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DISCRETIZATION ERROR IN SIMULATION
OF ONE-DIMENSIONAL REFLECTING
BROWNIAN MOTION

BY S@REN ASMUSSEN, PETER GLYNN' AND JiM Prrman?

Aalborg University, Stanford University and University of California
at Berkeley

This paper is concerned with various aspects of the simulation of
one-dimensional reflected (or regulated) Brownian motion. The main re-
sult shows that the discretization error associated with the Euler scheme
for simulation of such a process has both a strong and weak order of
convergence of precisely 1/2. This contrasts with the faster order 1
achievable for simulations of SDE’s without reflecting boundaries. The
asymptotic distribution of the discretization error is described using
Williams’ decomposition of a Brownian path at the time- of a minimum.
Improved methods for simulation of reflected Brownian motion are dis-
cussed.

1. Introduction. In this paper, we study the asymptotic discretization
error associated with the simulation of one-dimensional reflected Brownian
motion (RBM) B = {B(#)},, , with drift 4 and variance o 2.

Our interest in this problem stems from the fact that one of us recently
needed to compute the distribution of the r.v.

(1.1) Ty* ["B(t) dt, whereT, = sup{t < T: B(t) = 0}.
0

This r.v. arises in the limit distribution needed to produce confidence inter-
vals for estimation of steady-state quantities associated with queues in heavy
traffic; see Asmussen [3, 4] for details. In [3], the distribution (1.1) was
numerically evaluated by simulating a discretized version of the BM. How-
ever, it turned out that the discretized time increment 2 had to be made
surprisingly fine in order to obtain an accurate assessment of the limit
distribution (A = 1/2000 for T = 8 and u = —1, o2 = 1). The question thus
arises as to whether one can quantify the discretization error associated with
such simulations, and whether more efficient schemes can be developed.
There is a large literature that deals with discretization errors associated
with the simulation of solutions to stochastic differential equations (SDE’s).
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In particular, given functions b: R? » R¢ and o: R? » R? X R™ and a
standard m-dimensional Brownian motion B* = {B*(¢)},. ,, consider the R%-
valued solution Y = {Y(2)},, , of the SDE

dY(t) = b(Y(t)) dt + o (Y(t)) dB*(t)

subject to Y(0) = y. In general, the above SDE cannot be solved analytically,
and numerical simulation must be used to provide information about the
solution Y. The most straightforward way to simulate an approximation to Y
is to use the Euler approximation Y, = {Y,(¢)},. , defined by

Y, ((k + 1)h) = Y, (kh) + b(Y,(kh))h
+ o (Y, (kh))(B*((k + 1)h) - B*(kh))

[subject to Y,(0) = y] on the lattice 2N, and Y,(¢) = Y, (It /R ]R) off the lattice.
One measure of the quality of the approximation at time ¢ is the absolute
error criterion

(1.3) EllY(2) — Y(2) |2

where || |l is the Euclidean distance on R An approximation is said to
converge strongly with order y > 0 at time ¢ if (1.3) is O(A?) as 4 | 0. This
measure is of particular importance when good pathwise approximations to Y
are needed; see Section 9.3 of Kloeden and Platen [19] for further discussion.
On the other hand, an approximation Y, is said to converge weakly with
order B> 0 at time ¢ if, for each g € 2#*D(R? R) (the space of functions
& R® > R such that all partial derivatives up to and including [2( B+ 1)]
exist, are continuous and have polynomial growth),

|Eg(Ya(2)) — Eg(Y(2))| = O(k*)

as h | 0. Weak approximation is important in those situations in which only
an approximation of the probability distribution of Y(¢) is required, as occurs,
for example, when moments must be calculated. See Chapter 9 of Kloeden
and Platen [19] for additional discussion of these convergence concepts.

Under appropriate conditions on b and o, it has been established that the
Euler approximation typically converges strongly with order 1/2, whereas it
converges weakly with order 1. However, when the function o is identically
constant, the Euler scheme then enjoys both strong and weak convergence of
order 1. Extensive effort has been expended in developing discretization
schemes that enjoy strong and/or weak convergence orders strictly greater
than 1. See, for example, Mil’stein [26], Rumelin [32], Pardoux and Talay
[27], Talay and Tubaro [36] and Kloeden and Platen [19] for further results of
the above type.

Duffie and Glynn [13] consider the impact of these convergence rates on
the issue of how to trade off the desire to decrease % against the increased
computational effort required to generate a replicate of Y,(¢). Given ¢ units of
computer time, it is shown that the Euler estimator for Eg(Y(¢)) [g €
#(R%, R)] converges at rate ¢ ™'/ in the budget level c.

(1.2)
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This paper is concerned with the discretization error associated with the
Euler scheme B, = I'B, for approximating one-dimensional RBM B = I'B,
where B is Brownian motion with drift u and variance o2, B, is defined by
(1.2) with d = m = 1 and T is the reflection mapping defined by

(Tz)(¢) = 2(t) — (Oilslf_;tz(s) A 0).

As we shall see, the presence of the reflecting barrier has a substantial
impact on the quality of the approximation. In particular, we will show that
both the strong and weak convergence orders for the Euler scheme are 1/2
(see Theorem 2 and Proposition 3). Thus the presence of the reflecting
boundary reduces the order from 1 to 1/2 and serves partially to explain the
computational results obtained in the study of the r.v. (1.1). [The explanation
is only “partial” because (1.1) is a functional depending on the entire path,
which neither the strong nor weak convergence orders previously described
directly addresses.]

It is well known that a wide variety of queueing networks in heavy traffic
can be weakly approximated by a d-dimensional RBM, in which d typically
corresponds to the number of queueing stations in the network; see, for
example, Reiman [29]. While much progress has been made in developing
good numerical solvers for the steady-state distribution of such RBM’s (see
Dai and Harrison [11]), current algorithms become inefficient when d is
moderately large. Monte Carlo techniques are often viewed as the method of
choice in dealing with numerical solution of high-dimensional differential
equations. However, our results suggest that Monte Carlo simulation of
high-dimensional RBM’s is likely to be particularly challenging from a com-
putational viewpoint, due to the presence of the reflecting boundaries. This
puts a premium both on the study of non-Monte Carlo solvers for high-
dimensional RBM’s on the one hand, and on the development of improved
simulation methods for dealing with reflecting barriers on the other.

There has been some previous work on the discretization errors associated
with the simulation of diffusion processes subjected to reflection in a domain
D c R4 In particular, Chitashvili and Lazrieva [9], Kinkladze [18] and
Lépingle [22] have studied the mean square rate of convergence for the case
in which D = R, X R9~! and the first component of the diffusion undergoes
reflection at the origin. Slominski [35] extends those results to convex do-
mains with normal reflection and establishes that the numerical analogue Y,
of the Euler scheme (1.2) converges a.s. on compact time intervals to Y at rate
O(h'/27°) for any & > 0. Petterson [28] derives an expected value version of
[35], with a somewhat improved error rate. Liu [24] obtains similar results
for the special case in which the diffusion exhibits normal reflection at the
boundary, and develops (for the case of normal reflection) a variant that
exhibits weak convergence of the order 1.

- Our results provide a sharper description of the discretization error associ-
ated with numerical simulation of RBM in the one-dimensional case. We
show that the scaled discretization error hA~'/2(B(¢) — B,(t)) converges
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weakly to a proper nonzero limit, and we identify this limit precisely. This
type of limit theorem is in the spirit of limit results obtained by Rootzén [31]
and Kurtz and Protter [21] for SDE’s without boundaries. It turns out that
our limit r.v. can be constructed from two independent Bessel processes, and
our proof uses various facts from the theory of path decompositions and
excursions of Brownian motion. Our analysis shows, in a precise sense, that
the discretization error is of exact order 1/2, whereas the more general
theorems described above show only that the rate is greater than 1/2 — &.
We even precisely identify the form of the discretization error, both in terms
of approximating expected values (Proposition 3) and approximating distribu-
tions.

The paper is organized as follows. Section 2 is devoted to computing the
asymptotic distribution of the discretization error associated with the simple
Euler approximation Bh = I'B,, to one-dimensional RBM B = I'B. In Section
3, we obtain the precise form of both the strong and weak error of the
approximation, and we offer some additional refinements. Finally, in Section
4, we provide a number of improved approximations to the simulation of
RBM, some of which generalize to higher-dimensional diffusions.

2. The asymptotic distribution of the discretization error. We first
briefly look into the interpolation error in the Euler scheme (1.2) in the
special case of one-dimensional BM B(t) = x + o B*(¢) + ut, where B* is a
standard one-dimensional BM. Then

(2.1) B,(t) =x + oB*(h|t/h]) + ph|t/h|.

Because of the constant drift and variance coefficients associated with the
diffusion B, the Euler approximation B,, coincides exactly with B on the grid
hN. However, off the grid, the approximation tends to be poor because we are
approximating the process B that has highly irregular paths by a process B,
that is piecewise constant. In Appendix A, we show the following result:

ProposITION 1. Suppose that g € %2(R R). Then as h |0, the following
hold:

() max (B(s) ~ B(s) - /207 g | =4 0

() Eg(By(1)) = E&(B(1)) — 5E&"(B(1) (¢ — hlt/k]) + o(h).

This shows that the distance of B, from B in the uniform metric on [0, ]
is roughly \/ 2ho? log(t/h) , whereas (ii) shows that the error in approximat-
ing expectations is of order A. Of course, any smooth approximation B, will
have poor pathwise approximation properties off the grid (in the sense of
distance in the uniform metric). On the other hand, because Eg(B(t)) tends
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to be a smooth function of ¢, the weak error is easier to control between grid
points. Better interpolation schemes could be expected to improve the weak
error beyond the order 4 asserted in (ii). However, the weak error at time ¢
will clearly depend on how close ¢ is to a grid point [see, e.g., (ii) above].

To avoid uninteresting complications arising from the above interpolation
issues, we shall only consider the discretization error for a fixed ¢ which
corresponds to a grid point. Thus we let % tend to O through the sequence
h=t/n,n=12,....Let &(t) = B(t) — B,(t) for h = t/n, and note that

kt
e,(t) = (023223(7) A o) - (Ol‘élsnsltB(s) A 0).
Since the discretized minimum is taken over a smaller set, it will be greater
than the continuous minimum, and hence -¢,(¢) > 0. Furthermore, it is clear
that &,(t) = 0 for ¢t < T, where T, = inf{s > 0: B(s) < 0}. By applying the
strong Markov property at time 7', and noting that B(T,) = 0, we can reduce
the computation of the distribution of &,(¢) for initial condition B(0) = x to
one involving B(0) = 0. In particular, this implies that

Px(gn(t) € ) = [Ex(PO(sn(t - Tl) € ’); Tl = t)'

We shall therefore henceforth assume that B(0) = B(0) = 0.

The main result of this section provides an approximate distribution for
&,(t) for fixed ¢ when n is large. The approximating distribution involves the
three-dimensional Bessel process BES(3), denoted by R = {R(¢)},,,. The
process R is defined as the radial part

R(t) =||B*(¢)] = VBi(¢)* + B§(+)* + B3(¢)°
of three-dimensional standard Brownian motion

{B*(#)}e0 = ((BF (2), B3 (), B5 () )50,
where the Bf, i = 1,2, 3, are independent copies of standard BM B*.

TuEOREM 1. Let R = {E(¢)}_,, <t <« be a two-sided version of R,
y R(t), t=>0,

fo - (B

R2(_t), t S 0,

where R,, R, are independent copies of R. Then as n — ,
Vn g,(t) =5 Vo2t W,

where W =min, _q ;1 .3,.. R(U + n) with U uniform on (0,1) and indepen-
dent of R. )

Before proceeding to the proof, we note that this result establishes that
&,(t) is of order n~'/2 at the (grid) point ¢. Thus, even though the Euler
approximation B, to B incurs zero error at the grid points, the introduction
of the reflecting barrier at the origin sends the error to order 2'/2. In fact, in
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Section 3, we will show that B, converges to B at order 1/2, both weakly and
strongly, at time ¢.

In the proof, we will assume that o2 = 1, ¢t = 1, which can be achieved by
standard transformations. It is also convenient to switch from minima to
maxima by sign reversion. Recall that we have already restricted the discus-
sion to the initial value B(0) = B(0) = 0. The objective is then to show that
Vn e, =, W, where

k
(22) En orgtasxlB(t) k=(fl1?.x..,nB(n)
and B has unit variance constant and a general drift u.

It is intuitively clear that the r.v. g,, for n large, is determined by the
behavior of the BM B in a neighborhood of its maximizer = (the a.s. unique
random time 7€ [0,1] at which B attains its maximum value M =
max, _,., B(¢) over [0, 1]). Because the asymptotics of &, solely depend on
the local structure of the BM around 7, the distribution of the limit r.v. W
does not depend on the drift wu.

The proof of Theorem 1, provided later in this section, uses a variation of a
path decomposition of Williams [38] for a one-dimensional diffusion process
at its global maximum into components related to BES(3). For BM with zero
drift, Denisov [12] found a similar decomposition at 7: the processes

1 1
{T/_;—B(T(l - u))}OSusl and { V-1 B(T+ (1 - T)u)}OSusl

are two independent Brownian meanders (see, e.g., Revuz and Yor [30], page
455, for definition of the meander). As noted by Imhof [16], the laws of the
Brownian meander and the law of a BES(3) process {R(¢)}, ., ., are mutually
absolutely continuous, with Radon—-Nikodym derivative which is a function of
R(1). Consequently, the two processes share a common family of conditional
distributions given R(1) = y, y > 0. This is the family of laws {BB(3, 1, y)}, . o,
where for ¢t > 0, y > 0, a BB(8, ¢, y) is a three-dimensional Bessel bridge from
(0,0) to (¢, y), that is, a process identical in law to

(B(s),0 <s <t|R(¢) =),

where the BES(8) process R is started at R(0) = O (see, e.g., Salminen [33]
and Fitzsimmons, Pitman and Yor [15] for rigorous treatment of the condi-
tioning). The BB(3, ¢, y) is an inhomogeneous Markov process whose transi-
tion function can be obtained from the well-known one for BES(3) by Bayes’
rule. Combination of the above results, Brownian scaling and the well-known
density relation between the laws of B for general drift u and for zero drift
yields the following proposition, which is a special case of an unpublished
result of Fitzsimmons [14] for one-dimensional diffusion.

PROPOSITION 2. Let B be a BM with B(0) = 0, unit variance coefficient and
constant drift. Let v be the (a.s. unique) time in [0, 1] at which B attains its
maximum M = max, _, ., B(¢). Conditionally on v=s, M = m and B(1) =
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m —y, the process {m — B(s —u)}y.,., is a BB(3,s, m), independent of
{m — B(s + v)}g<,<1-s> Which is a BB(3,1 — s, y).

REMARK 1. The joint density of (7, B(7), B(1)) was obtained by Shepp [34].
See also Fitzsimmons [14] or Csaki, Foldes and Salminen [10] for more
general diffusions.

To proceed from Proposition 2 to Theorem 1, we need the following
lemmas.

LEMMA 1. Let A,T,z >0 be fixed. Then conditionally on R(T) = z,
{(VnR(t/n)y.,< 4 converges in distribution to {R(t)}y.,. . in CIO, A] as

n — oo,

PrOOF. The result is well known (see, e.g., Lemma 11 of [6]) but since the
proof is short, we include it for the convenience of the reader. Let w =
(wq,w,, w;) € R, |Iw|| = 2. Then conditionally on B(T) = w, B(A/n) is ap-
proximately normal with mean Aw/n and covariance matrix A, , —
A, ,A7'A, ,,, where A, : = 0°I and I is the 3 X 3 identity matrix. Thus, in
the conditional limit vn B(A /n) is normal (0, AD), that is, has the marginal
unconditional distribution of B,. Involving the Markov property of {B(¢)}, it
follows that, in the conditional limit,

t
et

n )}OstsA g {B(¢)}o<i<a-

From this, the lemma easily follows. O
Combining Proposition 2 and Lemma 1, we obtain the following lemma.

LEMMA 2. Let A > 0 be fixed. Then conditionallyon M = m, 7= s, B(1) =

m =y, {(ﬁ(M—B(T_ %))’E(M—B(’"" %)))}OSM

e {(Rl(t)’R2(t))}OstsA
in C[0, A] X C[0, Al as n —> o,

LEMMA 3. (a) Let a,b > 0. The probability that a Brownian bridge from
(0,0) to (T, 0) crosses the line from (0, a) to (T, b) is e 22%/T,

(b) Let Ly , be the minimum of a Brownian bridge from (0,0) to (T, b).
Then for x € [0, £], :

e—2(b+x)/T _ e—23(b+a)/T
(2‘3) IP(LT,IJ =< _xILT,b > _8) = 1-— e—2s(b+£)/T
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ProOOF. Part (a) is formula (20) of Lévy [23]. Noting that a Brownian
bridge from (0,0) to (T, b) is identical in law to the process obtained by
adding drift /7T to a Brownian bridge from (0, 0) to (T, 0), we observe that
(b) is then a simple consequence of (a). O

Now write £, = min(e, 4, 8, ), where

k
En A= min (M—B(—)),
k=0,..., n,lk/n—7|<A/n n

k
min (M—B(-—)).
k=0,..., n,lk/n—7|2A/n n

6n,A

LEMMA 4. For any fixed a < o,

jim limsupP(Vn 8, 4 <a) = 0.

n—ow0

ProoF. Clearly, 8, , > min(8{ 7}, '), where
8= min (M-B(t)), 8&1= min (M- B(t)).

O<t<7-A/n T+A/n<t<1
Thus, it suffices to prove the lemma with §, , replaced by (say) §{*2, and it is
enough to do this with the basic probability P replaced by the conditional
probability

Pm,s,y = IFD(.IM =m,T=S, B(l) =m —-y)
considered in Lemma 2. Define Z = Vn (M — B(s + A/n)),
I}:Dm,s,y,z,n = Pm,s,y(~|Z = Z).

Then, under P,

m,s,y,z,n?

{ z B( A +t)}
m-— — — B|s+ —
Vn n 0<t<l-s—A/n

is a Brownian bridge from (0,0) to (1 —s — A/n, y — z/ Vn) conditioned on
having minimum greater than or equal to —z/Vn. Thus, for 0 <a < z,
Po .y, 2.n(Vn 87} < a) is given by (2.3) with

T-T =1 A z b=b z
=41, = s n’ 6‘-—6'”—‘/;, =0,=y ‘/;,
Z2—a
x=xn= ‘/;

Since sup, 7, < ® and inf, b, > 0, the asymptotic form of (2.3) as n — » is
just a/z. That is, given Z = z, \/Ean,A is uniform on (0, z). Now by Lemma 2,
Z is approximately distributed as YAV where V is x? with 3 degrees of
freedom. Thus, under P, , , the rv. Vn 8{*) is approximately distributed as
UYVAV for large n where U is uniform(0,1) and independent of V. Noting
that the limit is independent of m, s,y and letting A — «, the lemma

follows. O
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ProoF oF THEOREM 1. Easily,
|P(Vne, <b) —P(Vne, , <b)| < P(Vn s, 4 <b).
Let
W, = min R*(U + n).
n=0,+1,+2,..., [U+n|<A

Then by Lemma 2, Vn &,.4 9 Wy, and hence
limsuplP(\/;sn <b)-P(W, < b), < limsupP(Vn 8, 4, < b).

n—ox n—o

Letting A — « yields W, -, W. Thus, by Lemma 4,
P(Vne, <b) - P(W < b). O

REMARK 2. The proof of Theorem 1 shows that \/17 g, is asymptotically
independent of B. That is to say, the R X C[0, 1]-valued random pair
(Vn &,, B) converges in distribution to (W, B), where W is independent of B.

REMARK 3. In view of Theorem 1, it seems reasonable to ask for a
functional limit theorem for {Vn &,(s)}.,. It is obvious from the above
analysis what the limit should be: a process which is constant on each
excursion interval I of BM, the values on different intervals being i.i.d. and
distributed as W. In fact, it is easy to show that if one restricts n = 2* to
powers of 2 and s/t = i/2' (¢ fixed) to dyadic rationals, then finite-dimen-
sional distributions converge. However, in the functional setting we are faced
with the interpolation issue and, more important, the difficulty that the
candidate for the limit does not have D-paths (right-continuity fails at time
points where the BM is at a maximum but no excursion occurs), so that one
cannot work in the standard setup of weak convergence in D.

It is of interest to derive properties of the distribution of the limiting r.v. W
in Theorem 1. It is easy to see that the distribution has a density, but we do
not have any useful expression for the density, or any transform or moments,
apart from the mean EW which is found in the next section. Another partial
result is the following sandwich between simpler distributions.

CoRrOLLARY 1. Let U,U,,U,,V,V,,V, be independent r.v.’s such that
U,U,,U, are uniform on (0,1) and V,V,,V, are x* with 38 degrees of
freedom. Then

min(U/TV;, Up/(T = U)V, ) < W < min(\/IfVI NaA-0)V;)

. in the sense of stochastical ordering.

PrOOF. The upper bound follows immediately by restricting the minimum
in the definition of W to the time points U,U — 1 and noting that R(¢) is
distributed as V¢V, where V is xy? with 3 degrees of freedom. For the lower
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Fic. 1.

bound, we use the fact that the minimum of R starting from R(0) = r is
uniform on (0, r) (see [39]) to conclude that min,_, ; = R(U + n) is stochasti-
cally larger than U,R(U) =, U,/UV,, together with a similar bound for
min,_o, RU-1-n). O

A histogram of 1000 simulated values of W is given in Figure 1; due to the
infinite horizon of the minimum, it is nontrivial to generate W exactly, and
we explain the algorithm in Appendix B. Similar histograms of the upper and
lower bounds, which we omit, show that the upper bound is somewhat better.
This is also confirmed by the simulated means, which came out as 0.66 for the
upper bound and 0.26 for the lower one. This is to be compared with
EW = 0.58; see the next section.

3. Further results on the asymptotic discretization error. Both the
weak and strong convergence orders of an approximation scheme are defined
in terms of expected values. Our first order of business is therefore to study
the mean discretization error. Let {(x) be the Riemann zeta function.

THEOREM 2.

— — ot 1 ot
E|B(t) - B,,.(t)| = - pym g(g) ~ 0.58261/ — .

Thus the strong order of convergence of B, /n b0 B is precisely 1/2.
Theorem 2 will be established by bare-hand calculations, without appeal-
ing to Theorem 1. We take advantage of Spitzer’s identity in discrete random
, walk theory (see [2], Chapter 8):-

- E B(k) iluﬁ(k)
(3.1) h=orn \ 7 Tk nl
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Since max,_, ., B(k/n)tmax,_, ., B(¢), the monotone convergence theo-
rem, in combination with a Riemann sum approximation of the r.h.s. of 3.1,
yields

. 11
(3.2) E max B(t) = ]0 SEB* (1) dt.

0<t<1
So for &, as in (2.2),

1 n o1 k
"ZEB*(t)dt - X —IEB*(;).

(3.3) Ee, = [

ot ro1k
To analyze the asymptotic behavior of (3.3), we will use some known
variations of the Euler—-MacLaurin summation formula; see, for example,

Lyness and Ninham [25]. Part (a) of the following lemma is standard. For
completeness we indicate a quick proof of (b) and (c) via (a).

LEMMA 5. (a) Iff € C,[0,1], then

1 1 7 k 1
[ 72) dx = 5F(0) + ;kglf(—,;) (1) + O(n7?).

() Iff € C,[0,1] and f'(x) is continuously differentiable at 0, then

1 12 B\ 1
folf(w/:;)dx = %—f(O) + ;kglf(\/;) - Ef(l) + 0(n=3/%).

(© Iff € C,l0,1] and f'(x) is continuously diﬁ“erentiable at 0, then

11 12 1 k -{(1/2)f(0)
LT;“’W:ZEI—_W’”(Z)*——_«;

+ o(n"1/%).

PrROOF. Part (a) is standard. For (b), let g(x) = f(Yx) — f'(0)Wx . Then
g(x) satisfies the assumptions of (a), and hence

folf(w/:;)dx folg(x) dx +f'(0)f01\/§dx

1 1 x k [ 1 ,
5 1(0) + ;kgl{f(\/;) —f(O)\/;} - 5 {A(1) ~ ()

+0(n"2) + f'(O)jolﬁ dx.

i
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Now

f\/_dx——Z\/~=#{fn\/;dx— |

ey ;f (‘/_ \/—)dx

— ; x—k Ok3/2
B = {2\/_+ ( )}

Collecting terms, (b) follows.
For (¢), write f(x)/ Vx = f(0)/ Vx + g(¥x), where g(x) = (f(x2) — f(0)) /x.

Then g satisfies the assumption of (b). Finally, use the standard formula
1 1
1 - _
nl—zrolo\/—(—[ nk 1‘/k/n) {(2)
(see [1], formula 23.2.9). O

PROOF OF THEOREM 2. Let U ~ N(m, o2). Then by easy explicit calculus,

-m? /202

EU* <I>( e ) + 7
=m®|— e
o or
Thus, letting g(¢) = u®(uvt) + a-e"‘zt/z/ V27t , Lemma 5 yields
1 1z k

Ee, = [ g(¢)dt - Zg(—)-
By Lemma 5(b), the contnbutlon from pu®(uvt)is O(1/n), and Lemma 5(c)
applied to the e #**/2/V27¢ term yields the result. O

A result which is related to Theorem 2 but is somewhat less explicit was
recently derived by Calvin [8].

Given Theorem 2, it is natural to conclude that EW must be —¢(1/2)/ V2.
To make this rigorous, we apply Theorems 1 and 2 and the following result.

LEMMA 6. For any B <=, the family {exp(BVn ¢, )} is uniformly inte-
grable. In particular, the (Vn ¢, )P are uniformly mtegrable for p < o,

)

PRQOF. We use the bound

el )« oY
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Hence by Cauchy—-Schwarz and a symmetry argument, it suffices to show
that

(3.4) lim sup Efexp(28Vn (M — B(|n7]/n))); 7> % < o,

n—o

By Proposition 2,

E,,, yexp(a(M = B(|n7|/n)))
(3.5)

= E[exp( @R(s — |ns|/n))|R(s) = m].

Now for a > 0, t < s,
IE[exp( aR(t))|R(s) = m]
— E[exp({ay/BI(2) + BI(2) + BI() || Bi(s) = m, Bu(s) = By(s) = O]
< Elexp(a(|B(0)] +|Bo(t)| +|By(6) D)Br(s) = m,
By(s) = By(s) =0]
= IE[exp{a(|Bl(t)|)}|Bl(s) = m](IE[exp{a(|Bl(t)|)}|Bl(s) = O])z.
Further, if X is normal with mean u > 0 and variance o2, then

Ee*X < Ee®X + Fe X < 2e#*a’/7"
so that, for s > 1/2,

E[exp{a| B,(¢)|}| B(s) = m] < 2exp{2atm + fzz—t}

Letting a = 2BVn, t = 7— |nrl/n < 1/n, we get
1
[E[exp (2[3\/;(M - B L] )), T> —]

n -2
SSEexp{ﬂ +6[32} — exp (682). O
Vn
We now turn to the order of weak convergence of B, to B at time ¢.

Suppose that g € (R, R). Then
(3.6) v (g(B(2)) — &(B,,a(1))) = '(6.(2)) -V £,(2),

where 0,(¢) lies between I_S't/n(t) and B(¢). Since }._?t/n(t) -, B(t), we con-
clude that

Vn (g(B(t)) - g(B,,u(t))) ~o &'(B(t))Vo2tW

as n — o, where B(t) and W are independent (see Remark 2). However,

Elg'(0.(t)) Ve, (0) [ < VEg'(0.(0))" - VE(Vm (1))’
< \/c +dE sup |B(s) - VE(Wme(t)

|s—tl<t/n

so that the r.h.s. of (3.6) is uniformly integrable. This establishes the proof of
our next result.
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PROPOSITION 3. Suppose g € Z2(R,R). Then as n — ,

— - 1 — 1
[Eg(B,/n(t)) =Eg(B(2)) + ‘/—r_L.-IEg’(B(t)) Vo2t EW + 0(7—;—).

This result shows that B, /n converges weakly to B with order 1/2 at time
t. In contrast to Theorem 2, which describes the strong order of convergence,
Proposition 3 establishes a rate of convergence that is independent of how we
define the joint distribution of B, and B.

A related question is how close the probability distribution F,(-) of B, /n 18
to F(x) = P(B(t) < x). Note that F is absolutely continuous and let f(-) be
its Lebesgue density (explicit expressions for F and f are given in Asmussen
[2], but need not concern us here). From Proposition 3, we obtain, by formal
integration by parts, that

(3.7 F,(x)=F(x) + V GT% EW-f(x) +o

and, by formal differentiation, that

(3.8) fu(x) =f(x) + V f;lz—t EW-f'(x) + o(—‘/lﬁ—),

x > 0. The rigorous proof requires, however, some uniform versions of earlier
estimates, for example, that

sup |P(\/ﬁen zz|B(1) =y) - P(sz)l -0,

O<y<n

1
)

sup
O<y<x+n?®

E[(ne,)’|B(D) =] - EW?| - 0.

4. Improved approximations.

4.1. On bias and optimal efficiency. Suppose that we want to estimate
Eg(B(¢)) via simulation. The approach most commonly followed would in-
volve simulating m ii.d. replicates of the r.v. g(B,(t)), where m and h are
chosen suitably. It seems reasonable to choose these two parameters so as to
maximize the accuracy of the resulting estimator for a given computer bud-
get c.

To study the trade-off between m and % from an asymptotic standpoint,
we exploit the following framework. Suppose that we wish to estimate a
parameter a via independent replications of an r.v. V(). Suppose that, as
h | 0, the following hold:

@ V() -, V;
(i) EV(h)? > EV?Z < o
(iii) a(h) = a + Bh? + o(h?), where a(h) = EV(h), B+ 0 and p > 0O;
(iv) the computer time required to generate V(A) is given by 7(h), where
7(h) is deterministic and satisfies 7(h) = yh~? + o(h~9) where y,q > 0.
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Consider the estimator
n(cz,h)

Vi(h),
n(e,h) /53 (%)
where the V;(h) are ii.d. copies of V(h) and n(c, h) = |c/7(h)|. Then Duffie
and Glynn [13] establish the following properties of a(c, 4,) under conditions
®-Gw):

@) If Ac/@*2P) > wor if h,c}/@*2P) > 0 as ¢ — », then

e/ a(c, h,) — a] o5 + .

@ii) If A, c/@*2P) - x, where 0 < x < », then

Y
cP/@* 2P (a(c, h,) — a) -4 0"/ pry N(0,1) + Bx?,

where o2 = Var V.

In our setting, a = Eg(B(¢)) and V(1/n) =g(B,,,(t). If g € €}R,R),
then conditions (i)-(iv) are satisfied with p = 1/2 and ¢ = 1 [of course, in
reality 7(h) is random and only approximately deterministic]. The above
result therefore asserts that the best possible convergence rate is of order
¢~'/* in the computer time budget ¢ and is achieved when A, = xc~1/2. This
is to be contrasted with the rate of ¢ ~!/2 which is typical of Euler schemes for
SDE’s without boundary conditions.

In contrasting the Euler approximation g(B, ,»(t)) to other approximations
of g(B(t)), the above results indicate that the key parameter is the order of
bias as reflected in the parameter p. Proposition 3 suggests the approxima-
tion

= 1 -
(4.1) 8(Biyn(t)) = 7=8'(Buyu(t)Vo L EW.

a(e,h) =

If ge %pl(lR, R), then Proposition 3 shows that the bias of this estimator for
a = Eg(B(t)) is of order 1/n, so that p = 1 in condition (iii). The estimator
a(c, h,) based on the approximation then has the best possible convergence
rate ¢'/3 (achieved when &, = xc™1/3).

4.2. Adaptive step size. This means that (for a fixed budget c) the time
step h, = h(x) is chosen according to the current value x of {B(t)}. We shall

only comment briefly upon the two-step case
h®, x < x,,
r®, x> x,.

h(x) =

We obviously want A’ < h® and, to obtain an improved bias reduction,
A = o(c™1/2). A large x, cannot be optimal for sample size reasons, and a
small one cannot because it makes the probability of a step from level x > «x,
to 0 nonvanishing and thereby makes the bias of order /A rather than
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Rough calculation, which we omit, indicates that the best possible conver-
gence rate for such a two-step scheme is close to ¢™3/1° and is attained by
taking x, close to ¢71/%, A" close to ¢73/® and A® close to ¢~ 2/5.

4.3. Extrapoldtion. The low-bias approximation (4.1) takes advantage of
the fact that Proposition 3 provides a precise description of the principal bias
term for one-dimensional RBM. We now present an approach toward bias
reduction that holds promise for higher-dimensional reflected diffusions and
essentially amounts to applying the concept of Richardson or Romberg ex-
trapolation (see page 285 of Kloeden and Platen [19]). Fix ¢ > 0. Proposition 3
establishes the existence of a constant 8 such that, for g € &, (R, R),

B 1
(4.2) Eg(B,,.(t)) = Eg(B(t)) + = +o(ﬁ).

As mentioned in the Introduction, this bias expansion is consistent with the
theory that has recently been developed for higher-dimensional reflected
diffusions. It therefore seems likely that such bias expansions hold in great
generality for diffusions that undergo reflection. Assuming that (4.2) is valid,
it is an easy matter to verify that

E[22(B,/n(t)) — &(Bui/n(t))] = Eg(B(2)) + 0
as n — «, Thus, the estimator

(43) 2¢(B,/n(t)) — &(Bi/a(t))
enjoys significantly better bias properties than does g(B, /2(8)) itself. When n
is a multiple of 4, we note that B, ,»(t) can be computed along the subgrid
{4t/n: i = 0,. ..,n/4} of the grid {t/n: i = 0,..., n}. Furthermore, one can
(and should) use common Brownian increments to compute both B, /n(t) and
: /n(t) in order to reduce both the computational burden and the variance
(this is an application of the method of common random numbers; see
Bratley, Fox and Schrage [7] for details).

It seems reasonable to expect that the o(1/ Vn ) term in (4.2) would have
the form y/n + o(1/n) for some constant y. Then the bias of the estimator
(4.3) is of order 1/n so that p = 1 in condition (iii) and a convergence rate of
¢~ 1/ is available.

1
=)

4.4. Liv’s method. Another approach to bias reduction was proposed
recently by Liu [24]. The method was developed for general reflecting diffu-
sions with normal reflection at the boundary (note, however, that the RBM’s
of Reiman [29] typically give rise to nonnormal reflection). To illustrate the
method, let B’ be Liu’s approximation to the one-dimensional RBM B and

'write
- — it (z+ 1)t it
B§=B;/n(—), AB,=B|— | - B|—].
n n n

The algorithm then takes the following recursive form.
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ALcoriTHM A. If B!+ pt/n + oAB,.; >0, let B),, < B, + ut/n +
oAB; ; = 0;else let

— t _ t
B+Z —onm,,, B+Exo
= n n
Bi+1 < /J’t
lo AB,, B, + — <0.
n
To define B),, between grid points, let l_?;/n(s) = l_?;/n(t/nlns/tj). Liu

showed that, under some smoothness conditions,
_ _ 1

(4.4) Eg(B;,.(t)) = Eg(B(t)) + O —

Assuming that the O(1/n) term has the form B’/n + o(1/n) for some
constant B', we have p = 1 in condition (iii) and the best possible rate of
convergence for schemes based on this approximation is ¢ ~}/3. Of course, this
would also suggest use of an extrapolation approximation similar to (4.3),
providing an improved convergence rate of order ¢ 2/% if the o(1/n) is in fact

of order n~2.

4.5. Exact algorithms in one dimension. The improved approximations
described above all were assessed in terms of weak error. It should be clear
that no improvement from the point of strong convergence error should
necessarily be expected. Fortunately, it turns out that for one-dimensional
RBM B enough is known about the process to give an exact algorithm for
generating B at the grid points.

If u = 0, the problem is simple: we can just simulate B as B(¢) = |B(t)|,
where the BM B can be simulated at a discrete grid as a random walk with
normally distributed increments. The bias at the discrete grid is 0 for both B
and B.

If u # 0, we may proceed by noting that for fixed T > 0 the joint density of

(4.5) (B(T), OIE?SXTB(t))

is known. For simulation purposes, a convenient representation of this distri-
bution is to note that marginally B(T) is normal (uT,T) and that, by
Lemma 3,

F,(x) - P( max B(t) -y <|B(T) =y) =1 e 2T,
0<t<T

By easy calculus,

—2y + /4y® — 8T log(1 — 2)
y .

Fyl(z) =



892 S. ASMUSSEN, P. GLYNN AND J. PITMAN

Thus, we may first generate B(T') as normal (—uT,T) and next let

B(T B(T)? — 2T log(U
max B(6) - (2)+xf() 2loe()

where U is uniform on (0, 1).

Thus, an algorithm for unbiased simulation of BM B, the maximum M
and thereby RBM X = M — B at the epochs ¢t =0,1/n,2/n... is obtained.
(This algorithm was independently obtained by Lépingle [22].)

ALGORITHM B.

l.Let t <« 0,B«< 0, X< 0, M« 0.

2. Generate (T, T,,) from the density (4.5) with T' = 1/n.

3. Lett—t+1/n, M « max(M,B+T,),B<B+T,, X< M-B.
4. Return to step 2.

For Algorithm B, both the weak and strong error of the approximation
vanishes at the grid point. In particular, the rate of convergence associated
with estimating E f(B(2)) is of order ¢~!/2. However, because of the computa-
tional complexity associated with the random variate generation used in
Algorithm B, and because this method fails to generalize to higher dimen-
sions, we believe that the other improved approximations developed in this
section are also of value.

We conclude this section with the discussion of a related algorithm that is
exact on a random grid associated with a Poisson process that is run
independently of the RBM B. It takes advantage of the following well-known
lemma.

LEMMA 7. Let T be an exponential r.v. with rate A which is independent of
{B(t)}. Then the r.v’s max,_, p B(t) — B(T) and max,_, . B(t) are inde-
pendent and exponentially distributed with rates n and o, respectively, where

n=—p+yul+22, w=p,+\/u2+2)\.

Thus, an algorithm for unbiased simulation of BM B, the maximum M
and thereby RBM X = M — B at the epochs ¢ of a Poisson(A) grid is obtained
as follows.

ALGORITHM C.

l.Lett < 0,B< 0, X< 0, M«0.

2. Generate T, S;, S, as exponential r.v.’s with rates 1, 5, , respectively.
3. Lett<t+T, M« max(M,B+8S,),B<«B+8S,—-8,, X< M-B.
4. Return to step 2.



ONE-DIMENSIONAL REFLECTING BROWNIAN MOTION 893
APPENDIX A

ProOF OF PrOPOSITION 1. For (i), note that

osfﬁfi/h](?(s) = By(s))

= B*(h(k — 1) +s) — B*(h(k — 1)) +
ls?sa[’ti/hjo?fsxha( (A( ) +5) (A( ) + su

= 1/i7( B} + h),

? 15??[?/1;10?35){10 F(s) +sulh

where =, denotes equality in distribution and B}, Bj,... are ii.d. copies of
B*. Recall that max, _,_, B}(s) =, |Bf(1)| (e.g., Karlin and Taylor [17], page
346) and that

( max |Bj(1)| - \/Zlogn) -4 0
1<k<n

as n - » (e.g., Barlow and Proschan [5]). Since suyh — 0 uniformly in
s € [0, 1], (i) easily follows when the maximum is taken over [0, A|¢/A]]. But
the same argument works when the maximum is taken over [0, A[¢/A]],
proving (i).

For (ii), we use the fact that

g(B(t)) =g(By(2)) + g'(Bi(t))(B(¢) — By(2))
+38"(0,(2))(B() — By(2))",

where 6,(¢) lies between B(¢) and B,(¢). Since B(¢) — B, is independent of
B, (), the second term on the r.h.s. vanishes in expectation. On the other
hand,

n n 2
g"(6,(1))(B(2) — By(¢))" = 8" (Bu(£))(B(¢) — By(?))
” ” \ 2

+(8"(04(2)) — 8" (Ba(2)))(B(t) — By(t))"

The first term on the r.h.s. has expectation
Eg” (By(£))o™(t — h|t/h]).

The second term, when multiplied by #~1, is dominated by
|&"(6:()) —&" (B(1))| k" max o*(B*(h|t/h] +s) - B*(h|t/h]))",
which converges to 0 in probability. Since g € ‘Zipz(lR, R), uniform integrability
holds and (ii) follows. CI

APPENDIX B

‘Generating W by simulation. Since the definition of W involves the
minimum over an infinite time horizon, the simulation of W is nontrivial and
we shall therefore give an outline of the ideas behind the algorithm. For
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simplicity, we redefine W as min,_, ; ,  R(U + n) since the generation of
the two-sided minimum just involves a replication with U replaced by 1 — U.
Throughout, w is the candidate for the minimum at the present stage of the
simulation (the minimum at the times U + n for the n considered so far). The
key description of BES(3) starting from R(0) > 0 can be found in [39] and
states that the minimum r is uniform on (0, R(0)), that { R(¢)} evolves as BM
until hitting r and as {r + R*(¢)} thereafter, where { R*(¢)} is BES(3) starting
from R*(0) = 0. The implication for the simulation is that we can run BES(3)
as BES(3) segments alternating with Brownian segments.
The r.v.’s occurring in the construction (all independent) are as follows:

(a) U,U,,U,,... uniform (0,1) r.v.’s;

(b) 7,(,), 75(l5),... Brownian passage times, from level O to level —/; for
7,(1;) which can be generated as [2/X?, where X, is standard normal;

(c) By(¢)), M(£,))), (By(ty), My(t,)), ..., random vectors with

(Bi(t), Mi(t) = (B(t), maxB(#));
(@) Bf(ty,1)), Bi(ty,15),..., r.v’s with
B (t,1) 5 (B(t) [ maxB () < 1)

the Bf(¢;,l,) can be generated by acceptance-rejection from the

(B,(t;), M(¢)).

Step 0 is the initialization and consists of generating U and B(U), where
{B(2)} is a three-dimensional BM underlying the BES(3). We then let R(U) =
B, w = R(U).

Step 1 consists of a BES(3) segment, generating B(U + 1),B(U + 2),...
and updating R(U + 1), R(U + 2),...,w in an obvious manner. The proce-
dure is stopped when R(U + k) > Cw for some C > 1 (we took C = 5). Then
the post-(U + k) minimum is generated as U;R(U + k). If U R(U + k) > w,
we are done and let W = w; otherwise, we proceed to step 2.

Step 2 consists of a Brownian segment, starting from a value of the form
R(U + k) and terminating when the generated post-(U + k) minimum
U,R(U + k) is hit, and is the most intricate; the difficulties are to avoid
discretization of BM and the fact that the expected length of such a segment
is infinite, whereas it is desirable that the algorithm has a finite mean
number of steps. This is achieved as follows. Let 7, = 7,(/,) be the length of
the Brownian segment [here [/, = (1 — U;)R(U + k)]. We do not generate 7,
directly, but start instead by generating 7,(l,), where l, = R(U + k) — w.
Next let ¢; = 15|l + 1 — 74, I3 = w — U;R(U + k). If 743(l5) < ¢;, the Brown-
ian segment is finished since then U;R(U + k) is hit at time 7, = 7, + 73 €
o llrgll7el + 1] (w is unchanged). Otherwise, we generate B*(¢y,l3), let
R(lmy] + 1) = w — B*(¢4,13) and replace w by w — B*(¢,, I5). Now continue in
this way by incrementing time in units 1 = ¢, = 3 = -+ until the BM either
attempts to go below U, R(U + k) (in which case the Brownian segment is
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finished) or goes above w, in which case we reset it to w as in the initial step
of the Brownian segment. A geometric trials argument shows that the
procedure will terminate in a finite expected number of steps.

Step 3 is the repetition of steps 1 and 2 until eventually the simulated
future minimum in step 1 exceeds w [the probability of this in each step is at
least P(CU > 1) > 0 so that the necessary number of repetitions is geometri-
cally bounded].

Acknowledgments. We are grateful to Hermann Brunner and Erik
Jgrgensen for helpful hints and references.
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