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SERVICE TIMES
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Consider a ring on which a server travels at constant speed. Customers
arrive on the ring according to a Poisson process, at locations indepen-
dently and uniformly distributed over the circle. Whenever the server
encounters a customer, he stops and serves the client according to a general
service time distribution. After the service is completed, the server removes
the customer from the ring and resumes his round.

The model is analyzed by means of point processes and regenerative
processes in combination with some stochastic integration theory. This
approach clarifies the analysis of the continuous polling model and provides
the means for further generalizations.

For every time ¢, the locations of customers that are waiting for service

_and the positions of clients that have been served during the last tour of
the server are represented by random counting measures. These measures
converge in distribution as ¢ — «. A recursive expression for the Laplace
functionals of the limiting random measures is found, from which the
corresponding kth moment measures can be derived.

1. Introduction. Queuing systems in which clients are served in a cer-
tain cyclic order are usually referred to as cyclic service systems or polling
systems. Over the last few years a wide variety of cyclic service models has
found application in telecommunication and reliability. Usually such polling
systems are formulated in discrete time; see, for example [6], [12] and [14].
Although a discrete setting of the problem provides a rigorous basis for
analysis, on the other hand, it often severely obscures the analysis due to
combinatorial difficulties. Moreover, results obtained in this way are usually
hard to generalize.

In [3] and [9] it was recognized that some discrete models could be fruitfully
approximated by their continuous counterparts. The results for the continuous
models are usually much more transparent. However, the existing theory on
continuous models seems to lack a rigorous mathematical basis, which forms
an obstacle for generalizations and further development of the theory. In this
paper we generalize the continuous polling model of [3] and [9], using a new
approach which makes use of random measure theory and some basic stochas-
tic integration theory. This provides a convenient, clarifying and general way
to describe such queuing models and leads to several new results. The main
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POLLING SYSTEM WITH GENERAL SERVICE TIMES 907

results are Theorems 3.3 and 4.1. Given the abundance of different polling
models, we remark that our model deals with variants of the zero-buffer case
(see, e.g., [14]).

2. The model. Throughout this paper (Q, 5#, P) denotes the probability
space in the background. For any topological space E, Z(E) denotes either the
Borel o-algebra on E or the set of nonnegative measurable functions on E.
The indicator function corresponding to a set A is written as I,. The Lebesgue
measure of a Borel set A of R™ (m € N) is denoted by I(A). We will frequently
write u f for the integral of a function f with respect to a (random) measure
. For basic definitions and results on stochastic integration, random mea-
sures and point processes, we refer to the Appendix.

Let C be a circle with circumference one. Starting from an empty system,
customers arrive according to a Poisson process with intensity a and drop
independently of each other on the circle, according to a uniform distribution.
A server moves on C with constant speed a~! and stops to serve a customer
whenever he encounters one on his way. The consecutive service times are
i.i.d. random variables with distribution function (d.f.) F and ith moment e;,
i=1,2,.... When a service has been completed, the server resumes his
journey without changing direction. We assume that the service times are
independent of the arrival process and the locations of the clients on C. For
convenience we fix an origin O on C and assume that the server is in O at
time ¢ = 0. We denote by W, the random counting measure on [0, 1) corre-
sponding to the customers that are waiting on C at time #, relative to the
location of the server. Specifically (see Figure 1), if for a realization v € Q, the
server is in s at time ¢, and if n denotes the number of customers on the circle
at that time, at locations p,,..., p, (for n > 1), then Wy(w, - ) is defined by

ZIA°vi’ if n > 1,

Wyw, A) = { for all A € 2[0,1),
0, if n =0,
0
Pn
Wt (w)
a i—.—. * —— L) L) ‘{
0 v : v 1
pl 1 n
P2

o
FiG. 1. The random measure W, represents the positions of customers that are waiting for service,
relative to the position of the server, at time t (> 0).
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where

v, = P s Tfplzs, i=1,...,n,forn > 1.
1-(s—-p;), ifp;<s,

Denote by 7; the starting time of the ith service and let Z; be its duration,
i=1,2,....Furthermore, let U; be the time that the first service commences
and denote the time between service completion of the (i — 1)th and the start
of the ith service by U,, i = 2,3, ... . Finally, let T; be the arrival time of the
ith customer, and let S; =U; + --- +U,,i=2,8,... and S, = Uj;.

Since in the definition of W,, we regard the locations of the customers on C
relative to the location of the server, it is more convenient to view the polling
system from the point of view of the server, as is done in Figure 2. Now the
location of the server is fixed at 0, while the circle rotates with constant speed
o, provided that the server is not busy. For every ¢, the atoms of W, are the
locations of the customers on the circle at time ¢.

By continuing the customer paths below the X-axis in the same way as
above the X-axis (see Figure 2), we construct a random counting measure H,
on (0, 1], whose atoms are formed by the y-coordinates of the intersections of
the customer paths and the line x = ¢. This measure describes the relative
locations of the customers that have been served during the last tour of the
server.

In the next section, we show that the stochastic process (W,, H,) is regener-
ative, and that the Laplace functionals of W, and H, can be analyzed more
easily after applying a random time change. In order to accomplish this we
define the “clock process” A, as follows: For any realization (U, (w), Z,(w)), let

| N
BN

2 H (@)

(¢}

Fic. 2. From the point of view of the server, customers arrive according to a homogeneous
Poisson random measure on R, X[0, 1) with intensity a, and move towards 0 with constant speed
a" 1 unless the server is busy. Whenever a customer reaches the origin, all customers stop moving
for a certain service period. After the service has been completed, the customer at the origin is
removed and the other customers resume their journeys. The atoms of W w) and H(w) are given
by (®) and (m), respectively.
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0

Fic. 3. First generation particles are born via a Poisson random measure (*). Whenever a
particle hits the X-axis new particles can be born (e).

B = B(w) denote the set of times that the server is busy, and let
A(w) = [‘dalg(x), t=0.
0

That is, we stop our clock when the server is busy. Let (v,) be the right-con-
tinuous functional inverse of (A,) and define

Q =W, and M,=H,, t>0.

Ve

Obviously, @, and M, are again random counting measures on [0, 1) and
(0, 1], respectively. In the next section we show that, for ¢ - », @, can be
interpreted as the random measure of the locations of customers (relative to
the server) on the circle at the new time ¢ given that the server is not busy. A
similar interpretation holds for M,. A typical realization of @, and M, is
constructed from Figure 2 by first cutting away the customer paths on B and
afterwards squeezing the remaining parts together. This leads to another way
of looking at M, and @,, namely through the following particle system (see
Figure 3).

Particles emerge in R, X[0,1) in two ways. The first way is through a
homogeneous Poisson random measure on R, X[0, 1) with intensity a. We call
these particles first generation particles. Immediately after their birth, all
particles move downwards in a straight line with slope —a™!. A second type of
birth occurs when a particle hits the X-axis. It then has the possibility to
generate a number of new particles. Specifically, if the parent particle hits the
X-axis at x, new points can be born at locations (x, ¢)),...,(x, éy), where
£, €&y, ... are iid. r.v.’s, uniformly distributed over [0,1) and P(N =n) =
E exp(—aZ)aZ)"/n!, n € N. Here Z is a random variable with d.f. F. At time
t, the atoms of @, are formed by the locations of the particles at time ¢ in the
interval [0, 1) above the X-axis and similarly for M, below the X-axis.

In the context of our polling system (of Figure 2), the first type of birth of a
particle corresponds to the arrival of customers when the server is not busy



910 D. P. KROESE AND V. SCHMIDT

serving. The second way that particles are born corresponds to the arrival of
customers when the server is busy serving. During a service period of length z,
the number of clients N that arrive has a Poisson distribution with pa-
rameter az.

Note that by the definition of v,, the times that particles hit the X-axis in
the particle system of Figure 3 are distributed as the times S;, S,,... of the
original polling system. These points form the atoms of a Poisson cluster
process PCP (cf. the Appendix). The cluster centers are the times that first
generation particles hit the X-axis. The cluster belonging to a particular center
is formed by the times that the descendants of the corresponding first genera-
tion particle hit the X-axis.

In the following sections, considering the processes (W,), (H,), (®,) and
(M,), we are concerned with the stochastic behavior of the customer positions
on the circle. The investigation of customer waiting times, which is of equal
interest, could be the subject of future research. For partial results on this
subject we refer to [3].

3. Processes (W,), (Q,), (H,) and (M,). In this section we show that
the processes (W,), (H,), (Q,) and (M,) are regenerative when the traffic
intensity ae, < 1. Hence, they converge in distribution to limiting random
measures W, H, @ and M, respectively. An intuitive interpretation of @ and
M is given, and the connection between the Laplace functionals of W and @
(H and M) is established as a kind of stochastic decomposition result. This
result is proved using some basic techniques from stochastic integration
theory.

TueoreM 3.1. If ae, <1, then (@, M,) and (W,, H,) are regenerative
processes, the regeneration cycles of which have an absolutely continuous
distribution and finite expectation.

Proor. Denote the cluster centers of PCP (see previous section) by (X,,)
and let L, be the length of the ith cluster. Obviously, L; is independent of
(X,) and (L,,n # i). Moreover, because ae; < 1, the expected cluster length
EL, is finite. This follows from the fact that in this case the total number of
descendants produced by a single first generation particle (see Figure 3) is
finite and that the distance on the X-axis between two consecutive particles of
the same generation does not exceed a. As regeneration epochs of (Q,, M,), we
take the arrival times of those first generation particles that arrive after
intervals of length greater than -or equal to « during which @, is the zero
measure. The time Y between two such consecutive regeneration times has
the same distribution as the time between two consecutive beginnings of busy
periods in an M/GI /% queue [with arrival intensity a and service times (L;)]
. which follow after an idle period of length a. Hence the regeneration cycle Y of
(Q,, M,) has an absolutely continuous distribution and finite expectation; see,
for example, Theorem 2.2 of [10]. The process (W,, H,) has a similar cluster
structure as (Q,, M,). From Wald’s lemma, we infer that the expected cluster
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length is again finite. Thus, using analogous arguments as for (@,, M,), we can
show that (W,, H,) is regenerative and that the regeneration cycles have an
absolutely continuous distribution and finite expectation. O

Using Theorem 3.1 and the key renewal theorem (cf. Theorem 9.2.8 of [2]),
we get the existence of limiting random counting measures M, @, W and H
such that

M, -, M, Q —yQ
and .

W, =o W, H,—5, H
as ¢t » o, where —, denotes convergence in distribution. The next theorem
gives an interpretation of the limit random measure @ as the random measure
of locations (relative to the server) of customers that are waiting, in the
stationary situation, given that the server is not busy. Furthermore, a similar
interpretation for M is given.

THEOREM 3.2. For any f € #[0,1) and g € #(0, 1],. we have
lim E(e""/|[W{0} = 0) = Ee~®f
t— o0

and
lim E(e‘H'gIW,{O} = 0) = Ee Mz,

t— o
Proor. Let Y and Y’ denote the length of the first regeneration cycle of
(Q,, M,) and (W,, H,), respectively. Note that since the system starts empty, we
can take T, as the first regeneration time for both processes. Since Y’ is also

the length of the first regeneration cycle of (exp{— W, ),y 0,-0)); We get from
the key renewal theorem,

_ ~ 1 T,+Y" _
th—l»]:: E(e W'fI(W,(0)=0)) - E};EITI dse WSfI(Ws(0)=0)
1 Ty +Y EY
= dse @l = Ee™@f,
Similarly, we get
) EY
(3.1) th_{T:o Elw -0y = EY"’

and the first part of the theorem follows. The second part is proved analo-
gously. O

o

 COROLLARY 3.1. The limiting probability of being idle is given by
lim P(W,{0} = 0) =1 — ae;.
t—o0



912 D. P. KROESE AND V. SCHMIDT

Proor. Let Y and Y’ be defined as in the proof of Theorem 3.2 and let
A, =T —T,_,i=23,... denote the interarrival times of customers. Let K
denote the number of customers served during [T}, T; + Y’). Obviously, K + 1
is the first regeneration time for the regenerative process (A;). Hence by the
key renewal theorem, we have a ™! = E(A, + -+ +Ag,,)/EK = EY'/EK and
similarly, e, = E(Z, + -+ +Zy)/EK = (EY' — EY)/EK. The theorem there-
fore follows from (3.1). O

Motivated by Theorem 3.2, we define measures @° and M° by
lim E(e*"/|W{0) = 1) = Ee~f
and
lim E(e H8|W{0} = 1) = Ee ™",

which means that we can view Q° as the random measures corresponding to
customers that are waiting to be served (in the stationary situation), given
that the server is busy. A similar interpretation (in terms of customers that
have been served during the last cycle) holds for M °. The next theorem shows
how the Laplace functionals of @° and M ° can be determined from those of @
and M, respectively. Note that this theorem can be considered a generalization
of the stochastic decomposition result of [8], Proposition 3 (called 5).

THEOREM 3.3. For all continuously-differentiable functions f on [0, 1), we
have

= (1 - ae,)Ee % (a™'Qf" - B)
BL(B)
1 - Lg(B)

and for all continuously-differentiable functions f on (0,1], with f(0+) =0,
the following holds:

(3.2)

+ ae,Ee~f[(ef® - 1) Bl,

BLF(B) Ee_MOf’
1-Lg(B)
where B = af} dx(1 — e™ ™) and Ly is the Laplace-Stieltjes transform of F.

(3.3) 0= (1-ae)a Ee™MMf' + ae,(e "™ - 1)

In order to prove Theorem 3.3 we need some preliminaries. Let f € C}[0,1)
(the set of positive, continuously-differentiable functions on [0, 1)), and con-
sider the stochastic process (W, f), starting at 0. Upward jumps occur via a
Poisson process with rate a on R,. The size f(¢) of a jump is independent of
everything else, where ¢ is uniformly distributed on [0, 1). Downward jumps
‘have size f(0). Let (A,) denote the arrival counting process and (D,) the
" departure counting process. Let (A,) be the compound Poisson process
that jumps at arrival times (T}), with jump sizes (f(¢;)), where the §&’s
are uniformly distributed on [0,1) and independent of everything else. Let
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W, £ (w) - \
\ } £(0)

0 T, B T, B T, B t >

Fic. 4. A realization of (W,f). For every w, B(w) denotes the set of times where the server is
busy. Upward jumps correspond to arrivals of customers and have size f(¢,), where (¢;) isani.i.d.
sequence of uniformly distributed r.v.’s on [0,1). Downward jumps correspond to departures of
customers and have size f(0).

(C) =W, f— Ly, -,AW, f) denote the continuous part of (W, f). Finally, let
B = B(w) denote the set of times that the server is busy, that is, B(w) =
{t > 0: W(w,{0})) = 1}. A typical realization of (W,f) is given in Figure 4.
For all ¢+ > 0,

(3.4) W,f=C, - D,f(0) + 4,
LemMmA 3.1.  Let (C,) be the continuous part of (W, f) and let (D(¢)) be the

compensator of (D,), w.r.t. the filtration generated by (W,). Then almost
surely,

d
(3.5) = Ce =~ Is(O)W.f"
and
t dF(S - Ti)
(3.6) D(t) = fOIB(S)Zi:I(TiSSqm)m-

Proor. First observe that C(w) is constant on B(w). Next, suppose that
[W{w)| > 0 on B(w). Let x,,...,x, be the atoms of W,(w); then

Wi(w)f= X f(x),
i=1
and, for sufficiently small & > 0,
U W@ f= X f(xi—a7h) = T f(x) —hat ¥ f(x) + o(h)
i=1 i=1 i=1

= W,(w) f ~ ha "W,(w) f' + o(h).
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Therefore,

W, - W, —
lim et =Wl e on B
R10 h
This is valid if [W(w)l > 0, but trivially also for |W(w)| = 0, so that (3.5)
follows. As for the second part: (3.6) is a direct consequence of a well-known
result in the theory of point processes (see, e.g., Theorem 13.2 III in [5]). O

Proor oF THEOREM 3.3. We only prove the first part of the theorem. The
second part is proved analogously. Throughout the proof, stochastic intensi-
ties, compensators, and so on, are always w.r.t. the filtration generated by
(W,). By (3.4) and Theorem A.2, we have

(3.7) e Wif = g=Wof — fe'stdCs + ) [eWf—e W S],
0

0<s<t

Now

Z [e_wsf — e_Ws—f]
O<s<t
(3.8) ®
= ¥ (e M€ — 1)e~Wrtf (T)) + (e® — 1)[ “WfdD,,
i=1

where ¢; is the distance that the server has to travel before he can serve the
ith customer, i = 1,2... . Note that ¢, is independent of T; and WT _, and is
uniformly dlstrlbuted on [0,1). Taking expectations on both sides of (3.7)
yields by (3.8), Lemma 3.1 and Theorem A.3 and the fact that the stochastic
intensity of (4,) is a,

Ee~Wif — 1+a—1j ds Ee™":/I5(s)W, f'+a] dx(e @ — 1)] ds Ee"sf

(3.9) dF(
s — 1)
+(ef® — NVE [fe~Wert] T e
(e ) foe B(S)§I{7i53<7”1)1 - F(s—-1)

If we subtract 1 from both sides of (8.9), divide by ¢ and let ¢ — %, we obtain

1
(3.10) lim 7E(e‘wtf— 1)
t— o0
1
(3.11) = lim —fotdsEe'stIE(s)(a'le f' - B)

1

+ lim B Ote‘Ws-fIB(s)
3.12

(3.12) o dF(s =)

" (e - )Z {T,SS<T,+1)1 F(S _Tz) B

Slnce Ee " _1is bounded, (3.10) vanlshes Let Y, Y’ and K be defined as
in the proof of Corollary 3.1. Observe that the processes (e ~%/I5 ()W, f') and
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(e™Ws/I5(s)) are regenerative. Therefore, by the well-known time-average
properties of regenerative processes (cf. Theorem V.3.1 of [1]) and Corollary
3.1, (3.11) becomes

1
EY’

EfTY’+T1dSe_wstE(s)(a—lvvs f - ﬁ)
(3.13) _fr 1 fY+Tl
EY' EY

(1 — aey) Ee % (a™'Qf" — B).
Analogously, (3.12) equals

dse %/ (a™'Q, f' — B)

(3.14) : Effz" el (70 - 1)
. —_— e T+ —
EY' "~ ¢

1-F(s)
Note that W, is distributed as W, + R,(s), where R,(s) is the random
measure of customers that arrive durlng (r;,7;+sl,i=1,2,... . The R/ s are
independent of the corresponding W, and have Laplace functlonal Ee™ B()f =

e 8 s > 0. Define two regenerative processes (X,) and (X,) by

dF(s) s _ BLp(B) (z,, 4
R L

dF(s) B dsB).

l

X = fZi e~ Woasf
0

1=1,2,....
It is easy to see that EX; = EXi, i=1,2,.... Moreover, K + 1 is a regenera-
tion time for both (X;) and (X,). Hence, by the key renewal theorem, we have

1 1K
“_EY X, - lim EX, = lim EX, = —E Y X,
EK Z v o " XX

_ 1 BLg(B)
"~ EK1-Lg(B)

Therefore (3.2) follows from (3.13)-(3.15) and Corollary 3.1. O

(3.15)
(EY' — EY)Ee @1,

4. The Laplace functionals of @ and M. In the previous section we
have seen that the laws of W and H are completely specified by those of @
and M, respectively. It therefore suffices to focus on the distributions of these
random measures. In this section, we derive an expression for the Laplace
functionals of @ and M, from which several characterlstlcs of these measures
can be found.

As is explained in Section 2, we can construct the measures @, and M, from
the particle system of Figure 3. Note that, there, the initial locations of all
particles form a two-dimensional cluster process N, say, in R, X[0,1). The
cluster centers (the first generation particles) form a homogeneous Poisson
random measure on R, X[0, 1) with intensity a. Now for any f € %[0, 1) and
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0 L i
S t_)

F16. 5. The points ® form the atoms of a realization of the cluster L(s,x). The atoms are
constructed as in the particle system of Figure 3.

g € #(0,1], we have Q, f = Nf, and M,g = Ng,, where
fi(s,x) =f(x—a (¢ - $)) o, o(a™'(¢ — 5))
and
g(s,x) =g(x+1—a (¢t —8)), ,.i(a”(t—5)).
In particular,
(4.1) Ee 9f = lim Ee ™t and Ee M = lim Ee V&,

t— oo t— o0

which is well defined by Theorem 3.1. The distributions of @ and M are
therefore determined by the Laplace functional of N, for which the following
result holds:

LEMMA 4.1. For an initial ( first generation) point (s,x) € R, X[0,1) of
the cluster process of Figure 3, let L(s, x) denote the random counting measure
on R, X[0,1) generated by this point (see Figure 5). Let

G(s,x) = Be X 9f qnd H(s) = foldx Gy (s, %).

Then for every f € B(R, X[0, 1)),

(4.2) Ee ™ = exp — afwds(l — Hy(s))
0

and

(4.3) Gy(s,x) = e "OG(Hp(ax + s)),

where

(4.4) G(z) = Ee *d 2% ze][0,1],

X being a random variable with d.f. F.

. PROOF. See Figure 5 for an illustration of random measure L(s, x). From
the recursive way the cluster is constructed, we obtain (4.3). (Note that G is
the generating function of a compound Poisson distribution.) Denote the
Poisson random measure of cluster centers by A, with atoms (S;, X;). Then
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the conditional expectation of e~/ given A satisfies

EAe—Nf= EA exp —_ ZL(Sl’ Xl) f= ne—f(sl’xi)G(Hf(aXi + Sl))

= exp — [A(ds, dx)[ f(s,x) ~ log G(H(ax +5))].
Hence, since A is Poisson,

Ee ™M = exp — afwdsfldx{l — ¢~ (&%) +log GLH (ax +3)])
o ‘o

=exp —a codsl—H s)i,

P fo { f( )}

which proves the theorem. O

The following theorem is the main result of this section.

THEOREM 4.1. Let G be defined by (4.4). Then
(4.5) Ee @f = exp — aa/wds{l - K(s)},
0
where K is the unique solution of

[[dxG(K(t - 2)) + [(dxe e, for0<t<1,
t

(4.6) K(¢) = .
f dxG(K(t —x)), fort > 1,
0
and, moreover,
(4.7) Ee M& = exp — aa/wds{l - V(s)},
0

where V is the unique solution of
[(dxe s 10G(V(t —x)) +1—t, for0s<t<1,
0
t-1
[ dxG(V(t - x))
0

(4.8) v(t) = .
+ [ deeTEETIOG(V(t - x)),  forl<t<2,
t—1

[ dxG(V(t - x)), fort > 2.
0
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Proor. By (4.1) and Lemma 4.1, we have
(4.9) Ee™9f = lim exp — a/wds(l — H(s)).

t—> o

But if we write H;(u) as Eexp — L(u, X)f,, where X is uniformly dis-
tributed on [0, 1), then it is easy to see that

1, for u > ¢,
(410 ) =5, (), forusr

Hence,.if we let K(a™'t) = H/(0), for all ¢ > 0, then (4.5) follows from (4.9)
and (4.10). Moreover, by (4.3), we have that

K(t) =f0 dx exp(—£,,(0, x))G(H,, (ax)); t=0,

from which (4.6) follows straightforwardly. (4.7) and (4.8) are proved in the
same fashion. O

5. The moment measures of @ and M. In this section we show how
the moment measures of @ and M can be determined and give an explicit
solution for the first and second moment measures. The proofs and intermedi-
ate results in this section mainly concern measure @, since similar results for
M follow by analogy.

By writing (4.6) in differential form, we obtain

_ o f-v
(5.1) k(1) = {G(K(t)) e , for0<¢<1,
G(K(t)) - G(K(t—-1)), fort>1,
where K is a continuous function, almost everywhere differentiable except
possibly at 1 and K(0) = [} dxe ®. Since

— _ nE n
B - CDE@D

for f e #£[0,1) and n € N, it follows by Theorem 4.1 that
5.2 B@p)" -(-1)"& “ds{1 - K,(5))
(5.2) (@) =(-1)" g exp ~aaf dsfl - Ky(s))]

where K ,(s) is defined by (5.1) if pf is substituted for f. In particular, if we
denote (—1)"(d"/dp™ K ,(!)|p=0 by k,(¢), n = 1,2,..., we find

(5.3) EQf = aaf:dskl(s),

Ee—Pof

)

(5.4) E(Qf)2=(aaj0°°dsk1(s)) +aaf(‘:°dsk2(s),
g PO - (aaf ds/:'l(s)) w w
+2(aaf0 d.'skl(s))(aa:f0 dskz(s))+aaf0 dskg(s),
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and similar equations for higher order moments. From (5.1) we can derive
differential equations for k,, n = 1,2... . In particular [remember (4.4)],

aeky(t) —f(1-1¢), for0 <t <1,

(5.6) ky(t) = aey(ky(t) — ky(t — 1)), for¢>1

and
—f2(1 = ¢t) + a%eyk2(t) + ae ky(t), for0<t<1,

(5.7) ky(t) = {a’ey(ki(¢) — ki(t - 1))
+aey(ky(t) — ky(t — 1)), for t > 1,

where the &,’s are continuous with £,(0) = [§ d¢f™(¢),n = 1,2... . Note that
from the procedure indicated in (5.3)-(5.7), it follows that the nth moment
measure of @ only depends on a, « and e,,...,e,, n = 1,2 ... . In order to
calculate E(Qf)", it takes the (numerical) evaluation of a system of n ordinary
differential equations, which can be done fairly easily. We do not know if it is
possible to give an analytic solution for the nth moment measures of @ and M
(n = 3), other than in the constant service time case (cf. Section 6). However,
the first and second moment measures of @ and M can be explicitly given, as
is done in the next two theorems. The first moment measure of @ can be
easily derived from (5.3) and (5.6), using a Laplace transform of %;. An equally
simple argument, however, is provided by Theorem 3.3, which moreover gives
us directly the mean measure of W. In a way we use a similar argument as in
[9], where a stochastic decomposition result is used in the derivation of
expected waiting times for several cyclic server models.

THEOREM 5.1. The mean measures of @ and M are given by

aa

(5.8) EQ(dx) = 1= ae, (1-x)dx
and

aa
(5.9) EM(dx) = 1= ae, dx.

The expected number of customers on the circle is

a(a + aey)

. E = _—
(5.10) |W| = ae, + (1 = ae)

Proor. Let ¢ = aa/(1 — ae;). Since (3.2) holds for any f (arbitrarily
“small’’), we have in particular the functional equation

—a dxf(x) +f(0)a +a (1 - ae)EQf' =0,  fe C'0,1).
0
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Therefore,
EQf' = c [ dx(f(x) = f(0) = e[ ds [“auf'(u) = [ du(1 - u) f'(x)

for all f" € C[0, 1), which proves (5.8). Equation (5.9) is proved analogously.
Finally, let f(x) =p, p > 0, in (3.2). Then, for all p > 0,
a(l —eP)Ly(a(l —e7P))
1-Lp(a(l—e?))
where |@| = Q[0, 1) and |Q°| = Q°[0, 1). Hence
—a(l — ae,)EIQ| + aey(e; " — a)EIQ°

a(1 — ae)Ee P9 + qe, + a)Ee""QO' =0,

(5.11)
—za%ei e, + (a — e ')ae; = 0.

Therefore, (5.10) follows from (5.11), since E|Q| = 3¢ and E|W| =
(1 - ae)E|IQ| + ae,EIQ°. O

In the next theorem we give explicit results for the variances of @f and Mf.
Covariance measures of @ and M can be derived from (5.2) in a standard way
(cf. [5]), but yield much more complicated expressions.

THEOREM 5.2. For fe€ %[0,1) and g € %(0, 1], we have

var Qf = 1 jw:zel j:dx(l —x) f3(x)
e [ [ aepo| St (asa-m )
and '

var Mg = ——E“Z—(I dtg(t))

91(1_091)
2aa(1 — e;%;) 1 et
L ey fodtg(l—t)(e ¢ — 1)
2
R fdtg ().

Proor. First observe that var Qf = aa g dt k,(¢). Define the Laplace trans-
forms

hy(s) =j0°°dtk,.(t)e-st, i=1,2,
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and
hP(s) = [:dtkf(t)e-st for s > 0.
After taking Laplace transforms on both sides of (5.7), we obtain for all s > 0,
shy(s) — foldtfz(t) = a%,(1 — e*)RD(s) + aey(1 — e~*) hy(s)
—foldtfz(l — t)e .

Hence
(5.12) hy(0) = a?e,hP(0) + ae hy(0) + foldt(l - &) f3(t).

Since A{’(0) only depends on a and e;, we find from the constant service time
case (e, = e, cf. Corollary 6.1) that

(5.13) h®(0) =/01dy(j0ydxf(x))2+ - (foldx(l —x)f(x))2

ae,
— ae 1
and the first part of the theorem follows from (5.12) and (5.13). The second
part is proved in the same way. O

REMARK 5.1. For exponentially distributed service times, the calculation of
higher order moment measures of @ and M seems to remain difficult, in
contrast to the situation usually appearing in queuing theory. However, for
constant service times, this problem considerably simplifies, and explicit ex-
pressions for the Laplace functionals of M and @ can be found, as is shown in
the next section. Moreover, in the general case the functions k;, i =1,2...,
can in principle be obtained by the following method. Suppose, without loss of
generality, that e; = 1. Assume that the %,’s can be expanded in terms of a,
that is, &;(¢) = k;o(2) + ak,((t) + a®k;5;(#) + -+, i =1,2,.... We can derive
differential equations for the k;,’s by using (5.1), similarly to the derivation of
(5.6) and (5.7). These differential equations can be analytically solved in
successive order. But the bookkeeping involved becomes very messy and no
clear structure in the procedure has been found yet.

6. The constant service time case. In this section we briefly discuss
the case where the service time is of fixed length e,. This case has been studied
in [3], where the analysis was based on a modification of the analysis for the

. corresponding discrete model in [12]. This, however, gives rise to several
problems concerning convergence. Here we give a proof based on insensitivity
results for queues (see also Remark 6.1). Moreover, some extra results are
given.
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THEOREM 6.1. The Laplace functionals of M and @ are given by

1 - ae, /e
6.1 Ee Mg =
(6.1) ¢ ( 1-ae, [} dxe“g(x))
and
1—ae /e
6.2 Ee 9f = ¢r -
(6.2) ¢ ¢ ( 1 —ae, [l dye ™ ’

where c; = aaf] dx(1 — x)1 — e /™), h(y) = ae, [§ dx(1 — e /™) and fand g
are positive measurable functions on [0,1) and (0, 1], respectively.

REMARK 6.1. In principle, Theorem 6.1 is a special case of Theorem 4.1.
But even in the case of constant service times it seems to be difficult to solve
the integral equations (4.6) and (4.8) directly. Thus, in the present section we
give a separate proof of Theorem 6.1.

REMARK 6.2. From (6.1) it follows that the number of atoms of M is
negative binomially distributed and given |M| = m, the m points are indepen-
dent and uniformly distributed over (0, 1].

ProorF oF THEOREM 6.1. Without loss of generality, we can take e; = 1.

(First part.) Consider an auxiliary M/D/co-queue with a conditionally
Poisson arrival process, services times 1 and service speeds a~!. Let the
state-dependent arrival intensity be a(1 + a~'N,), where N, is the number of
customers in this auxiliary system at time ¢. Note that a conditionally Poisson
process with such a state-dependent intensity is called a Hawkes or self-exit-
ing process (cf. page 367 in [5]). Denote the vector of residual service times at
time ¢ (arranged in descending order) by R, (cf. Chapter 2 of [7] for terminol-
ogy). The process (M,) in Figure 3 can be described in terms of this queuing
system. Namely, N, corresponds to |M,| and R, corresponds to the distances
from the zero level in Figure 3 (below the X-axis) to the atoms of M,. The
insensitivity results of Chapter 6 of [7] cannot be directly applied to the
M/D/x system. We therefore first consider the corresponding loss system
M/D/s/0 with the same input process, service times and service speeds, the
arrival intensity at time ¢ being now a(1 + a 'N®), where N denotes the
number of customers in the loss system. The corresponding residual service
time vector at time ¢ is denoted by R{®, where only the first s entries of
R{ € R% are possibly nonzero.

Slmllarly to Section 3, we-show that the processes (X)) = (N, R{)) and
(X) = (N,, R,) are regenerative. Note that it is possible to take the same
regeneration epochs in both systems, because the input of the first one can be
seen as a thinning of the second one. Hence by the key renewal theorem, we
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have for all A € Z(N X R?Y),

t—> o0

1
lim P(X® € A) = Cfo P(C>t, X eA)dt
and

1
lim P(X, € A) = ﬁfo P(C>t, X, €A)dt,
where C denotes the length of the first regeneration cycle of (X,). Let N,
denote the number of customers that are served in the M /D /»-system during
the first regeneration cycle. By arguments used in the proof of Theorem 3.1, it
is clear that P(N; < ») = 1. Now since

{C>t, X eA N,<s}={C>t X, €A, Ny;<s},

we have
1 o
(6.3) ]tlgl}o P(X(" € A) - lim P(X, € A)§ < —E—C[O P(C>t, Ny >s)dt.

We are now ready to use insensitivity. Namely, when an arriving customer
in the loss system is assigned to one of the idle servers (if there are any) with
equal probability, then this system is insensitive to the service time distribu-
tion. Let (N, R{)) converge in distribution to (N, R®), say. It follows
from Theorem 6.7.1 of [7] that the distribution of (N®, R®) has the following
form: With p, = P(N® = k), we have

(6.4) kp, =a(a+k—1)p,_, forallk=1,2,...,s

Moreover, given { N = £}, the % residual service times are distributed as the
order statistics of %2 independent uniformly distributed random variables on
[0, 1] (cf. (6.4.1) of [7]). Note that in particular, given N, the conditional
distribution of the residual service times does not depend on s. And, moreover,
from (6.4), it follows that the distribution (p,) converges to a negative bino-
mial distribution as s — «. And hence (6.2) follows from the observation that
the difference in (6.3) converges to zero as s — « by the dominated conver-
gence theorem.

(Second part.) Fix ¢ > 0, let T = |H,| + « and define the stochastic process
C on [0,1) by

C(x)=t— (fot(dy) + ax), x e{0,1).

Denobe the functional inverse of C on [¢ — T,¢] by A. (The graph of a
realization A is given by the solid line in Figure 6.) Let Q, be the set of all
o € () such that ¢ — T(w) > 0. Obviously, Q,1 Q as ¢ — «. By Theorem 3.2



924 D. P. KROESE AND V. SCHMIDT

Wy ()

H, (w)

0

Fic. 6. H, determines the law of W,. The atoms corresponding to H, must have followed (possibly
partially) the dashed lines beneath the graph of A(w). Points occur above this graph according to a
homogeneous Poisson process and lead to atoms of W,.

and the monotone convergence theorem we have for all f e %[0, 1),

—> 00

(6.5) Ee U =(1-a)! lim Ee "Iy -0,

Now observe that clients that are waiting at time ¢ all have arrived during
the interval [¢ — T, ¢] “above the graph of A” (see Figure 6). Specifically,
for every f e #[0,1), we can take as a version of the conditional distribu-
tion of W,f given H,, the distribution of Ng, where N is a Poisson pro-
cess on [0,1) X R, with intensity a, independent of H,, and q(x,s) =
flx = AN o5y, 1) ;7 (8) for all (x, s) €[0,1) X R,. Therefore, the con-
ditional expectation of exp(— W, f)I, given H, can be expressed in terms of A
and T as

1 t
Eye™ "1, = exp(—afo dxft ds(1 - e—ﬂx_A(s»)I[A(wJ](x))In,-

-7
Hence, by conditioning on H,, we have for all f < #[0,1),

-W,f
Ee™ "Iy 0-gla,

1 ¢ —f(x—A(s
= Eexp(—a/; dx ft_T ds(1 — e~ fx—AC »)I[A(s),u(x))I(W,(0)=0)In,
- 1 1 _ o —fx—u)
= Eexp —afo dxfo(adu + H,(du)}(1 - e ) 1y(%) ) L0y D,
- Eexp(—afoldxu - e—f<x>)f01"‘{a du + H,(du)})I(Wt(o)=0)IQt

=e “E exp(—a/;ldx('l — e 7™)H,[0,1 - x])I(W,(0}=0}Im'

If we let + > «, the last expression converges, by Theorem 3.2 and the
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monotone convergence theorem, to

(6.6) (1 —a)e *E exp(—afoldx(l — e f®yM[0,1 - x])
=(1-a)e ’Ee M~

and (6.2) follows from (6.1), (6.5) and (6.6). O

CoROLLARY 6.1. For f e #[0,1) and g € %#(0, 1], we have

o . aade? 2
var Qf = _Zelfoldxa = %) 2(x) + f:el /Oldy([oydxf(x))
aa’el 1 2
+ ~——~———(1 " ey’ (]; dx (1 —x) f(x))
and
aa’e, 1 2 aa 1 9
var Mg = m(fo dxg(x)) + 7 _aelfo dxg?(x).

Proor. This follows straightforwardly from Theorem 6.1. O

APPENDIX

First, we give some basic definitions and results on random measures.
References are, for example, [4] and [5].

Throughout the following, let (E, &) be a measurable space; for definiteness
we assume that E is Polish and that & is the Borel o-algebra on E. A
mapping M from Q X & into R, is called a random measure on (E, &) if:
(a) B » M(w, B) is a measure on (E, &) for every w € Q; and (b) o » M(w, B)
is a random variable for every B € &. According to Fubini’s theorem,

Mf(w) = [EM(w,dx)f(x), wEQ,

defines a positive random variable Mf for each positive £ measurable function
and

u(A) = EM(A) = fP(dw)M(w,A), Ae &,

defines a measure u on (E, &), which is called the mean measure or expecta-

tion measure of M.
M is called a random counting measure if for almost every w, there exists a

countable set D(w) such that

M(w,A) = ¥ 5.(4),
xeD(w)
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where 8, denotes the usual Dirac measure at x € E. When the sets D(w) are
locally finite, M is called a point process.

A random measure M is said to be a Poisson random measure [on (E, &)]
with mean measure (or intensity measure) u if: (a) M(A) has the Poisson
distribution with mean w(A) for all A € &; and (b) M(A)),..., M(A,) are
independent whenever A,,..., A, € & are disjoint, this being true for every
n =2

Frequently in applications, a random counting measure (point process) M
satisfies M(A) = [M,(A)K(dx), where K is a Poisson random measure, M,(-)
is a point process (for all x € E) and M.(A) is a measurable function (for all
A € &). Such a point process is called a Poisson cluster process (on E) and the
atoms of K are called cluster centers. A Poisson random measure on a Borel
subset E of R™ with mean measure al, (a times the trace of the Lebesgue
measure on E) is called a homogeneous Poisson process with intensity a.

THEOREM A.1. The probability law of random measure M is completely
specified by its Laplace functional L defined by

Lf = Ee M/,

Moreover, the Laplace functional of a Poisson random measure on (E, &) with
mean measure u is given by

Lf = exp — f,u,(dx)(l —e ™) forallfe &.
E

We further restrict ourselves to the case where E = R,. Let %= (%), , be
an augmented and right-continuous filtration (cf. [13]). Adaptedness, stopping
times, martingales, compensators and so on are always with respect to this
filtration. Let D denote the collection of all real-valued adapted processes on
R, whose every path ¢t — X,(w) is right-continuous and has left limits. Let L
denote the collection of all adapted real-valued processes on R, whose every
path is left-continuous and has right-limits.

We give some basic results on stochastic integration. The definitions and
proofs can be found, for example, in [11] and [13].

THEOREM A.2. Let X € D have locally finite variation. Let f € C*; then
f(X,) =f(Xo) + fotf’(Xs_)dXs + 0§<t(f(Xs) —f(X,) - f(X,0)AX,),
where AX, =X, — X,_ fors>0and AX,=0.

' The next theorem is one ;)f the main theorems of stochastic integration

w.r.t. point processes, where now a point process N is considered as a counting
process instead of a random counting measure.
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THEOREM A.3. Let Ne D bea point process with compensator A. Then for
all F e,

EfFu dN, = EfF dA,.
In many cases of practical interest A is given by
t
A = [ dsA_, t>0,
t /;) s

where (A,) is called the stochastic intensity of N. If N is a renewal (counting)
process, then A is given by Theorem 13.2 III of [5].
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