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ON LIKELY SOLUTIONS OF A STABLE
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An (n men-n women) stable marriage problem is studied under the
assumption that the individual preferences for a marriage partner are
uniformly random and mutually independent. We show that the total
number of stable matchings (marriages) is at least (n/log n)*/2? with high
probability (whp) as n — « and also that the total number of stable
marriage partners of each woman (man) is asymptotically normal with
mean and variance close to log n. It is proved that in the male (female)
optimal stable marriage the largest rank of a wife (husband) is whp of order
log? n, while the largest rank of a husband (wife) is asymptotic to n.
Earlier, we proved that for either of these extreme matchings the total rank
is whp close to n2/log n. Now, we are able to establish a whp existence of
an egalitarian marriage for which the total rank is close to 2n3/2 and the
largest rank of a partner is of order nl/2log n. Quite unexpectedly, the
stable matchings obey, statistically, a ‘“law of hyperbola”: namely, whp
the product of the sum of husbands’ ranks and the sum of wives’ ranks in a
stable matching turns out to be asymptotic to n2, uniformly over all stable
marriages. The key elements of the proofs are extensions of the
McVitie-Wilson proposal algorithm and of Knuth’s integral formula for the
probability that a given matching is stable, and also a notion of rotations
due to Irving. Methods developed in this paper may, in our opinion, be
found useful in probabilistic analysis of other combinatorial algorithms.

1. Introduction and summary. In a group of n men and n women,
each person ranks the members of opposite sex as potential marriage partners.
A matching (marriage) M between the set of men and the set of women is
called stable if there is no pair (m, w) of a man m and a woman w who are not
matched but prefer each other to their partners in the matching. Gale and
Shapley [10] proved that at least one stable matching always exists. Moreover,
they provided an iterative procedure, with a general step being interpreted as a
round of proposals of currently free men to women, which always finds a
stable marriage. An alternative (‘‘fundamental’’) algorithm was developed
later by McVitie and Wilson [20]. Its work is described by a sequence of
individual proposals as opposed to the rounds of simultaneous proposals of
men to women in the Gale-Shapley algorithm. However, both versions result
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in the same set of proposals by each man and in the same matching, with the
following remarkable property: It matches every man (every woman, if the
roles of the sexes are reversed) with the best partner as compared to any other
stable marriage. We denote the corresponding stable matchings by 4, and
My,

Importantly, McVitie and Wilson found an extension of the fundamental
algorithm. Its key element is a ‘“‘breakmarriage” operation, and it allows (in
principle) the determination of the set of all stable matchings once A, is
found. In particular, there exists a path of stable matchings connecting A
and .#, such that every matching in the path (except .#,) is obtained from the
previous matching via an appropriately selected breakmarriage operation [20].

Using an ingenious reduction to a classic urn scheme, Wilson [23] demon-
strated that the expected number of proposals in the fundamental algorithm
for the random instance of the problem is bounded above by nH,, H, =
1/1 + -+ +1/n. The worst-case upper bound was found later by Itoga [16].

In a book published in 1976, Knuth [17] undertook a systematic study of the
combinatorial and probabilistic aspects of the problem. In particular, he found
a better upper bound (n — 1)H,, + 1 and a lower bound nH, — O(log* ) for
the average-case running time. Knuth also demonstrated that, for each n,
there is a stable marriage instance of size n with 2"~! stable matchings. Ten
years later, Irving and Leather [14] came up with another construction for
which, they conjectured, the total number of stable matchings grew even
faster. In fact, the authors of [14] hoped that the sequence they found had the
maximum exponential growth. Very recently, Knuth [18] partially confirmed
the Irving-Leather conjecture by showing rigorously that the solution of a
related recurrence obtained in [14] grows as 2.28". In striking contrast, it is
very easy to find, for each n, an instance with just one stable matching. What
are then the expected value and the likely values of S,, the total number of
stable matchings in a random instance of the stable marriage problem?

The question of estimating E(S,) was posed by Knuth in [17], and he
suggested that it might be answered by means of his integral formula for the
probability that a given matching is stable. This was done in [22], where we
proved that E(S,) is asymptotic to e 'n log n. We also found an analogous
integral formula for the conditional distribution of Q(M), the overall rank of
wives (as ranked by their husbands) in a matching M, given that M is stable.
[By symmetry, the conditional distribution of R(M), the overall rank of
husbands in a matching M, is the same.] This formula enabled us to show that
with high probability as n — « (whp, in short) in the male optimal stable
matching .#, the ranks Q(.#;) and R(.#,) are asymptotic to n log n and
n?/log n, while symmetrically Q(.#,) ~ n%/logn and R(.#,) ~ nlogn for
the female optimal stable matching .#,. Thus, whp .#, heavily favors men at
the expense of women, and the situation is reversed in .#,. A weak conse-
quence of this result is that whp S, > 2.

Can one do better, bearing in mind that E(S,) is of order n log n? In
particular, is it true that whp S,, is unbounded, that is, P(S, > w(n)) — 1 for
some w(n) — ©? Knuth, Motwani and Pittel [19] found a positive answer to
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the last question by proving that, for each woman, whp the total number £, of
her distinct partners in all stable matchings lies between (3 — e)log n and
(1 + ¢e)log n, V& > 0, that is, S, > (3 — &)log n, whp. The proof was based on
a careful probabilistic analysis of a simplified version of the McVitie-Wilson
(extended) fundamental algorithm, which determines sequentially all stable
partners of a particular woman. [A more elaborate algorithm had been pro-
posed earlier by Gusfield [11] for a problem of determination of all stable pairs,
i.e., the pairs (m, w) each forming a match in at least one stable matching.]

In this paper, we suggest a different way to analyze the algorithm described
in [19]. It allows us to show that, out of the two bounds mentioned previously,
the upper bound is sharp. Moreover, we demonstrate that ¢, is asymptotic, in
distribution, to R,, the total number of the (left) record values in a uniform
random permutation o = (w,,...,,) of the set {1,...,n}, R, = {1 <i <n:
w; = max, _ ; _; ;}|). Specifically, ¢, is Gaussian in the limit, with mean and
variance both asymptotic to log n. Consequently, the expected number of all
stable pairs is asymptotic to n log n (Section 2, Theorem 2.1, Corollary 2.2).

It is certain, however, that in order to find a significantly better lower
bound for S,, which holds whp, we need a deeper understanding of the likely
structure of the set of stable matchings. To this end, we use the techniques of
[22] and find an integral (Knuth-type) formula for the joint conditional
distribution of the pair of ranks (Q(M), R(M)), given that M is stable
(Section 3, Lemma 3.1).

An asymptotic study of this distribution reveals a surprising phenomenon:
For every & € (0, 1), all stable matchings .# satisfy

(1.1) In"3Q(#)R(A) — 1| <5,

with probability at least 1 — exp(—c(8)n), ¢(8) > 0. In other words, if each
stable matching .# is represented in a two-dimensional plane (u,v) by
(u( ), v(A)) = (n=32Q(A),n"3/2R(#)), then whp all such points fall into
an arbitrarily narrow strip which contains the hyperbola uv = 1, u > 0,v > 0
(1) (see Section 4, Theorems 4.1 and 4.1).

Our previously mentioned results in [22] do indicate that Q(.#)R(.#) is
close to n? for both .#=.#, and .#= .#,. Still, we had not expected that this
property might hold whp simultaneously for all other stable matchings as well.
Consequently, the minimum total rank of all partners in a stable matching is
whp at least 2(1 — £)n®/%,V & > 0.

The next steps require a notion of a rotation in a stable matching. This
notion was first introduced by Irving [13] in his study of a stable roommates
problem, posed by Gale and Shapely [10] and Knuth [17]. A rotation in a stable
matching .# is defined as a cyclically ordered sequence of matched pairs
(m,w),1<i<r,(m, ,w,,,) =(myw,), such that each woman w,,, is
the best choice for the man m; among women to whom he prefers his wife w;,
and who prefer m; to their husbands in .#. Elimination of the rotation, that
is, pairing m, with w;,,, 1 <i <r, is a very special case of a (successful)
breakmarriage operation and, as such, it results in a new stable matching .#’
in which no woman gets a worse husband [20]. However, Irving and Leather
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[14] were able to prove that the matching .#, can be generated by a sequence
of rotation eliminations, starting from the matching .#;, and that every such
chain has the same number of intermediate stable matchings. What is more,
every rotation is contained on every maximal chain in the poset of all stable
matchings [11]. These results strengthen considerably what was proven by
McVitie and Wilson [20] for a broader class of all breakmarriage operations.
(Unlike a rotation, in a general breakmarriage operation a woman may change
a suitor more than once.) For an excellent (up-to-date) exposition of these and
other related properties of the stable marriage problem and various applica-
tions, the reader is referred to a recent book by Gusfield and Irving [12].

Let (M, M’) denote a pair of matchings such that M’ is obtained from M
by breaking up some pairs (m,, w,),...,(m,,w,) in M and pairing m; with
W; .1, Wyy1 = w;. In Section 3 (Lemma 3.2), we derive two integral formulas.
The first is for the probability P,, of the event A that M is stable and that
(m;,w;),1 <i < r, form arotation in M, so that M’ is also stable. The second
formula is for the conditional distribution of (Q(M’'), R(M)), given the
event A.

We use these results in Section 5 to study the likely behavior of rotations.
The formula for P,, enables us to conclude that whp no rotation may have
length exceeding (n log n)'/2 (Theorem 5.1). The second formula yields that
whp for all pairs (.#, .#’) of stable matchings, with .#’ obtained from .#
through elimination of a rotation in .#,

(1.2) In=3Q(4"YR(A) — 1| <&,

€ > 0 (Theorem 5.2). From (1.1) and (1.2) we show then that for each & > 0,
whp for every point (u,v) on the hyperbola uv = 1, such that u,v = o(n'/4),
there exists a stable marriage .# for which the distance between (u(.#), v(.#))
and (u,v) is at most & (Theorem 5.3). In particular (picking u = v = 1), the
minimum total rank of all partners in a stable marriage is whp asymptotic to
2n3/2. In contrast, for both .#, and .#,, the total rank is whp asymptotic to
n?/log n.

We should note here that, answering a question posed by Knuth [17], Irving,
Leather and Gusfield [15] found an efficient algorithm which determines a
minimum total rank (egalitarian) stable marriage in O(n*) time. Later, Feder
[7] proposed an algorithm with a running time O(n3 log n). Very recently, he
discovered an even faster algorithm, with a time bound of O(n2) [8]. Our
previously mentioned result indicates that the time spent is almost always well
worth it, since in the resulting stable marriage .#; the total rank is whp
reduced by a factor close to n'/2/2log n, as compared with .#, and .#,.

To continue, let 2(.#) and #(.#) denote the largest rank of a wife and
the largest rank of a husband in a stable matching .#. We show (Section 6,
Theorems 6.1 and 6.2) that whp 2(.#;) lies between (1 — ¢)logZn and
(2 + ¢e)log? n, while #(.#,) is asymptotic to n. The reversed situation takes
place for the female optimal stable matching .#,. On the other hand, whp both
D(H;) and H(A;) lie between (1 — e)n'/%log n and (3 + £)n'/? log n (Theo-
rem 6.3). So, the largest rank of a marriage partner in .#; is at least about
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n'/2/1.75log n times smaller than those in .#; and .#,. What is more,
min{max(2(#), #(A))|#} is whp at least (1 — £)n!/%log n, too. So, the
largest rank of a spouse in the egalitarian marriage .#; is of the lowest order,
in comparison with all other stable marriages, for almost all instances of the
problem. We add that the minimum-regret stable matching, on which the
minimax is achieved, was studied by Knuth [17], who described an O(n*) time
solution (attributed to S. Selkow). Gusfield [11] found an O(n?) time algorithm
for this problem (see also [12]). At the present time it is not clear to us whether
the minimum-regret stable matching has the total rank close whp to the total
rank of .#,. If it has, that means that Gusfield’s algorithm provides whp a
near-optimal solution of the egalitarian stable marriage problem.

The preceding assertion regarding 2(.#,) [and %#(.#,)] has some interest-
ing consequences, which are discussed in Section 7. First, it implies a lower
bound nH, — clog®n for the expected running time of the fundamental
algorithm (Corollary 7.1), which is an improvement of Knuth’s lower bound
[17]. Second, it means that in this algorithm whp no man makes more than
(2 + &)log? n proposals, [indeed, (1 + £)log? n proposals; see the Note added in
proof at the end of the text], but there is a man who makes at least (1 — ¢)log® n
proposals. We use this result to show that if a stable marriage problem is
chosen at random from the pool of problems in which each man knows exactly
k (< n) women, then a stable marriage exists whp if £ > (2 + ¢)log® n [k >
(1 + e)log?2 n] and whp there is no stable marriage if & < (1 — ¢)log®n
(Corollary 7.3). [It is worth noticing here that, for a complete matching
problem on a random bipartite graph, the threshold value of % is log n (Erdos
and Rényi [6]), thus considerably smaller than for the stable marriage problem.]

Most interestingly, a combination of the whp upper bounds for 2(.#;) and
the maximum length of a rotation will allow us to prove, via the Irving-Leather
theorem [14], that whp S, (the total number of stable matchings) is at least
(1 — eXn/log n)*/%, ¥ & > 0 (Corollary 7.2). This bound strengthens consider-
ably the logarithmic bound (3 — &)logn in [19] and its improvement
(1 — &)log n in this paper, which are both based on estimates of the total
number of stable husbands (wives) of a particular woman (man).

In view of this polynomial bound and our earlier estimate E(S,) ~
e !nlogn, it does not seem too implausible now that, in fact, S, is whp
quasilinear, of order n/log n, say, or even n log n, just like its expectation.
For further progress in this direction, much more would have to be learned
about likely solutions for the random instance of the stable marriage problem.

2. Stable husbands. Let an instance of the stable marriage problem be
given. For a particular woman w,, introduce J(w,), the set of all stable
husbands of w,, that is, m € 9 (w,) iff m and w, are partners in at least one
stable matching. The set Z(w,) can be determined via a sequential proposal
algorithm described by Knuth, Motwani and Pittel [19] (cf. Gusfield [11]).

Its first phase is the McVitie-Wilson algorithm [20] which produces the
stable matching .#;, simultaneously male-optimal and female-pessimal. It
works as follows: The (arbitrarily ordered) men propose in turn to women, and
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each man always proposes to a woman of his first choice among the women
who have not rejected him yet. When the (% + 1)th man makes his first
proposal, the first 2 men are temporarily matched with some 2 women. If his
choice is not one of these women, he is temporarily accepted. Otherwise, his
proposal triggers a sequence of collisions, each resolved by a woman in favor of
a better suitor at the expense of a worse suitor, who has to propose to his next
best choice. This sequence ends when a new woman receives a proprosal; she
accepts it and the next (¢ + 2)th man may propose. The algorithm stops once
all the women have been proposed to, and we obtain the desired matching .#;.
Keeping in mind the way the collisions are resolved and also the fact that .#;
is female-pessimal, we see that no woman has been proposed to by a stable
husband other than her (worst) stable husband in .#;.

The second phase beings with woman w; rejecting her (stable) husband in
;. He makes a proposal to a woman of his next best choice; in a resulting
collision she chooses a better suitor, and a rejected man proposes to his next
best choice, and so on. Clearly, we have a matching whenever w; receives a
proposal. It is postulated that w, rejects all the proposals she receives, thereby
sustaining the sequence of proposals and rejections for as long as possible. The
process terminates when a man is rejected by a woman of his last (nth) choice.
It was proven in [19] that all the stable husbands of w,, besides her husband
in .#,, are among those men who propose to w, in the second phase.
Moreover, a man who proposes to w, is her stable husband if and only if w,
prefers him to all the previous proponents, thus to all the stable husbands
determined so far.

Consider an instance of the stable marriage problem in which the ranking of
men by women and women by men is chosen uniformly at random from the
pool of all (n!)?" possible ranking systems. This assumption is equivalent to a
condition that, for each person, every ranking of members of the opposite sex
has the same probability 1/n! and that the rankings by different members are
independent. By symmetry, the distribution of the random variable ¢,(w,) =
| 7 (w)| does not depend on w,, and also it coincides with the distribution of
the total number of stable wives of a man.

Using the preceding algorithm, we shall prove the following statement.

THEOREM 2.1. ¢t} =, (¢,(w,) — log n)/(log n)'/? converges in distribution
to a normal random variable with zero mean and unit variance; in short,
th = 40,1).

Proor. Our argument uses a so-called principle of deferred decisions ([17],
[19]. It is postulated that the random ranking system is not given in advance,
but rather unfolds step by step to the extent necessary for a full run of the
proposal algorithm. At each step a man, whose turn it is to propose, proposes
to a woman chosen uniformly at random among women he has not proposed to
so far. If it is the 2th proposal to this woman then the man’s rank (relative to
the group of % suitors) is distributed uniformly at random on the set {1, ..., k};
in particular, his proposal will be the best so far with probability 1/k. The
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resulting sequence of proposals and rejections will have exactly the same
distribution as the original sequence.

Let %, denote the rank of the best stable husband of the woman w;.
Introduce V,; and V,, the total number of proposals made to w,; during the
first phase of the algorithm and overall, respectively. By symmetry, %,
coincides in distribution with the rank of the best wife of a man, and this rank
equals the number of proposals made by him in the first phase. According to
Wilson [23], the expected number of all proposals in this phase is at most nH,,.

Therefore,
E(%,)=E(V,) <n”'(nH,)
=logn + O(1).

Furthermore, conditioned on V, = v, %, coincides in distribution with 1 + [the
occupancy number of a fixed cell in the uniform allocation scheme with (v + 1)
cells and (n — v) indistinguishable balls], that is

(2.1)

(2.2) P(2>ulV,=0)= ("7 “)[(3), u+vsn
A simple estimate shows then that
(2.3) P(%,>ulV,=v)>=1-uv/(n-v).

Let w(n) — «, however slowly. We want to prove that
n

(2.4) '}i_ng(Vn >v,) =1, ifv, = W.
To this end, we write
P(V,<v,) <P(%,>u,)+P(%,<u,,V,<v,),
where
u, =w(n)"*logn.
Here, by (2.1) and Markov’s inequality,
P(%, > u,) <u;'E(%,) = 0(a(n)""?).

Also, using (2.3),

P(%,<u,,V,<v,) =Y P(%,<u,V,=v)P(V,=v)

v<v,

u,v
<—— Y P(V,=v)
n=V,y<v,

= 0(w(n)~'?).
So, P(V, <v,) — 0 and relation (2.4) follows.
Now, ¢,(w,) = B, — B,,;, where B, and B, are the total number of the

currently best proposals in the sequence of all V, proposals and in the
sequence of the first V,; — 1 proposals, respectively. Conditioned on V, =v
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(V,,; = v, respectively), the random variable B, (B,;, respectively) has the
same distribution as R,, the total number of the (left) record values in a
uniform random permutation w = (w4,..., w,) of the set {1,..., v}, that is,

R =

v

{ISiSU:wi= maij}
l<j<i

Since
E(R)) =H,<logv + 1,
we have, by Jensen’s inequality and (2.1),
E(B,;) <1+ E(logV,;) <1+ log(E(V,;))
(2.5) <1+1log(H,)
= O(loglog n).

Furthermore, (R, — log v)/(log v)*/? = .#1(0, 1) (see Durrett [5], page 102,
for instance). A simple conditioning argument based on (2.4) and a trivial fact,
that V, < n, leads then to (B, — log n)/(log n)*/? = #70, 1). It follows that
(t,(w,) — log n)/(log n)'/? = #10, 1) too, because by (2.5), in probability,

Bnl

lim———— =
(log n) 12
Consider 3, = ¥ ¢, (w), which is the total number of all stable pairs

(m,w).

CoroLLARY 2.2. E(3,) is asymptotic to n log n.

A simple proof is based on Thecrem 2.1 and an inequality E(¢,(w)) < E(R,).
We conjecture that, in fact, %,/n log n — 1, in probability.

3. Distribution of men’s and women’s ranks in stable matchings.
By symmetry, each one of n! matchings has the same probability P, of being
stable. Knuth [17] established an integral formula,

2n

P —

(3.1) P, = f C[ [T (1-=xy,)dxdy,

l<i#j<n
where dx = dx, --- dx,, dy = dy, --- dy, and
C={(x):0<x;<1,0<y;<1,1<i,j<n}

The proof was based on an inclusion-exclusion formula and an ingenious
interpretation of each term as the value of a 2n-dimensional integral with the
integrand equal to the corresponding term in the expansion of the product
Hlsi#jsn(l - xiyj)-
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Using a different method, we obtained in [22] a more general formula for
P (k), the probability that a fixed matching M is stable and Q(M) =k
[R(M) = k, respectively]. Here, @(M) and R(M) are the total rank of wives
and the total rank of husbands in M, respectively. It is possible to get a similar
formula for P,(%, [), the probability that M is stable and @(M) = k, R(M) = 1.

LEmMa 3.1. Forn <k, 1l <n?
(32) Py(k,0) = [ oo [[¢* "0 " TT(&3; + %3¢ + Zy;m) dudy,
l’]

where X; =1—x;, y;=1—y; and the integrand equals the coefficient of
¥ "n!'=" in the product, which is taken over 1 <i #j < n.

NoTE. Summing up the integrands in (3.2) over [/ and then over k, we get,
in particular,

(3.3) P(k) = | = f[gk_"]g(a?i+xi5'j§)dxdy
(cf. [22)) and, since &; + x,5, = 1 — x,%;,

P,= o fga - x;y;) dxdy
[see (3.1)].

Proor oF LEmmA 3.1. (a) Let (m,,...,m,) and (w;,...,w,) be the arbi-
trarily ordered sets of men and women, respectively. The random ranking
system can be generated as follows. We introduce two n X n random matrices
X =[X;;], Y =[Y,,], whose entries are independent and uniform on [0,1], and
we postulate that man m, (woman w;) ranks women (men) in the increasing
order of entries in the ith row of X (the jth column of Y). As a result, each
person’s ranking of members of the opposite sex is chosen according to the
uniform distribution on the set of all n! rankings (permutations), and the
rankings by different persons are independent.

(b) Without loss of generality, we may consider a standard matching M,
formed by n pairs (m;, w;). By the definition of the ranking procedure given
previously, M, is stable iff there does not exist a pair (i, j), i # j, such that
X,; <X;;, and Y;; <Y;;. The wives’ and the husbands’ ranks are given by

Q(M,) =n+ i {j: X,; <X},
(3.4)
R(My) =n + Z Ii:Y;; <Y}

JJ
Jj=1

Since all X4, Y,z are independent, we need only show that P, (%, l|x,y), the
conditional probability of the event {M, is stable, Q( M,) = k, R(M,) =1},
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given X;; =x;, Y;;=y;, 1 <i, j <n, equals the integrand in (3.2). To this
end, introduce X(M o) the indicator of the event {M, is stable}, and write

(3'5) n(k’llx’y) = [gknl]E(X(Mo)gQ(Mo)nR(MO)l )

Here and in the following, E( | -) and P( | -) stand for the conditional
expectation and the conditional probablhty, given X;; =x;, Y;; =y;. To evalu-
ate the conditional expectation in (3.5), introduce the followlng markmg—
colormg” procedure. Let ¢,m € [0,1] be fixed. Sift through the pairs (i, j),
i #j,in any order Whenever X;; < X;; (= x;), mark (i, j) with probability ¢;
whenever Y, 5 (=), color @, j) Wlth probability n. Assume that the
colorlng—markmg operatlons for different pairs are independent. Only to
define the procedure completely, assume also that if X;;<X,;and ¥;; <Y,
then marking and coloring of (i, j) are done 1ndependently [No such palr @i, )
exists on the event {M, is stable}.] Then [see (3.4) and (3.5)]

E(x(M,)£@MonRMo)| ) — gryrp(B| ),

where B is the event {M, is stable, and all pairs (i, j) which “qualify”’ for
marking or coloring are marked or colored}. Clearly, B = N, ;B ;, where B;;
is the event

(X< X,

ij? .1.1

)or(X > X,

ij? JJ

(X <X,

<Y,; and (i, j) is marked)
i Y > Y and (i, j) is colored)}.
Notice now that, given X, = x,, Yo =5, 1 <@, B < n, the events B;; are
independent and

P(Bijl ) =%y txy;§+X,y;m.
Therefore, for £, n € [0, 1] and thus for all £, n,
(3.6) E(X(Mo)gQ(M°)”7R(M°)| ) = fn"?nI—I_ (fiﬁ_’j +x;y;€ + fiyj”l)-

L#)

So [see (3.5)], the relation (3.2) follows. O

Let (M, M') be a given pair of matchings such that M’ is obtained from M
by breaking up some pairs (m;,w; ) - (m ip W; ) in M and pairing m; with
w; ., (w;  =w,;) Let A denote the event that M is stable, and (m;,w;),
1 <s < r, form a rotation in M, so that M’ is stable, too. By symmetry again,
P(A) depends only on n and r, so we denote it by P,,. Introduce also
P,,(k,1), the probability of A N {Q(M’') =k and R(M) = I} (this probability
depends only on n, r, & and 1).

LEmMA 3.2. (a)

(3.7 P, =f o [ICII(xlyl)]_[(l —x;y;) dxdy,
i= i,J
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and (b) forn' <k, 1l < n?

P (k)= [ [ 1w [€ ']
(3.8) 1=
XH(’Eiyj‘*'xJ'ﬁ"'fiyjn) dxdy, n=n+r.
i, J

In both (3.7) and (3.8), the second product is taken over 1 <i #j <n, and
J#*i+1(modr) forl<i<r.

Proor. Let M be the standard matching M, and let {(m,, w; )}, ., be
{(m;,w)} ;< On the event A, we have the following, by the definition of a
rotation (see the Introduction): for 1 < i, j <r,

(3.9) X <X iv1 Y iv1<Yi1is1
(3.10) i#j, X;<Xji = Y;>Y;
Of course, for all 1 < i, j <n,

since on the event A the matching M is stable. To see why (3.9) and (3.10)
are valid, recall that on the event A the man m; prefers his wife in M, to his
new wife w,,, in My, and w; ., likes m; more than her old husband m,, |,
thus the condition (3.9). As for the condition (3.10), it follows from an
observation that (on A) w,, , is the best woman for the man m; among those
women who prefer m; to their husbands in M,. Consequently, @(M;) and
R(M,) (the wives’ rank in M; and the husbands’ rank in M,) are given by

2

(312) QM) =n+ ¥ [j#i: X;; <X, }+ XL U X, <X}

i=1 i=r+1

and
(313) R(My)=n+ ¥ |{i#j- 1Y, <Yv}|+ ¥ |{i:%, <Y
j=1 Jj=r+1

where " =n +rand j—1=r for j=1.
Denote by P,,(k, l|x,y) the conditional probability of the event A N {Q(M{)
=k, R(M,) = 1}, given

X iv1=%, X;=x, 1l<isr,
(3.14) X, =z, rtlsizn,
and
(3.15) Y, 1= l1<j<r,

Yi=v, l1<j<n.

Of course, x; <x;, 1 <i <r,and y; <y;, 1 <j <r [see (3.9)].
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Now (cf. the proof of Lemma 3.1),
(3.16) P,.(k,lIx,y) = [¢*n'] E(x(A)£2MonRato)] .)
and [see (3.12) and (3.13)]
(3.17)  E(x(A)E¥MonRMo| .y = emn"P( | -),  £,m €[0,1].

Here & is the event A N {all eligible pairs are marked or colored}, and we call
a pair (i, j) & My U Mj eligible for marking (coloring) if X;; < x; and (i, j) +#
(i,1) for i<r [if Y;;<y;, and (i, /) # (j —1,)) for j <r, respectively].
Marking (coloring) of an eligible pair (i, j) is done independently of all other
such pairs including coloring (marking) of (i, j) itself, with probability ¢
(probability m, respectively). Using the conditions (3.10) and (3.11), which
mean, in particular, that on the event A no (i, j) is eligible for both marking

and coloring, we get then
(3.18) P(#l ) = (H)(fi;vj +x.5,€ + Ey;m).
i,J

[The product is over (i, j) & M, U M;.]
Plugging (3.17) and (3.18) into (3.16), we have

P,.(klx,y) = [gk_nl'ﬂl_nll (H)(’Eiyj +x;y;6 + fiyj”l),
i

thus is independent of x', y'. It remains to notice that, fixing x, y and
integrating P, .(k, l|x,y) over x’, y’ subject to the restrictions x! < x;, Yi <
1 < i, j < r, we obtain the integrand in (3.8).

Relation (3.7) follows from (3.8). O

Note. Contrary to the first impression, the integral formulas (3.2) (Lemma
3.1) and (3.7) and (3.8) (Lemma 3.2) are quite amenable to asymptotic study,
primarily due to the product-type nature of the integrands.

4. Law of hyperbola. Let .# denote a generic stable matching in the
random instance of the stable marriage problem. This ‘“law of hyperbola”
states that, uniformly for all .#, the product @(.#)R(.#) is asymptotic to n2,
with probability approaching 1 exponentially fast. Here is the precise state-
ment.

THEOREM 4.1. Given 6 € (0, 1), consider an event
B; = {In"2Q(#)R(A) — 1| > 8, for some #}.
For all ¢ < ¢(8) and n > n(d),
P(B;) <e %
here
¢(8) = min(d(8),d(-9))
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and
(4.1) d(6) =6"'log(1+6) —1—log(6 'log(1+6)), 6> —1.
Since d(6) > 0 for 6 + 0, P(B;) is exponentially small.

Proor. Introduce the events
By={n"?Q(#)R(A#) =1+ §, for some .#},
B;={n"?Q(.#)R(A#) <1 -8, for some .#)

and their probabilities P;*. Consider L, the set of pairs (k, ) of integers such
that n <k, I <n® If (k1) € L is such that k,/, > (1 + 8)n3, then there
exists (k,/) € L such that 2 = k,, ] <, and

RL> (1+68)n%,  k(l—1)<(1+8)n,

(4.2)

that is,

(4.3) (1+8)n<kl<(1+8+n"1)ns

Similarly, if (k,, ,) € L satisfies kyl, < (1 — 8)n® then there exists (k,1) € L
such that £ = k,, [ > [, and

(4.4) (1-6-n"YHYn® <kl <(1-8)n

Consider LJ (Ljy), the set of all (k,1) from L which satisfy condition (4.3)
[condition (4.4), respectively]. For (k,1) € L} (L;) define P} (k,1) [P, (k,1)]
as the probability that the standard matching M, is stable and Q(M,) > k,
R(My) > 1 [Q@(M,) < k, R(M,) <, respectively]. Then, appealing to the pre-
ceding argument, we have

(4.5) Py<n!'Y Pr(k,1),
L

(4.6) Py<n!Y Po(k,1).
L;

[Indeed, (4.5) states that P; is at most the expected number of stable
matchings .# such that Q(.#) > k, R(.#) > I, (k,1) € L}.]

In the spirit of Chernoff’s method [2], we can estimate the probabilities
P *(k,1) by using Lemma 3.1:

(4.7) P} (k1) < jcinf{q>(§,n,x,y):g,n > 1} dx dy,
(4.8) Py (k1) sfcinf{q>(g,n,x,y):g,n € (0,1]} dxdy,
where

(4.9) D(&,m,x,y) = ¢ gt n(fiyj +xy;é+ fiyj"‘l)-

i#j
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Working with these integrals, we shall assume (without loss of generality) that
k <1, so that in both (4.7) and (4.8)
(4.10) kE<end?  1>c,n%2 ¢, =c,(8) > 0.
(a) Fix y € (3,1), p € (0, 1). Introduce
n
C = {(x,y) €C: Y xy, > ny},

i=1
C, = {(x,y) €C: Y x;>n— n”},
i=1
Co=C\ (C,uUCy,

and denote by I *(C,) the contributions of C, to the value of the integrals in
(4.7) and (4.8) (a = 0,1,2). Choosing ¢ =79 =1,

1#(C,) < [ TI(1 - xy,)dedy, a=1,2,
Cui+j

where (1 — A <e™),

log 1_[(1 —xy;) < - L %y,

i#j i#j

sn-(2)(52)

1

(4.11)

For C,, by the Cauchy-Schwarz inequality,

(Be)(Zo)= (5]

12

2
> (Z x,-yi) > n?,
i

So,
(4.12) I%(C,) < exp(n — n?),

and the total contribution of C; to n!¥L ; +P,*(k, 1) is superexponentially small,
since 2y > 1.
For C,, using (4.11) and integrating innermost over ¥; 1 <j < n, we have

(fle“syl dyl) dx
0

=e"/n(1 e )nfn(s)ds.

Sy S

I%(Cy) <ef

{x:5>5,}

(4.13)

Here s = ¥ ;x;, s, =n —n” and f,(s) is the density of ©7_, X;,, the sum of n

ii

independent, uniformly [0, 1] distributed random variables. It is well known [9]



372 B. PITTEL

that
n—1

S
(414) fu(s) = WP( max ./1 < 8_1),

l1<i<n

where 7,...,.Z, are the lengths of the consecutive subintervals of [0, 1]
obtained by selecting independently n — 1 points, each uniformly distributed
on [0, 1]. We show in the Appendix that
(4.15) P(max £ <{)<(n{-1)""', Viznl

l<i<n

It follows then from (4.13)-(4.15) that
e” ne \" '
+ -1
I=(Cy) < (n—l)!(n—n") L_nps ds
= O((n!) TedFmpe=br) Y >0,

Therefore, the total contribution of C, to n!YL;: P (k,1) is also superexpo-
nentially small, since p < 1.
(b) Let (x,y) € C,. Similarly to (4.11), we obtain

log I;[_(fiyj +x,y;¢+ fiyj"?)
(4.16) < E (xi(§ “ ) +y(n—-1)+xy;(1-¢- "7))
i#j
(=16~ Ds—s(EmM Ty, + (6+1- DT
J i

where
(4.17) s(§,m) =sé—(n—1-s)(n—-1).
By the definition of C,, the last term in (4.16) is of order O(|¢ + n — 1|
X(n? A s)), where n” A s = min(n?, s). So, ®(-) in (4.9) is estimated via
(I)(g, ﬂ,x,y) =< é—n—knn—l €xp (n - 1)(§ - 1)3 - 8(§, TI) Z Y;
(4.18) Jj
+0(l¢ +m — 1l(n” A s))]
To estimate I*(C,), we choose & = ¢ *(s), n = n*(s), postponing the exact
definitions until later. Clearly,
C, c {(x,y):s <s54,0<y;<1,1<j Sn};
so, integrating innermost with respect to y, we obtain
I%(Cy) <J *(Cy),

(4.19) Jﬂg)=«n—ng*£“mMH@%n%ﬂ
+0(I¢5+ n*-1|(n” A s))) ds.
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Here
H(&m,8) = (n — k)logé + (n — Dlogn + (n — 1)(£ - 1)s

. 1- - ,
(4.20) + n log e:;p((g’:§§ m) + (n — 1)log s,
(4.21) s(é,m) =sé—(n—1-s)(n—-1),
and we have used an inequality,

n—1
fu(s) < CE

[see (4.14)]. Whatever our choice of functions £ *(s), n£(s) is going to be, they
must satisfy the basic restrictions £*(s),77(s) > 1, s €(0,s,), and £7(s),
17 (s) €(0,1], s € (0, s ;).

To describe the functions ¢ *, 7* which we use in (4.19), we need to define
three numbers ¢, ¢,,¢; € (0, s,); ¢; and ¢, are given by

By (4.10), t,, ¢, = O(n'/?), and also ¢, /¢, = kl/n®. So,

8+ 0(n™h), for J*,

4.22 t/ty=1+6,, &,=
(4.22) 1/t " -5+ 0(nY), ford .

In particular, ¢, > ¢, for J*, and ¢, < ¢, for J~. Define ¢; by
log(1 +6,)
- W

n

(4.23) ty

it is easy to check that for both J* and J7, ¢4 lies between ¢, and ¢,.
Now, here are the functions £*, n*:

1, s >tg, n—1-1¢
(4.24) & (s)=( t nt(s)={n-1-5s’ s 2t
s’ § <15 1, s < t,
t 1, s >3,
(425 &(s)={s’ "= a(s)={n-1-1,
1, s < tg, n—1-—s’ s <ty

Obviously, the basic restrictions are met. The presence of functions ¢é(s) = ¢, /s,
n(s) =(n — 1 —t,)/(n — 1 —s) can be explained right away by an observa-
tion that they happen to be the asymptotic solutions of the equations

H,(¢,1,5) =0, H. (1,7,5) =0,
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in the case ¢, — . The choice of the break-up point ¢, will become clear when
we start estimating H(¢£*, ', s).
Let us consider the case of J*. Suppose that s € [¢3, s, ]. Then [see (4.17),
(4.18) and (4.24)] s(¢, 1) = ¢, and
n—-1-t¢ 1—e "

H(¢é,nt,s) = n—llog————2+nlog
(€%n%,8) = (n - D)log ———— :

+ (n — 1)log s.

Here n — 1 < 0, t, = n%/l = O(n'/?); so, using

2
log(n — 1 —1t,) =log(n — 1) — fa +0(( 2 )),

n—1

log > —log(n — 1) +

n—1-s n—-1’
we obtain
H(£,m",s) < nf(s) + O(n'/2),
where N
ty — s s
f(s) = ;s + log;z-.

The function f is concave down, and it achieves its absolute maximum (which
is zero) at s = t,. Therefore,

(4.26) max{H(£%,m7,8): s € [¢5,5,]} < nf(t3) + O(n'/?).
Suppose that s € (0, ¢3]. Then [again by (4.17), (4.18) and (4.24)] s(¢, ) = ¢,
and ,

H(¢5n%,s)=(n— k)logts—1 +(n—=1)(¢t; —s)

1-e™n
+ n log + (n —1)logs
1
< (k—1)&(s),
where
t;,—s s
g(s) = + log —.
1 ¢

Like f, the function g is concave down, and it achieves its zero maximum at
s = ¢,. Since £ > (1 + )n3/l > (1 + 8)n, we have

max(H(£*,1%,5): s € (0,4,]) < ng(ty).

Now it is time to explain our choice of #; in (4.22). It satisfies g(s) = f(s).
Simple computations show that the common value of g(¢;) and f(¢,) is

(4.27) -d(s,) = —d(8) +O0(n™Y)
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[see (4.1) for the definition of the function d(-)]. Thus
(4.28) max{H(¢Y,n",s):s€(0,s,)} < —nd(8) + O(n'/?).

Let us estimate the remainder term of the integrand in (4.19). If ¢, <s < s,
(= n — n?), then [see (4.24)]

n
(4.29) [EF+ nt— 1|(n7 A s) < n_—l_;'ny = O(n");

here 0 =1 + y — p, and o can be made arbitrarily close to 3 (from above) by
choosing y (> 1) and p (< 1) sufficiently close to their respective bounds. If
0 < s < t5, then [see (4.24)]

(4.30) lE*+ 0= 1l(nY As) < &7(s)s =t, = O(n'/?).
Combining (4.19) and (4.28)-(4.30) enables us to conclude that
J*(Co) = O(((n — 1)1) 's, exp(—nd(8) + O(n?))).
Thus, the total contribution of C, to the value of n!L ;P (k, 1) is bounded by
O(ns, exp(—nd(8) + O(n”))), o=1+7vy-p.

Since the contributions of C;,C, are superexponentially small for every
y €(4,1) and p € (0, 1), we see that

(4.31) Pf<n!), Pf(k,1) = O(exp(—nd(8) + O(n?))),
L
for arbitrary o € (3, 1).
In exactly the same way, it could be shown that
(4.32) Py = O(exp(—nd(-8) + O(n”))).
The estimates (4.31) and (4.32) imply the assertion of Theorem 4.1. O

NoTe. Suppose that 6 = n™*, A € (0, 7). Since A < 1, the preceding argu-
ment works without any changes. (We still have that §, > 0, ¢, < ¢t3 < ¢; for
J*,and 8, < 0,¢, < t, <ty for J [see (4.22) and (4.23)].) Since d(9) ~ —62/8
as § — 0, instead of (4.27) we have

~d(8,) = ~-d(n*+0(n" "))~ -n"2/8
and, similarly, for the “minus’ case
—-d(8,) = —d(-n"*+0(n" 1)) ~ —n"?/8.
Thus,' we have [cf. (4.31) and (4.32)] the bounds
Pit=O(exp(—3n' 2" + O(n))), Voe(0,3),

which are superpolynomially small since 1 — 2\ > ;. Hence, we have the
following theorem.
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THEOREM 4.1.  For every A € (0, 1),

P(n=*Q(#)R(A) — 1| = n™* for some #) = O(exp(—gn'~?)).

NoTeE. As Theorems 4.1 and 4.1 indicate, the law of hyperbola holds
asymptotically for almost all n X n instances of the problem. However, it is
not difficult to construct special instances for which Q(.#)R(.#) is as low as
n? and as high as n%(n + 1)%/4.

5. Likely rotations. Let .#, .#’ denote a pair of generic stable match-
ings such that .#’ is obtained from .# by elimination of a rotation in .#. Let
r(.#,.#") stand for the number of pairs in .# which form this rotation. Our
next statement shows that with high probability for every such pair of stable
matchings the length of the rotation is of order at most (n log n)'/2.

THEOREM 5.1. For 2 < r < n, denote by m,, the probability that for some
M, M' the number r(A#,.#') equals r. Then, uniformly over r,

(nlogn ( r2))
T, =0 exp| ——1|.
r n

Consequently, for every a > 0,

(5.1) P((}l,a}l)r(/, ) < ((1+a)n 1ogn)1/2) >1-0(n"9).

Proor. The probability m,, is bounded by the expected number of the
pairs (#, .#') such that r(.#,.#') = r. Since there are ('r’)(r — 1)! ways to
select a cyclically ordered sequence of r pairs in a given matching, we have

(5.2) o <nl( %) (r = DIP,,

Here P,, is the probability that M (the standard matching) is stable and that
the pairs (m;,w;), 1 <i <r, form a rotation in this matching. By Lemma
3.2(a),

(5.3) P, = fc gl(xkyk)g(l - x;y;) dxdy;

in the second product, i # j and j #i + 1 (mod r) if 1 <i < r. Introduce s,
l1<j<n,asfollows:s; =Y, , x,forr+1<j<n,ands;=X;,;  ix; for
1 <j <r, xy = x,. Then, bounding each factor (1 — x,y,) by exp(—x;y,), rear-
ranging factors and integrating with respect to y; €[0,1], 1 <j < n, we can

write
P, </

xj=

r

‘I’z(sj) H ‘I’l(sk)nxldx’
1 E=r+1 =1
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where
(5.4) Yo(u) =u"%(1 —e *(1+u)),
(5.5) Y (u)=u"H1-e¥).

A simple calculation shows that, for z > 0 and some constant ¢ > 0,

(log ¥y(u)) < —

(56)  (log ¥y(u)) < -

u+1’ u+1’

So, introducing s = L7_;x;, by the definition of s; and the fact that each
x; €[0,1],

ﬁ Yy(s;) ﬁ Wi(s,) < ¥o(s) ¥y(s)" " exPlg( Zn: (x; + xj—l))}
(5‘7) Jj=1 k=r+1 j=1
< cWy(s) Wy(s)" T,

¢’ = e%. Thus,

r
(5.8) P, sc’f \Ifz(s)r‘Pl(s)n_r(]_[xl) dx.
x>0 =1
To simplify this bound further, we need the relations
r t2r
x,dx, = o, Xy, %, 20,
{Z;=1x,st)l=l_[1 P (2! 1
ﬁ un—r
dx, = —, Xpfqgyeeer X, = 0.
(7o X <ulk=r+1 k (n-r)! +1

Then (5.8) implies that

!

C
T sy C——

(5.9)
X[ Wy(s)Wy(s)" ¥  dt du,
t,u=0

where s = ¢t + u. Now, for nonnegative integers v, u,

vip!
f t'ut dtdu = —————a" 12, t,u>0.
t+u<a (v+u +2)!

So, transforming the integral in (5.9) into a one-dimensional integral, we
obtain

!

4 n r n—r n+r—
Pnr < m](; \1'2(3) \I'I(S) s*tr-lds,

Thus, using (5.4) and (5.5) and throwing away (1 — e~*)""X1 — e~*(1 + s)" 7,
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we have
¢ nl—e”*® log n
P'"S(n+r—1)1fo s ds:o((n+r—1)!)’
that is [by (5.2)],
(7)o - 1!
1 =0 ——1 .
(5.10) . O( (nr =D ogn
Let us have a closer look at the last bound. Clearly,
e s s )
(n+r—-1)! riin+j r &P o1 Ogn+j '

Bounding the last sum by the integral leads, after some rearranging, to

r-1 n—j o1 n—z
1 1 d
J{"’l Ogn+js-/;) Ogn+z i
r—1 r—1
(5.11) =-n (1+ )log(1+ )
n n

= - 5]

(1 +x)log(1 +x) + (1 —x)log(l —x) > x2,
the bounds (5.10) and (5.11) imply that

(5.12) wnr=0(nlignexp(—ﬁ)).

The rest of the argument is short. Denote r, = [((1 + a)n log n)/2]. By
(5.12), we can write

Since

P((j}l,a;,)r(/, ) > ro) <Y m,

r>ry
o 22
= O(n log nf z‘lexp(— —) dz)
ro n

exp(—rg/n)

ré/n

=O(nlogn ) =0(n"?%).

This completes the proof of Theorem 5.1. O
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Since the likely rotations have lengths of order O((n log n)'/2) = o(n), it
seems plausible that, typically, the points (Q(.#), R(.#)) and (Q(.#"), R(.#"))
are not too far apart. As our next statement shows, this is, indeed, the case.

THEOREM 5.2. Let 6 = n~*, A €(0,3). Consider an event ;B; =
{In3Q(.#"YR(A) — 1| > &, for some pair (#,.#") of one-rotation-connected
stable matchings}. Then

P(;B;) = O0(n™7),

for every a > 0. (In terminology adopted in Knuth, Motwani and Pittel [19],
1Bs is a quite sure event.)

Proor. By Theorem 5.1, we need to prove only that
P(lB.sim A) =0(n"9),
where A is the event

’ _ 1/2
{(zazl)r(%,/) sro}, ro = [((1+a)nlogn) ],
and ; B are defined similarly to B3 in (4.2), except that Q(.#) is replaced by
Q(.2"). Like (4.5) and (4.6), we can write then

(5.13) P(,BfnA)<n! T (7)(r - )T PE(k, D).
L

r<ry

Here P %(k,1) is the probability of the event that the matching M, is stable,
the first r pairs in M, form a rotation and, in the pair (%, .#") = (M,, M}),
Q(A") >k, R(#) > for the plus case, and Q(.#') <k, R(.#) <1 for the
minus case.

As for the probabilities P (%, 1), we estimate them by using Lemma 3.2(b),
dropping from the integrand in (3.8) the factor I'1/_,x;y;. (This factor, which is
at most 1, has already served us well in the proof of Theorem 5.1, and we do
not need it any longer, now that we consider only the ‘“small’’ values of r.)
The inequalities are remarkably similar to (4.7) and (4.8), except that
®(¢, 1, x, y) has been replaced now by ®,(¢, 7, x, y),

D,(¢&,m,x,y) = f‘nl_lenI_l ]_[ (fiyj +xy; €+ fiyj"'l)
i,J
[i+#j,and j #i+ 1(mod r) for 1 <i <rl, where ' = n + r. Introduce

G = {(x,y) €C: Y xy;+ X %y, 2 ny},

i=1 i=1

102={(x,y)eC: inzn—n”},

i=1

1Co = C N\ (1€, U,Cy).
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Repeating almost verbatim part (a) in the proof of Theorem 4.1, we can
show that the contributions of the domains ,C; and ,C, to the bounds of
n!L 1 +P(k, 1) are superexponentially small. Their overall contributions to the
bounds for P(;B{ffN A) in (5.12) are also then superexponentially small, since

Y (?)(r — 1)! = O(ryn™)
(5.14)  r=n

= O(r0 exp[(l +a)"?n'?(log n)3/2]).

For the domain ,C,, analogously to (4.18), we show easily that

Dy(£,m,%,y) < 6”"kn""lexp[(n1 —D(E-Ds—s(&m) Ly,
J

+0(I¢ + 1 — 1l(n” A s))

)

suém) =s&—(ny—1-s)(m—1).

Here n, =n when ¢,7>1, and n, =n — 1 when ¢,1 < 1. So, with some
minor notational changes, we prove that, as in the case of P(B;) (see the
proofs of Theorems 4.1 and 4.1'), the overall contributions of ,C, to the bounds
of n!L +Px(k,1) are of order O(exp(—nd(+8 + O(n™") + O(n°), V o €
(3, 1. Since the last bound is uniform for r < r,, it implies [in conjunction

with (5.14)] that
P(;BfN A) = O(exp(—n'"2"/8 + O(n°))), Vo€ (3,1).
The proof of Theorem 5.2 is complete. O

Now it is time to recall that whp (Q(.#)), R(.#))) and (Q(.#,), R(.#,)) are
asymptotic to (n log n,n?/log n) and (n%/log n, n log n), respectively. Here
A\, #, are the male-optimal stable matching and the female-optimal stable
matching (Pittel [22]). Tt is not difficult to extract from the proofs in [22] that,
in fact, Q(.#,), R(.#,) are quite surely (q.s.) of order n log n; more precisely,
for every e <1, a > 0 and n > n(a, ¢):

P((1 —¢)nlogn<Q(.#,), R(#;) <(1+a)nlogn)

>1—-n"°.

(5.15)

Combination of this result with Theorem 4.1 yields that
2

(5.16) P|R(A4,),Q(A, >1-0(n"%), Vd<a.

) > n—

(1+a)logn
With a slight abuse of terminology, we describe the situation by saying that
q.s. the points w(#) = (n=%2Q(A)), n % ?R(A,)) and o(#,) =
(n=32Q(A,), n"3/2R(A,)) are of order (n~'/21log n,n'’%/log n) and
(n'/2/log n,n~'/? log n), respectively.
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Let us recall now that, according to Irving and Leather [14], for every
instance of the stable marriage problem, there exists a sequence of stable
matchings .#, = 4D, #P,..., #® = #, such that each .#? is obtained
from .#%"Y by elimination of a rotation in .#“~ V. As a geometric conse-
quence, the point (Q(.#®), R(#Y)) lies southeast from the point
(=D, R(# D).

Let 6 = n=*, X €(0,1). In the (u,v)-plane, introduce a hyperbola-shaped
strip D = {w = (u,v): u,v > 0, luv — 1| < 8}. By Theorem 4.1, we can assert
that, whatever the chain (#©,...,.#™®) is, the related sequence {0’ =
(n=32Q(MD), n=32R(A D)), lies, q.s., in the strip D. Consider a hyper-
bolic arc €, = {w = (u,v): uv =1, n™* <u,v <n*}, where A € (0,X). For
every o € %, define an open neighborhood N(w) of w,

N(w) ={o' €D:u < (1 +8)u,v <(1+5)v}.
Since § = n~* and X > A,
sup{d(w, @'): @ € N(w)} = O(n**) = o(1),

uniformly over € €,.[d(-, - ) is the distance (Euclidean distance, say) in the
(u,v) plane.] 4

Suppose that o € D \ N(w) for all 1 <i <% and some w € ¢,. Then
there must exist i, 1 <i <k — 1, such that »® and «“*V are located
northwest and southeast from N(w), respectively. Consequently, u¢*Pv® >
(1 + 6)?, that is,

QUADYR(AD) = n¥(1 + §)°.

According to Theorem 5.2, the chances of this happening are superpolynomi-
ally small. Thus, we have proved the following result.
THEOREM 5.8. For w € €, denote by d(w) the distance between w and the
set {w(A): A is stable}. Then, for each t < 5 — A,
P(max{d(w):w € €,} <n"*)>21-0(n""), Va>0.

[Recall that €, consists of points o of the hyperbola uv = 1, with n™* <
u, v <n* A €(0,3).] Thus, quite surely, all the points of €, are close to the
set {w(.#)}.

Now, (1,1) is a point of ¢, [for every A € (0, ;)]. So, Theorem 5.3 and
Theorem 4.1 taken together imply directly the following result.

COROLLARY 5.4. Let .#, denote an egalitarian stable marriage, that is,
Q(#;) + R(Ay) = min{Q(4) + R(A4)}.
Then, for every t € (0, 1),
P( Q(.#;) + R(A;)

93/ —l‘sn_t)zl—O(n‘“), Va>0.
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[In contrast, both Q(#,) + R(#,) and Q(.#,) + R(.#,) are asymptotic, quite
surely, to n? /log n.] Moreover, for every a > 0,

(5.17) P(n~%/2Q(4;) — 1l + In"3/2R(Ay) — 1 <n™*) 21— 0(n"%)

as well.

6. Likely range of individual ranks in a stable matching. Let .# be
" a stable matching. For each man m;, 1 <i < n, let @,(.#) denote the rank of
m;s wife, as ranked by the man himself. Similarly, for each woman w;,
1 <j <n,let R/(#) denote the rank of w;’s husband. Introduce 2(.#) =
max; Q(#) and R(#) = max; R ;(.#), which are the largest rank of a wife
and the largest rank of a husband in #Z. Set 2= min , 2A#), Z=
min_, #(.#); by symmetry, 2=, . By the properties of the matchings .4,
A5, we know that

i J
We can see also (Section 2) that 2 is the largest number of proposals made by
a man in the McVitie-Wilson algorithm, since @,(.#;) is the number of

proposals by the man m;. We know that E[Q;(.#))] is asymptotic to log n.
How large is E(2)?

THEOREM 6.1. (a) For every £ € (0, 1),
(6.1) P(2>(1-¢)log?n)>1—exp(—clog®n), Vec<c(e),

where

(6.2) c(e) =¢e+ (1 —¢€)log(l —¢).
(b) For every a > 0,
(6.3) P(2<(2+a)log’?n)>1-0(n"%), Vc<c(a),
where
(6.4) c(a) = 2a[3 + (4a + 9)7] .

Consequently, E(2) is of order logZn, as n — .

Notes. (i) We are tempted to conjecture that 2/log?n converges, in
probability, to a constant. If this is actually so, then the constant lies between
1 and 2. (See the Note added in proof at the end of the text.) (ii) Thus, the
expected largest number of proposals made by a man is precisely of order
log? n. It is worth pointing out here that the expected largest number of
proposals received by a woman is only of order log n.

ProoF OF THEOREM 6.1. As 2=, %, we may and shall consider bounds
for .

Let us recall that the ranking of men by women and women by men is
induced by two matrices, Y and X. In particular, if in a stable matching .# the
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woman w; is matched with man m;, then R;(.#) (the rank of m; as ranked
by w;) equals the rank of Y;; among Y;;,...,Y,

stnje

(a) The proof of the lower bound (6.1). consists of two steps. First, we prove
that whp each stable matching has a pair (m;, w;) such that
log? n
(6.5) Y= (1-¢) o Ve, €(0,1).

Second, assuming that &; < ¢, we prove that whp every column of the matrix
Y contains at least (1 — £)log® n entries which are less than (1 — &,Xlog? ) /n.
These two facts imply that whp 2> (1 — ¢)log? n.

Step 1. Introduce ,(¢,), the probability that for some stable matching
M= {(mik, wjk)};::l’

log? n
l’ikjk<a=def(]'_“31) n s l1<k<n.
Then
(6’6) '7Tn(81) =< n!Pn(el)’

where P,(¢,) is the probability that the standard matching M, is stable, and
Y,; <a,1 <j < n. Analogously to (3.1), we have

(6.7) Pe)) = [ TI(1 - xy;)dxdy,

C(e))i+#j
where
C(e;) = {(%,5):0<x,<1,0<y,<a,1<i,j<n}

Acting as in the derivation of (5.7) from (5.3), we transform (6.7) into

1—e\"
P,(z,) Scf(—s—) dx

(6.8)
c n(l—e )" .
=(n—1)!fo s P(l??i‘n°4ss )ds
[cf. (4.13) and (4.14)]. For B € (1 — ¢,,1), introduce
1 B
So= y 08" = (1 —¢,) logn’

and break the integral (6.8) into two parts, s € [0, s,] and s € [s,, n]. The first
integral is bounded by

(6.9) (1 — exp(—pBlog n))n_lso = O(exp(—nl_B')), VB e(B,1).
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In the second integral,

1—¢ 1
P(max./<s 1)3P(max./< f1 ogn)

1<i<n l<i<n B n

(6.10)

=O(exp(—n*)), Vpe (0,1— 1;81)

(see the Appendix). Thus, the integral from 0 to n is bounded by exp(—n?), for
each o less than min(1 — B,1 — (1 — &,)/B). The last function of B achieves
its maximum 1 — (1 — ¢)2 at B = (1 — ¢)"2 Summarizing [see
(6.8)-(6.10)],

(6.11) P,(£,) = O(((n — 1)!) " exp( :/':”)),
Vo<o(e)=1-(1-¢)
Therefore, by (6.6),

(6.12) m,(&1) = O(exp(—n?)), Vo<o(g).

Consequently, with probability at least 1 — O(exp(—n)), each stable match-
ing contains at least one pair (m;, wj) such that

log? n

Yj2(1-¢) n

STEP 2. Let £ € (g5, 1). By N; we denote the total number of entries in the
Jth column of Y which are less than (1 — &,)log?n)/n, 1 <j < n.Each N; is
binomially distributed with parameters n and p = (1 — ¢,)(log? n)/n [N
Bin(n, p), in short]. Using the Chernoff inequality [2],

(6.13) P(Bin(n,p) <k) < eXp(nH(%)), VEk<np,

H(x) =xlogi—) + (1 —x)log =

we obtain easily

P(N; < (1 - ¢)log® n) = O(exp(—(log® n)h(e,¢,))),

where

1—¢
h(e,€1) =ger € — &1 + (1 — €)log >0
]. - 81
for each ¢, € [0, ¢). Therefore, each column of Y contains at least (1 — &)log® n

entries less than (1 — &,)(log? n)/n, with probability at least 1 —
O(exp(—(log? n)h ), V h, < h(e, &,).
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Combining the conclusions of Steps 1 and 2, we are able to state that
P(#= (1 -¢)log?n) =1 — O(max(exp(—n”), exp(— (log? n)h,y)))

=1 - O(exp(—(log® n)h,)).

So, the relation (6.1) for %2 (whence for 2) follows by letting &, |0, and
noticing that h(e, 0) = c(¢) which is defined in (6.2).

(b) To derive the upper bound (6.3) (again, for % instead of 2), we write
first
(6.14) {#>(2+a)log?n} cA, UA,;
here
2

= 2 (1 + Alogn
A, {9?2 (2 + a)log®n and Q(4;) > (1+M)logn |’

2

Ay = {Q(vlz) < A+ Nlogn |

[Bringing % and Q(.#,) together is not unnatural since %= max; R (A ]
Using (5.15), we have
(6.15) P(A,) =0(n™"), VX<A.
Let us estimate P(A,). To this end, define B as the event that in .#, there
is a pair (m,, w;) such that
log? n
(6.16) Yi>a=4¢(2+a,) —

ij =

and
2

Q) = (1+Mlogn”

Here a, € (0, a) is fixed. Using (3.3) and the Chernoff method (cf. the proof of
Theorem 4.1), we obtain

(6.17) P(B) < nn!fc( )inf{F(f,x,y): £> 1} dxdy,

where

C(a) ={(%,9):0<x,y;<1(1<i,j<n)andy >a},

(6.18) F(¢,x,y) =§"_k1;[(fi +x,5,€)
i#j

and
n2

(6.19)

k= ——"—.
(1 +A)logn
[The integral is an upper bound for the probability that the standard matching
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M, is stable, @(M,) > £k and Y;; > a.] Using (6.17), we will find an explicit
bound for P(B), and that will enable us to bound P(A,), too.

Let us estimate first the contribution P; to the bound in (6.17) which
corresponds to

Cya) = {(x,y) € C(a): s(= Zn: xi) < %logn}.
i=1

For this purpose, we set £ = 1 in (6.17) and (6.18) and, like the bound (6.8), we
obtain [disregarding the condition y, > @ and dropping the P(max; .7 < s~ 1)
factor]

P, = O(nn! W (s) ds) (‘I’l(s) _1 _se_s)

= O(n*logn(1 - n-1/2)")

= O(exp(—n'?)).

For the domain Cy(a) = C(a) \ C(a), we set ¢t = k/n and define
€= £(s) = {t/s, fors <t,

1, for s > ¢.

s<(1/2)logn
(6.20)

To estimate P,, the contribution of Cy(a), we bound each factor (Z; + x,¥,£)
in F by exp(x;(¢ — 1) — x,y;£) and integrate over y again, keeping the restric-
tion y, > a this time:
Py<nn!f ¢ Fexp(s(n - 1)(¢£ - 1))
Cola)
(6.21)

X n \Ifl(sjf)(
J#1
(Sj =def Zi,#jxi). On Co(a),

S
—si =1+ O(log™' n);

exp( —as;§) — exp(—s,§) ) o
$:€

using inequality (5.6) again, we obtain

> x,-§)

i#1

‘1_11 Wy(s;€) < ‘I’{’_I(sf)exp(
J*

fmins; + 1

= 0(‘1’1’“1(35)).
Besides,

exp(—a;s,¢) — exp(—s,£) (exp(—als§) )
-0 ,
NS s¢
where
(6.22) a; = a(1 + O(log™! n)).



STABLE MARRIAGE PROBLEM 387

So, replacing Cy(a) in (6.21) by a larger domain {x > 0: s < n} and turning to
integration over s, we have [similarly to (4.19)]

P, = O(nzfnea‘s) ds),
0

where
G(s) =(n —k)logé+s(n—1)(¢£—1) —nlog(sf) —a;sé + (n — 1)log s.
(1) Suppose s > ¢. Then £ = 1 and
G(s) = —logs — ays,

that is,
2 n G( )d n2 ® d
s < — —-as
nj;e S < P j; e S
nZe—alt
= =O(n_f),
alt
6.23 2+ ay 2
(6.23) =31 ’

t = k/n [see also (6.16) and (6.19)].
(ii) Suppose s < t. Then £ = t/s and, after cancellations,

S
G(s) = klog— —logs + (n - 1)(t —5) — ayt.

Now

k
G'(s) = ——5— <0,
s
so G is concave down, and G reaches its maximum at

k-1 k

n-—1
Hence,
k
G(to) - 6(1) + 0 75,
and, appealing to Laplace’s method of estimating integrals,
nzfteG(s) ds = O(nzeG‘tO)(—G”(to))l/z)
0

= O( n_f) ,
[see (6.23) for f1.
Therefore, P, = O(n~'), whence by (6.20),

(6.24) P(B) = 0(n").
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By .#; we denote the total number of entries in the jth column of Y which
are less than (2 + a,)log? n)/n (compare with definition of N; in Step 2).
Using the Chernoff bound (6.13) again, we obtain, for a > a;,

(6.25) P(A; = (2 + a)log? n) = O(exp(—(log® n)g(a, a,))),

where
+a

2
g(a,a;) =4¢(2 +a)log +a, —a<0.

1

Introduce A = U ;{7 > (2 + a)log® n} the event that at least one column of
Y contains at least (2 + a)log® n entries less than (2 + a,)log? n)/n. The
estimate (6.25) implies that

(6.26) P(A;) = O(exp(—(log®n)g,)), Vg <g(a,ay).
Then, recalling the definition of the events A; and B,
P(A,) <P(B) + P(A,B°)
<P(B) + P(4,).
Hence, by (6.24) and (6.26), for each a; < a we have
2+a,
1+

’

P(A) =0(n™"), f=

and [see (6.14) and (6.15)]
P(#=(2+a)log?n)=0(n""+n7f), VXA
Thus,
P(#=(2+a)log?n)=0(n"°), Vec<ec(a),

where

i )\2+a 2]:A=0
c(a)—maxmln( I ) >

= 2a[3 + (4a +9)/]

The proof of Theorem 6.1 is complete. O

The next theorem reveals that, in a sharp contrast, max; R;(.#;) and
max; Q,(.#,) are whp asymptotic to n. [Needless to say, max R (/1) and
max; @,(.#,) are equidistributed.] Thus, the worst husband in ./ (the worst
w1fe in .#,) is almost at the bottom of his wife’s (her husband’s) order list of
men (women)!

THEOREM 6.2. For every § € (0,1)
P(maxR,(#4) = (1-8)n) 21-0(n""), Ve<c(d),
J
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where

o
0(5) = 1——5.

Proor. Fix ¢ < ¢(8) and write
P(maxR,(4,) = (1 - 8)n) < P(A,) + P(4y),
J
where

A, = {maij(/l) <(1-6)n and Q(4,) < (1 + ¢)n log n}
J

A; = {Q(A4,) > (1 +c)nlogn}.
Then [see (5.15)]
P(A;) = O(n™°).
To estimate P(A,), introduce 8, € (0, §) so close to & that

2!
(627) c < 0(51) = 'i_—sl,

and define B, the event that for each pair (m;, w;) in A,
Y;<1-¢
and
Q(A#) <(1+c)nlogn.

Analogously to (6.17) and (6.18),
P(B,) < n![ inf{ F(¢,x,y): € < 1} dxdy,
C(8)

where £ = (1 + ¢)n log n and

C(8) ={(x,y) €C:iy;<1-8,1<j<n)
Following the established pattern, we have eventually

P(B,) = o(nf"eG1<s> ds).
0

Here

1 —exp(—(1 - 8;)s¢)
sé

Gy(s)=(n—-1)(¢-1)s +nlog

+(n — k)log £ + (n — 1)log s,
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and
s<t

1’ ’ k
§=§(8)={£’ s>t (t=def;)'
S

Using condition (6.27) [ (1 + ¢X1 — §,) < 1], it is easy to show that
{max G,(s): 0 <s < n} =Gyt) + O(logn/n)
= _nl—(1—31x1+c)(1 + 0(1))

So, P(B,) is superpolynomially small.

Also quite small (indeed, exponentially small) is P(Ag), where Ag is the
event that some column of Y has at least né entries exceeding n(1 — §,).
[Predictably, the proof uses the Chernoff bound.]

Then
P(A,) < P(B;) + P(ABY)
< P(B,) + P(A)
= O(P(B1))‘
Therefore,

P(maij(,/l)) = O(P(B,) + P(A;))

- 0(n™°)
for every ¢ < ¢(8), which completes the proof. O

Our next (and last) theorem shows that the egalitarian matching .#; fares
much better than either .#, or .#,, in the sense that no spouse in .#; has a
rank which noticeably exceeds n!/2. In fact, whp .#, is “optimal,” that is,
there does not exist a stable matching .# in which the largest rank of a spouse
falls significantly below n'/2. Here is the precise statement.

THEOREM 6.3. Define A(A) = max((A), B(H)), that is, S (A ) is the
largest rank of a spouse in a stable matching #.

(a) For every b > 0 and ¢ < b,
(6.28) P(/(elg,) <(3+0b5)n'?logn)=21-0(n"°).

(b) For each ¢ € (0,1) and o < min(e, 3),

(6.29) P(m}n/(./) > (1-€)n¥2logn) = 1 - O(exp(~n)).

Proor. (a) Let A; (Ay) be the event that in .#; there is a pair (m;, w;)
such that Y;; > A (X i; = A, respectively); A = (7 + b)log n/n'/%. By symme-
try, P(A;) —P(As) If we show that, for every b >0, P(A;) = 0(n"°),
V ¢ < b, then the bound (6.28) will follow via the Chernoff estimates, in a
manner we have seen twice before.
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Using the bound (5.17), we can write

P(A;) <nn!f inf{®(¢,m,%,5): £, € (0,1]} dxdy + O(n™%),
(6.30) C(a)
Ya>0,

where ® is as defined in (4.9),
(6.31) k=1=(14+n")n%2 o€ (0, i),

and C(A) is the part of C on which y, > A. The intuition behind (6.30) is that
with very high probability R(.#,) and Q(.#,) are both at most (1 + n“’)n3/ 2
and under this condition it should be unlikely that, for (m;, w; ) € A, Y, ;i

considerably larger than n~'/2. To bound sharply the integral i in (6.30), we set

1, ifs<¢, n—-1-t, ;

) 3< I

(6.32) é=é(s)=(4 s>t n=n(s)={n—-1-s 2
s’ =D 1, s = t,,

where t, = k/n, t, = n?/1. [As it should be, £(s), n(s) € (0, 1] for each s.] By
the condition (6.31), ¢, > ¢,. Thus, in a nice contrast with ¢ *(s), n*(s) (see
the proof of Theorem 4.1), there is no need for a breakup point between ¢,
and ¢;.

Appealing to (4.17), we have [cf. (4.18)]

D(&,m,x,y) <€ Fnlexpls(n — 1)(§-1) — L s;(£,m)5),
J

where
si(é,m) =s(&m) — (E+1 — Dx;,
and
s(é,m)=sé6—(n—1-s)(n—1).
In particular,
ty, s <y,
(6.33) s(&,m) ={s, ty <s <ty
ty, § =1y

that is, s(£, n) is of order precisely n'/2, uniformly over 0 < s < n. Besides,
since ¢, n, x; € [0, 1],

s;(€,m) =s(&,m) +0(1).
Using inequality (5.6) and
exp(—s(£,7)A)
s(§m) 7

[ ‘exp(~s,(¢,m)y) dy = (1 + o(1))
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we obtain
P(A,) = o(nzf"e%)ds).
0
Here
Gy(s) = (n —k)logé+ (n —1)logn +s(n—1)(¢£—-1)

— nlogs(&,m) —s(§,m)A+ (n — 1)logs.
It can be checked easily, via (6.31)-(6.33), that

2 [1_Go(s) 2 t2e_SA
nfe2 ds=0nf———ds
ty S

= O(n—(b+o-—1/4)),
nzftze%‘s) ds = O(n2e%2(2)
0
= O(n—(b+1/4))

n
nzf ef%9 ds = O(n=®+1/2),
t

1

Thus,
P(A;) = O(n~®to-1/9), Vo<i,
that is,
P(A;)=0(n"°), Ve<b.

The proof of (6.28) is complete.
(a) To prove (6.29), introduce the event A, that for some stable matching
# and every pair (m;, w;) in it,

X, <4, Y, <A,

ij = ij

where

A1 = (1 81) 1/2 ’ €1 = (0’5)'

Then (cf. Step 1 in the proof of Theorem 6.1),

P(Ag) sn!f  TI(1-xy,)dsdy

%5,y <01 i#]

= n'Az"f — Mx;y;) dxdy

Cl#}

1<i<n

—O(n[ '(1 - exp(- sA)) (max./<s )ds).

Fix A € (1 - ¢,)% 1) and break up the interval [0,n] into [0,¢] and [z, 7],
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where ¢ = n/(A log n). Then, dropping the probability P(max, _; _, -Z; < s~ 1Y),
[ =0(t(1 - exp(—42))" ") = O(exp(~n™)), Vi <1=(1=2)%/A.

0

Also, using the bound (6.10) for this probability at s =¢ and dropping
(1 — exp(—s A%))",

n n-—t
f = O( p exp(—n”2)), Vi, <1l-—A.
t

For A = 1 — ¢, the bounds of u; and u, are both equal to &;, and we conclude
that
(6.34) P(Ay) = O(exp(—n")), Vvy<e,.
Furthermore, denoting the event in (6.29) by A,,, we have
(6.35) P(AS) <P(Ag) + P(ASAY).

We can see that on the event A§A{, there is a row in X, or a column in Y,
such that the total number of entries in this row (column) which do not exceed
A, is at most (1 — £)n'/? log n. Sure enough, the Chernoff bound (6.13) shows
then that

(6.36)  P(A345,) = O(exp(—pn'/?logn)),  p <p(eye),

where

p(sl,s)=£—81+(1—s)log1 >0,

1
for £, < €. Hence,
P(A3) = O(exp(—n”)), Vo <min(s,3).
The proof of (6.29) and thus of Theorem 6.3 is complete. O
Note 1. This result shows that whp min , /(.#) is sandwiched between
(1 — &)n*?logn and (§ + e)n'/?log n. Forced to make a guess, we would

conjecture that, out of these bounds, the upper bound is sharper. (See the Note
added in proof at the end of the text.)

Note 2. How small is the smallest rank of a spouse in a stable matching?
Let K, be the total number of perfect matches, that is, the pairs (m;, w j) such
that m; and w; are the first choice partners for each other. Obviously, for
every such pair, m; and w; must be matched in every stable matching. It is
clear that the rth factorial moment of K, is given by

E(K:%) = (nr)z/nzr, r>1,

where a® =;; a(a — 1) ---(a — b + 1). Therefore E(K%) - 1 as n — «, for
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each r > 1, and consequently
e
P(Kn=r)—)__‘_v 7'20,
r:

that is, K, is asymptotically Poisson with parameter 1. In particular, with the
limiting probability greater than or equal to 1 — e~ !, the smallest rank of a
spouse (in every stable matching) is 1. In fact, this limiting probability equals
1. Here is how it can be proven. Denote by T, the total number of women
whose husbands in the male-optimal stable matching .#; happen to be their
best choices. In the notation of Section 2, let V,,(w;) stand for the total
number of proposals received by the woman w; in the first phase of the
proposal algorithm (i.e., the McVitie~Wilson algorithm). Conditioned on the
values of V,(w)), 1 <j < n, the events &/, = {w,’s husband in .#; has rank
1} are independent, with the conditional probabilities P(27| - ) given by

[Vt 1) vt )

an( wj

n

P(a4) )

We proved in [21] that ¥ ;V,,(w;) the running time of the first phase whp
satisfies

(6.37) Z V,1(w;) = n(log n + O(loglog n)).

It is not difficult to show, using (6.37), that whp
(6.38) maxV, ,(w;) <elogn.
J

But if V,(w;), 1 <j <n, satisfy (6.37) and (6.38) then the conditional
distribution of T, (the sum of set indicators for the events 7)) is asymptoti-
cally normal with mean and variance both equal to log n + O(loglog n).
Since loglog n = o(log'/? n), we obtain that, unconditionally, (T, — log n)/
log!/? n = #10, 1). In particular, P(T, > 0) > 1 as n — .

An interesting open problem is the determination of the likely range of T,
the total number of women each of whom has precisely one stable husband. Of
course, T, > T, and the question is how large T, — T, is typically.

7. Three corollaries. Let us have a closer look at the first phase of the
probabilistic algorithm described in the proof of Theorem 2.1. Following
Wilson [23], let us slightly modify the algorithm. Each man who is asked to
propose proposes to a woman chosen uniformly at random among all women,
including those who have rejected him earlier. If a man does make a repeated
proposal to a woman, then his proposal is rejected, which is natural since at
this time the woman certainly holds a better proposal. Knuth [17] called these
two categories of proposals nonredundant and redundant, respectively, and he
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interpreted the men’s behavior in terms of ‘“‘amnesia,” that is, inability of the
men to keep records of their past proposals. Deleting the redundant proposals,
we obtain a sequence of (nonredundant) proposals, which has exactly the same
distribution as the sequence generated by the work of the original algorithm.
In particular, N =, Q(.#,), where N is the total number of nonredundant
proposals and Q(.#)) is the total wives’ rank in the stable matching .#;.
Further, if two consecutive nonredundant proposals P,_; and P,, 2 <s <
Q(.#,), are separated by a run of r, redundant proposals, then all of the latter
are by a man m who makes the proposal P,. Let the number of different
women whom the man m has asked by the moment immediately after the
proposal P,_, be equal to k. Then, conditioned on the state of the process at
this moment,

P(r,=jl")=pg¢’, j=0,
where

p=1—-Fk/n, g=1-p.
Introduce p, the total number of redundant proposals; clearly,

QA
(7.1) p= 2 T
s=1

Define also p; and p,; as the total number of redundant proposals made by the
man m; by the end of the process and between his (j — 1)th and jth
nonredundant proposals, respectively. Like r,, p,; is geometrically distributed
with parameter p = 1 — (j — 1)/n. Rearranging terms in (7.1), we have
n Qz(/l)

(7-2) p= Z Z Pijs

i=1 j=2
where @,(.#)) is the total number of nonredundant proposals by the man m;,
in other words, the rank of his wife in .#].

Wilson observed that in the extended sequence of proposals each proposal is
made to a woman selected uniformly at random, regardless of who proposes.
Therefore, N + p =, D, where D is the total number of draws in a classic
coupon-collector problem, whence the upper bound

E(Q(#,)) = E(N) < E(D) = nH,.

[In fact, our upper bound (5.15) for Q(.#;) and R(.#,) is based on N < D and
an inequality

(7.3) P(D,<(1+a)nlogn)=1-n"%
see [22].]

Knuth [17] found a better bound,
(7.4) E(Q(4) < (n - DH, + 1,

by considering a case of partial amnesia, when a rejected man proposes to a
woman selected among all women except the one who has just rejected him.
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Knuth also was able to show that
E(p) = O(log* n),
thereby establishing a lower bound,
E(Q(41)) > nH, ~ O(log* n). (!

The following is a sharper lower bound based on Theorem 6.1 of this paper.

COROLLARY 7.1.

(7.5) E(Q(#,)) = nH, — (2 + o(1))log® n.
Proor. The proof follows from two observations. First, by (7.1),
E(plQ(4) = 1, 2= maxQ,(41) ~ k) <1E(r(R)) _ R
P ! ’ i et - 1—-k/n’

where r(k) is geometrically distributed with parameter p = 1 — k/n. Second,
according to (5.15) and (6.3), for every ¢ > 0,

P(Q(#) <(1+¢)nlogn)=1-n"%,
P(2<(2+¢&)og’n)=1-n"%, Ve >e.
Then, since Q(.#,)2 < n? always,
E(p) <(1+o(1))nlogn(n '2log?n)
= (1+o0(1))2log®n. ]

(7.6)

Curiously, the identity (7.2) is useful, too. We have
wWE _(G-n/n

)»

o) = nk Jj=2 1-(-1/n

1

) > EE(Q1(/1)(Q1(“/1) - 1))
1

> (E + 0(1))E2(Q1(/1))

1
= (E + o(l))log2 n,
whence
(7.7) E(Q(.#,)) <nH, — (% + o(1))log2 n,

which improves Knuth’s bound (7.4).

Notice that, by (7.5) and the formula for E(p), E(p) is actually asymptotic
to E(Q¥(.#,)). Is log? n a correct order of E(Q?(.#,)) and thus of E(p)? After
all, E(Q,(.#,)) ~ log n, and it would seem plausible that the likely values of
Q(#,) are essentially of logarithmic order. However, E(max; @,(.#))) is of
order log? n, so we are inclined toward E(p) being of order (loglog n)log? n,
say. It would be very interesting to resolve the question one way or another.
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Turn now to a lower bound problem for S, (the total number of stable
matchlngs) By Theorem 6.1, the largest rank of a husband in .#, is q.s. of
order log? n. However, most of the husbands in 4, q.s. have ranks at least
log? n, say. Here is a proof.

Let V,(w;) stand for the total number of the nonredundant proposals made
to the woman w;. Suppose a > & > 0. On the event {D < (1 + a')n log n},

V.a(w;) is stochastlca.lly dominated by Bin(v, p), with v = (1 + a')n log n and
p = n~ . So, using (7.3) and Chernoff’s bound,

P(maxvnl(wj) 2 (1 + a)log n) = O(n(n—a' + n—a”)),

+a
- +d —a.
a

1
a" = (1+ a)log 1

Selecting @' < a so as to equate o’ and a’, we get

(7.8) P(maanl(wj) > (1+ a)logn) - 0(n"?),
J
where
(7.9) b=(1+a)exp(—1+a)—22(1+a)e'1—2,

that is, b is positive for a > 2e — 1. Further, given the values v; =V,;, the
random variables R;(.#)), 1 <j < n (the ranks of the husbands in .#,), are
independent, and [see (2.2) and (2.3)]

cacarcvenrer- )

J

<v;(log®n)/(n - v;)
that is, at most (2 + a)log* n)/n if
(7.10) maxv; < (1 + a)logn.
J

Thus, in the standard way,
W =4 {wj: R;(#;) < log® n}[ < (3 +a)log*n

with the conditional probability greater than or equal to 1 — exp(—c(a)log* n),
c(a) > 0, uniformly over {v;: 1 <j < n} satisfying (7.10). Hence, the uncondi-
tional probability of the event {W < (8 + a)log* n} is at least 1 — O(n %) [see
(7.8) and (7.9)], which ends the proof.

Consequently, with probability greater than or equal to 1 — O(n~?), the
rotations in a chain of stable matchings, which connects .#; and .#,, must
overall involve at least n — (3 + a)log® n women; [see (7.9) for b]. On the
other hand (Theorem 5.1), with probability greater than or equal to 1 —
O(rn™*), no rotation may involve more than ((1 + a)n log n)'/? women. Com-
bination of these statements produces the following result.
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CorOLLARY 7.2. For every a > 0,

n
P(Snzv(l—_{_a)—l'o—é—n)Z].—O(n_al), Va <a.

(8, is at least as large as the length of a chain between .#; and .#,.)

Our next (and last) statement concerns a constrained stable matching
problem. It is assumed that for each man m; there is a set W, of women he
may propose to. In this case, a stable matching does not always exist. Still,
whenever a stable matching exists, the McVitie—-Wilson algorithm will find a
(male-optimal) stable matching.

Suppose that |W;| = --- = |W,| = k. We postulate that the random in-
stance of ranking is obtained as follows. Each man m; chooses, independently
of other men and uniformly at random, an ordered sequence W, = (w; , ..., w;,)
of k& women, and each woman w; ranks, uniformly at random all the men m;
such that w; € W,. Appealing to the principle of deferred decisions, we can
avoid generating the full ranking system in advance, unfolding it instead via
the steps of the probabilistic proposal algorithm. Thus, the algorithm will
result in a (male-optimal) stable matching iff each of n women receives a
proposal before one of the men gets & rejections.

Compared to n, how large must % be to guarantee that, with high probabil-
ity as n — , the random instance has (does not have) a stable matching? In
the light of the preceding discussion, the answer is contained in Theorem 6.1.

CoroLLARY 7.3. (a) If k < (1 — &)log?n, £ € (0, 1), then no stable match-
ing exists with probability greater than or equal to 1 — exp(—clog®n),
VY ¢ < c(e).

() Ifk > (2 + a)log? n, a > 0, then a stable matching exists with probabil-
ityl —0(n™°),V ¢ <cla).

[See (6.2) and (6.4) for c(e) and c(a).]

Thus, in the random graphs terminology (see Erdos and Rényi [6], Bollobas
[1] and Palmer [21]), k(n) = log? n is a threshold function for existence of a
stable matching. In contrast, for a complete matching property in a random
bipartite graph G = (V, E), V = (V,, V), [V}| = |[V,| = n,deg(v) =k, YV v € V),
the (sharp) threshold function is log n ([6], [1].

APPENDIX

Let .Z™,..., Z™ be the lengths of consecutive subintervals obtained by
selecting uniformly at random (n — 1) points in the interval [0, 1].

ProposiTioN A.1. Ifx; €[0,1], 1 <i < n, are such that £7_,x; > 1, then

n n—1
(A1) P(AW<xy,..., 5" <x,) < (Z x; — 1) .

i=1
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Proor. By induction on n. For n = 2, the inequality (A.1) holds as equal-
ity since

P(L® <x,, 5P <x, f dx = x5+ x; — 1.
1-

—X

Suppose that (A.1) is true for n = m. Since the joint density of

Lmr L ZmED equals m!, we have
P(Lm D <xy,..., L <x,, L0V <x,,1)
m
=m! d oo d =1- )
(A.2) Go<x,: l<i<m+1) 1 I (ym+1 Elyl)

£31
= mf P(L™ <x9,..0, L) <%y, L <K, 1 + 1) dyy,
x
where

m+1
x = max(O,l - xi).
i=2

By the induction hypothesis, the quantity in the last line of (A.2) is at most
m+1 m—1 m+1 m
f(Zx-i—yl—l) dxs(in—l). ]
i=1

CoroLLARY. For every x > n™ 1,

P( max £, <x) < (nx—-1)""

l<i<n

ProposiTION A.2. For ¢ € (0,1),

lo
P( max £ < (1 —¢)

l<i<n

2L ) - oen(-n7), Vo e (0,0,

The proof is very much similar to the second part of the proof of Lemma 2
in Pittel [22]. A key point is the well-known fact that

: W; :
(LM:1<isnl=g{5—:1<i<n},
=1We
where W,...,W, are ii.d. random variables with the distribution function

Note. Devroye [3] (see also [4]) was able to find sharp asymptotic bounds
of the preceding probability for smaller deviations, when ¢ — 0 but ¢logn —
o, in a more general case of the kth longest subinterval. Devroye used these
bounds to investigate, rather thoroughly, the almost-sure behavior of this
random variable for n — .
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Note added in proof. Recently while studying a nonbipartite stable match-
ing problem [B. Pittel (1992), On a random instance of the “‘stable roommates”
problem, I, II, unpublished] we have found a way to close the gap in these
bounds. It turns out that whp 2(.#,), #(.#,) are asymptotic to log? n, and
2(4), R(A;) are asymptotic to n'/?logn, i = 3,4. (#, is the minimum-
regret stable matching.) The proof shows also that the total spouse ranks of
#3; and #, are, indeed, close to each other, with superpolynomially high
probability.
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