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PERFECT SIMULATION FOR A CLASS OF POSITIVE
RECURRENT MARKOV CHAINS

BY STEPHEN B. CONNOR AND WILFRID S. KENDALL

University of Warwick

This paper generalizes the work of Kendall [Electron. Comm. Probab. 9
(2004) 140–151], which showed that perfect simulation, in the form of dom-
inated coupling from the past, is always possible (although not necessarily
practical) for geometrically ergodic Markov chains. Here, we consider the
more general situation of positive recurrent chains and explore when it is
possible to produce such a simulation algorithm for these chains. We intro-
duce a class of chains which we name tame, for which we show that perfect
simulation is possible.

1. Introduction. Perfect simulation was first introduced by Propp and Wil-
son [20] as a method for sampling from the exact stationary distribution of an er-
godic Markov chain. Foss and Tweedie [7] showed that this classic coupling from
the past (CFTP) algorithm is possible (in principle, if not in practice) if and only
if the Markov chain is uniformly ergodic.

More recently, Kendall [14] showed that all geometrically ergodic chains pos-
sess (again, possibly impractical) dominated CFTP algorithms (as introduced
in [13, 16]). This suggests the questions: what if X is subgeometrically ergodic?
Might it be the case that all positive recurrent Markov chains possess (impractical)
domCFTP algorithms?

In this paper, we introduce a new class of positive-recurrent chains (tame chains)
for which domCFTP is possible in principle.

Note that the practicality of CFTP algorithms is subject to a number of interest-
ing constraints: methods using coadapted coupling will deliver answers at a slower
exponential rate than ordinary Markov chain Monte Carlo for many chains [1, 19];
in general, the coalescence of paths from many different starting states (an intrin-
sic feature of CFTP) may be expected to be slower than pairwise coupling; finally,
the theory of randomized algorithms can be used to demonstrate the existence of
problems for which there will not even be any fully-polynomial randomized ap-
proximation schemes (subject to the complexity theory assumption RP �= NP ;
Jerrum [12] discusses results of this nature for counting algorithms for indepen-
dent sets).
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Considerations of the practicality of CFTP raise many further interesting re-
search questions; however, in this paper, we focus on considering whether (for all
Markov chains with a specified property) there can exist domCFTP algorithms,
practical or not.

To make this a meaningful exercise, it is necessary to be clearer about what one
is allowed to do as part of an impractical algorithm. The [7] result for uniform
ergodicity presumes that one is able to identify when regeneration occurs for the
target Markov chain subsampled every k time steps (where k is the order of the
whole state space considered as a small set of the chain) and that one can then
draw from the regeneration distribution and the k-step transition probability distri-
bution conditioned on no regeneration. One must assume more in order to cover
the geometrically ergodic case [14], namely, that it is possible to couple the target
chain and the dominating chain when subsampled every k time steps, preserving
the domination while so doing. Here, k is the order of a small set for a particular
Foster–Lyapunov criterion for the geometric ergodicity property. In fact, some-
thing more must also be assumed: it must be possible to implement the coupling
between target chain and dominating process in a monotonic fashion, even when
conditioning on small-set regeneration occurring or not occurring. In fact, we do
not need to assume any more than this when dealing with the tame chains intro-
duced below, except that the subsampling order k is now not fixed for all time, but
can vary according to the current value of the dominating process.

The impracticality of these CFTP algorithms thus has two aspects. First, the
question of expected run time is not addressed at all. Second, for the most part,
the assumptions described above amount to supposing that we can translate into
practice the theoretical possibility of implementing various stochastic dominations
as couplings (guaranteed by theory expounded in, e.g., [17], Chapter IV). However,
it should be noted that practical and implemented CFTP algorithms can correspond
very closely to these general schemes. For example, the CFTP algorithm resulting
from the result of Foss and Tweedie [7] is essentially the simplest case of the exact
sampling algorithm proposed by Green and Murdoch [9]; the scheme proposed
in [14] is closely related to fast domCFTP algorithms for perpetuities with sample
step k = 1.

In this paper, we investigate the problems that occur in the move from geometric
to subgeometric ergodicity. We begin by recalling some useful results concerning
rates of ergodicity. Section 2 then reviews the result of [14]. The bulk of the new
material in this paper is to be found in Section 3. There, we introduce the notion of
a tame chain (Definition 14) and demonstrate that domCFTP is possible for such
chains (Theorem 15). A description of the domCFTP algorithm for tame chains
is provided in Section 3.3; the reader is referred to [15] for an introduction to
the classical form of domCFTP. We also prove some sufficient conditions for a
polynomially ergodic chain to be tame (Theorems 21 and 22). However, these
conditions are not necessary; Section 4.4 contains an example of a polynomially
ergodic chain which does not satisfy these conditions and yet is still tame. The
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existence of a polynomially ergodic chain that is not tame is currently an open
question.

1.1. Definitions and notation. Let X = (X0,X1, . . .) be a discrete-time
Markov chain on a Polish state space X. The Markov transition kernel for X

is denoted by P and the n-step kernel by P n:

P n(x,E) = Px[Xn ∈ E],
where Px is the conditional distribution of the chain given X0 = x. The cor-
responding expectation operator will be denoted by Ex . If g is a nonnegative
function, then we write Pg(x) for the function

∫
g(y)P (x, dy) and for a signed

measure µ, we write µ(g) for
∫

g(y)µ(dy). The f -norm is defined as ‖µ‖f :=
supg:|g|≤f |µ(g)|; taking f ≡ 1 yields the usual total variation norm, for which we
will simply write ‖µ‖.

We assume throughout that X is aperiodic (in the sense of [18]) and Harris-
recurrent. The stationary distribution of X shall be denoted by π and the first hit-
ting time of a measurable set A ⊆ X by τA = min{n ≥ 1 :Xn ∈ A}.

The notion of small sets will feature heavily throughout this paper.

DEFINITION 1. A subset C ⊆ X is a small set (of order m) for the Markov
chain X if the following minorization condition holds: for some ε ∈ (0,1] and a
probability measure ν,

Px[Xm ∈ E] ≥ εν(E) for all x ∈ C and measurable E ⊂ X.(1)

In this case, we say that C is m-small. Many results in the literature are
couched in terms of the more general idea of petite sets; however, for aperiodic
φ-irreducible chains, the two notions are equivalent ([18], Theorem 5.5.7). Small
sets allow the use of coupling constructions: specifically, if X hits the small set C

at time n, then there is a positive chance (ε) that it regenerates at time n + m (us-
ing the measure ν). Furthermore, if regeneration occurs, then a single draw from ν

may be used for any number of copies of X belonging to C at time n, resulting
in their coalescence at time n + m. Small sets belong to a larger class of pseudo-
small sets, as introduced in [22], but such sets only allow for the coupling of pairs
of chains. Implementation of domCFTP requires a positive chance of a continuum
of chains coalescing when belonging to a given set C, so we shall henceforth deal
solely with small sets.

1.2. Geometric ergodicity. We first outline some relevant theory for geomet-
rically ergodic chains.

DEFINITION 2. The chain X is said to be geometrically ergodic if there exists
a constant γ ∈ (0,1) and some function � :X → [0,∞) such that for all x in a
full and absorbing set,

‖P n(x, ·) − π(·)‖ ≤ �(x)γ n.(2)
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If � can be chosen to be bounded, then X is said to be uniformly ergodic.

Uniform ergodicity of X can be shown to be equivalent to the whole state
space X being a small set, in which case at every Markov chain step, there is a
positive chance of coalescence, whereby chains started at all elements of the state
space become equal simultaneously. Foss and Tweedie [7] use this to show that
uniform ergodicity is equivalent to the existence of a CFTP algorithm for X in the
sense of Propp and Wilson [20].

The most common way to establish geometric ergodicity of a chain X is to
check the following geometric Foster–Lyapunov condition [8].

CONDITION GE. There exist positive constants β < 1 and b < ∞, a small
set C and a scale function V :X → [1,∞), bounded on C, such that

E[V (Xn+1)|Xn = x] ≤ βV (x) + b1C(x).(3)

Inequality (3) will be referred to as GE(V ,β, b,C) when we need to be ex-
plicit about the scale function and constants. For simplicity, we will also often
write inequality (3) as PV ≤ βV + b1C . Under our global assumptions on X,
this drift condition is actually equivalent to X being geometrically ergodic ([18],
Theorem 15.0.1). Furthermore, if X satisfies (3), then we can take � = V in equa-
tion (2).

Condition GE quantifies the way in which the chain V (X) behaves as a su-
permartingale before X hits C. When the chain hits C, it can then increase in
expectation, but only by a bounded amount. The following result can be extracted
from [18], Theorems 15.0.1 and 16.0.1.

THEOREM 3. Suppose that X is φ-irreducible and aperiodic. Then X is geo-
metrically ergodic if and only if there exists κ > 1 such that the corresponding
geometric moment of the first return time to C is bounded, that is,

sup
x∈C

Ex[κτC ] < ∞.(4)

The first hitting time of C is related to drift conditions in the following way
(extracted from [18], Theorem 11.3.5).

THEOREM 4. For an ergodic chain X, the function VC(x) = Ex[τC] is the
pointwise minimal solution to the inequality

PV (x) ≤ V (x) − 1, x /∈ C.(5)

Equation (5) is clearly a weaker drift condition than Condition GE and is equiv-
alent to positive recurrence of X [18]. It can be shown that (5) implies that all
sublevel sets are small [18] and since V is bounded on C, we will always take C

to be a sublevel set of the form {x ∈ X :V (x) ≤ d}.
We now present a couple of easy results concerning geometrically ergodic

chains, which will prove to be of great importance later on. The first demonstrates
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how the scale function V in (3) may be changed to obtain a new drift condition
using the same small set.

LEMMA 5. If the chain X satisfies Condition GE(V ,β, b,C), then for any
ξ ∈ (0,1],

PV ξ ≤ (βV )ξ + bξ 1C.

Thus GE(V ,β, b,C) implies GE(V ξ , βξ , bξ ,C).

PROOF. Calculus shows that (x + y)ξ ≤ xξ + yξ for x, y ≥ 0 and 0 ≤ ξ ≤ 1.
The result follows by Jensen’s inequality for (PV )ξ , using (3). �

The second result shows that a geometric drift condition persists if we subsam-
ple the chain at some randomized stopping time.

LEMMA 6. Suppose X satisfies Condition GE(V ,β, b,C). Then for any pos-
itive, integer-valued stopping time σ (adapted to the natural filtration generated
by X), we have

Ex[V (Xσ )] ≤ βV (x) + b11C1(x),

where b1 = b/(1 − β) and C1 = {x :V (x) ≤ b/(β(1 − β)2)} ∪ C.

The same β , b1 and C1 work for all values of σ since the constant b1 absorbs
the higher-order terms in β below.

PROOF OF LEMMA 6. Iterate the drift condition (3) and treat the cases {σ = 1}
and {σ > 1} separately:

Ex[V (Xσ )] ≤ Ex

[
βσV (x) + b

σ∑
j=1

βj−11C(Xσ−j )

]

≤ (
βV (x) + b1C(x)

)
Px[σ = 1] +

(
β2V (x) + b

1 − β

)
Px[σ > 1]

≤ (
βV (x) + b1C(x)

)
Px[σ = 1] + (

βV (x) + b11C1(x)
)
Px[σ > 1]

≤ βV (x) + b11C1(x). �

1.3. Polynomial ergodicity. We now turn to polynomially ergodic chains and
state some results which will prove useful in Section 3.4.

DEFINITION 7. The chain X is said to be polynomially ergodic if there exists
γ ≥ 0 such that for all x in a full and absorbing set,

nγ ‖P n(x, ·) − π(·)‖ → 0 as n → ∞.(6)
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As with geometric ergodicity, there is a Foster–Lyapunov drift condition that can
be shown [11] to imply polynomial ergodicity (although the two are not equivalent
in this case).

CONDITION PE. There exist constants α ∈ (0,1) and b, c ∈ (0,∞), a small
set C and a scale function V :X → [1,∞), bounded on C, such that

E[V (Xn+1)|Xn = x] ≤ V (x) − cV α(x) + b1C(x).(7)

We will refer to (7) as PE(V , c,α, b,C) when we need to be explicit about the
scale function and constants.

This drift condition again tells us that V (X) behaves as a supermartingale be-
fore X hits C, but that the drift toward the small set now occurs at a subgeometric
rate (and hence τC has no exponential moment). Note that if α = 1, then we regain
Condition GE [for c ∈ (0,1)] and that we do not include the case α = 0 here, for
which the drift condition is equivalent to X being simply positive recurrent.

Polynomially ergodic chains satisfy a result analogous to Lemma 5, with a sim-
ilar proof ([11], Lemma 3.5).

LEMMA 8. If the chain X satisfies Condition PE, then for any ξ ∈ (0,1], there
exists 0 < b1 < ∞ such that

PV ξ ≤ V ξ − cξV α+ξ−1 + b11C.

Note that as in Lemma 5, the same small set C appears in the new drift condition
when we change scale function in this way.

COROLLARY 9. Suppose that X satisfies Condition PE. Then for x /∈ C,

Ex[τC] ≤ V 1−α(x)

c(1 − α)
.

PROOF. Set ξ = 1 − α in Lemma 8 to obtain

PV 1−α(x) ≤ V 1−α(x) − c(1 − α) for x /∈ C.

The result then follows from Theorem 4. �

Note, however, that there is no analogue to Lemma 6 (even if σ is deterministic),
since the geometric ergodicity case makes essential use of the convergence of the
series

∑
βj .

The drift condition (7) can actually be shown to imply much more than the
convergence in (6). From Theorem 3.6 of [11] we obtain the following which will
be used in the proof of Theorem 22.
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PROPOSITION 10. Suppose X satisfies Condition PE. Define, for each 1 ≤
ρ ≤ 1/(1 − α),

Vρ(x) = V 1−ρ(1−α)(x) and rρ(n) = (n + 1)ρ−1.(8)

Then there exists a constant M < ∞ such that

Ex

[
τC−1∑
n=0

rρ(n)Vρ(Xn)

]
≤ MV (x).(9)

Furthermore, from [4] we see that an upper bound for M can be obtained di-
rectly from the drift condition (7).

2. Geometric ergodicity implies domCFTP. We now give a brief overview
of the proof that all geometrically ergodic chains possess (not necessarily practi-
cal) domCFTP algorithms [14]. Recall that coadaptive coupling of Markov chains
means that both chains have a common past expressed by a fixed filtration of
σ -algebras.

DEFINITION 11. Suppose that V is a scale function for a Harris-recurrent
Markov chain X. We say that the stationary ergodic random process Y on [1,∞)

is a dominating process for X based on the scale function V (with threshold h

and coalescence probability ε) if it can be coupled coadaptively to realizations of
Xx,−t (the Markov chain X begun at x at time −t) as follows:

(a) for all x ∈ X, n > 0 and −t ≤ 0, almost surely

V (X
x,−t
−t+n) ≤ Y−t+n �⇒ V (X

x,−t
−t+n+1) ≤ Y−t+n+1;(10)

(b) if Yn ≤ h, then the probability of coalescence at time n + 1 is at least ε,
where coalescence at time n + 1 means that the set

{Xx,−t
n+1 : −t ≤ n and V (Xx,−t

n ) ≤ Yn}(11)

is a singleton set;
(c) P[Yn ≤ h] is positive.

The following theorem is the main result of [14].

THEOREM 12. If X satisfies the drift condition

PV ≤ βV + b1C

for 0 < β < 1, then there exists a domCFTP algorithm for X (possibly subject to
subsampling) using a dominating process based on the scale V .
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The idea behind the proof of Theorem 12 is that a dominating process Y sat-
isfying equation (10) may be obtained by using Markov’s inequality and the geo-
metric drift condition for X. The result is that any chain satisfying Condition GE
can be dominated by Y = (d + b/β) exp(U), where U is the system workload of
a D/M/1 queue, sampled at arrivals, with arrivals every log(1/β) units of time
and service times being independent and of unit-rate exponential distribution. U is
positive recurrent only if β < e−1, but a new geometric drift condition with β

replaced by βk−1 can be produced by subsampling X with a fixed subsampling
period k; the proof uses the ideas of Lemma 6. If k is chosen sufficiently large to
fix βk−1 < e−1, then the above argument produces a stationary dominating process
for the subsampled chain.

Note that Y is easy both to sample from in equilibrium and to run in reversed
time, which is essential for implementation of domCFTP. Also, note that Y be-
longs to a family of universal dominating processes for geometrically ergodic
chains, although this dominator need not generally lead to a practical simulation
algorithm. As noted in the introduction, the main difficulties in application are in
implementing practical domination and in determining whether or not regeneration
has occurred when Y visits the set {Y ≤ h}. This task is rendered even less practi-
cal if subsampling has taken place, since then, detailed knowledge of convolutions
of the transition kernel for X is required.

3. domCFTP for suitable positive recurrent chains. Theorem 12 leads to an
obvious question: does there exist a similar domCFTP algorithm for chains not sat-
isfying Condition GE? [Note that if we try to use the drift condition (7)—as in the
proof of Theorem 12—to produce a dominating process for polynomially ergodic
chains, then the resulting process is nonrecurrent.] In this section, we introduce a
class of chains which possess a domCFTP algorithm.

The principal idea behind the subsequent work is to investigate when it is
possible to subsample X to produce a geometrically ergodic chain. For non-
geometrically ergodic chains, a fixed subsampling interval will not work and so
we seek an appropriate simple adaptive subsampling scheme. A similar scheme
can then be used to delay the dominating process Y constructed in Section 2 and
to show that this new process D dominates the chain V (X) at the times when D

moves.
Several issues must be addressed in order to derive a domCFTP algorithm using

this idea:

1. What is an appropriate adaptive subsampling scheme?
2. When does such a scheme exist?
3. How does the dominating process D dominate V (X) when D moves?
4. Can we simulate D in equilibrium and in reversed time?

The answers to these questions are quite subtle.
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3.1. Adaptive subsampling. We begin by defining more carefully what we
mean by an adaptive subsampling scheme.

DEFINITION 13. An adaptive subsampling scheme for the chain X with re-
spect to a scale function V is a sequence of stopping times {θn} defined recursively
by

θ0 = 0; θn+1 = θn + F(V (Xθn)),(12)

where F : [1,∞) → {1,2, . . .} is a deterministic function.

Note that a set of stopping times {θn} such that {Xθn} is uniformly ergodic can be
produced as follows. Using the Athreya–Nummelin split-chain construction [18],
we may suppose that there is a state ω with π(ω) > 0. Define

F(V (x)) = min
{
m > 0 : Px[Xm = ω] >

π(ω)

2

}
.(13)

Then the time until {Xθn} hits ω from any starting state x is majorized by a geo-
metric random variable with success probability π(ω)/2. This implies that the
subsampled chain is uniformly ergodic, as claimed. F as defined in (13) depends
upon knowledge of π , however, and we obviously do not have this available to us
(it is the distribution from which we are trying to sample!). This example shows
that adaptive subsampling can have drastic effects on X. However, construction of
a domCFTP algorithm for X using this subsampling scheme (in a manner to be
described in Section 3.3) turns out to be impossible unless X is itself uniformly
ergodic.

Reverting to the previous discussion, suppose that there is an explicit adap-
tive subsampling scheme such that the chain X′ = {Xθn} satisfies Condition GE
with drift parameter β < e−1. Then a candidate dominating process D can be pro-
duced for V (X) in the following way. Begin with an exponential queue workload
process Y that dominates V (X′) (as in Section 2). Then slow down Y by gener-
ating pauses using some convenient function S satisfying S(z) ≥ F(z′) whenever
z ≥ z′, to produce the process D. That is, given D0 = Y0 = z, pause D by setting

D1 = D2 = · · · = DS(z)−1 = z.

Then define the law of DS(z) by L(DS(z)|DS(z)−1 = z) = L(Y1|Y0 = z). Iteration
of this construction leads to a sequence of times {σn} at which D moves, defined
recursively by

σn+1 = σn + S(Dσn),

with D constant on each interval of the form [σn,σn+1).
Such a process D is a plausible candidate for a dominating process. To be suit-

able for use in a domCFTP algorithm, however, it must be possible to compute its
equilibrium distribution. Now, D as we have just defined it is only a semi-Markov
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process: it is Markovian at the times {σn}, but not during the delays between jumps.
To remedy this, we augment the chain by adding a second coordinate N that mea-
sures the time until the next jump of D. This yields the Markov chain {(Dn,Nn)}
on [0,∞) × {1,2, . . .} with transitions controlled by

P[Dn+1 = Dn,Nn+1 = Nn − 1|Dn,Nn] = 1 if Nn ≥ 2;

P[Dn+1 ∈ E|Dn = z,Nn = 1] = P[Y1 ∈ E|Y0 = z]
for all measurable E ⊆ [1,∞);

P[Nn+1 = S(Dn+1)|Dn,Nn = 1,Dn+1] = 1.

Using the standard equilibrium equations, if π̃ is the equilibrium distribution of
(D,N), then

π̃ (z,1) = π̃(z,2) = · · · = π̃(z, S(z))

and thus πD(z) = π̃(z, ·) ∝ πY (z)S(z). Hence, the equilibrium distribution of D

is the equilibrium of Y reweighted using S. It is a classical probability result [10]
that under stationarity the number of people in the D/M/1 queue (used in the
construction of Y ) is geometric with parameter η, where η is the smallest positive
root of

η = β1−η.

(Note that 0 < η < 1 since β < e−1.) Thus the equilibrium distribution of the queue
workload U is exponential of rate (1 − η). Since Y ∝ exp(U), the equilibrium
density of Y , πY , satisfies

πY (z) ∝ z−(2−η).(14)

Reweighting Y using S yields the equilibrium density of D,

πD(z) ∝ S(z)z−(2−η).(15)

A suitable pause function S must therefore satisfy S(z) < z1−η in order to obtain
a probability density in (15). The dominating process constructed in the proof of
Theorem 16 requires F ≤ S and hence this imposes the restriction F(z) < z1−η;
in particular, this means that F(z)/z → 0 as z → ∞.

3.2. Tame and wild chains. The above discussion motivates the following de-
finition of a tame chain. We write �z� to denote the smallest integer greater than or
equal to z.

DEFINITION 14. A Markov chain X is tame with respect to a scale function V

if the following two conditions hold:
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(a) there exists a small set C′ := {x :V (x) ≤ d ′} and a nondecreasing taming
function F : [1,∞) → {1,2, . . .} of the form

F(z) =
{ �λzδ�, z > d ′,

1, z ≤ d ′,(16)

for some constants λ > 0, δ ∈ [0,1) such that the chain X′ = {Xθn} possesses the
drift condition

PV ≤ βV + b′1C′,(17)

where {θn} is an adaptive sampling scheme defined using F , as in (12);
(b) the constant β in inequality (17) satisfies

logβ < δ−1 log(1 − δ).(18)

We say that X is tamed (with respect to V ) by the function F . We may simply
say that X is tame, without mention of a specific scale function. A chain that is not
tame is said to be wild.

Thus a tame chain is one for which we can exhibit an explicit adaptive subsam-
pling scheme using a power function F and for which the subsampled chain so
produced is geometrically ergodic with sufficiently small β .

Note that all geometrically ergodic chains are trivially tame: if X satisfies Con-
dition GE(V ,β, b,C), then X is tamed by the function

F(z) = k for z > supy∈C V (y),

for any integer k > 1 + 1/ logβ .
Definition 14 is strongly motivated by the discussion in Section 3.1. From (16),

we see that F produces a simple adaptive subsampling scheme, as in Definition 13.
F is also a nondecreasing function, which accords with our intuition; if V (X) is
large, then we expect to wait longer before subsampling again, to create enough
drift in the chain to produce a geometric Foster–Lyapunov condition. Requirement
(b) of Definition 14 is made for two reasons. First, it ensures that β < e−1 and
so ensures ergodicity of the D/M/1 queue workload U used in the construction
of Y . Second, it ensures that the weighted equilibrium distribution of Y using S

(as described at the end of Section 3.1) is a proper distribution; this will be shown
in the proof of Theorem 16.

Kendall [14] shows that a dominating process exists for V (X′) even if β > e−1,
but recall that this involves a further subsampling of X′ with a fixed period k. Here,
β < e−1 is made a requirement of the adaptive subsampling process to avoid this
situation, since further subsampling of X′ would result in a composite nondeter-
ministic subsampling scheme.

The main theorem of this paper is the following.

THEOREM 15. Suppose that X is tame with respect to a scale function V .
Then there exists a domCFTP algorithm for X using a dominating process based
on V .
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Theorem 15 is true for all geometrically ergodic chains by the result of [14]. As
with the results of [7] and [14], this algorithm may not be implementable in prac-
tice. The proof of Theorem 15 results directly from Theorem 16 and the discussion
in Section 3.3 below, where a description of the domCFTP algorithm is given.

THEOREM 16. Suppose that X satisfies the weak drift condition PV ≤ V +
b1C and that X is tamed with respect to V by the function

F(z) =
{ �λzδ�, z > d ′,

1, z ≤ d ′,
with the resulting subsampled chain X′ satisfying a drift condition PV ≤ βV +
b′1[V ≤d ′], with logβ < δ−1 log(1 − δ). Then there exists a stationary ergodic
process D which dominates V (X) at the times {σn} when D moves.

PROOF. We shall construct a Markov chain (D,N) by starting with a
process Y and pausing it using a function S, to be defined shortly. Before be-
ginning the main calculation of the proof, we define some constant. These are
determined explicitly from the taming function F and the drift conditions satisfied
by X and X′. First, choose β∗ > β such that

logβ < logβ∗ < δ−1 log(1 − δ).(19)

(That this is possible is a result of the definition of tameness.) Then set

a = b′

1 − β

(
1 + b(λ + 1)

)
,

d∗ = min{z ≥ d ′ : (β∗ − β)z ≥ b(λ + 1)zδ + a},
b∗ = b(λ + 1)d∗δ + a,

h∗ = d∗ + b∗

β∗ .

Finally, consider the set C∗ = {x :V (x) ≤ h∗}. As a sublevel set, C∗ is m-small for
some integer m ≥ 1. We are now in a position to define the function S:

S(z) =
{ (

m ∨ F(h∗)
)�λzδ�, z ≥ h∗,(

m ∨ F(h∗)
)
, z < h∗.

(20)

Note that F(x) ≤ S(z) for all x ≤ z (since h∗ ≥ d ′) and that

S(z) ≥ m ∨ F(h∗) ≥ m for all z ≥ 0.(21)

Define the process Y = h∗ exp(U), where U is the system workload of a
D/M/1 queue with arrivals every log(1/β∗) time units and service times being
independent and of unit exponential distribution. Positive recurrence of U fol-
lows from (19). Pause Y using S (as described on page 9) and call the resulting
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process D. The stationary distribution of D, as shown at the end of Section 3.1, is
given by

πD(z) ∝ S(z)z−(2−η)

(22)
∝ z−(2−η−δ) (for z > h∗),

where η < 1 is the smallest positive solution to the equation

η = β∗(1−η)
.

Now, by our choice of β∗ above, we have

(1 − η)−1 logη = logβ∗ < δ−1 log(1 − δ),

so η < 1−δ. Hence, 2−η−δ > 1, so we see from (22) that πD is a proper density.
Suppose that (Dσn,Nσn) = (z, S(z)) and that V (Xσn) = V (x) ≤ z. We wish

to show that Dσn+1 dominates V (Xσn+1), where σn+1 = σn + S(z) is the time at
which D next moves. Domination at successive times {σj } at which D moves then
follows inductively. For simplicity in the calculations below, we set σn = 0.

Let {θn} be the adaptive subsampling scheme for X defined recursively by the
taming function F . Define a region R(z) ⊂ X × Z+ to be the so-called “short
sampling” region:

R(z) = {(y, t) :F(V (y)) + t > S(z)}.
In other words, once the chain {Xθn, θn} hits the (deterministic) region R(z) (at
time θj , say), the next subsampling time [θj+1 = θj +F(V (Xθj

))] will lie beyond
the time S(z) at which the dominating process moves (see Figure 1). Define

T (z) = min{θn : (Xθn, θn) ∈ R(z)}
to be a stopping time for X and define

T ′(z) = min{n : (Xθn, θn) ∈ R(z)}
to be the associated stopping time for X′. [Note that T ′(z) ≥ 1 since V (x) ≤ z

FIG. 1. Depiction of the region R(z).
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implies that F(V (x)) ≤ S(z).]
Our aim is to control Ex[V (XS(z))], recalling that V ≥ 1 and that S(z) is deter-

ministic:

Ex

[
V

(
XS(z)

)] = Ex

[
EXT (z)

[
V

(
XS(z)

)]]

≤ Ex

[
V

(
XT (z)

) + b

S(z)−1∑
j=T (z)

PXT (z)
[Xj ∈ C]

]

using the weak drift condition of the theorem

≤ Ex

[
V

(
XT (z)

)] + bEx

[(
S(z) − T (z)

)]
≤ Ex

[
V

(
XT (z)

)] + bEx

[
F

(
V

(
XT (z)

))]
(23)

since S(z) − T (z) < F
(
V

(
XT (z)

))
,

by the definition of R(z)

≤ Ex

[
V

(
XT (z)

)] + b(λ + 1)Ex

[
V

(
XT (z)

)δ]
by the definition of F .

Now, the chain X′ = {Xθn} is geometrically ergodic (since X is tamed by F ), so
Lemma 6 tells us that

Ex

[
V

(
XT (z)

)] = Ex

[
V

(
X′

T ′(z)
)] ≤ βV (x) + b′

1 − β
.(24)

Furthermore, Lemma 5 yields

Ex

[
V

(
XT (z)

)δ] = Ex

[
V

(
X′

T ′(z)
)δ]

≤ βδV δ(x) +
(

b′

1 − β

)δ

1[V (x)≤d ′](25)

≤ V δ(x) + b′

1 − β
.

Combining equations (23), (24) and (25) and making use of the constants defined
at the start of this proof, we obtain

Ex

[
V

(
XS(z)

)] ≤ βV (x) + b(λ + 1)V δ(x) + a
(26)

≤ β∗V (x) + b∗1[V (x)≤d∗].

Thus a geometric drift condition holds at time S(z) for all chains V (X) with
starting states x satisfying V (x) ≤ z. As in the proof of Theorem 12, it follows
from inequality (26) that V (XS(z)) can be dominated by DS(z) [17]. �
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Note that questions 1 and 3 at the start of Section 3 have now been answered:
we have defined what is meant by an adaptive subsampling scheme and shown
that if this takes a particular (power function) form then a stationary process D

that dominates V (X) at times {σn} can be produced.

3.3. The domCFTP algorithm for tame chains. In this section, we describe the
domCFTP algorithm for tame chains and hence complete the proof of Theorem 15.
We begin this by answering question 4 of page 8, by showing how to simulate
(D,N) in equilibrium and in reversed time. Furthermore, this simulation is quite
simple to implement when the function S is of the form (20).

The first point to make here is that one can easily simulate from πD using re-
jection sampling [21]: using (15), for some constant γ > 0, we have

πD(z) = γ

(
1

2

�λzδ�
λzδ

)
1

z2−η−δ

= γp(z)g(z),

where p(z) ∈ [1/2,1] and g(z) is a Pareto density (since 2 − η − δ > 1, as in
the proof of Theorem 16). Now, given D0 = z0 as a draw from πD , set N0 := n0,
where n0 ∼ Uniform{1,2, . . . , S(z0)}. It follows from the construction of (D,N)

in Section 3.1 that (D0,N0) ∼ π̃ , as required.
The chain (D,N) is then simple to run in reversed time using the facts that the

jumps of D are those of the underlying exponential queue workload process Y

and that the pause function S is deterministic. (Recall the forward construction on
page 9 and see Figure 2. More details can be found in [3].)

We now show that D is a dominating process for X (at the times when D moves)
based on the scale function V , with threshold h∗ (recall Definition 11). Also, recall
from the proof of Theorem 16 that the set C∗ = {x :V (x) ≤ h∗} is m-small.

First, the proof of Theorem 16 shows that the link between stochastic domina-
tion and coupling [17] may be exploited to couple the various Xx,σ−M with D such

FIG. 2. Construction of D in reversed time.
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that for all n ≤ M ,

V (Xx,σ−M
σ−n

) ≤ Dσ−n �⇒ V
(
Xx,σ−M

σ−(n−1)

) ≤ Dσ−(n−1)
.(27)

We now turn to part (b) of Definition 11. Since C∗ is m-small, there exists
a probability measure ν and a scalar ε ∈ (0,1) such that for all Borel sets B ⊂
[1,∞), whenever V (x) ≤ h∗,

P[V (Xm) ∈ B|X0 = x] ≥ εν(B).

Therefore, since S(h∗) ≥ m [as noted in (21)],

P
[
V

(
XS(h∗)

) ∈ B|X0 = x
] ≥ εP S(h∗)−m

ν (B),

so C∗ is S(h∗)-small. Furthermore, the stochastic domination which has been
arranged in the construction of D means that for all u ≥ 1, whenever V (x) ≤ y,[

V
(
XS(y)

)
> u|X0 = x

] ≤ P[Y1 > u|Y0 = y].
We can couple in order to arrange for regeneration if a probability measure ν̃ can
be identified, defined solely in terms of P

S(h∗)−m
ν and the dominating jump distri-

bution P[Y1 ≥ u|Y0 = y], such that for all u ≥ 1, whenever V (x) ≤ y,

P
[
V

(
XS(y)

)
> u|X0 = x

] − εP S(h∗)−m
ν ((u,∞))

≤ P[Y1 > u|Y0 = y] − εν̃((u,∞))

P S(h∗)−m
ν ((u,∞)) ≤ ν̃((u,∞));

and

P[Y1 ∈ E|Y0 = y] ≥ εν̃(E)

for all measurable E ⊆ [1,∞).
Recall the following result, a proof of which is provided in [14].

LEMMA 17. Suppose that U , V are two random variables defined on [1,∞)

such that:

(a) The distribution L(U) is stochastically dominated by the distribution
L(V ), that is,

P[U > u] ≤ P[V > u] for all u ≥ 1;

(b) U satisfies a minorization condition: for some β ∈ (0,1) and probability
measure ψ ,

P[U ∈ E] ≥ βψ(E) for all Borel sets E ⊆ [1,∞).

Then there exists a probability measure µ stochastically dominating ψ and such
that βµ is minorized by L(V ). Moreover, µ depends only on βψ and L(V ).
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Therefore, using Lemma 17, L(Xσ−(n−1)
|Xσ−n = x) may be coupled to

L(Dσ−(n−1)
|Dσ−n = y) whenever V (x) ≤ y, in a way that implements stochas-

tic domination and ensures that all of the Xσ−(n−1)
can regenerate simultaneously

whenever Dσ−n ≤ h∗.
Finally, it is easy to see that part (c) of Definition 11 is satisfied: the system

workload U of the queue will hit zero infinitely often and therefore D will hit
level h∗ infinitely often.

We can now describe a domCFTP algorithm based on X which yields a draw
from the equilibrium distribution.

ALGORITHM.

• Simulate D, as a component of the stationary process (D,N), backward in time
until the most recent σ−M < 0 for which Dσ−M

≤ h∗;
• while coalescence does not occur at time σ−M , extend D backward until the

most recent σ−M ′ < σ−M for which Dσ−M′ ≤ h∗ and set M ← M ′;
• starting with the unique state produced by the coalescence event at time σ−M

simulate the coupled X forward at times σ−M,σ−(M−1), σ−(M−2), . . ., up to and
including time σ−1;

• run the chain X forward (from its unique state) from time σ−1 to 0 (see Fig-
ure 3);

• return X0 as a perfect draw from equilibrium.

LEMMA 18. The output of the above algorithm is a draw from the stationary
distribution of the target chain X.

PROOF. The stochastic domination of (27) and Theorem 2.4 of [17], Chapter
IV guarantee the existence of a joint transition kernel P

(n)
X,D that provides domina-

tion of X by D and such that the marginal distributions of X and D are correct.

FIG. 3. Final stage of the domCFTP algorithm: D (black circles •) dominates V (X) (red triangles
�) at times {σn}. To obtain the draw from equilibrium, X0, X can be run from time σ−1 to 0 without
reference to D after time σ−1.
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That is, for x ≤ y, with n = S(y), for all z ≥ 1,

P
(n)
X,D(x, y;V −1((z,∞)), [1, z]) = 0,∫

V −1([1,z])

∫ ∞
1

P
(n)
X,D(x, y;du, dv) = P

(n)
X (x;V −1([1, z])),

∫
X

∫ z

1
P

(n)
X,D(x, y;du, dv) = P

(n)
D (y; [1, z]).

The chains X and D (run forward) may therefore be constructed in either of the
following two ways.

1. Given Dσ−m and Xσ−m ≤ Dσ−m , with n = S(Dσ−m):

• draw Dσ−(m−1)
from the probability kernel

P
(n)
D (Dσ−m; ·);

• draw Xσ−(m−1)
from the regular conditional probability

P
(n)
X,D(Xσ−m,Dσ−m; ·,Dσ−(m−1)

)

P
(n)
D (Dσ−m;Dσ−(m−1)

)
;

• draw Xσ−m+1,Xσ−m+2, . . . ,Xσ−(m−1)−1 as a realization of X conditioned on
the values of Xσ−m and Xσ−(m−1)

(i.e., as a Markov bridge between Xσ−m and
Xσ−(m−1)

).

2. Given Dσ−m and Xσ−m ≤ Dσ−m , with n = S(Dσ−m):

• draw Xσ−m+1,Xσ−m+2, . . . ,Xσ−(m−1)
using the normal transition kernel

for X, noting that the distribution of Xσ−(m−1)
is exactly the same as if it

were drawn directly from P
(n)
X (Xσ−m; ·);

• draw Dσ−(m−1)
from the regular conditional probability

P
(n)
D|{X}

(·|Dσ−m,Xσ−m,Xσ−m+1, . . . ,Xσ−(m−1)

)

= P
(n)
X,D(Xσ−m,Dσ−m;Xσ−(m−1)

, ·)
P

(n)
X (Xσ−m;Xσ−(m−1)

)
.

Each of these two methods produces chains X and D which satisfy the stochas-
tic domination of (27). Method 1 is that which is effectively used by the algorithm,
although there is no need for the final superfluous step (the Markov bridge) when
implementing the algorithm. Method 2, however, makes it clear that X has the
correct Markov transition kernel to be the required target chain. Furthermore, the
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equivalence of the two schemes proves the validity of the final step of the algo-
rithm, where the chain X is run from time σ−1 to 0 without reference to D.

Finally, the proof that the algorithm returns a draw from equilibrium follows a
standard renewal theory argument. Consider a stationary version of the chain X,
say X̂, run from time −∞ to 0. The regenerations of X̂ (when it visits the small
set C∗) and those of D (when it hits level h∗) form two positive recurrent re-
newal processes (with that of X̂ being aperiodic). Therefore, if D is started far
enough in the past, then there will be a time −T at which both X̂ and D regen-
erate simultaneously. Now, consider the process X̃n = X̂n1[n<−T ] + Xn1[n≥−T ].
Clearly, X̃ is stationary and follows the same transitions of X from time −T to 0.
Thus X0 = X̃0 ∼ π , so the output as the algorithm is indeed a draw from the re-
quired equilibrium distribution. �

This concludes the proof of Theorem 15. We have produced a domCFTP algo-
rithm based on the scale function V for the tame chain X.

3.4. When is a chain tame? As a consequence of Theorem 15, question 2 of
page 8 can be rephrased as: when is a chain tame? Note that a tame chain will not
necessarily be tamable with respect to all scale functions, of course.

In this section, we present an equivalent definition of tameness and prove some
sufficient conditions for a polynomially ergodic chain to be tame. The following
theorem shows that tameness is determined precisely by the behavior of the chain
until the time that it first hits the small set C.

THEOREM 19. Suppose that X satisfies the weak drift condition PV ≤ V +
b1C . Then for n(x) = o(V (x)), the following two conditions are equivalent:

(i) there exists β ∈ (0,1) such that Ex[V (Xn(x))] ≤ βV (x) for V (x) suffi-
ciently large;

(ii) there exists β ′ ∈ (0,1) such that Ex[V (Xn(x)∧τC
)] ≤ β ′V (x) for V (x) suf-

ficiently large.

Furthermore, if V (x) is sufficiently large, we may take |β − β ′| < ε for any ε > 0.

PROOF. Since C = {x :V (x) ≤ d} is a sublevel set, we can split the expecta-
tion of V (Xn(x)∧τC

) according to whether τC ≤ n(x) or not, to show that

Ex

[
V

(
Xn(x)∧τC

)] ≤ sup
y∈C

V (y) + Ex

[
V

(
Xn(x)

); τC > n(x)
]

≤ sup
y∈C

V (y) + Ex

[
V

(
Xn(x)

)]
,

so (i) ⇒ (ii).
We now prove the reverse implication. Using the weak drift condition for X and
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recalling that n(x) is deterministic, we have

Ex

[
V

(
Xn(x)

); τC ≤ n(x)
] =

n(x)∑
k=1

Ex

[
EXk

[
V

(
Xn(x)−k

)]; τC = k
]

≤
n(x)∑
k=1

sup
y∈C

Ey

[
V

(
Xn(x)−k

)|Xk = y
]
Px[τC = k]

≤
n(x)∑
k=1

sup
y∈C

(
V (y) + b

(
n(x) − k

))
Px[τC = k]

≤ d + n(x)b.

Assuming (ii), we therefore have

Ex

[
V

(
Xn(x)

)] ≤ Ex

[
V

(
Xn(x)∧τC

)] + Ex

[
V

(
Xn(x)

); τC ≤ n(x)
]

≤ β ′V (x) + d + n(x)b

≤ βV (x)

for all sufficiently large V (x), since n(x) = o(V (x)).
Finally, due to the restriction on the size of n(x), it is clear that β and β ′

may be made arbitrarily close by simply restricting attention to x for sufficiently
large V (x). �

Suppose that we now modify the behavior of a tame chain X when it is in the
small set C. The following simple corollary of Theorem 19 shows that provided
the resulting chain still satisfies a weak drift condition, tameness is preserved under
such modification.

COROLLARY 20. Suppose X satisfies the drift condition PV ≤ V + b1C

and that X is tamed by the function F to produce a chain X′ satisfying
GE(V ,β, b′,C′). Let X̂ be a new chain produced by modifying the behavior of X

when in C, such that X̂ satisfies PV ≤ V + b̂1C . Then F also tames X̂, and the
resulting chain X̂′ satisfies GE(V , β̂, b̂′, Ĉ′) for any β̂ ′ ∈ (β,1).

PROOF. Write Fx = F(V (x)). Since X is tame, Theorem 19 tells us that
for V (x) sufficiently large,

Ex[V (XFx∧τC
)] ≤ β̃V (x)

for any β̃ ∈ (β,1). Now, since

X̂1[τ̂C≥Fx ]
d= X1[τC≥Fx ],

by definition,

Ex[V (X̂Fx∧τ̂C
)] ≤ β̃V (x).

Furthermore, since X̂ satisfies the drift condition PV ≤ V + b̂1C , a second appli-
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cation of Theorem 19 yields
Ex[V (X̂Fx )] ≤ β̂V (x),

where β̂ ∈ (β̃,1) may be chosen arbitrarily close to β̃ (and hence to β). Thus the
same function F also tames X̂. �

We have already remarked that all geometrically ergodic chains are tame. The
next two theorems provide sufficient conditions for a polynomially ergodic chain
to be tame.

THEOREM 21. Let X be a chain satisfying a drift condition PV ≤ V −
cV α + b1C for which V (X) has bounded upward jumps whenever X /∈ C. That
is, V (X1) ≤ V (X0) + K whenever X0 /∈ C, for some constant K < ∞. Then X is
tame.

PROOF. From Theorem 19, we see that it is sufficient to show that by choosing
an appropriate taming function F , we can obtain the bound

Ex

[
V

(
XF(V (x))

);F(V (x)) < τC

] ≤ βV (x) + b′1C′(x).(28)

Choose β sufficiently small to satisfy

logβ < (1 − α)−1 logα(29)

and then choose λ sufficiently large so that λ−1 < βc(1−α). Define the constant d1
by

dα
1 = K

c(1 − α)λ

(
β − 1

c(1 − α)λ

)−1

and define C1 = {x :V (x) ≤ d1}. Note that if x /∈ C1, then(
β − 1

c(1 − α)λ

)
V (x) ≥

(
K

c(1 − α)λ

)
V 1−α(x).(30)

Finally, set d ′ = max{d, d1} and let C′ = {x :V (x) ≤ d ′}.
Now, define the taming function F by

F(z) =
{ �λz1−α�, for z > d ′,

1, for z ≤ d ′.
(31)

Write Fx = F(V (x)) to ease notation. Then for x /∈ C′, since the upward jumps
of V (X) before time τC are bounded above by K , we have

Ex[V (XFx );Fx < τC] ≤ (
V (x) + KFx

)
Px[τC > Fx]

≤ (
V (x) + KFx

)Ex[τC]
Fx

by Markov’s inequality

≤ (
V (x) + KFx

) V 1−α(x)

c(1 − α)Fx

by Corollary 9

≤ V (x)

c(1 − α)λ
+

(
K

c(1 − α)λ

)
V 1−α(x) using (31)

≤ βV (x) by inequality (30).
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Finally, for x ∈ C′, we have

Ex[V (XFx )] = Ex[V (X1)] ≤ V (x) + b

≤ βV (x) + (1 − β)d ′ + b

= βV (x) + b′,
where b′ = (1 − β)d ′ + b < ∞. Hence, (28) is satisfied for all x and X is tame.

�

The following proof makes use of Proposition 10, which was borrowed from
[11]. Note that tameness is clearly monotonic in the drift exponent α since chains
satisfying PE(V , c,α, b,C) also satisfy PE(V , c,α′, b,C) for all α′ ≤ α.

THEOREM 22. Let X be a chain satisfying the drift condition PV ≤ V −
cV α + b1C , with α > 3/4. Then X is tame.

PROOF. Let ρ = (1 − α)−1/2 > 2 and set α′ = 2α − 1. Writing Vρ =
V 1−ρ(1−α) = V 1/2 and using Lemma 8, we have

PVρ ≤ Vρ − V α′
ρ + b11C

for some b1 < ∞. We shall seek a time change that produces a geometric Foster–
Lyapunov condition on this scale, Vρ . As in the proof of Theorem 21, we simply
need to control

Ex[Vρ(XFx );Fx < τC],
where Fx = F(Vρ(x)).

By Proposition 10,

CEx

[
τC−1∑
n=0

nρ−1Vρ(Xn)

]
≤ MV (x)

for some constant M < ∞. Thus

Ex[Vρ(XFx );Fx < τC] ≤ MV (x)

F
ρ−1
x

.(32)

Now, choose β > 0 such that logβ < (ρ − 1) log((ρ − 2)/(ρ − 1)) and define the
taming function F by

F(z) = ⌈
(λz)1/(ρ−1)⌉ ∨ 1

for any λ > M/β . Then from inequality (32),

Ex[Vρ(XFx )] ≤ MV (x)

F
ρ−1
x

≤ βVρ(x)
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for Vρ(x) sufficiently large. Therefore, F tames X, as required. �

In fact, it turns out that any chain satisfying drift Condition PE may be adap-
tively subsampled as above to produce a geometrically ergodic chain (see [2] for
details). However, for α ≤ 3/4, the pause function produced leads to an improper
equilibrium distribution for the dominating process of Theorem 16. Connor [2]
shows how this lower bound on α may be further reduced to 0.704, but tameness
for α ≤ 0.704 remains to be proven. This is not to say, of course, whether or not
there may exist another suitable pause function, possibly on a different scale.

These two sufficient conditions are not necessary for a chain to be tame: in
Section 4.4, we present an example of a chain that satisfies Condition PE with drift
coefficient α = 1/2 and which does not have bounded jumps for X /∈ C, and we
show explicitly that it is tame.

4. Examples. We now present four explicit examples of polynomially ergodic
chains and show that they are tame. The first two of these are tame by Theorem 21
and the third by Theorem 22. The final example, (4.4), shows that the sufficient
conditions of Theorems 21 and 22 are not necessary for X to be tame.

4.1. Epoch chain. Consider the Markov chain X on {0,1,2, . . .} with the fol-
lowing transition kernel: for all x ∈ {0,1,2, . . .},

P(x, x) = θx; P(0, x) = ζx;
P(x,0) = 1 − θx.

Thus X spends a random length of time (an epoch) at level x before jumping to
0 and regenerating. Meyn and Tweedie ([18], page 362) show that this chain is
ergodic if ζx > 0 for all x and∑

x

ζx(1 − θx)
−1 < ∞.(33)

Furthermore, they show that the chain is not geometrically ergodic if θx → 1 as
x → ∞, regardless of how fast ζx → 0.

Now, suppose that θx = 1 − κ(x + 1)−λ for some suitable κ,λ > 0. We now
slightly strengthen condition (33) on {ζx} to obtain a polynomial drift condition:
we require that there exists ε > 0 such that

∑
x ζxx

(1+ε)λ < ∞.
Let C = [0, κ1/λ]. Then following drift condition holds:

Ex[V (X1)] ≤ V (x) − κV α(x) + b1C(x),(34)

where V (x) = (x +1)m, m = (1+ ε)λ and α = ε/(1+ ε). This chain then satisfies
the conditions of Theorem 21 and is therefore tame.
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4.2. Delayed death process. Consider the Markov chain X on {0,1,2, . . .}
with the following transition kernel:

P(x, x) = θx, x ≥ 1,

P (x, x − 1) = 1 − θx, x ≥ 1,

P (0, x) = ζx > 0, x ∈ {0,1,2, . . .},
where θx = 1 − κ(x + 1)−λ for some suitable κ > 0, λ > 1, and ζx → 0 as x → ∞
sufficiently fast to ensure that

E0[τ0] = 1 +
∞∑

x=1

ζx

x∑
y=1

(1 − θy)
−1 < ∞,

making X ergodic.
It is simple to show that X is not geometrically ergodic, but that it does satisfy

Condition PE(V , c,α, b,C) with V (x) = (x + 1)2λ and α = (λ − 1)/2λ. Since
the upward jumps of V (X) are clearly bounded for X ≥ 1, the chain is tame by
Theorem 21.

4.3. Random walk Metropolis–Hastings. For a more practical example, con-
sider a random walk Metropolis–Hastings algorithm on R

d , with proposal den-
sity q and target density p. Fort and Moulines [6] consider the case where q is
symmetric and compactly supported and logp(z) ∼ −|z|s , 0 < s < 1, as |z| → ∞.
(When d = 1, this class of target densities includes distributions with tails typically
heavier than the exponential, such as the Weibull distributions; see [6] for more de-
tails.) They show that under these conditions, the Metropolis–Hastings algorithm
converges at any polynomial rate. In particular, it is possible to choose a scale
function V such that the chain satisfies Condition PE with α > 3/4. Therefore, by
Theorem 22, this chain is tame.

4.4. Random walk on a half-line. For our final example of a tame chain, we
consider Example 5.1 of Tuominen and Tweedie [23]. This is the random walk on
[0,∞) given by

Xn+1 = (Xn + Zn+1)
+,(35)

where {Zn} is a sequence of i.i.d. real-valued random variables. We suppose that
E[Z] = −µ < 0 (so that 0 is a positive-recurrent atom) and that E[(Z+)m] = µm <

∞ for some integer m ≥ 2.
We also assume that E[rZ+] = ∞ for all r > 1, and claim that this forces X

to be subgeometrically ergodic. To see this, consider the chain X̂ which uses the
same downward jumps as X but which stays still when X increases. That is,

X̂n+1 = (X̂n − Z−
n+1)

+.
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Let τ0 be the first time that X hits 0 and let τ̂0 be the corresponding hitting time
for X̂. Note that for all n > 0,

Ex[X̂n∧τ̂0] ≥ x − Ex[n ∧ τ̂0]µ̂,(36)

where µ̂ := −E[Z;Z ≤ 0] > 0. Now, the left-hand side of (36) is dominated by x,
and Ex[τ̂0] < ∞, so letting n → ∞ yields

Ex[τ0] ≥ Ex[τ̂0] ≥ x/µ̂.(37)

Thus, for r > 1,

E0[rτ0] = rE0
[
EX1[rτ0]]

≥ rE0
[
rEX1 [τ0]]

≥ r E0[rX1/µ̂] = ∞ by assumption.

Therefore, by Theorem 3, X is not geometrically ergodic.
Now, [11] show that if m ≥ 2 is an integer, then X satisfies Condition PE with

V (x) = (x + 1)m and α = (m − 1)/m. Clearly, the upward jumps of V (X) when
X /∈ C are not necessarily bounded, so Theorem 21 cannot be applied. Further-
more, if m ≤ 4, then α ≤ 3/4, so Theorem 22 cannot be applied. However, we now
show that X is still tame when m = 2 (and thus tame for all m ≥ 2).

(i) First, assume that the law of Z is concentrated on [−z0,∞) for some z0 > 0,
so µ2 = E[(Z+)2] < ∞. Then if x ≥ z0,

Ex[(X1 + 1)2] = E[(x + 1 + Z)2]
= (x + 1)2 + 2(x + 1)E[Z] + E[Z2]
≤ (x + 1)2 − 2µ(x + 1) + (µ2 + z2

0).

Thus for any 0 < β < 1, there exist zβ > z0 and bβ < ∞ such that, with V (x) =
(x + 1)2 and α = 1/2,

Ex[V (X1)] ≤ V (x) − (2 − β)µV α(x) + bβ1[x≤zβ ].(38)

Assume that β < 1/4 and a corresponding zβ > z0 are fixed. Write Cβ = [0, zβ]
and for V (x) > zβ , define F(V (x)) = �V 1/2(x)/µ�. Iterating the drift condi-
tion (38), we obtain for x /∈ C, with Fx = F(V (x)),

Ex[V (XFx )] ≤ V (x) − (2 − β)µ

Fx−1∑
k=0

Ex[V 1/2(Xk)] + bβFx

≤ (x + 1)2 − (2 − β)µ

Fx−1∑
k=0

(x + 1 − kµ) + bβFx

since Ex[V 1/2(Xk)] = Ex[(Xk + 1)] ≥ x + 1 − kµ,(39)
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≤
(

1 − (2 − β) + (2 − β)

2

)
(x + 1)2 + γ x

for some γ > 0,

≤ β

2
V (x) + γV 1/2(x).

Thus there exists a sublevel set C′ and a constant b′ < ∞ such that if

F(x) =
{ �x1/2/µ�, x /∈ C′,

1, x ∈ C′,
then we obtain

Ex[V (XFx )] ≤ βV (x) + b′1C′(x)

with β < 1/4. Since α = 1/2, we satisfy logβ < (1 − α)−1 logα, so this chain is
indeed tame.

(ii) In the general case, we can proceed by truncating the law of Z at a level −z0
so that the truncated distribution has a negative mean. The resulting chain, X∗ say,
is tame by the above argument. However, X∗ stochastically dominates X on the
whole of [0,∞), so X must also be tame.

A polynomial drift condition can still be shown to hold when m ∈ (1,2) [cor-
responding to drift α ∈ (0,1/2)]. Furthermore, it is quite simple to produce an
adaptive subsampling scheme in this situation that produces a chain satisfying con-
dition GE(V ,β, b,C). However, it is also necessary to make β sufficiently small
to satisfy part (b) of Definition 14 and we have not yet been able to achieve this.
Therefore, it is unclear at present whether such chains are in fact tame.

5. Conclusions and questions We have introduced the concept of a tame
Markov chain and shown that a domCFTP algorithm exists for all such chains.
This algorithm is not expected to be practical in general, but it directly extends the
results of [7] and [14]. In a practical setting, of course, one would use a dominating
process that is better suited to the chain of interest. We have proven two sufficient
conditions for a polynomially ergodic chain to be tame and provided an example
which demonstrates that neither of these sufficient conditions are necessary.

Our suspicion, which is shared by those experts with whom we have discussed
this, is that the following conjecture is true.

CONJECTURE 23. There exists a chain satisfying Condition PE which is wild.

On the other hand, we do not rule out the possibility that all polynomially er-
godic chains are tame. A resolution of this conjecture would do much to further our
understanding of such chains. The tame/wild classification provides some structure
to the class of subgeometrically ergodic Markov chains that goes beyond the rate
at which they converge to equilibrium. Although purely theoretical at present, this
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may prove to be important in understanding elaborate MCMC implementations:
for a tame chain, the existence of a time change which produces a geometrically
ergodic chain could possibly be exploited to improve the behavior of an MCMC
algorithm.

It is also natural to ask what can be said about the more general case of subge-
ometric ergodicity. The drift condition

PV ≤ V − φ ◦ V + b1C(40)

[where φ > 0 is a concave, nondecreasing, differentiable function with φ′(t) → 0
as t → ∞] is a generalization of (7) which can be shown to imply subgeometric
ergodicity [5]. Much of the work in this paper extends naturally to chains satis-
fying this drift condition (see [2] for details). However, it is possible to produce
a version X of the Epoch chain of Section 4.1 that satisfies (40) but not (7). Fur-
thermore, no subsampling scheme defined using a function F of the form (16) will
result in a geometrically ergodic chain, so this X is wild. The existence of a perfect
simulation algorithm for this and similar chains is also an open question.
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