K satisfies the condition (10)
at x.

We now show that the same is true when some coordinates of x equal zero. Let
I ⊂ R denote the set of indices r for which the coordinate xr equals zero. We say
that x belongs to the face I when x ∈ R

R+ and xr = 0 if and only if r ∈ I . We also
denote by KI the subset of K consisting of these vectors u with ur = −∞ if and
only if r ∈ I . In the definition of δ∗

K(x), we may actually replace the optimization
domain by KI rather than K . There is then a single vector u of KI which achieves
the corresponding supremum. We may conclude as in the previous case that (10)
holds in the present case as well. �

3. Stability properties of proportional fairness. The above characterization
is now applied to the study of stability properties of the Markov process describing
the number of users in the system under proportional fairness. Ergodicity is estab-
lished by following the general approach of fluid limits, introduced in the contexts
of more traditional queueing systems by Rybko and Stolyar [24] and Dai [9].

The section is organized as follows. The general model with Markovian users
routing is first introduced. A characterization of the fluid limits of this process is
then given. It is next established that the function L defined in (6) is a Lyapunov
function for these fluid limits, from which stability (or equivalently, ergodicity) of
the original Markov process is deduced, under condition (8) for suitably defined
loads ρr , r ∈ R.

The model with Markovian users routing is as follows. As before, users are of
different types, r ∈ R. External arrivals of type r users are according to a Poisson
process with intensity νr ; the service times of type-r users are again exponential
with parameter µr . However, after completing service, type r users will re-enter
the system as type s users with some probability prs . Thus the nonzero transition
rates are now given by

x → x + er with rate νr,

x → x − er + es with rate µrλ
PF
r (x)prs,(11)

x → x − er with rate µrλ
PF
r (x)

(
1 − ∑

s∈R

prs

)
.

In the above, er denotes the r th unit vector in R
R. It is assumed that the matrix

P = (prs)r,s∈R is substochastic, and that its spectral radius is strictly less than 1.
Thus, there exists a unique vector ν = (νr)r∈R solving the traffic equations

νr = νr + ∑
s∈R

psrνs, r ∈ R,
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also written in matrix form

(I − P T )ν = ν,

where P T is the transposition of the routing probability matrix P . Introduce the
notation ρr = νr/µr , and ρ = (ρr)r∈R. The main result of this section is the fol-
lowing:

THEOREM 1. The Markov process with Markovian users routing is ergodic
under condition (8).

In order to establish the theorem, a characterization of the fluid limits of the
original Markov process is required. To this end, the following definition will be
used. Note that the constant A appearing in this definition differs from the one
appearing in Lemma 3. In the sequel, to simplify notations, A will always be used
to denote an arbitrary finite constant, whose value may vary from one statement to
another.

DEFINITION 1. The functions xr : R+ → R+, r ∈ R, are called fluid trajec-
tories of the system with Markovian users routing if there exist nondecreasing,
Lipschitz continuous functions Dr : R+ → R+, r ∈ R, such that Dr(0) = 0, ad-
mitting A as a Lipschitz constant for any A such that C ⊂ [0,A]R, that verify

xr(t) = xr(0) + νr t − µrDr(t) + ∑
s∈R

psrµsDs(t), t ∈ R+, r ∈ R,(12)

and for almost every t ∈ R+, all r ∈ R, the derivatives Ḋr(t) exist and verify

Ḋr(t) ∈
[
0, lim sup

y→x(t)

λPF
r (y)

]
,(13)

xr(t) > 0 ⇒ Ḋr(t) = λPF
r (x(t)) = exp(γ PF

r (x(t))).(14)

The following notation will be used in the sequel. For any x ∈ R
R+ , S(x) denotes

the set of all fluid trajectories of the system with initial condition x. Thus it is a
subset of C([0,+∞),R

R+ ), that is the space of continuous, R
R+ -valued functions

on [0,+∞).
Note that at this stage neither existence nor uniqueness of fluid trajectories with

a given initial condition have been established.
The following result is the first step of the proof of Theorem 1. It implies as

a corollary that the set S(x) is nonempty, for any x ∈ R
R+ . However no claim of

uniqueness of fluid trajectories is made.

THEOREM 2. Consider a sequence of initial conditions Xk(0) = (Xk
r (0))r∈R,

k ≥ 1, such that for a sequence of positive numbers (zk)k∈N, limk→∞ zk = +∞,
and the limit limk→∞ z−1

k Xk(0) = x(0) exists in R
R+ .
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Then for all T > 0, and all ε > 0, the following convergence takes place:

lim
k→∞ P

(
inf

f ∈S(x(0))
sup

t∈[0,T ]
|z−1

k Xk(zkt) − f (t)| ≥ ε

)
= 0.

In words, the restriction of the rescaled process z−1
k Xk(zk·) to any compact in-

terval [0, T ] converges in probability to the set S(x(0)) of fluid trajectories with
initial condition x(0), where convergence of processes is for the uniform norm.

The proof of Theorem 2 is deferred to the Appendix A. We expect a similar re-
sult to hold for other NBA, in particular for α-fair NBA, provided one replaces λPF

by the corresponding allocation vector λNBA in the definition of the fluid trajecto-
ries. Indeed the proof given in the Appendix A relies on two technical lemmas by
Ye, Ou and Yuan [30] which apply to general α-fair NBA, and the rest of the proof
can be adapted in a straightforward manner.

The second step of the proof of Theorem 1 consists in establishing a suitable
uniform convergence to zero of fluid trajectories:

THEOREM 3. Under the stability condition (8), there exists τ > 0 and
ε > 0 such that, for any fluid trajectory {x(t)}t∈R+ , provided L(x(0)) = 1, then
L(x(τ)) ≤ 1 − ε.

The following lemma will be needed in the proof of Theorem 3:

LEMMA 5. Let {x(t)}t∈R+ be a fluid trajectory as per Definition 1. For every
t ≥ 0, let I (t) denote the set of indices r ∈ R such that xr(t) = 0, and Ī (t) =
R \ I (t).

(i) There exist modified arrival rates ν̃r , r ∈ Ī (t), and modified routing prob-
abilities, p̃rs , r, s ∈ Ī (t), that depend only on the set I (t), such that the matrix
(p̃rs)r,s∈Ī (t) is sub-stochastic with spectral radius strictly less than 1, the identity

(νr)r∈Ī (t) = (I − P̃ T )−1ν̃(15)

holds, and furthermore, for almost every t > 0,
d

dt
xr(t) = ν̃r + ∑

r∈Ī (t)

µsp̃srλ
PF
s (x(t)) − µrλ

PF
r (x(t)), r ∈ Ī (t),

(16)
d

dt
x(t) = 0, r ∈ I (t).

Let f (t) := L(x(t)).
(ii) For almost every t > 0, it holds that:

lim sup
h↘0

f (t + h) − f (t)

h
≤ ∑

r∈Ī (t)

(
γ PF
r (x(t)) − log(ρr)

)
ẋr (t),(17)

where the derivatives ẋr (t) are as in (16).
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(iii) There exists a constant A such that, for all t > 0,

lim sup
h↘0

f (t + h) − f (t)

h
≤ A.(18)

The proof of the lemma is given in Appendix B.
The following auxiliary result will also be used:

LEMMA 6. Let a continuous function f : [0, T ] → R be given. Assume that
there exists ε ∈ R such that, for almost all t ∈ [0, T ]:

lim sup
h↘0

f (t + h) − f (t)

h
≤ −ε.(19)

Assume further the existence of a constant A ∈ R such that for all t ∈ [0, T ],
lim sup

h↘0

f (t + h) − f (t)

h
≤ A.(20)

Then it holds that, for all s, t ∈ [0, T ), s < t ,

f (t) − f (s) ≤ −ε(t − s).(21)

REMARK 1. The following example illustrates the role of assumption (20) in
Lemma 6. Let f +(t) = m([0, t]), where m is the uniform measure on the Cantor
set obtained by successive exclusion of the middle third from the interval [0,1]
(see, e.g., Falconer [11] for background). More precisely, this measure can be de-
fined by specifying the mass it puts on intervals [0, x] where x is a triadic number,
that is

x =
∞∑
i=1

zi3
−i ,

where zi ∈ {0,1,2}, i ≥ 1. The uniform measure m on this Cantor set is then
specified by

m([0, x]) =
k∑

i=1

zi2
−i−1,

where k = min{i ≥ 1 : zi = 1}.
Define then

f (t) = −εt + f +(t).

The function f is continuous, because the measure m has no atoms. Moreover, the
measure m is supported by a set of null Lebesgue measure, so that the function f

satisfies condition (19) of Lemma 6. However, the conclusion (21) does not hold,
precisely because condition (20) is not satisfied.
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The result of Theorem 3 is established as follows.

PROOF OF THEOREM 3. Let {x(t)}t∈R+ denote a fluid trajectory. Introduce
the notation ur = log(λPF

r (x(t))/ρr). The right-hand side of equation (17), which
we shall denote h(t), can then be rewritten, in view of (16), as

h(t) = ∑
r∈Ī (t)

ur

[
ν̃r − νre

ur + ∑
s∈Ī (t)

p̃srνse
us

]
,

or equivalently, in matrix form,

h(t) = 〈u, ν̃ − (I − P̃ T )(νeu)〉.
We use the notation �η� to denote the diagonal matrix with diagonal entries pro-
vided by the coordinates of the vector η. Elementary manipulations entail that

h(t) = −〈u, (I − P̃ T )�ν�(eu − 1)〉
= −〈ν, �(I − P̃ )u�(eu − 1)〉(22)

= −〈ν̃, (I − P̃ )−1�(I − P̃ )u�(eu − 1)〉,
the first equality relying on identity (15). In order to show that the previous expres-
sion is nonpositive, it is enough to show that for each r ∈ Ī (t), the coefficient of ν̃r

is nonpositive, that is,

Fr(u) := ∑
n≥0

∑
s∈Ī (t)

p̃(n)
rs (eus − 1)

[
us − ∑

�∈Ī (t)

ps�u�

]
≥ 0, r ∈ Ī (t).(23)

The following lemma, whose proof is deferred to the Appendix D, is now needed:

LEMMA 7. For any substochastic matrix P̃ = (p̃rs)r,s∈Ī with spectral radius
strictly less than 1, and any real numbers us , s ∈ Ī , then:

(i) Inequality (23) holds.
(ii) The function Fr as defined in (23) verifies Fr(u) ≥ Fr(u

+) for all u ∈ R
Ī+,

where u+ := (u+
s )s∈Ī , and u+

s = max(us,0).

(iii) There is equality in (23) only if for all states s such that
∑

n≥0 p̃
(n)
rs > 0,

one has us = 0.

That the term h(t) is nonpositive follows from Lemma 7(i).
When x(t) �= 0, the allocation vector λPF(x(t)) must lie on the external bound-

ary of the capacity set C. Thus, by (8), for some positive ε, there must exist some
coordinate r such that λPF

r (x(t)) ≥ (1 + ε)ρr . Therefore, setting δ = log(1 + ε) >

0, it holds that us ≥ δ for some s ∈ Ī . There must also exist some r ∈ Ī such that
ν̃r > 0, and

∑
n≥0 p̃

(n)
rs > 0. It is also the case that the uk are bounded from above

by some constant A, since the allocations λPF
k are bounded from above.
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By Lemma 7(ii), one thus has

x(t) �= 0 ⇒ h(t) ≤ − inf
r:ν̃r>0

ν̃r inf
u∈S

Fr(u),

where the set S is defined as

S =
{
u ∈ [0,A]Ī : max

k∈Ī
uk ≥ δ

}
.

Since the function Fr is continuous and the set S is compact, the infimum of Fr(u)

over S is attained; however it cannot be zero, in view of Lemma 7(iii) and the
definition of S. Thus, the right-hand side of the above is less than −ε(I (t)) for
some strictly positive ε(I (t)) that depends only on the set I (t).

By assumption, the initial condition of the fluid trajectory in the statement of
Theorem 2 is such that L(x(0)) = 1.

Thus, in view of (9), there exists r so that xr(0) ≥ 1/K for some finite positive
constant K . Setting τ = 1/(2KA), where A is such that the capacity set C is a
subset of [0,A]R, it then follows that for any fluid trajectory with initial condition
x(0) such that L(x(0)) = 1, then x(t) �= 0 on [0, τ ]. Hence, by the previous evalu-
ations, in view of (17,18) for any such fluid trajectory, the function f (t) = L(x(t))

satisfies the assumptions of Lemma 6, with ε := infI⊂R,I �=R ε(I ) > 0. Thus, by
Lemma 6:

L(x(τ)) ≤ 1 − τε < 1.

The claim of the theorem follows. �

The proof of Theorem 1 will require to combine Theorems 2, 3 and the follow-
ing ergodicity criterion, which is a direct consequence of Theorem 8.13, page 224
in Robert [21]:

THEOREM 4 ([21]). Let X(t) be a Markov jump process on a countable state
space S. Assume there exists a function L :S → R+ and constants A, ε, and an
integrable stopping time τ̂ > 0 such that for all x ∈ S:

L(x) > A ⇒ ExL(X(τ̂ )) ≤ L(x) − εEx(τ̂ ).(24)

If in addition the set {x :L(x) ≤ A} is finite, and ExL(X(1)) < +∞ for all x ∈ S,
then the process X(t) is ergodic.

PROOF OF THEOREM 1. Let τ be as in Theorem 3. Consider the determinis-
tic stopping time τ̂ = L(x(0))τ . Denote by Px the probability distribution of the
Markov process (X(t)) with initial condition x ∈ N

R.
It is readily seen that the collection of probability distributions{

Px

(
L(x)−1Xr(τ̂ ) ∈ ·)}r∈R,x∈NR\{0}
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is uniformly integrable. Indeed, let Ar denote independent unit rate Poisson
processes, used to generate users arrival times. Then the process X(t) can be gen-
erated so that

Xr(t) ≤ Xr(0) + Ar(νr t), t ≥ 0, r ∈ R.(25)

Thus, for X(0) = x,

Xr(τ̂ )

L(x)
≤ xr

L(x)
+ Ar(νrL(x))

L(x)
·

The first term is bounded from above uniformly in x �= 0, in view of Lemma 3, (9).
The second term has mean 1. Its variance equals νr/L(x). Thus the second mo-
ments of these variables are uniformly bounded in x �= 0. Therefore, Lavallée–
Poussin criterion for uniform integrability applies.

In view of (9), it then follows that the collection of probability distributions{
Px

(
L(x)−1L(X(τ̂ )) ∈ ·)}x∈NR\{0}

is also uniformly integrable.
The result of Theorem 2 entails that for any sequence of initial condi-

tions xk such that ‖xk‖∞ → ∞ as k → ∞, the corresponding rescaled variables
Xk(L(xk)τ )/L(xk) converge in probability to the set V defined as

V := ⋃
x∈R

R+ ,L(x)=1

{x(τ), x(·) ∈ S(x)}.

In words, V is the set of states of fluid trajectories at time τ for all fluid trajectories
with initial condition x(0) satisfying L(x(0)) = 1.

It can be verified from (9) and the definition of fluid trajectories that the set V

is compact. Continuity of L together with compactness of V entail that the se-
quence of random variables L(Xk(L(xk)τ ))/L(xk) converges in probability to the
set L(V ).

Thus, by Theorem 3, the sequence of random variables L(Xk(L(xk)τ ))/L(xk)

converges in probability to the interval [0,1 − ε], where ε > 0.
Combined with the uniform integrability just shown, this yields

lim sup
L(x)→∞

1

L(x)
ExL(X(L(x)τ)) ≤ 1 − ε.

Thus, Condition (24) of Theorem 4 holds for A sufficiently large. The second
requirement, that the set {x :L(x) ≤ A} be finite, follows from (9). Finally, the
last condition, that is ExL(X(1)) < +∞ for all x is easily verified, invoking once
more the bounds (25) and (9). �
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4. Application to phase-type service distributions. We now apply Theo-
rem 1 to systems with general phase-type distributions rather than exponential
service time distributions. More precisely, we consider the same setting as before,
with user classes r ∈ R, and capacity set C ⊂ R

R+ . New type r users arrive as usual
according to a Poisson process with intensity νr .

The service time distribution of type r customers is now defined as follows.
A finite set Ir , referred to as the set of service phases, is given. The total service
time is characterized as the aggregation of service times required in subsequent
visits to phases. At each visit to phase i, a corresponding service time that is expo-
nentially distributed, with parameter µr,i , is required. A visit to phase i is followed
by a visit to phase j with probability pr;ij . A probability distribution {αi}i∈Ir on Ir

specifies the phase in which service starts. The transition matrix Pr := (pr;ij )i,j∈Ir

is assumed to be sub-stochastic, with spectral radius strictly less than 1. It is eas-
ily checked that the above description is equivalent to the definition of phase-type
distributions given in [1], page 83.

Denote by R̂ the set of pairs (r, i) with r ∈ R and i ∈ Ir . For all (r, i) ∈ R̂, let
xr,i denote the number of class r users who are currently in phase i of their service.

The process (xr,i)(r,i)∈R̂ is then a Markov process of the kind covered by The-
orem 1. More precisely, it corresponds to the following parameters. For the class
s = (r, i) ∈ R̂, the external arrival rate νs is given by νrαr,i and the corresponding
service time parameter is µs = µr,i . For two classes s = (r, i), s′ = (r ′, i′), the cor-
responding routing probability pss′ is zero if r �= r ′, and otherwise equals pr;ii′ .
Finally, the capacity set Ĉ is determined from the original capacity set C as fol-
lows. The allocation vector (λs)s∈R̂ belongs to Ĉ if and only if the allocation
vector (λr)r∈R belongs to C, where λr is given by

∑
i∈Ir

λ(r,i).
We then have the following:

THEOREM 5. The process tracking the numbers xr of users of class r , under
proportionally fair allocation of resources characterized by the set C, assuming
Poisson arrivals and phase type distributions as just described, is ergodic under
the usual condition (8), where ρr = νrσr , and σr is the mean service time for class
r users.

PROOF. By Theorem 1, ergodicity holds provided the vector (ρ(r,i))(r,i)∈R̂ be-

longs to the interior of Ĉ. Equivalently, it holds if the vector with r th coordinate∑
i∈Ir

ρ(r,i) belongs to
◦
C.

With the specific routing probability matrix P obtained from the characteristics
of the phase type service distributions, one has

ρ(r,i) = 1

µr,i

∑
j∈Ir

∑
n≥0

p
(n)
r;jiνr,j

= 1

µr,i

∑
j∈Ir

∑
n≥0

p
(n)
r;jiαr,j νr .
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This in turn implies that∑
i∈Ir

ρ(r,i) = νr

∑
i∈Ir

1

µr,i

∑
j∈Ir ,n≥0

αr,j p
(n)
r;ji .

Noting that in the above expression, the last sum over j ∈ Ir and n ≥ 0 gives the
average number of visits to phase i in a class r service time, it readily follows that
this last expression coincides with νrσr , which completes the proof. �

5. Relationships between balanced fairness and proportional fairness. In
this section we define the balanced fairness NBA, give an equivalent characteri-
zation and then use it to relate the stationary distributions under balanced fairness
and modified proportional fairness.

The balanced fairness NBA, introduced in [5], is best defined in terms of the
balance function. The balance function, denoted ψ , is defined by induction on Z

R+ ,
starting from ψ(0) = 1, ψ(x) = 0 for any x not in R

R+ , and

ψ(x) = inf
{
a > 0 : {a−1ψ(x − er)}r∈R ∈ C

}
,

where er is the r th unit vector in R
R. The balanced fairness rate allocation vec-

tor λBF is then defined as

λBF
r (x) = ψ(x − er)

ψ(x)
, x ∈ Z

R+ , r ∈ R.

As for proportional fairness, it is convenient to consider the logarithms γr of the
allocated capacities λr , rather than the λr themselves. Denote by γ BF(x) the vector
of logarithms of balanced fair allocations, that must lie in the convex nonincreasing
set K . Introduce the notation φ(x) = − logψ(x). Thus one has

γ BF
r (x) = φ(x) − φ(x − er).

In other words, the vector γ BF(x) is given by the increments of the function φ

at x, and can be seen as an approximate gradient of φ at x. We introduce the
notation ∇df (x) = {f (x)− f (x − er)}r∈R. Note that a stationary measure for the
Markov process counting users of all types is given in terms of the function φ by

πBF(x) = 1

Z
exp

(
−φ(x) + ∑

r∈R

xr log(ρr)

)
(26)

for some normalization constant Z. A consequence of the reversibility property of
the Markov process is that this measure is also stationary for the modified Markov
process with Markovian routing [5].

We now give an alternative definition of φ.
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LEMMA 8. The function φ admits the following characterization:

φ(x) = sup
f ∈F

{f (x)}

where F is the set of functions defined on Z
R such that f (0) = 0, f (y) = +∞ for

y /∈ Z
R+ , and ∇df (y) belongs to K for all y ∈ Z

R+ .

PROOF. Denote by φ̂(x) the result of the optimization problem in the right-
hand side of the above expression. Proceed by induction on x ∈ Z

R+ to show
that φ(x) = φ̂(x). Clearly, φ(0) = φ̂(0) = 0. Also, as the function φ satisfies
the conditions over which the optimization is performed, necessarily one has that
φ(x) ≤ φ̂(x), for all x ∈ Z

R+ . Assume thus that φ̂(y) = φ(y) for all y ≤ x, y �= x.
The definition by induction of ψ implies that

φ(x) = sup
{
a : {a − φ(x − er)}r∈R ∈ K

}
.

On the other hand, for any f satisfying the assumptions,

f (x) ≤ sup
{
a : {a − f (x − er)}r∈R ∈ K

}
≤ sup

{
a : {a − φ(x − er)}r∈R ∈ K

}
= φ(x).

We have used for the first inequality the definition of the constraints satisfied by f ,
for the second we have used the induction hypothesis that f (x − er) ≤ φ(x − er)

together with monotonicity of the set K , and the last equality is just the inductive
definition of φ. �

We are now ready to establish the following:

THEOREM 6. For any x ∈ Z
R+ , the following inequalities hold:

δ∗
K(x) ≤ φ(x) ≤ δ∗

K(x) + r(x),(27)

where

r(x) := ∑
r∈R:xr>0

xr∑
m=1

1

m
.

PROOF. The two inequalities shall be established by induction on
∑

r∈R xr for
x ∈ Z

R+ . They obviously hold true for x = 0, as φ(0) = δ∗
K(0) = 0. Assume thus

that they hold for all y ∈ Z
R+ such that

∑
r∈R yr ≤ n, for some integer n ≥ 0, and

let x ∈ Z
R+ be given,

∑
r∈R xr = n + 1. By the induction hypothesis and the result

of Lemma 8, it holds that

φ(x) = sup
{
a : {a − φ(x − er)}r∈R ∈ K

}
≥ sup

{
a : {a − δ∗

K(x − er)}r∈R ∈ K
}
.
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Now, in view of Lemma 4, it holds that

{δ∗
K(x) − δ∗

K(x − er)}r∈R ∈ K.

Therefore,

φ(x) ≥ δ∗
K(x),

and the first inequality in (27) is established.
By the induction hypothesis again, we have that

φ(x) ≤ sup
{
a : {a − δ∗

K(x − es) − r(x − es)}s∈R ∈ K
}
.(28)

Consider first the case where xs > 0 for all s ∈ R. We shall rely on the following
lemma, the proof of which will be given after the end of the current proof.

LEMMA 9. For all x,h ∈ R
R, such that x has strictly positive coordinates,

and x + h has nonnegative coordinates, it holds that

δ∗
K(x + h) ≤ δ∗

K(x) + 〈h,γ PF(x)〉 + ∑
s∈R

h2
s

xs

·(29)

Thus, in view of the previous equation, we have that

δ∗
K(x − es) ≤ δ∗

K(x) − γ PF
s (x) + 1

xs

·

Combining this upper bound with (28), as the vector (γ PF
s (x))s∈R is in K , we have

that

φ(x) ≤ δ∗
K(x) + sup

s∈R

{
r(x − es) + 1

xs

}
.

In view of the definition of r(y), the second term in the right-hand side is clearly
upper bounded by r(x), which establishes the desired inequality for x.

To conclude the proof, it remains to deal with the case where some coordi-
nates xs equal zero. This case is in fact similar to the previous one: if x belongs to
face I (i.e., xs = 0 if and only if s ∈ I ), the previous argument carries over in Z

R\I
+

by considering the convex set KI instead of K . �

PROOF OF LEMMA 9. Let x,h ∈ R
R be fixed, such that x has strictly positive

coordinates, and x + h has nonnegative coordinates. Let γ ∈ R
R be such that

δ∗
K(x) = 〈x, γ 〉 − δK(γ ).

The pair (x, γ ) verifies the relations x ∈ ∂δK(γ ), γ ∈ ∂δ∗
K(x). In addition, the

following one-to-one correspondence between subgradients of δC and δK can be
established:

x ∈ ∂δK(γ ) ⇔ {xse
−γs }s∈R ∈ ∂δC({eγs }s∈R).
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Let h ∈ R
R be fixed. We have that

δ∗
K(x + h) = sup

g∈RR

{〈g, x + h〉 − δK(g)}

= sup
u∈RR

{〈u + γ, x + h〉 − δK(u + γ )}

= δ∗
K(x) + 〈h,γ 〉 + sup

u∈RR

{〈u,x + h〉 + δK(γ ) − δK(γ + u)}.

However, by convexity of δC , and recalling that e−γ x ∈ ∂δC(eγ ), we have the
following inequality:

δK(γ + u) = δC(eγ+u)

≥ δC(eγ ) + 〈eγ+u − eγ , e−γ x〉
= δK(γ ) + ∑

s∈R

(eus − 1)xs.

Combined with the previous expression for δ∗
K(x + h), this yields

δ∗
K(x + h) ≤ δ∗

K(x) + 〈h,γ 〉 + sup
u∈RR

{∑
s∈R

us(xs + hs) − (eus − 1)xs

}

= δ∗
K(x) + 〈h,γ 〉 + ∑

s∈R:xs+hs>0

(xs + hs) log(1 + hs/xs) − hs

+ ∑
s∈R:xs+hs=0

xs.

The claimed inequality (29) now follows by noting that (i) log(1+hs/xs) ≤ hs/xs ,
and (ii) γ = γ PF(x). �

A simple consequence of the theorem is the following.

COROLLARY 1. For any x ∈ R
+, it holds that

lim
n→∞

1

n
φ(nx) = δ∗

K(x).

PROOF. This follows trivially since the function δ∗
K is positively homoge-

neous, that is, δ∗
K(nx) = nδ∗

K(x), and since the remainder term r(nx) in (27) is
of order log(n), and a fortiori o(n). �

Note that, in view of (26),

1

n
log(πBF(nx)) = −φ(nx)

n
+ ∑

r∈R

xr log(ρr) − log(Z)

n
.

The last term must go to zero as n → ∞. This together with Corollary 1 yield the
following:
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COROLLARY 2. The stationary distribution πBF as in (26) admits the follow-
ing large deviations asymptotics:

lim
n→∞

1

n
logπBF(nx) = −L(x), x ∈ R

R+ ,(30)

where L is the Lyapunov function (6) used in the study of stability properties of
proportional fairness. It thus admits the same large deviations characteristics as
the stationary distribution (7) of the system under PF′ sharing.

REMARK 2. The result of Theorem 6 also implies that, if for all x ∈ R
R+ , there

exists a limit limn→∞ λBF(nx) of the allocation vector under balanced fairness,
then it must coincide with λPF(x). So far we have not been able to establish the
existence of such a limit, except in the special case where |R| = 2, although it
seems plausible that the limit exists more generally.

APPENDIX A: PROOF OF THEOREM 2

We argue by contradiction, assuming that for some ε > 0, and for all k in an
infinite subsequence of the original sequence, it holds that

P
(

inf
f ∈S(x(0))

sup
t∈[0,T ]

|z−1
k Xk(zkt) − f (t)| ≥ ε

)
≥ ε.(31)

In the rest of the proof, without loss of generality we assume that the above evalu-
ation holds true for all k ≥ 1.

The trajectories of the processes Xk(t) can be represented explicitly in terms of
independent unit rate Poisson processes Ak

r , Dk
rs , Dk

r , k ≥ 0, r , s ∈ R, as follows:

Xk
r (t) = Xk

r (0) + Ak
r (νr t) + ∑

s∈R

Dk
sr

(
µspsr

∫ t

0
λPF

s (Xk(u)) du

)

− ∑
s∈R

Dk
rs

(
µrprs

∫ t

0
λPF

r (Xk(u)) du

)

− Dk
r

(
µr

(
1 − ∑

s∈R

prs

)∫ t

0
λPF

r (Xk(u)) du

)
.

This implies the following, by a change of variables in the integrals, and using the
fact that λPF(ax) = λPF(x) for all scalar a > 0:

1

zk

Xk
r (zkt) = 1

zk

Xk
r (0) + νr t + ∑

s∈R

µspsr

∫ t

0
λPF

s (z−1
k Xk(zku)) du

− µr

∫ t

0
λPF

r (z−1
k Xk(zku)) du + εk

r (t),
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where the error term εk
r (t) verifies, for all T > 0,

sup
t∈[0,T ]

|εk
r (t)| ≤ 1

zk

sup
t∈[0,νrT ]

|Ak
r (zkt) − zkt |

+ ∑
s∈R

1

zk

sup
t∈[0,µspsrAT ]

|Dk
sr(zkt) − zkt |

+ ∑
s∈R

1

zk

sup
t∈[0,µrprsAT ]

|Dk
rs(zkt) − zkt |

+ 1

zk

sup
t∈[0,µrAT ]

|Dk
r (zkt) − zkt |.

In these expressions, A is a constant such that C ⊂ [0,A]R.
The following large deviations bound on the maximal deviation of a unit rate

Poisson process from its mean is now needed:

LEMMA A.1. Let � be a unit rate Poisson process. Then for all T > 0, and
all λ > 0, it holds that

P
(

sup
0≤t≤T

|�(t) − t | ≥ λT

)
≤ e−T h(λ) + e−T h(−λ),(32)

where

h(λ) := (1 + λ) log(1 + λ) − λ(33)

is the Cramér transform of a unit mean, centered Poisson random variable. In the
above formula, it is understood that h(−λ) = +∞ if λ > 1.

This result and its proof are standard (see, e.g., [26]). It implies the existence of
a subsequence k(�), � ≥ 1 of the original sequence, and a sequence ε(�) decreasing
to zero, such that∑

�≥1

P
(

sup
t∈[0,T ]

∣∣εk(�)
r (t)

∣∣ ≥ ε(�)

)
< ∞, r ∈ R.

Indeed, it can be checked from the definition of εk
r (t) and Lemma A.1 that the sum

in the left-hand side is finite for the particular choice
k(1) = 1,

k(�) = min{k > k(� − 1) : zk ≥ �}, � > 1,
ε(�) = �−1/4, � ≥ 1.

Without loss of generality we again assume that finiteness of the sum holds true
for the original sequence k ≥ 1. Thus, by Borel–Cantelli’s lemma, almost surely,
supt∈[0,T ] |εk

r (t)| → 0 as k → ∞. The following variation on Arzela–Ascoli’s the-
orem will then be used to proceed:
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LEMMA A.2 (Lemma 6.3, [30]). Suppose that a sequence of functions fk :
[0, T ] → R has the following properties:

(i) {fk(0)}k≥0 is bounded;
(ii) there is a constant M > 0, and a sequence of positive numbers σk , with

σk → 0 as k → ∞, such that

|fk(t) − fk(s)| ≤ M(t − s) + σk, k ≥ 0, s, t ∈ [0, T ].
Then the sequence admits a subsequence that converges uniformly on [0, T ] to a
Lipschitz continuous function f : [0, T ] → R with Lipschitz constant M .

In the present setup, this result guarantees that for any T > 0, with probabil-
ity 1, for any subsequence of the original sequence k ≥ 1, there exists a further
subsequence, denoted k′, along which, for all r ∈ R, the following convergences
take place, uniformly on [0, T ]:∫ t

0
λPF

r (z−1
k′ Xk′

(zk′u)) du → Dr(t),

z−1
k′ Xk′

r (zk′ t) → xr(t) := x(0) + νr t + ∑
s∈R

psrµsDs(t) − µrDr(t),

where the functions Dr are A-Lipschitz. (A set in which any infinite sequence ad-
mits a convergent subsequence is usually called sequentially compact. Sequential
compactness is equivalent to compactness in the case of metric spaces.) We shall
now establish that all such limits are fluid trajectories of the system. To this end,
the following lemma, also taken from [30], Lemma 6.2(b), is needed:

LEMMA A.3. For all r ∈ R, and any x ∈ R
R+ such that xr > 0, the bandwidth

allocation function λPF
r is continuous at x.

In fact, Ye, Ou and Yuan establish this result in the context of particular, polyhedral
capacity sets C; however their proof applies more generally to the current context
of convex, nonincreasing sets C. We do not reproduce it here.

Let then t be a point at which all functions Dr are differentiable. By
Rademacher’s theorem, this holds for almost every t ∈ [0, T ]. Consider first the
case where xr(t) > 0. One then has, for all h > 0:∫ t+h

t
λPF

r (z−1
k′ Xk′

(zk′u)) du →
∫ t+h

t
λPF

r (x(u)) du,

in view of (i) Lipschitz continuity of u → x(u), which entails positivity of xr(u)

on [t, t +h], the continuity property of λPF
r given in Lemma A.3, and finally by an

application of Lebesgue’s dominated convergence theorem. Therefore, appealing
once more to Lemma A.3, the derivative of function Dr at u must coincide with
λPF

r (x(t)).
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Consider now the case where xr(t) = 0. Clearly, by Fatou’s lemma, for all
h > 0, one has

lim sup
k′→∞

∫ t+h

t
λPF

r (z−1
k′ Xk′

(zk′u)) du ≤
∫ t+h

t
lim sup
y→x(u)

λPF
r (y) du.

On the other hand, the function x → lim supy→x λPF
r (y) is upper semi-continuous,

and thus it follows that

lim sup
u→t

[
lim sup
y→x(u)

λPF
r (y)

]
≤ lim sup

y→x(t)

λPF
r (y).

This readily implies that, necessarily, the derivative of u → Dr(u) at t must lie in
the interval [0, lim supy→x(t) λ

PF
r (y)].

We have thus shown that for any interval [0, T ], with probability 1, from any
subsequence one can extract a further subsequence k′ along which the rescaled
process z−1

k′ X
′
k(zk′ ·) converges to a fluid trajectory, uniformly on [0, T ]. That is to

say, almost surely, the accumulation points of the rescaled trajectories consist only
of fluid trajectories. This is in contradiction with (31), and the result of Theorem 2
then follows.

APPENDIX B: PROOF OF LEMMA 5

Proof of part (i). Let u → x(u) denote a fluid trajectory. Let t > 0 be a point
at which all the associated functions Dr are differentiable. For notational conve-
nience, write x for x(t), I for I (t), Ī for R \ I , and λr for λPF

r (x(t)). For r ∈ Ī ,
Theorem 2 establishes that Ḋr(t) = λr . Let dr denote the derivative Ḋr(t) for
r ∈ I . As the trajectories u → xr(u) are constrained to be nonnegative, necessarily
one has for all r ∈ I :

ẋr (t) = 0 = νr + ∑
s /∈I

µspsrλs + ∑
s∈I

µspsrds − µrdr .

This can be written in matrix form as

(µd)I = νI + (P T )IĪ(µλ)Ī + (P T )II(µd)I ,

where (x)J denotes the vector with entries j ∈ J , and (M)IJ denotes the matrix
with entries Mij , i ∈ I , j ∈ J . The matrix (P T )II has a spectral radius strictly less
than 1, for otherwise the original routing matrix P would have a spectral radius of
at least 1. Thus there exists a unique solution (µd)I to the above equation, given
by

(µd)I = (
I − (P T )II

)−1[νI + (P T )IĪ(µλ)Ī ].
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In view of this expression, for r ∈ Ī , the time derivatives ẋr (t) can be written as

(ẋ)Ī = (ν)Ī + (P T )ĪĪ(µλ)Ī + (P T )ĪI(µd)I

= (ν)Ī + (P T )ĪI
(
I − (P T )II

)−1
νI

+ [
(P T )Ī Ī + (P T )ĪI

(
I − (P T )II

)−1
(P T )IĪ

]
(µλ)Ī

= ν̃ + P̃ T (µλ)I ,

where we have introduced the notation

ν̃ = (ν)Ī + (P T )ĪI
(
I − (P T )II

)−1
νI ,

P̃ T = (P T )Ī Ī + (P T )ĪI
(
I − (P T )II

)−1
(P T )IĪ .

The modified routing probability p̃rs can be interpreted as the probability that, in
a Markov chain on R started at r ∈ Ī , evolving according to the original routing
probabilities pij (which may become absorbed outside the set R), the next visit to
the set Ī is precisely to state s. That is to say, p̃ capture the transition probability
in the original chain, after removing all excursions to the set I . This interpretation
allows to deduce at once that the modified routing probability matrix P̃ is sub-
stochastic and with spectral radius strictly less than 1 whenever P is so.

It remains to establish the identity

(ν)Ī = (I − P̃ T )−1ν̃.

Again, this can be established from a probabilistic interpretation. Assume without
loss of generality (by joint rescaling) that the vector ν’s entries sum to 1. Then νr

can be interpreted as the average number of visits to state r in the Markov chain,
with transition probabilities p, assuming that the initial distribution is specified
by ν. It is readily verified that ν̃ then represents the distribution of the first visit
to Ī which is also the initial distribution of the chain where excursions to I are
removed. The mean number of visits to states r ∈ Ī is the same with or without
removal of excursions into I , hence the desired identity holds.

Proof of part (ii). Let us establish (17). In view of Lemma 1, one has

L
(
x(t + h)

) − L(x(t)) =
|R|∑
r=1

∫ xr (t+h)

xr (t)
[γ PF

r (yr(u)) − log(ρr)]du,(34)

where the vector yr(u) is defined as

yr
s (u) =


xs(t + h), s < r ,
u, s = r ,
xs(t), s > r .
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At a point t where the fluid trajectories are differentiable, one thus has, by the
continuity of functions γ PF

r at x(t) for r ∈ Ī , which follows from Lemma A.3,

lim
h→0

1

h

∫ xr (t+h)

xr (t)
[γ PF

r (yr(u)) − log(ρu)]du = ẋr (t)[γ PF
r (x(t)) − log(ρr)].(35)

For r ∈ I and h > 0, one has the evaluation∫ xr (t+h)

xr (t)
γ PF
r (yr(u)) du ≤ sup

y∈R
R+
(γ PF

r (y))
(
xr(t + h) − xr(t)

)
.

Indeed, this holds because xr(t + h) − xr(t) ≥ 0, which holds in turn because
xr(t) = 0 for r ∈ I , and xr(t + h) ≥ 0. This inequality entails that

lim sup
h↘0

1

h

∫ xr (t+h)

xr (t)
γ PF
r (yr(u)) du ≤ sup

y∈R
R+
(γ PF

r (y))ẋr (t) = 0,

where boundedness from above of γ PF
r has been used. This inequality, together

with (35) and (34) establish (17).

Proof of part (iii). We finally prove (18). To this end, we establish upper
bounds on each of the terms in the right-hand side of (34). Note that, for all t > 0,
and r ∈ Ī (x(t)), the functions Dr are differentiable at t , with derivative λPF

r (x(t)).
Also, for all s ∈ R, the functions Ds are nondecreasing and Lipschitz with some
constant A. It thus follows that, for r ∈ Ī :

lim sup
h↘0

1

h

∫ xr (t+h)

xr (t)
[γ PF

r (yr(u)) − log(ρr)]du

≤ sup
y∈R

R+

(
γ PF
r (y) − log(ρr)

)
(νr + |R|A)

− µr log(ρr)λ
PF
r (x(t)) − µrγ

PF
r (x(t))λPF

r (x(t)).

The first two terms in the right-hand side are bounded from above, and the last
term is uniformly bounded, since λPF

r (x(t)) = exp(γ PF
r (x(t))) and the function

u → ueu is bounded on a range (−∞,A].
It remains to consider the case where r ∈ I . One then has

∫ xr (t+h)

xr (t)
[γ PF

r (yr(u)) − log(ρr)]du

≤ sup
y∈R

R+

(
γ PF
r (y) − log(ρr)

)[xr(t + h) − xr(t)]

≤ sup
y∈R

R+

(
γ PF
r (y) − log(ρr)

)
hA,

where A is a Lipschitz constant for u → xr(u), and nonnegativity of the fluid tra-
jectories has been used. These last two upper bounds together combine to give (18).
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APPENDIX C: PROOF OF LEMMA 6

It follows from Proposition 3, page 21 in [8] (see also [18]) that a continuous
function f verifying assumption (20) is such that

s < t ⇒ f (t) − f (s) ≤ (t − s)A.(36)

Define now the increasing variation V +
f (t) as the supremum over partitions τ0 =

0 < τ1 < · · · < τm = t of the sum
m−1∑
i=0

(
f (τi+1) − f (τi)

)+
.

In view of (36), it follows that

V +
f (t) ≤ At, t ∈ [0, T ].

It is easily shown that for all s < t ∈ [0, T ], one has

V +
f (t) − V +

f (s) = sup
τ0=s<···<τn=t

n−1∑
i=0

(
f (τi+1) − f (τi)

)+
,

where the supremum is taken over all finite partitions τ0 = s < · · · < τn = t . This
together with (36) implies that

0 ≤ V +
f (t) − V +

f (s) ≤ A(t − s), s < t ∈ [0, T ].
Moreover, if one defines V −

f (t) as

V −
f (t) := V +

f (t) − f (t),

one readily sees that u → V −
f (u) is a nondecreasing function. One may associate

a nonnegative measure µ− on [0, T ] to V −
f by setting

µ−([0, t]) = V −
f (t+) − V −

f (0).

By Radon–Nykodim’s theorem, this measure can further be decomposed into a
measure that is absolutely continuous with respect to Lebesgue measure, whose
density we shall denote by g−(t), and into a measure ν− that is supported by a
set F of null Lebesgue measure.

By Rademacher’s theorem, the Lipschitz-continuous function V +
f is almost

everywhere differentiable; denote its derivative by g+(t). Thus, the function f

is differentiable almost everywhere, with derivative g+(t) − g−(t). Moreover, by
condition (19), for almost every t , it holds that

g+(t) − g−(t) ≤ −ε.

To conclude, for s < t < T , write

f (t) − f (s) ≤
∫ t

s

(
g+(u) − g−(u)

)
du − ν−((s, t))

≤ −ε(t − s),

which is the announced result.
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APPENDIX D: PROOF OF LEMMA 7

PROOF. Using the notation x± = max(0,±x), note that the factor of p
(n)
rs

in (23) reads

(eus − 1)

[
us − ∑

�∈R

ps�u�

]
= [(eus − 1)+ − (eus − 1)−] × · · ·

×
[
u+

s − u−
s − ∑

�∈R

ps�u
+
� + ∑

�∈R

ps�u
−
�

]

= (eus − 1)+
[
u+

s − ∑
�∈R

ps�u
+
�

]

+ (eus − 1)−
[
u−

s − ∑
�∈R

ps�u
−
�

]

+ (eus − 1)+
∑
�∈R

ps�u
−
�

+ (eus − 1)−
∑
�∈R

ps�u
+
� .

In order to obtain the above expansion, we have used the fact that (eus −1)±u∓
s = 0.

Note that the last two terms in this expansion are nonnegative. Note also that the
first two terms both read

(evs − 1)

[
vs − ∑

�∈R

ps�v�

]
for adequate choices of vs , namely vs = u+

s for the first term, and vs = −u−
s for the

second term. This establishes claim (ii) of the lemma. This further implies that, in
order to prove claims (i) and (iii) of the lemma, it is sufficient to restrict attention
to the case where the us all have the same sign, which we now assume.

Introduce the notation

M(s, �) := ∑
n≥0

p(n)
rs ps�,

N(s, �) := M(s, �) + 1�=r

∑
n≥0

p(n)
rs

(
1 − ∑

k∈R

psk

)

= ∑
n≥0

p(n)
rs

(
ps� + 1�=r

(
1 − ∑

k∈R

psk

))
.

Condition (23) thus reads∑
s,�∈R

M(s, �)(eus − 1)u� ≤ ∑
s,�∈R

N(s, �)(eus − 1)us.
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Let us now show that this last condition is satisfied. Note first that it is enough to
prove the same inequality, with N instead of M in the left-hand side, since∑

s,�∈R

N(s, �)(eus − 1)u� − ∑
s,�∈R

M(s, �)(eus − 1)u�

(37)

= ∑
s∈R

∑
n≥0

p(n)
rs

(
1 − ∑

k∈R

psk

)
(eus − 1)ur,

and this difference is indeed nonnegative under the current assumption that the us

all have the same sign.
We thus need to show that∑

s,�∈R

N(s, �)(eus − 1)u� ≤ ∑
s,�∈R

N(s, �)(eus − 1)us.(38)

Note now that the marginals of the measure N(·, ·) coincide. Indeed,∑
�∈R

N(s, �) = ∑
n≥0

p(n)
rs ,

∑
s∈R

N(s, �) = ∑
n≥0

p
(n+1)
r� + 1�=r

∑
n≥0

∑
s∈R

(
p(n)

rs − p(n+1)
rs

)
= ∑

n≥0

p
(n)
r� .

Thus, after renormalization of both sides of (38) by the total mass of the mea-
sure N , it equivalently reads

E[(eU − 1)V ] ≤ E[(eU − 1)U ],(39)

where the random variables U , V have the same distributions. An inequality due
to Hoeffding [12] (see also [28] and [7] for more easily accessible references)
states that, given two random variables U , V with identical distributions, for any
two nondecreasing functions f,g : R → R such that f (U) and g(U) have finite
variances, one has

E[f (U)g(V )] ≤ E[f (U)g(U)].
Note that the inequality we need to prove is of that form, with as nondecreasing
functions f (U) = U and g(U) = eU − 1. Finiteness of variances is trivially satis-
fied as the random variables U take only finitely many values. This concludes the
proof of the first claim of the lemma.

Let us now show that, in order to have equality in (23), all us such that∑
n≥0 p

(n)
rs > 0 must be zero. Equality in (23) implies equality in (39). However,

the latter holds if and only the distributions of (f (U), g(V )) and (f (U), g(U))

coincide; see, for example, [28]. As the functions f , g are strictly increasing, this
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in turn holds if the distributions of (U,V ) and (U,U) coincide. This means that
we can partition the set R such that on each subset of the partition, the us are
constant, and for s, � in two different subsets of the partition, N(s, �) = 0. Thus,
for all s such that

∑
n≥0 p

(n)
rs > 0, one must have ur = us . This is needed to ensure

equality in (38) . However, in order to ensure equality in (23), the right-hand side
of (37) must also be zero, which, using the fact that all us coincide, also reads

r ∈ Ī ⇒ wr = γ PF
r (x) = log(λPF

r (x))ur(e
ur − 1)

∑
s∈R

p(n)
rs

(
1 − ∑

k∈R

psk

)
= 0.

Equivalently, one must have ur(exp(ur)− 1) = 0, that is, ur = 0, which concludes
the proof of the lemma. �

REMARK A.1. Note that the statement of Lemma 7 remains true if we re-
place the terms [exp(us) − 1] by f (us) in (23), where f is any strictly increasing
function such that f (0) = 0.
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