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LOUD SHOT NOISE

By R. A. DONEY AND GEORGE L. O’BRIEN!

The University of Manchester and York University

We consider problems involving large or loud values of the shot noise
process X(¢) =X, . _h(t~ 1), t 20, where h: [0,%) — [0, ) is nonin-
creasing and (7;, i = 0) is the sequence of renewal times of a renewal
process. Results are obtained by extending the renewal sequence to all
i €Z and considering the stationary sequence (¢,) given by ¢, =
Y, h(r, — 7). We show that £, has a thin tail in the sense that under
broad circumstances Pr{¢, > x + 8¢, > x} —» 0 as x — o, where § > 0. We
also show that Pr{max(¢,,...,£,) < u,} — (Pr{¢, < u,D" = 0 for real se-
quences (u,,) for which lim sup n Pr{¢; > u,} < .

1. Introduction. Let {X(2), ¢ > 0} be a shot noise process of the form

(1.1) X(1)= X h(t-7),

iiT, <t

where the response function A: [0,%) — [0, %) is nonincreasing, A(0+) > 0
and {r;, i > 0} are the renewal times of an ordinary renewal process with
7o =0, 7, =2XIn, for n > 1. The idea is that a “shot” occurs at each renewal
time and the resulting noise level s units of time after a shot is h(s). Then
X(#) is the total noise level at time ¢, obtained by adding the effects of all shots
prior to time ¢.

Many papers have been published on shot noise, in both mathematics and
physical science journals. A large selection of these can be traced via the
references given by Hsing and Teugels (1989) and Vervaat (1979). The exact
mathematical models vary considerably. In particular, some authors assume
{r;} is a Poisson process and some assume A is random and chosen indepen-
dently for each 7,. Many authors give particular consideration to the case
where the shot noise decreases exponentially at a deterministic rate, since this
case is both natural and relatively tractable.

We investigate properties involving large or “loud” values of the shot noise
process X. Since X clearly jumps upward at each 7, and decreases between the
7;’s, it is natural to consider the embedded sequence Y, = X(r,) and a corre-
sponding stationary sequence {¢,, n > 0} defined by

(12) ‘fn= Z h(Tn_Tm)’
m<n
where for m <0, 7,, = —L% . m;, {n;,, —» <i<x} being a sequence of

positive i.i.d. r.v.’s.
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The first topic we consider is the tail behaviour of the (stationary) distribu-
tion of £,; in particular, under what circumstances and for what values of &
does
(1.3) lim Pr{¢, > x + 8lég > x} =0
hold? Rather surprisingly (1.3), which quantifies a sense in which the tail of
the distribution of ¢, decreases at a faster than exponential rate, holds under
very weak assumptions. Indeed, making only the natural assumptions that
Pr{n, < ¢} > 0 for all ¢ > 0 and Pr{n;, < 0} = 0, we show in Section 2 that if
A = inf{t: h(¢) = 0} < x, then (1.3) holds for every 6 > h(A — ), and if A = o,
then either (1.3) holds for all § > 0 or else E¢, = +«. A sufficient condition
for E¢, < » and hence for (1.3) when A = » is that [fh(¢) d¢ < o«; this is also
necessary if u = En, < «.

The second topic we consider is the asymptotic behaviour of M, :=
max,_; _, ¢, We show that if A < w or if A(x) = e™%, then

(1.4) Pr{iM, <u,} — {G(u,)})" >0 asn— o,

where G(¢) = Pr{¢, < ¢} and {u,)} is any sequence of real numbers for which
limsup n Pr{¢, > u,} < «. Formula (1.4) is an assertion that M, mimics the
behaviour of the maximum of a sequence of i.i.d. r.v.’s with the same distribu-
tion function as £, and is often expressed by stating that {¢,} has extremal
index 1.

A result similar to (1.4) has been obtained by Hsing and Teugels (1989) with
the additional assumptions that A < «, that u < «, that (1.3) holds for
& = h(0) and that A satisfies an additional technical condition, which implies
in particular that h is strictly decreasing. They did not prove (1.3). Our
method of proof is completely different from theirs. Although we do not give
any details, standard techniques of extreme value theory can be used to extend
(1.4) to various extremal results for X, for example, the convergence of the
exceedance point process of {Y(n), n > 0}.

The question as to whether or not (1.4) holds for 2 with unbounded support
seems to be a difficult one: We show that it does hold in the important special
case h(x) = e *, without any extra assumptions on the renewal process {r,},
but our proof leans heavily on the fact that, in this particular case, {¢,, n > 0}
has the Markov property. We indicate how our methods could be extended to
the case that % is ‘“close to exponential,” but for general h, the question
remains open.

2. Tail behaviour of &,. Since studying the distribution of £, involves
only the renewal process {r_;, i > 0}, it is convenient to reverse the direction
of time. At the same time we make a slight generalization and, throughout
Section 2, study the distribution of

(2.1) £= Y A1),
0
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where {t,,, m > 0} is a modified renewal process on [0, ), i.e., ¢, = 0,¢,, = L1'0;

for m > 1, where 6,,60,,... are independent positive random variables,
6,,0,... have common distribution function F, and 6, has distribution
function F,. We assume throughout that for i = 1, 2,

(2.2) F(0)=0, F(t)>0 Vt>0.

It turns out that (1.3) can be established in the case that ~ has unbounded
support by an approximation argument based on the corresponding result for
h with bounded support. Until further notice we will therefore assume that
h is nonincreasing, h(0) =1, h(1+)=0 and A(¢) >0

for0 <t <1.

We proceed via a sequence of lemmas, in which we use the following
notation. For x > 0 let N(x) = min{n: X JA(¢,,) > x}, with min & = o, so that
(£ > x} = (N(x) < o} = U3{N(x) =n}, and write S(x) = ty,, when N(x) <,
S(x) = o when N(x) = «. Note that, for y < 1,

M(y)
(2.4) S(x) <y« X h(t,)>x,
0

(2.3)

where M(y) = max{n: ¢, <y}. Our first lemma exploits the monotonicity of A
to show that, conditioned on S(x) <y, 6, is stochastically smaller than each
6,, for i > 2. In the proof and throughout the paper, indicator functions are
denoted by I.

LEmMMma 1. Fort>0,x>0,0<y<landi> 2,

(2.5) Pr{6, > t|S(x) <y} = Pr{6, > tIS(x) <y}.
Proor. We show first that for each fixed i > 2 and 0 <s, <s;,
(2.6) Pr{S(x) <yl8, =s,, 0, =s;} =Pr{S(x) <yl6; = 55,0, =5,}.

To see this, take arbitrary positive s, s, S4,...,5,_; and write o, = 0§ = 0,
0, =L's;and o, = L{"s/ for 1 <m < i, where s{ =s,, s, =5;, 8} =5; for
2 <j <i and s} = s,. Note that o,, < 0,, for m < i. Suppose 0; < y so that if
¢, = 0;, then M(y) > i. Then

Pr{S(x) <yl6; =s;,1 <j <i}

M(y) i
= Pr{ Y h(t,)>x— Y h(o,)l0;=5;,1<j< i}
(27) i+1 0

M(y) i
> Pr{ Y h(t,)>x— ) h(o,)le,=s;,1<j< i}
i+1 ‘o

=Pr{S(x) <yl6,=sj,1<j < i},

where we have used the fact that, given ¢, = o;, where o, <y, M(y) and
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tiv1titg ... are independent of 6, j < i. Also, when g; > y, we have

Pr{S(x) <ylo, = s, 1<j<i}= 1{ ICH >x}

m:o,<y
(2.8) > 1{ Y k(o) > x}
m:o,<y
= Pr{S(x) <ylo,=s;,1<j< i}.
We now obtain (2.6) by integrating out the dependence on sy, s3,54,...,5;,_1
in (2.7) and (2.8). From (2.6) we have
Pr{S(x) <y,0, >t} — Pr{S(x) <y, 6, > t}
=Pr{S(x) <y, 0,<¢6,>t} —Pr{S(x) <y,0,>1¢0,<t}
= f f [Pr{S(x) < yl6, = u, 6, = v}

v>t'u<t
~Pr{S(x) <yl8, =v, 8, = u}| dF,(u) dF,(v)
>0,
and (2.5) is immediate. O

We can now conclude that 6, is likely to be small when S(x) < y:

LEmMA 2. Foreach 0 <y <1,
(2.9) Pr{0, < 227 !S(x) <y} >3 forx>4.

Proor. From A(t) < 1 it follows that N(x) > [x], where [x] is the integer
part of x. Thus from S(x) <y < 1 it follows that at most [3x] of 6, 6,,..., 0,4

exceed 2x~! and hence at least [3x] of them are at most 2x~!. Therefore, by
Lemma 1,

[3x] -1 <E{#{i:2<i<[x]and §, < 2x"'}IS(x) <y}
[x]
= Y Pr{s;, < 2x71S(x) <y} < [x — 1]Pr{6, < 2x71S(x) <y},
2
which establishes (2.9) since [3x] — 1 > [x — 1] for x > 4. O

The next lemma embodies the intuitively appealing idea that for large x, if
S(x) <y, then with high probability S(x) is close to y. This turns out to be a
key ingredient in the proof of our main results.

LeEmMMA 3. For each fixed 0 <y <1,
(2.10) Pr{S(x) <y -yIS(x) <y} =0 asx — « uniformly overy € (0,1].

Proor. We remark first that, for x > 2,
(2.11) Pr{S(x) <y —vl0,=2} <Pr{S(x—1) <y —y—2}
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and hence, by Lemma 2, for x > 4,
iPr{S(x) <y -y} <Pr{S(x) <y —v,0, <2x"1}
<Pr{S(x—-1) <y — y}Pr{8, < 2x"'}.

Now note that if % is chosen (independently of y) with 2~ < A(1 — vy/2),
then

(2.12)

Pr{t, <vy/2} >0
by (2.2) and
Pr{S(x — 1) <y — y}Pr(t, <v/2}
=Pr{S(x-1) <y -y, INc-1+k ~ ENa-1 < v/2)
<Pr{S(x) <y —vy/2} <Pr{S(x) <y}.

Together with (2.12) this establishes (2.10), since Pr{f, < 2x™ '} > 0 as x > .
0O

The next result extends the idea of Lemma 3 to show that if S(x) <y for
large x, then the distances between successive renewal points in [0, y] tend to
be small.

LEmMMA 4. Let B(x) = max{6;: 1 <i < N(x)} when N(x) <®, B(x)=10
when N(x) = ». Then for each fixed t > 0,

(2.13) Pr{B(x) >tlS(x) <y} -0 asx — , uniformly overy €(0,1].
Proor. Since B(x) < S(x), we may assume y > ¢. Interchanging the order

of summation and noting that Pr{N(x) > i, S(x) < y|6, = 2} is decreasing in z,
we get

A |
™ iMs 1M
s

~
Il
-

Pr{B(x) > ¢, S(x) <y} Pr{N(x) =n, S(x) <y, B(x) >t}
1

Pr{N(x) =n, S(x) <y,0, > t}

-
~.
It
fun

(2.14)
Pr{N(x) =i, S(x) <y,6, >t}

<

™

~
Il
-

{1 - F()}Pr{N(x) 2 i, S(x) <yl6; = ¢},

where F(t) = Fy(t) for i > 2. Now if N(x) > i and if 6, is decreased, S(x)
decreases by at least the same amount and the inequality N(x) > i remains
valid, so w;(2) = Pr{S(x) <y — 2, i < N(x)|f, = ¢t — 2} is increasing in z < ¢.
Thus for 0 < u <v < ¢,

{Fi(v) — F(u)}w,(0)
(2.15) < [‘w(t - 2) dF,(2)

<Pr{N(x)>i,S(x) <y+v—-t,u<6,<v}.
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Now fix 0 < u <v <t with F(v) > F,(u) for i = 1,2, write
¢ = max{(1 - F(0))(F(v) = Fy(u)) "}

and note that

N(x)
S(x)<y+v—t=N(x)<wo= )Y 6,<1=#{i<N(x):6,>u} <u’.
1

Then (2.14) and (2.15) give

Pr(B(x) > 1, S(x) <) < Zl (1 = F(6)}w,(0)

<cY Pr{N(x)=i,S(x) <y+v—tu<6, <v)
1

<cPr{S(x) <y+v -t}
xf Pr{N(x) >i,0,>ulS(x) <y +v —t}
1

=cPr{S(x) <y+v -t}
XE{#{i < N(x): 0, >u}IS(x) <y +v—t¢}
<cu 'Pr{S(x) <y-+v-—t},
so that (2.13) follows from Lemma 3. O
Returning to the situation of Section 1, let us write R for the renewal
function of {r,, n >0}, viz. R(¢) = E{max{n: 7, <t}}, so that E{{,} =

J&h(2) dR(t) [recall that A = inf{¢: h(¢) = 0}]. Our result on the marginal
distribution of ¢, is:

THEOREM 1. Suppose that 0 < h(0) < ©, h(0 + ) > 0, h is nonincreasing
and the distribution of the m, satisfies (2.2). If A < «, then
(2.16) lim Pr{é&, > x + 8léy > x} =0
for every 6 > h(A — ) and, if h is constant on some interval (A — g, A), for
§=h(A-) If A =xand
(2.17) E{&,} < o,
then (2.16) holds for every & > 0. If A = © and E{{,} = =, (2.16) holds for no
6> 0.

Proor. When A < o it is easy to see [by considering A(x) =
h(A~%)Rh(0)} Y, %, = Ar,] that there is no loss of generality in taking
h(0) =1 and A = 1. Then, setting —7_,, =¢,, we have the situation of
the early part of Section 2, with F(¢) = F,(¢) = F(¢) = Pr{(n; < ¢}. For § as
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indicated, we have D := sup{y: A(y) > 8} < 1. Thus
Pr{¢y > x + 8, tyeye1 > 1é > x} < Pr{h(S(x)) > 8l&, > «)
<Pr{S(x) <Dléy>x} -0 asx — x,
by Lemma 3. [Recall that &, > x iff S(x) < 1.] But also, when x > 1,
Pr{fy > x + 6, tygye1 < 1} < Pr{tyg,,q < 1)

< ["F(1 - y)Pr{S(x) € dy)
0

= ["Pr(S(x) =1 -y) dF(y),
0
so it follows from Lemma 3 and dominated convergence that
Pr{¢y>x + 8, typyer < 1lég > x} > 0 as x - .

When A = «, it is obvious that if (2.16) holds for some & > 0, then (2.17)
holds. To see the reverse implication assume (2.17), write Z(¢) = L, . (h(¢ +
t,,) and note that E(Z(¢)) = [gh(¢ + s)dR(s) — 0 as ¢t —» » and hence

(2.18) Pr{Z(¢t) = 6} - 0 as ¢ — « for each fixed § > 0.
Conditioning on the value of S(x) gives for any K > 0,
Pr{&, > x + 8léy > x} < /wPr{ Y h(tneyem) > 8, S(x) € dilé, > x}
0

m=0
< f:Pr{Z(t) > 5)Pr{S(x) € dtlé, > x)

<Pr{S(x) < Kl|¢, > x} + Pr{Z(K) > §}.
In view of (2.18), (2.16) will follow if we can show that for each fixed K > 0,
(2.19) Pr{S(x) <Kl¢,>x} -0 asx — o.

But another scaling argument shows that if (2.19) holds for one K > 0, then it
holds for any K > 0. We therefore establish (2.19) with K = 1. To this end we
observe that S(x) < 1« S(x) < 1, where § refers to the same renewal
process but with the truncated response function h(x):= {0 <x < 1}h(x).
Since (2.3) holds for %, Lemma 3 gives Pr{S(x) < i} = o{Pr{{, > x}} =
o{Pr{¢, > x}}, which establishes (2.19) with K = %, and hence yields (2.16). O

REMARk 1. We do not know when (2.16) holds for 6 < A(A — ). In the
example, A(x) = {0 < x < 1}, h(A — ) = 1 and (2.16) holds iff § > 1.

REMARK 2. When A = © and u = E(7,;) < «, an integration by parts and
the fact that R(¢) ~ u !¢ as ¢t » « show that

E(&,) = fowh(t) dR(t) = o = f:h(t) dt = o ¥ h(ne) =
0

for every ¢ > 0.
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But by the strong law 3 0 < &(w) < » with ¢,(w) < ne(w) for all n and hence
£o(w) = éh(mw)) > ﬁ;fh(ns<w)) —o as,
whenever E(&,) = .

REMARK 3. When A =« and u = », a truncation argument shows that
Joh(t) dt < « is a sufficient condition for (2.17) and hence (2.16) to hold. A
result in Erickson (1973, Lemma 1) shows that (2.17) is equivalent to

[:t{u(t)}‘ld(l — k(1)) <,

where u(¢) = [{1 — F(x)}dx. In particular, if 1 — F(¢) ~ ct™® as t - © and
0 <@ < 1, then (2.17) is equivalent to [5t* 'h(t) dt < .

REMARK 4. We have not been able to establish whether or not E{¢,} =
o e Pr{£; = o} = 1 when u = .

ReEMARk 5. Consider the situation where u is finite, {r/, —®© <i < »}is a
stationary renewal process with interpoint distribution F and

(2.20) X(t)y= Y h(t-1).

iiT/<t

Then ¢, = X'(7) is a stationary sequence with the same marginal distribu-
tion as £, and {X'(¢), —» < ¢ < =} is a stationary process which has a different
marginal distribution. The point of allowing {¢,, n > 0} to be a modified
renewal process in the early part of this section is revealed in the following
theorem.

THEOREM 2. If pu < =, the conclusions of Theorem 1 hold with &, replaced
by X'(0).

Proor. Write ¢ = X'(0) + h(0). Then it is clear from (2.20) that ¢’
has a representation of the form (2.1) with F, = F and F, = F, where F
is the stationary distribution of the backward recurrence time, viz. F(¢) =
w Y& — F(x)) dx. Since we are assuming that (2.2) holds for F, it also holds
for F; and F,, so we can repeat the proof of Theorem 1 with £, replaced by &’
and some very minor changes. Of course (2.16) holds for X'(0) iff it holds for
¢', and similarly for the other conditions. O

REMARK 6. In the original situation of Section 1, where {r;, i > 0} is an
ordinary renewal process and (1.1) holds, viz.

X(t) = T h(t-m),

it might be thought that if u < », then for fixed ¢, X(¢#) would have a
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representation of the form (2.1) with F, = F and F, = F, where F® stands
for the (nonstationary) distribution of the backward recurrence time and with
h replaced by A“(s) := h(s)I{0 < s < t}. However, this overlooks the fact that
{r;,, i > 0} has a renewal point at zero. For the sequence {¢,, n > 0} this
translates into a point at ¢, so in fact

Pr{X(¢) + R(0) > x} = Pr{ Y r®O(t,) > «xlt,, =t forsome 1l <m < 00}.
0
Nevertheless, our methods can be extended to establish an appropriate condi-
tional version of Lemma 3 and hence to show that Theorem 1 also holds with

&, replaced by X(¢) for fixed ¢ > 0.

3. Extreme value theory. Suppose now that {r;,, —o <i < «} is a two-
sided renewal process with 7, = 0, that

gn = Z h(Tn - Ti)’
M, = max (£},

and write G for the distribution function of ¢,. Our main result on the
asymptotic behaviour of M, is given by the following theorem.

THEOREM 3. Suppose that h satisfies (2.3), F satisfies (2.2), k, is any
sequence of integers which increase to » and u, is any sequence of real
numbers satisfying

(3.1) limsup £,{1 — G(u,)} < .
Then
(3.2) Pr{M, <u,}- {G(un)}k" -0 asn >,

ProoF. As pointed out in O’Brien (1987, Corollary 2.3), with no loss of
generality we can and do take %, = n. Also Lemma 3.1 of Hsing and Teugels
(1989), whose proof uses only the fact that A has bounded support, shows that
{¢,, n > 0} is strongly mixing so that, using Theorem 2.1 of O’Brien (1987),
(3.2) will follow if we can show that, for any sequence of positive integers
{p,, n = 0} with p, - » and p, = o(n),

(3.3) Pr{M(0,p,) > u,léy>u,} -0 asn - o«

where M(i, j) = max{{; 1, &,,5,...,&,;}. Given an arbitrary ¢ >0, fix r>1
such that Pr{A} < ¢, where A = {r, < 1}. Then

r

(34) Pr{M(O’pn) > un|§0 > un} = 21 Pr{gi > unlfo > un}

+ Pr{M(r,p,) > u,lé > u,}
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and
Pr{M(r,p,) > u,léo > u,}
< Pr{Al¢, > u,} + Pr{A°, M(r,p,) > u,léy > u,}
= Pr{A} + Pr{A°, M(r,p,) > u,}
< Pr{A} + Pe{M(r,p,) > u,}
<e+p,Pr{é& >u,}

< 2¢

for n sufficiently large, since p, = o(n) and (3.1) holds with %, = n. In view of
the obvious estimate X} Pr{¢;, > u ,|éy > u,} < rPr{é, +r>u,léy > u,}, itis
now clear that (3.3) will follow from (3.4) if we can show that, for fixed r,

(3.5) lim Pr{¢, > x — rl¢, > x} = 0.

Again denote —7_, by ¢,, n > 0. For fixed ¢ € (0,1) write L = #{n: 1 —¢ <
t,<1— 3tyand A = h(1 — 3¢), so that A > 0. Then, given 7, = ¢,

E,=1+ Y h(t+t,) <1+ Y  h(t,) <1+¢&-—-AL

nit,<l-t
and hence
Pr{¢, >x—rlég>x, 7=t} <Pr{éy>x+ AL —r — 1§, > x}
< Pr{&; > x + 11§, > x} + Pr{L < £, > x},
where [ = (r + 2)A L. The first term tends to 0 as x — «, by Theorem 1. Then
L <1 = sup{f,;isuchthatt, ; <1— it} > itA(r +2)" ' =b, say,

)

Pr{L <1, S(x) > 1 — §tlé, > x} < Pr{B(x) > bl¢, > x}
and this tends to zero by Lemma 4. On the other hand,

Pr{L <1, S8(x) <1-— 3tlgg > x} < Pr{S(x) <1 — 3tl¢ > x}

and this tends to zero by Lemma 3. Conditioning on 7, and using dominated
convergence then establishes (3.5) and hence the theorem. O

REMARKS. Using the methods of Hsing and Teugels (1989) [see, in particu-
lar, (2.5)], it is not difficult to show that Theorem 3 holds with M, replaced by
maxOsr <n Yr’ Where Yr = X(Tr) = 205 m srh(Tr - Tm)'

Note that (3.3) means that {£,} has “extremal index 1,” in the usual
terminology of extreme value theory [c¢f. O’Brien (1987)]. This is usually
interpreted as meaning that large values in the sequence {£,} do not cluster
together, with seems to contradict the fact that ¢, > x implies §,_; > x — 1.
However, “£, is large” in this context means that G(¢,,) is close to 1, so that,
in view of Theorem 1, £, being large does not imply &, _; is large.

There are two major difficulties in extending Theorem 3 to the case that A
has unbounded support. (Of course, if & is supported by [0, A] with 0 < A < o,
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the usual scaling argument shows that Theorem 3 holds.) First, it is not
difficult to see that, in general, {{,, n > 0} will not be strongly mixing in this
case. It would therefore be necessary to show that {£,, n > 0} has some weaker
mixing property, such as the A.ILM. property of O’Brien (1987). Second, the
argument used to establish (3.3) is clearly going to fail in this situation. We
content ourselves with settling the question for the important special case
h(x)=e"" 0 <x <o (but see remark at the end of this section). Here
{¢,, n > 0} has the Markov property and we use this extensively in proving the
next result. It should be noted that even in this Markov case, it is not clear
that {¢£,} is strongly mixing since it may not be Harris recurrent.

THEOREM 4. If h(x) = e™* and F satisfies (2.2), then (3.2) holds.

Proor. We proceed via several lemmas, all of which refer to the case
h(x) =e™ ™

LEMMA 5. G, the distribution function of £,, is continuous.

ProoF. From ¢ =% ,_je 7™ =1+ e "¢ and ¢, =; &, we have the
distributional identity
(3.6) Eo=41+A¢E,,

where A = e~ 1. From this it is clear that the distribution of £, is nondegener-
ate, since otherwise A would have a degenerate distribution, contradicting
(2.2). Now (3.6) is a special case of a much-studied identity and the result
follows from Theorem 3.2 of Vervaat (1979). [See also Grincevicius (1974).] O
LemMmA 6. Let G, (ylx) = Pr{¢, < yl€, = x}. Then for each fixed x and y,

(3.7) G, (ylx) > G(y) asn - .

Proor. This is immediate from the representation
(38) ‘En = e_Tn§0 + Zn’
where

Z = Z e_(fn_fm)’

n
l<m<n

since 7, > +» as. and Z, »; ¢, as n — ». It is also a special case of
Theorem 1.5 of Vervaat (1979). O

We now show that {£,} has the A.IM. property of O’Brien (1987).
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LeEmMA 7. Let {q,} be any sequence of positive integers with lim, . q, =
+ o, {c,} be any sequence of positive numbers and
D, = sup|Pr{M(0,i) <c,, M(i +q,,i +q, +Jj) <c,}
i>0
Jj>0
-Pr{M(0,i) <c,}Pr{M(0,j) <c,}|.
Then D, —» 0 as n — .
Proor. Writing G,(x,y) = Pr{{, < x, £, <y} and using the stationarity
and Markov property of {£,} gives
Pr{M(0,i) <c,, M(i +q,,i +q, +J) <c,}

= f()wj;)wpr{M(O,l) <c,, M(l + qn,l +q, +j) Scn|§i =x’§i+q,, =y}

X G, (dx, dy)

©

_ Ofo Pr{M(0,i) <c,lé =x, £, =)
XPr{M(i +q,,i +q, +J) <c,|M(0,i) <¢,, & =%, &i4q, =)

X G, (dx, dy)

= f:f:Pr{M(O’ i) <c,l¢ =x}g(y,j,n)G, (dylx)G(dx),

where g(y, j,n) = Pr{M(0, j) < c,l£, = y}. Since
Pr{M(0,i) <c,}Pr{M(0,j) <c,}

- f:f:Pr{M(O’ i) <c,l¢ =x}g(y,j,n)G(dy)G(dx),
it follows that

o
D, < supf
j>0"0

[ 8 d,m){G, (ko) - G(dy>}|G<dx>.

For fixed,n and j, g is nonincreasing in y and lim, _,, g(y, j,n) = 0, so an
integration by parts gives, for fixed 0 < x < oo,

[ 830G, (dyie) ~ G(dy) = =[G, (vlx) ~ G(x))g(dy, j,m).
Thus D, < [gA,(x)G(dx), where
A,(x) = sup|G, (ylx) — G()|.
y

But in view of Lemmas 5 and 6, G,(y|x) —» G(y) uniformly in y for each fixed
x. Thus A, (x) - 0 and, since A, (x) <1, the result follows by dominated
convergence. O
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LEmmMA 8. Relation (3.3) holds, viz. Pr{M(0,p,) > u,lé, > u,} = 0 as

n — oo,

Proor. Since u, — « we may choose integer-valued r, 1 such that

3

~

n log u,,
(3.9) -0 and

n rn

Now ¢; < ¢, + i so, from Theorem 1 (with A = © and E¢, < ),

-0 asn — o,

&

Pr{M(0,r,) > u,lé > u,} < Pr{& —rléo > u,)
~Pr{§ —rlu, + 1> ¢ >u,}
(3.10) _Pr{1+e 1§o>u —rplu, + 126> u,)
r,+2
<Pr{e T>1— }
u,+1

-0 asn — o,

by (3.9) and (2.2). Given ¢ > 0, choose K such that Pr{¢, > K} <¢ and,
recalling the representation (3.8), observe that Z, is independent of £, so,
writing r(n) for r,,

Pr{¢, ., > 2Klé, > u,} ~ Pr{é,,, > 2Klu, + 1 > &, > u,}
<Pr{ége ™ >Klu, +1>§&>u,)

(3.11) + Pr{Z,,, > K)

< Pr{r,(,, < log{K~Y(u, + 1)}} + Pr{¢, > K}
< 2¢ for all sufficiently large n,

since m~'7,, > u > 0 a.s. as m — . Also, writing G, (y) = Pr{¢,,, <ylé, >
u,}, the Markov property and the fact that Pr{M(r,, p,) > u ¢, = x} is
increasing in x give

Pr{M(rn,pn) > Uy, €y < 2K|¢, > un}

= [P (r, p) > e = 216 ()

< Pr{M(r,,p,) > u,l¢ 2K}

r(n) =
(3.12) -
<{1-G@2K)}! fzKPr{M(rn,pn) >, = x} dG(x)

<{1-G(2K)) ™" /O”Pr(M(rn,pn) > Ul = 1) dG(x)

<{1-G(2K)}) 'Pr{M(r,,p,) >u,} >0 asn — .
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Finally the estimate
Pr{M(r,,p,) > u,léo > u,} < Pr{f,(,l) > 2Kl|éy > u,)

+ Pr{M(r,,p,) > u,, £.ny < 2KIE, > u,}
together with (3.11), (3.12) and (8.10), establishes (3.3). O

We continue with the proof of Theorem 4. Lemma 7, with «, = c,, shows
that {£,, n > 0} has the AIM. (x,) property; together with Lemma 8, this
allows us to use Theorem 2.1 of O’Brien (1987), and the result is immediate. O

REMARK 7. With rather more effort, Lemma 7 can be shown to hold
whenever {¢,, n > 0} has the asymptotic version of the Markov property:
Pr{¢,,1 €Ay, s €pim € Ay, léo = x, A}
(3.13) = {1+ 0(DIPr{£,,1 € dys, s by €AYl = )
asn — o,

uniformly in m > 1, y;,¥9,...,¥m, x and A € o{§;, i < 0}. Also Lemma 8 can
be extended to those A which also have the properties

h(t) >0 forallt >0,
infﬁ(_t_i:s‘l
s=0 h(s)

lim {tsupw} =0
o= | 520 h(s)

The only example of nonexponential 4 satisfying (3.13) we have is the rather
trivial one where h(x) = ce™* for all x > x. If, for example, A is also linear on
[0, x,], then (3.14) also holds. Assuming that the distribution of ¢, is continu-
ous, this would constitute an example of a nonexponential & for which the
conclusion of Theorem 3 is also valid.

(3.14) >0 forall >0,

REMARK 8. Again the question arises as to whether the conclusion of
Theorem 4 remains valid when the stationary sequence {£,, n > 0} is replaced
by the nonstationary sequence {Y,, n > 0} based on an ordinary renewal
process {r,, n > 0}. [Recall Y, = X(7,) =X, , . h(r, —1,), h(x)=e"%]
Because the support of 4 is unbounded, this is a more delicate question than
when A < «. Nevertheless, by observing that the distribution of {Y,, n > 0}
coincides with the conditional distribution of {£,, n > 0}, given £, = 1, the
question can, with some effort, be answered in the affirmative.

4. Concluding remarks.

REMARK 9. It is known [see de Haan (1970), Section 2.9] that (1.3) holds for
all 6 > 0 iff G satisfies the maximum weak law of large numbers, and this in
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turn is equivalent to the statement that 1 — G(log x) is rapidly varying with
index — as x — « [see Bingham, Goldie and Teugels (1986), page 83]. We
point out that Hsing and Teugels (1989) give the erroneous impression that
(1.3) with & = 1 implies these conditions.

REMARK 10. It is easy to see that the only extreme value distribution
function that G could be attracted to is A(x) := exp{—e~*}, but it seems to be
very difficult to say much about when G is in its domain of attraction. It is
known that for G to be in any domain of attraction, we must have

RO
“ i |y <

and it is clear that if A(A — ) > 0, (4.1) will not hold. The only situation where
any progress has been made is in the special case that {r,, n > 0} is a Poisson
process, when {X(¢), ¢ > 0} is often called a filtered Poisson process and there
is [see Parzen (1962)] an explicit formula for E(e™%¢) in terms of A. In this
situation, recent results of Embrechts, Jensen, Maejima and Teugels (1985)
[see also Jensen (1988)] were used in Hsing and Teugels (1989) to show that,
when A <o and h has a certain asymptotic behaviour near x = A and
satisfies certain other technical conditions, G belongs to the domain of attrac-
tion of A. We also remark that extensive work on the asymptotic behaviour of
G in the case of the filtered Poisson process with h(x) = e™* [see de Bruijn
(1951) and Vervaat (1972)] has established results of the form

—log{l — G(x)} ~xlogx aszx — .

These results do not imply (1.3) nor do they settle the domain of attraction
question.

REMARK 11. In the case that {¢,, n > 0} is an ordinary renewal process, it
is easy to see that Lemma 1 holds with 6, replaced by 6,, viz. conditioned on
S(x) <y, 0, is stochastically dominated by 6, for each fixed i > 1. We point
out that a similar proof also establishes that the stochastic ordering 6, < 6, <

* < 6, also holds. In the case that A is the indicator function of a finite
interval, this reduces to a result in Kremers (1988).
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