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CUBE VERSUS TORUS MODELS AND THE EUCLIDEAN
MINIMUM SPANNING TREE CONSTANT!

BY PATRICK JAILLET

University of Texas, Austin

We show that the length of the minimum spanning tree through
points drawn uniformly from the d-dimensional torus is almost surely
asymptotically equivalent to the length of the minimum spanning tree
through points drawn uniformly from the d-cube. This result implies that
the analytical expression recently obtained by Avram and Bertsimas for
the minimum spanning tree (MST) constant in the d-torus model is in fact
valid for the traditional d-cube model. We also show that the number of
vertices of degree % for the MST in both models is asymptotically equiva-
lent with probability 1. Finally we show how our results can be extended
to other combinatorial problems such as the traveling salesman problem.

1. Introduction. In Beardwood, Halton and Hammersley [2], the au-
thors prove that for any bounded i.i.d. random variables {X;: 1 < i < «} with
values in R%, d > 2, the length of the shortest tour through {X,,..., X,} is
asymptotic to a constant times n(?~Y/? with probability 1 (the same being
true in expectation). This theoretical result has been the inspiration for a
growing interest in the area of probabilistic analysis of combinatorial opti-
mization problems. An important contribution is contained in Steele [6] in
which the author uses the theory of independent subadditive processes to
obtain strong limit laws for a class of problems in geometrical probability that
exhibit nonlinear growth. Examples include the traveling salesman problem
(TSP), the Steiner tree problem and the minimum weight matching problem.
Among other problems, not in this class, but with a similar asymptotic
behavior, is the minimum spanning tree problem (MST) and some weighted
versions of it (see Steele [7]).

For most of these problems, the results concern the almost sure conver-
gence of a sequence of normalized random variables to a constant. One of the
persistently important open problems in this area is the determination of the
exact value of the constant for any interesting functional. In fact, progress
has been made by Avram and Bertsimas [1], who have recently obtained an
exact expression (as a series expansion) for the MST constant when the
points are drawn uniformly from the d-dimensional torus. The authors used
the d-torus in order to avoid boundary effects and obtain tractable deriva-
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tions. They also conjectured that their resulting constant was, in fact, the
same as that for the traditional d-cube model. '

In this paper, we prove this conjecture by showing that the length of the
optimal spanning trees in the d-torus and d-cube models are almost surely
asymptotically equivalent. Note that, for comparison with related results on
the d-torus versus d-cube model, it has been shown, in Steele and Tierney
[9], that, when d > 3, the limiting distribution for the largest of the nearest-
neighbor links is different in the two models. The paper is structured as
follows. In the next section, after presenting the d-torus and d-cube models,
we characterize the asymptotic growth of a largest edge in an optimal tree. In
Section 3 we then use this result to prove the almost sure equivalence of the
length of the optimal trees in both models. Then, in Section 4, we show that
the number of vertices of degree % in both optimal trees is asymptotically
equivalent with probability 1. Finally, in Section 5 we consider other combi-
natorial problems such as the traveling salesman problem.

2. Notation and preliminary results. The minimum spanning tree
problem consists of finding a spanning tree of minimum total length in an
undirected weighted graph. We will consider two special models for this
undirected graph:

The d-cube model: Let {x,: 1 < i < »} be an arbitrary infinite sequence of
points in [0, 1]¢ (the unit cube in R, d > 2, the d-dimensional space of real
numbers, with the Euclidean metric and the Lebesgue measure), and let
x™ = {x,, x5,..., x,} denote its first n points. For each finite n, x will be
the vertex set and K A2) ={{x;, x;}: 1 <i <j < n} will be the edge set of our
graph. The weight of an edge {x;, x -} will be the Euclidean distance [|x; — x|
between x; and x;.

The d-torus model: In order to eliminate the boundary effects of the
previous model, consider the previous sequence x;, x5,..., %X,,... modulo 1
in each component. Alternatively, one can imagine a sequence on the d-torus
T¢ = ([0,1] mod 1)¢ (the metric space with its Lebesgue measure and Eu-
clidean d-torus metric). Note that the weight of an edge {x;, x,} is now taken
to be [{x, — xj}(mod 1)¢|. We recall that for y € [—1,1], y(mod1) is the
minimum of |yl and 1 — |y|.

Other notation: We will write L) (x(™) for the length of an optimal MST
[described by its set of edges 7% (x™)] for the problem in the d-cube. We
will use L (x™) and #X(x™) for the corresponding quantity in the
d-torus. Also I{ }| will stand for the cardinality of the set {}.

Finally let

19(x) = max{l(z; ~ ;) (mod D)l {x;, ;) €7(+"))

be the length of the largest edge in an optimal tree in the d-torus. The main
result of this section is concerned with the asymptotic growth of this largest
edge and is expressed in the following proposition.
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PROPOSITION 1. Let {X;: 1 <i < »} be a sequence of points independently
and uniformly distributed over [0, 1]%. Then for the corresponding MST in the
d-torus, we have, for n sufficiently large,

(1) PlI® (X(")) > A log n ) < __1__
mst W\ n ~ 24n?logn’
where \; = 13%/4/d + 3.

In order to prove this proposition we need two intermediate lemmas.

LEMMA 1. Let m be a positive integer, and (@), . ;. »,¢ be a partition of
the d-cube [0, 11? into cubes with edges parallel to the axes and of length 1/m.
If for a sequence of points {x;: 1 < i < »}, x™ N Q; is not empty for all j, then
the MST in the d-torus is such that

d+3

m

(2) IR (x™) <

PrOOF. This proof is a generalization of an argument used in [4] for the
MST in the square. It goes as follows. Let e be an edge of Z{,(x™) so that
its weight is [{),(x™). By definition of an optimal MST, we then have the
following property: If we discard e, we end up with a forest with two
components, with point sets, say V, and W,, such that for all x; € V, and all
x; € W, we have [{{x; — x;}mod D?|| = & (x™).

We will now prove the lemma by contradiction. Let us assume that
1D (™) > Vd + 3 /m. Then I{(x™) > Vd /m and thus each Q; either
contains points from V, or from W,, but not from both. So the partltlon of the
points into V, and We leads to a partition of the cubes into two sets, I and J,
such that for all i € I we have x™ N Q, c V,, and for all j € J we have
x™ N Q; c W,. Now, because all cubes are nonempty, we can always find a
pair of ad_]acent (i.e., sharing a facet) cubes @; and @; with i €I and j € J.
But now, the largest possible edge connecting these squares is bounded from
above by Vd + 3 /m and thus, using our working hypothesis, by I (x™).
This clearly contradicts the preceding property. Note that the same argu-
ments hold for the problem in the d-cube. O

LEMMA 2. Let {X;: 1 <i < »} be a sequence of points independently and
uniformly distributed over [0, 1]%, let m be a positive integer and let (Q;); . ; < ¢
be a partition of the d-cube [0,1]¢ into cubes with edges parallel to the axes
‘and of length 1/m. If N; denotes the cardinality of X ™ N Q,, then we have,
forh > 12 and n = 3,

(3) P(Vj, N; > n/m? — yhnlog n/m* ) >1-md/2nh/4.
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Proor. Let p = 1/m* and for all j let %, ; be the event {N; < np
— Vhnplogn}. We obviously have

(4) P(HJ '@n,j) Z P( j) mdP( l) = P(‘@n,l)/p

Now N, is a binomial random variable with »n trials and parameter p. Using
classical bounds on the tail of a binomial distribution (see [3], Corollary 4,
page 11) we have, with ¢ = 1 — p,

(5) P(N, < np — vhnplog n) < lexp{—hlogn/3q + 1/q}.

For h>12 and n >3, we have —hlogn/3q +1/q < —hlogn/4q <
—hlog n /4, which together with (5) gives

(6) P(N1 < np — yhnp log n) <
Now the lemma follows from (4) and (6). O
We are now in position to prove Proposition 1.

PROOF OF PROPOSITION 1. For (3) to be of interest we need n/m¢
— yhnlog n/m? to be nonnegative and thus m? < n/(hlog n). Let us choose
m? = |n/(hlogn)| (we will suppose n large enough so that m > 1 for a
given h > 12). We then have from Lemma 2,

|n/(hlogn)] 1

(N P(VLN>0) 21 e 2 - e

Also, from Lemma 1 we have
(8) P(IQ(X™) <Vd+3/(|n/(hlogn)])"?) = P(V j, N; > 0).

The proposition follows from (7) and (8) by taking A = 12 and by realizing
that |n/(121log n)| > n/(131log n) for n sufficiently large (here n > 1092).
Note again that the same arguments hold for the problem in the d-cube. O

We finally need a last result before stating our main theorem.

LEMMA 3. Among F(x™), let k be the number of edges {x;, x;} such
that |{x; — x,;}(mod 1Y < ||x — x|l Then there exists a feasible solutton to the
d-cube problem of weight bounded by L. (x™) + y,k 4~V where v; > 0.

ProoF. From Z,(x™),- delete the edges {x;,x;} such that |lx; —
.x;(mod DY < llx; — x; || If £ is the number of such edges we end up with a
forest of k +1 components Pick one representative from each component
and construct the MST (in the d-cube) through these %2 + 1 points. From
well-known results (see, e.g., [7]), the length of such a tree is O(k@~V/%),
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Now the forest together with this tree forms a spanning tree of x™ in the
d-cube, which shows the validity of our lemma. O

3. Almost sure equivalence.

THEOREM 1. Let {X;:1 < i < »} be a sequence of points independently and
uniformly distributed over [0, 1]¢. Then for the MST we have

. o DX IQUX™)
() 1m n(d—1)/d - m n(d_l)/d _Bmst() a.s.

n—o n—o

ProOF. First let us consider an arbitrary sequence (x,);. For all edges
{x;, x;} of ZL)(x™), replace |lx; — x;ll by [{x; — x}(mod 1)d|| 'We then obtain

mst

a feasible solution to the d-torus model of length less than L&) (x™). Hence
we have

(10) LO (2™ < L), (™).

Now let F(x™) = {{x;, x;} € ZLD(x™): |lx; — x;(mod 1)¢|| < [lx; — x;]}. Also,
forr <1/2,1let Q(r) = [O 119\ [r 1-r)? be a layer of width r on the inside
of the d-cube. Partition #(x(™) into two sets:

FI(xM) = {{xi, x} eF(x™):x,€[r,1 - r1°, x;€[r,1- r]”}
and
FO(M) = F(2) \FO(+).
Call their respective cardinalities k,(r,n) and k,(r, n). From Lemma 3 we
then have
() (n) ®) n) (d-1)/d
(11) LY (2™) < L (2™) + va(ky(7r, 1) + ky(r, 1)) :

Now, it is well known (see [7]) that for any x™ = {x,, x,, ..., x,}, the degree
of the points in #Z{),(x™) is bounded by a constant D,. Hence it is easy to see
that

(12) ky(r,n) < Dyl{x; € Q(r)}I.

Let us now consider a sequence (X;), of points independently and uniformly
distributed over [0, 1]¢. We then have

Lo (X™) < LYW (X™)

(13)
< LQu(XM) + v(Ki(r, n) + Dg{X; € Q(r)})

(d-1)/d

def :
Now let r, = Ay(og n/n)Y 4, For all &> 0, there exists n; such that, for all
n >n;, we have r, < ¢. Hence, for all 0 < ¢ < 1/2, we have

. {X; € Q(r))l . {X; € Q(e))
limsuyp —mM™™ < lim ——
(14) n— o n n—o n

1-(1-26)%<2ds as.



CUBE VERSUS TORUS MODELS 587

Also, from Proposition 1, we have, for a sufficiently large constant n,,

S
P

P(K(r,,n) >0) < ) P(lﬁfl;t(X(”)) > rn)
n=1

<ng+ —— T < ®©,
2 n=n22+1 24n? log n

From the Borel-Cantelli lemma this implies that

(16) lim K,(r,,n) =0 a.s.
n—ow

The result then follows from (13) with r = r,, (14), (16) and from the almost
sure convergence of L) (X™)/n@-V/4d to B (d) (as obtained in [7]). O

REMARK. As a corollary to Theorem 1, the series expansion recently
obtained for the MST constant in the d-torus (following text) is also valid for
the classical Euclidean model of the MST. This is then one rare example,
among this class of problems, for which we have been able to characterize the
limiting constant analytically.

For completeness, let us recall the result obtained in [1]:

z = fi(y)
Bmst(d) d(b )l/d Z /oy(z—l)/—d_

dy,
where b, = 7¢/2/T(1 + d/2) is the volume of the ball of unit radius in
dimension d, f;(y) = e and for £ > 2,

k-1

Y 4
fi(y) = mfgkeXp(Egk(uo""’uk_l))dul duy g,

where the integration is performed on the set Q, of all points {u,,...,u, ;}
of the d-torus (u, being the “center” of the torus) such that the spheres
S(u;,1/2), 0 <j <k — 1, form a connected set and g,(uq,...,u;_;) is the
Volume of U ;S(u;, D.

Before concludlng this section, let us mention that in [7], the author
studies the asymptotics of generalizations of the minimum spanning tree
problem in which the distance between points is some fixed power of the
Euclidean distance. It is quite clear that Theorem 1 can be readily extended
to cover this case as well.

4. Node degree equivalence for the MST.

PROPOSITION 2. For a given k, let V{(x™) and V{(x™) be the number
of vertices of degree k in the MST in the d-cube and d-torus, respectively. Let
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{X;: 1 <i< >} be a sequence of points independently and uniformly dis-
tributed over [0, 1]%. Then there are positive constants a,, ; such that

(17) ’}i_l)lolon_lVé‘)(X(”)) = r}i_l)rin_lV,;c)(.X(")) =a,, a.s.

ProOOF. The existence of the constants verifying the second equality was
proved in Steele, Shepp and Eddy [10]. Also, if F(X(™) denotes the set of
edges of Z),(X™) that crosses the boundary of the d-cube (see the proof of
Theorem 1), it is easy to see that, with probability 1, we have

(18) T (XY \NF(X™) cZZ(XM).

Now consider any spanning tree T on an arbitrary connected graph G =
(V, E) and any pair of edges e € T and ¢’ € E\ T such that 7" = T\ {e} U {¢}
is still a spanning tree. For any given k, let N, and N; be the number of
vertices of degree k in T and 7", respectively. Then it is easy to see that

(19) IN, — N}| < 4.

(In fact, for leaves, this can be improved to [N; — Nj| < 2.) From (18) and (19)
we then have

(20) [VEO(X™) — VO(X™)| < 4|F( X ™).
The rest of the proof parallels Theorem 1. O

5. Generalizations to other problems.

5.1. Sufficient conditions. The result of Section 3 can be extended to
other combinatorial optimization problems. Let us consider a problem
[generically labeled with an asterisk (*)] defined on an undirected graph
G = (V, E) with positive weighted edges, which requires finding, among all
feasible subsets of edges, a subset of minimum weight (the weight of a subset
of edges being the sum of the weight of the edges belonging to this subset).
Suppose we are interested in comparing L'O(x™)/n° and LY(x™)/n% for a
given positive constant c,.

The following properties are sufficient for showing that, for a sequence of
points independently and uniformly distributed over [0, 1]¢, these quantities
are almost surely asymptotically equivalent (refer to Section 2 for the defini-
tion of terms, replacing “mst” by “*”).

PROPERTY 1 (Bounded degree). For any x™ = {x,, x,,..., x,}, the degree
of the points in #Z{(x™) is bounded by a constant D,.

PROPERTY 2 (Bounded passage from torus to cube). Among Z{(x™), let
k be the number of edges {x;, x;} such that |lx; — x,(mod 1)?|| < [lx; — ;I
Then there exists a feasible solution to the d-cube problem, of weight
bounded from above by LO(x(™) + O(k°2).
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PrOPERTY 3 (Probabilistically small largest edge). For {X;: 1 <i <} a
sequence of points independently and uniformly distributed over [0, 1]¢, the
largest edge is such that, for all £ > 0, Z_;P(I{O)(X™) > ¢) < .

Properties 1 and 2 ensure that an inequality similar to (13) still holds.
Such an inequality, in conjunction with Property 3, is then sufficient for
showing that L(X™)/n% and LY(X™)/n° are almost surely asymptoti-
cally equivalent. As a consequence, if LO(X(™)/n‘ converges almost surely
to a constant B,(d), it will be the same for L'D(X ™) /n°¢, and vice versa. As
an application, let us consider the case of the traveling salesman problem
with ¢; = (d — 1) /d.

5.2. The traveling salesman problem. The traveling salesman problem
consists of finding a hamiltonian tour through a given set of points of
minimum total length. For this problem, Property 1 is obvious. The easiest
way to see that the TSP verifies Property 2 is as follows (see [8] for details):
Delete the % edges {x;, x;} such that ||x; — x;(mod 1)?|| < |lx; — x|l and then
greedily connect the resulting (possibly degenerate) paths. For %k paths
(maximum 2k path endpoints), it is well known that there exist two end-
points at a maximum distance of O(%2~1/¢). Connecting these endpoints and
repeating the process until a tour results costs O(k(¢~Y/9),

It remains to show that Property 3 is valid for the TSP. In order to do so,
we will consider a slightly modified (but, for our purpose, asymptotically
equivalent) probabilistic model in which we use a Poisson point process. More
precisely, let m, denote a Poisson point process in [0, 1]¢ with intensity equal
to n times the Lebesgue measure ». For any bounded Borel set A c [0, 1]¢,
let 7,(A) denote the random set of points in A (almost surely a finite set of
points) and let N,(A) denote the cardinality of m,(A) [a Poisson random
variable with parameter nv(A)]. When A is [0, 1]¢, we simply write 7, and
N,. Now we have the following result from which Property 3 obviously holds.

PROPOSITION 8. Let m, be a Poisson point process in [0, 11 with intensity
equal to n times the Lebesgue measure. Then, for the corresponding TSP in
the d-torus, we have

i log n
(21) n§1P lg%(ﬂn) > ;1‘/7 < ©

In order to prove this proposition we need two intermediate results. The
first lemma is a special application of a geometrical property of TSP tours.

LEMMA 4. Let {x;: 1 < i < =} be an arbitrary infinite sequence of points in
[0, 1]4. For any r < 1/8 let B0, r) = {y €[0,1]¢: |ly(mod 1)?¢|| < r} be the
(d-torus) ball with radius r and center 0. If |B¥(0, r) N x™| > 12, then for
any optimal solution to the TSP in the d-torus, there exists a point among
B0, r) N x™ such that both its adjacent points along the tour belong to
B0, 4r).
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Proor. By definition of an optimal TSP tour, a two-exchange step (replac-
ing any two edges of a tour by two other edges) cannot lead to a better tour.
Let us then consider an optimal TSP tour through x™ together with an
arbitrary orientation. For each point x;, let x,;, be its successor along the
tour. For any two points x; and «x, let A;;L(x™) be the change in the length
of the tour after replacing {x;, x,)} and {x;, x,(;} by {x;, x;}} and {x,,,, x;)}-
Finally let A*L(x™) = min;_ ;) ; 45y A;;L(x"™) [note that for a TSP tour,
A*L(x™) > 0].

Now, if we have & points in B0, r), each of them having its successor
outside of B®(0,4r), then k& < 5. Indeed, otherwise, A*L(x™) < —r, a con-
tradiction. To see this, suppose that £ = 6. From the “pigeonhole principle”,
sup,m A*L(x™) will correspond to six points evenly spread on the boundary
of B0, r), with each successor x,;, directly across from it, on the boundary
of B®(0,4r + &) for an arbitrarily smalle. But in this case we have

NML(x™)=r+ (4r+e)—(3r+e&)—(8r+e)=—r—e.

The same argument holds if we reverse the orientation of the tour. Hence,
we can be sure that, among 12 points, there is at least one point for which
both adjacent points along the tour belong to B®(0,4r). O

The second lemma is a probabilistic statement based on the previous result.
For any points x, y and z in [0, 1]¢, let S(x, y, 2) = |lx — y(mod 1)?|| + ||y —
z(mod 1)4|| — ||x — z(mod 1)¢.

LEMMA 5. Let m, be a Poisson point process in [0, 1]? with intensity equal

to n times the Lebesgue measure. Consider the following event: ZAr, ,u)di
[there exists a point Y among m,(B®(0, r/nY %)) such that both its adjacent
points along the TSP tour, X, Z, belong to w,(B®(0,4r/n'/ %)), and such that
S(X,Y,Z) > u/nY?]. Then, for any & > 0, there exist two positive constants
rand w so that

(22) P(AZA(r,pn)) 21— ¢.

ProOF. Let N(r)= N/(B®(0,r/n'?)). Suppose first that N(r) > 12.
Then, from Lemma 4, there exists a point Y in B®(0, r/n'/ %), such that both
its adjacent points along the TSP tour, X and Z, are in B®(0,4r/n!/?), and
thus in B(Y, 5r/n'/?). Suppose that, in addition, there exists a constant M
such that N(6r) < M, and thus N,(B®(Y,5r/n'/%)) < M. Then, for X; and
Z; among wm,(BY(Y,5r/n'/?)), there exists a constant u such that
PGinfS(X,,Y,Z;)) > u/n'/?) > 1 — £/2. Indeed, note that in the d-torus,
" everything is unchanged through translation, and thus it suffices to show
that for two independent points U and W uniformly distributed on
BY(0,5r/n'/%), we have lim, , , P(S(U,0,W) < n/n'/%) =0, where the
limit is uniform in n (see [5], Lemma 3, for a similar argument). But this is
obvious because the probability in the limiting expression is independent of
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n. It remains to evaluate the probability of N(r) > 12 and N(6r) < M. N(r)
is a Poisson random variable with a parameter independent of n. Hence, for
any ¢ > 0, one can always choose a large r and a large constant M, so that
P(N(r) > 12 and N(6r) <M)>1-¢/2. O

We are now ready to complete the proof of Proposition 3.

PrOOF OF PROPOSITION 3. First note that Lemma 5 remains valid for any
d-torus ball translated from the origin. Also if, for such a ball, the event
AAr,u) is true, say with Y, then we get savings of at least w/n*’ ¢ by
skipping point Y from the tour.

Let us look at the probability that a given edge {U, W} of the tour has a
length D (in the d-torus) greater than or equal to log n/n'/ ¢, Divide the edge
into three equal segments, and further divide the middle segment into m — 1
equal segments. Let (zj)15 j<m be the m endpoints defining the small seg-
ments and, for a given r, consider m adjacent d balls of the same radius
4r/nY? centered at these points. We then have m =1 + log n/24r =
®(og n). Now suppose that for at least one of the balls, say B®(z;,r/n'/ %),
the event #Ar, u) is true with a given point, say Y. Then one can transform
the current solution by connecting Y to U and W instead of its previous
adjacent points. Because Y € B“)(z;,r/n'/?) and minfllz; — Ul(mod 1],
llz; — W(mod 1)*|} > log n/3n"/ @ the extra cost of going from U to W via Y
will be at most a constant times 1/n'/?logn and will be less than the
savings in the ball, that is, u/n'/¢, for n large enough. In conclusion, from
Lemma 5, we have for large n,

(23) P(D > log n/nl/d) < 81+log n/24r _ 8nlog a/24r'

Now, because N, is a Poisson random variable with parameter n, one can
always find, for any ¢ < 1, a constant & such that P(N, > k,) = O(c"). Hence
we finally have

log n
(24) P lgz,(ﬂ-n) > —1{;/7 < kn(snl"g /241y + O(c™).
n

Now we can always choose ¢ so that the proposition is true. O

6. Concluding remarks. In the course of proving the main theorem of
this paper we have obtained several results of independent interest. For
example, in Proposition 1, we have proved that for n points i.i.d. uniform on
[0,1]%, the length of the largest edge of the optimal MST solutions (in the
d-cube or d-torus) is almost surely asymptotically bounded from above by
A,(log n/n)Y/ 4. In fact, it is not difficult to show (see, for example, [4]) that,
for a Poisson point process m, with intensity n times the Lebesgue measure
‘on [0, 1]%, the growth of the largest edge is ®((log n/n)* ) almost surely.

Also, in Section 4, we have noted that in [10], the authors prove that for
any independent and uniform random variables {X;: 1 <i <} in [0, 119,
d > 2, the number of vertices of degree % in the MST through {X,..., X} is
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asymptotic to a constant @, ; times n with probability 1. In the case £ =1
and d = 2 (i.e., for the number of leaves of the MST in the square), the
authors have shown that the constant a = @, , is positive and that Monte
Carlo simulation results suggest that a = 2/9 is a reasonable approximation.
If one attempts to get any more information on this constant, one rapidly
finds that the boundary effects of the square are a serious limitation on any
analytical approach. Now from Theorem 2, any attempts at characterizing
these constants could be made within the torus model, with no boundary
problems. For example, it is clear, from the symmetry induced by the d-torus
model, that a, ; is equal to lim, ., P(H{” = k), where H{" is the degree of
any point, say X;, in a minimal spanning tree through {X;,..., X,} in the
d-torus.
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