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ON THE DISTRIBUTION OF LEAVES IN ROOTED
SUBTREES OF RECURSIVE TREES

By Hosam M. MauMouD AND R. T. SMYTHE

George Washington University

We study the structure of T'{*), the subtree rooted at % in a random
recursive tree of order n, under the assumption that % is fixed and n — .
Employing generalized Pélya urn models, exact and limiting distributions
are derived for the size, the number of leaves and the number of internal
nodes of T,*). The exact distributions are given by intricate formulas
involving Eulerian numbers, but a recursive argument based on the urn
model suffices for establishing the first two moments of the above-men-
tioned random variables. Known results show that the limiting distribution
of the size of T*), normalized by dividing by » is Beta(l,k2 —1). A
martingale central limit argument is used to show that the difference
between the number of leaves and the number of internal nodes of T'(*),
suitably normalized, converges to a mixture of normals with a Beta(1, £ — 1)
as the mixing density. The last result allows an easy determination of
limiting distributions of suitably normalized versions of the number of
leaves and the number of internal nodes of T/(*).

1. Introduction. A tree on n vertices labeled 1,2,...,n is a rooted
recursive tree of order n if the node labeled 1 is distinguished as the root, and
for each k, 2 < k < n, the labels of the vertices in the unique path joining the
root to the vertex labeled %2 form an increasing sequence. Within one level the
children are conventionally ordered from left to right in an increasing se-
quence. Figure 1 illustrates all recursive trees of order 4.

The usual model of randomness on the space of recursive trees of order n is
the uniform one; that is, we assume all (n — 1)! recursive trees to be equally
likely [Moon (1974)]. Another way to view this probability space arises from
the algorithmic development: Assume a recursive tree of order n evolves from
the recursive tree T, _,, of order n — 1, by choosing a node (a parent) of T, _,
at random and joining a node labeled n (a child) to it, all » — 1 nodes of T, _,
being equally likely. The leaves of the tree are the childless nodes. This
structure arises naturally in the pyramidal hierarchy of companies where a
person founds the company, then goes out to recruit new employees
[Gastwirth (1977)]. Each entrant in turn competes with the existing work force
of the company in recruiting the next employee, the incentive being the
promise of a profit proportional to the number of recruits. Moon (1974)
suggested recursive trees as a model for the spread of an epidemic. Najock and
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Fic. 1. The recursive trees of order 4.

N

Heyde (1982) used recursive trees to model the family trees of preserved copies
of ancient or medieval texts.

The number of leaves in a recursive tree is a random variable of obvious
interest. In pyramid schemes, for example, it represents the number of ‘“shut-
outs” (those who join the pyramid but fail to recruit anyone). Na and Rapoport
(1970) investigated the average number of leaves; Najock and Heyde (1982)
found the exact distribution.

In this investigation, we concentrate on the subtree of T, rooted at the kth
node, denoted by T®, for k = 1,2, ..., n. (The results of Najock and Heyde
then correspond to the special case £ = 1.) In a pyramid scheme, the founder
of a subtree may be (like the original founder) at risk from legal action by the
shut-outs of his own subtree. In the problem considered by Najock and Heyde
(1982), the leaves of T* correspond to the terminal copies of a given
(nonoriginal) copy. The distribution of the leaves of a rooted subtree is thus of
interest. Gastwirth and Bhattacharya (1984) derived the exact distribution of
the size of T ¥ and considered the distribution when % and n go to » in a
constant ratio. Here, we fix 2 and let n go to ». The exact distribution of the
number of leaves is derived, along with its first two moments, and a central
limit theorem is proved for the difference between the number of nonleaf
nodes (the internal nodes) in T{*) and the number of leaves in that subtree.
The last result allows easy determination of the asymptotic distribution of the
number of leaves in the subtree rooted at k.

2. Generalized Pélya urn models in recursive trees. A generalized
Pélya urn is an urn containing % types of balls with colors C,, ..., C,. Initially,
the urn contains a known number of each color. A ball is drawn at random (all
balls in the urn being equally likely), the color of the ball is observed, and if its
color is C; then the ball is returned to the urn with «,; additional balls of color
C;,for j =1,..., k. The process is then repeated n times. In the most general
scheme the numbers «,; are random variables; for our purposes, however,
they will be deterministic. The issue of interest is the composition of the urn
after n drawings.

To monitor the growth of T¥), we need two colors (black, B and red, R) to
distinguish between leaves and internal nodes of T(*), respectively; and a third
color (white, W) to further distinguish the nodes that are not in that subtree.
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All the nodes up to & — 1 are white, and when % joins the tree a black node is
added. We think of this as the initial composition of a generalized Pélya urn
having & — 1 white balls, 1 black ball and no red balls. Let W,, B,,, R, denote
the number of white, black and red balls after n draws, respectively; the initial
urn composition is Wy =k — 1, B, =1, R, = 0. We count draws from this
point on, so that after n draws the entire tree has n + k nodes, with B, + R,
nodes in the subtree and W, nodes outside the subtree (W, + B, + R, =
n + k).

After the nth stage, the algorithmic development of the tree is as follows: If
the parent node picked (ball drawn) is not in the subtree (white), a node is
added outside the subtree (white ball added to the urn), and the subtree is
unchanged. If the parent node picked (ball drawn) is an internal node of the
subtree (red), it remains an internal node in the subtree and a new leaf (black
ball) is added. On the other hand, if the parent node picked (ball drawn) is
black, it is converted to an internal node (red) of the subtree and a leaf (black)
is added to the subtree. The net effect of the last transaction is to add a new
internal node (red ball), while the number of leaves (black balls) stays con-
stant. The addition of balls thus follows the scheme:

Ball picked

W B R

(2.1) W (1 0 o)
Balls added B o 0 1},

R 0 1 0

and the object of interest is B,, the number of leaves of the subtree (black
balls in the urn) after n draws.

Note that if 2 = 1, all nodes are in the subtree, so there are only two colors
and the urn model specializes to Friedman’s urn [Friedman (1949)]. Asymp-
totic results for this urn were developed by Freedman (1965) and rediscovered,
by a different route, by Najock and Heyde (1982).

3. The exact distribution of B,. Let the number of nodes in the
subtree after stage n (corresponding to n draws from the urn) be denoted by
C,. Thus

C,=R,+B,, C,=1.
We condition on C,. Following Najock and Heyde,
P(Bn+1 =j7 Cn = m)
=P(B{z+1 =j,Cn =m, Bn =J)
+P(Bn+l =j7 Cn =m, Bn =j - ]-)
(3.1) =P(Bn+1 =.j|Cn=m’Bn =J)
XP(B, =j|C, =m)P(C, =m)
+P(Bn+1 =J|Cn =m, Bn =j - 1)
XP(B,=j—1]C,=m)P(C,=m).
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If B, =j and C, = m, the numbers of leaves of T®) will not change either if
one of the j leaves of T® is selected as parent or if one of the W, nodes
outside the subtree is selected as parent. Since W, + C,, = n + k, the probabil-
ity of thisis(n + k +j —m)/(n + k). If B, =j — 1, and C,, = m, the num-
ber of leaves of T® will increase by one if one of the internal nodes of the
subtree is selected as parent; the probability of this is (m — (j — 1))/(n + k).
Hence (3.1) gives
P(C,=m)

P(B,,,=j,C,=m) = *—n'ﬁe——{(n +k+j-—m)P(B,=jIC,=m)

+(m—-j+1)P(B,=j—-1IC,=m)}.

Now at each stage, any node of the subtree has the same probability of being
selected as parent; so the probabilities P(B, =j|C, = m) and P(B, =j —
1|C, = m) are just the probabilities found by Najock and Heyde for a tree
with m nodes. Thus

n+1PC=
R L)
(3.2) m—1 m—1
N A0 O iy
X{(n+k+j m)(m_l)!+(m J+1)(m_1)! ,

where <S | 1>, for integers s > 1 and ¢ > 0, is the Eulerian number

Tioo( =1V —j)“"‘l(j) [Knuth (1973), page 37]. But the probabilities P(C, =
m) are known, for by merging red and black together as one type the rule (2.1)
clearly shows that C, is just the number of balls of one type in a standard
Pélya urn with C, = 1, Wy = £ — 1. Hence [Johnson and Kotz (1977), page
177]

P(C nl(k—-1) b 9
_ - >
o =m) = S o T )t k—m)  (nt k=1 =%

P(C,=n+1)=1, k=1.
Applying the recurrence [Knuth (1973), page 35]
s\ ./s—1 . s—1
(3.3) G)=il* 7 )+ s-i+n(371)
the relation (3.2) becomes, with a little rearranging,
(k — 1) n+1 n

=) = —1)!

(3.4)

X{<’7>+l(n +k —m)<mj_ 1>}
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To relate this back to the original tree, let

L{® = number of leaves in the subtree rooted at k£ when the tree size is n

= number of black balls in the urn when the total number of balls is n
= number of black balls after n — k draws from the urn,

since we started with % balls. Hence

(3.5) L(rf) =B,

and from (3.4),

((k—ll))Y Z (n-m 2).( k—1)

5+ n-m-{7 )

for 2 <k < n. For k=1, we recover the result of Najock and Heyde by an
application of the recurrence (3.3) in (3.2).

P(L® =j) =

4. Moments of B,. The formula (3.4) does not lend itself readily to
closed-form calculation of the moments of B,. However, recursive arguments
combined with known results for the Pélya urn will provide the results fairly
easily.

Define the auxiliary random variables p,, and B, as follows:

_ { 1 ifared ball is drawn on the nth draw,
Pn 0 otherwise,

g = { 1 if a black ball is drawn on the nth draw,
" 0 otherwise.

According to the algorithmic scheme, a black ball is added to the urn if a red

ball is drawn, and vice versa, so that
B +1 = Bn + pn+l’

n

4.1
( ) R +1=Rn+Bn+l7

and consequently,
E(Bn+1) = E(Bn) + E(pn+1)’
E(R,.,) =E(R,) + E(B,.1).

But
R, R,
E(pn+1|Wn’Bn’Rn) = Wn+Bn+Rn = nt k'
SO
E(R,)
(4.2) E(p,.1) =

n+k’
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Similarly,
4.3 E E(8B.)
( . ) (Bn+l) - —n—-i-_k’
and we have the simultaneous recurrences
E(R,)
E(Bn+1) = E(Bn) + n +k )
(44)
E(R E(R E(B.)
(n+1)_ (n)+n+k'

Recalling that C, =R, + B
(1977), page 179] that

with C, = 1, it is known [Johnson and Kotz

n?

n
E(C,) =1+ %
or
n+k
(4.5) E(B,) + E(R,) = -

Substitution in (4.4) gives a recurrence relation for E(R,) with solution

(n+k—1)(n+k)—k(k—1)

E(R,) =

2k(n +k —1)
From (4.5),
n+k—-—1)(n+k)+k(k-1
Bep - ¢ J(n + k) + (k- 1)
2k(n +k —-1)
For large n, it follows that, with & fixed
E(B "
( n) ~ ﬁ’
E(R "
( n) ~ 2k ’
and the total size of the subtree is about n /k. From the correspondences (3.5),
n k-1
k) = -
E(L3") 2k * 2(n—1)’

a result proved independently by Szymaniski (1990).

For the second moments, we again begin with (4.1), and get
B721+1 = B,zz +Ppi1+2Bp,yy,

R721+1 = Ri +Bni1 T 2Ran+1’
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and using (4.2) and (4.3),

E(R,)

E(B,zzﬂ) = E(B,zl) + i h + 2E(B,p,.1),
(4.6)

(Rn+l) = E(Rn) + R + 2E(R,B,.1)-
Now

B.R,
E(Bnpn+1) = E(BnE(pn+l | Wn’ Bn’ Rn)) = E( n + k )7
from the argument immediately preceding (4.2), and similarly

Ran
E(Ran+l) = E(RnE(Bn+1 | Wn’ Bn’ Rn)) = E( n+ k )
Hence (4.6) becomes

E(BZ,,) = E(B}) +

(4D I;Z(Zk) 2E?};}; )
2 — 2 n n n
E(R...) = B(R:) + n+k n+k

Let V, = E(B2 — R2), U, = E(BZ + R2); clearly V, = U, = 1. From (4.7) and
(4.5),

(E(R,) - E(B,)) =V, - (k=D

=V, +
Vier =Va T A k)ntk-1)’

n+k

which has the solution

k-1

(4.8) Vn=n—+k—_1, k=1,n=>0.
For U,, (4.7) and (4.5) give

1 E(R,B,)
(4.9) U,.,=0, + Z+4W
and

E(C?) - U,

(4.10) E(R,B,) = — 5"

From Johnson and Kotz (1977), page 179, we have
3n 2n(n-1)
E(C?) = — + ——— + 1,
( ”) k k(k+1)

so (4.9) and (4.10) give

n+k—-2 4n
Un+1=(_) n+

S ~0,1,...,
E rk+n ) "

n+k
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which has as solution
(n+Ek)(3n + 2k + 2)
n T 3k(k + 1)
(h-2)(k-1)
T3t k-2 (ntk-1)
From (4.8) and (4.12),

(4.11)

for n>0.

B(B2) = £(U, + V,)

1( k-1 +(n+k)(3n+2k+2)
2\ n+k-1 3k(k + 1)

(k=2)(k-1) }

3(n+k-2)(n+k-1)

1
E(R2) = 5 (U, ~ V)

1( k=1 (n+k)Bn+2k+2)
2\ T nrk-1 " 3k(k + 1)

(k- 2)(k - 1)
3(n+k—2)(n+k—1)}'

Using (3.5) again,

1({k—-1 nBrn—-k+2 E—2)(k—1
By = L L ), (E=2)(k=1) |
2\n-1 3k(k + 1) 3(n—-2)(n-1)
For large n and fixed & > 1,
n? n?(k — 1)
LYV~ By o —
ELY) ~ vy var(Ls )~ TR+ 1)

For k =1, Var(L®/n) > 0, since L¥’/n -, 1/2 in this case [Freedman
(1965)].

5. Asymptotic behavior of B, and R,. Our starting point is a limit
theorem for Pélya urn schemes [Athreya and Ney (1972), page 220]:

THEOREM 5.1. There is a random variable Y with a Beta(1, k — 1) distribu-

tion such that
R, + B,
1m(———_)=n as.
n-—>o n+k

(Of course, if k = 1, the limit of the left-hand side is just the constant 1.)
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In this section we investigate the asymptotic behavior of X, =B, — R
when £ is fixed. Our main result is the following theorem.

no

THEOREM 5.2. Let Y be a Beta(l, & — 1) random variable. Then for k > 1
fixed, y3/nX, -4 Z as n 1o, where the characteristic function of Z is

E(e /%) = (k- 1) [[e"/(1 - y)" 2 dy.
0

The limiting distribution of X,, is thus not normal, but a mixture of normals,
with Beta(l, & — 1) as the mixing density.

Proor. Let AX, =X, 6 - X, ;, n>1 (with X,=1). Let & =
o(B;, R,,W;: 0 <i <n);then &, ¢ &, ,, for each n and after the nth draw
from the urn,

+1 if ared ball is drawn,
AX, 0 if a white ball is drawn,
—1 if ablack ball is drawn.

Thus
Rn—l _Bn—l Xn—l
E(AX, [ F-1) = n+k-1  n+k-1’ n>1
1
E(AX,| %) = E(AX) = —
and

AM, = (X, - X X
= — 4+ —
n ( n n—l) n + k _ 1’

is a martingale difference sequence. Let b,, =i +k -1 /(n +k—-1), 1<
i < n, and note that

max b2,
(51) m nte 0.
An easy calculation shows that
n k-1
5.2 b, AM;, =X — ———.
( ) igl in i n n+k—1

Let s2 =Y "_,b2 . Then for each n, 2;, =b,, AM,/s,, 1 <i < n, is a martin-
gale difference array. We have
2

b; X, 2
2 _ inlexy x4 (it
( ) Zin 3;21 {( i L—l) (Z+k_1)
5.3
2X; 4

+ - — X > 1.
i+k_1(XL Xz—l)}> l 1
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Now
X,_, i+k-2
E(X,| 7)) =EQAM| 5 )+ X, - T k1 itk - 1Xi—1’
so that
i+k—-2
(5.4) E(Xi—1Xi| Fi1) = i—+k____1Xi2—1'
Hence
E(z2,| F_,) = b—"z’i{E((X.—x I Fy) + 5
T s R R S
2X2,  2i+k-2)
(55 Citk-1 (i+k- 1)2X"2“}
b, [R;_1+ B, , X7,
B si{ itk-1 (i+k—1)2}
and
b7, (E(R; ;) + E(B;_,) E(X? )
E(z"z”)=8i{ it+hk-1 _(i+k—1)2}‘

Equating E(X; — X;_,)? to (E(R,_,) + E(B;_))/(i + £ — 1) and using (4.5)
and (5.4), we get the recursion

E(X?) = (M)E(X?_l) Ny

’ i+k-1 ' k

It follows easily that E(X?) ~ i /(3k) as i — o, so that
X7,

(i +k—1)°

From (5.1), (5.5), (5.6) and Theorem 5.1, and a standard application of
Toeplitz’ lemma,

(5.6)

—)PO

Y E(2%1F) ~p Y,
i=1

where Y is a Beta(1, 2 — 1) random variable. By (5.1) and (5.6), the conditional
Lindeberg condition clearly holds, and we may apply Corollary (3.1) of Hall and
Heyde (1980) to the martingale difference array {z;,} to conclude that

n
Z Z2in "9 Z’
i=1

where the characteristic function of Z is E(exp(—Y#%/2)). From (5.2) it follows
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that

n 1 k-1
L Zin { " n+k—1}’

and s, ~ yn/3, completing the proof. O

From Theorem 5.2 it follows easily that

Rn_Bn

0,
n+k e

so that from Theorems 5.1 and 5.2 we have the following corollary.

COROLLARY 5.1.

2R,
n P Y,
2B,

n P Y,

where Y is a Beta(1l, 8 — 1) random variable. The number of leaves in the
subtree rooted at k thus satisfies

2L

n

-p Y.

The number of internal nodes of the subtree satisfies a similar limit law.

Note: We are indebted to a referee for pointing out that the result of
Corollary 5.1 may be derived from Theorem 5.1 without the use of Theorem
5.2. This follows from an observation made in Section 3—that conditional on
|T®| = m, the leaves of the subtree T® are distributed as the leaves in T,V
—and the result of Friedman (1965) that the number of leaves in TV is
asymptotic to m /2.

Figure 2 illustrates the exact distribution of 2L$)/40 in comparison with
the limiting Beta(1, 1) distribution of 2L‘®) /n as n — «. The exact distribution
is depicted as a histogram of n — £ = 38 boxes, each of width 2 /n = 0.05. The
jth box is erected over the interval (2(j — 1)/n,2j/nl, j=1,2,...,n —k =
38, and encloses an area equal to the probability P(LE) =j) = P(2L3 /40 =
2j/40). Only the first 23 boxes are visible as the probabilities become too
small after j = 23.

Observe the anomalous behavior of the first box and the compensating
discrepancy near 1. This surprising edge effect can be explained by a simple

calculation: Since <i>= 1, for all integers s greater than or equal to 0, the
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: b

T
0 1 2 2L8? /40

FiG. 2. The exact distribution of 2L'2)/40 in comparison with Beta(1, 1).

exact distribution of 2L /40 at j = 1 yields

1 "2 n-—m
(n=1)(n~-2) ,:él (m - D!

1 n=2 (n—1) - (m - 1)

(n=1(n-2),2, (m —1)!

P(2LE/40 = 2/40)

1
BT T e —el

e

n—1"

With n = 40, this probability is about 7% of the whole distribution. Thus the
first box of the histogram has a 7% share of the distribution, and with width
0.05, the height of this box should be about 1.4, well above 1. This edge effect
persists even for large n, since the height of the first box for large n will
always be about e/(n — 1) X n/2 = e/2 = 1.36, well above 1. Of course, the
width of the first box, 2/n, tends to 0 as n — o, so the limiting distribution is
approached. A similar edge effect is observed for larger values of &.
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