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AN INVARIANCE PRINCIPLE FOR SEMIMARTINGALE
REFLECTING BROWNIAN MOTIONS IN DOMAINS WITH

PIECEWISE SMOOTH BOUNDARIES1

BY W. KANG AND R. J. WILLIAMS

Carnegie Mellon University and University of California, San Diego

Semimartingale reflecting Brownian motions (SRBMs) living in the clo-
sures of domains with piecewise smooth boundaries are of interest in applied
probability because of their role as heavy traffic approximations for some sto-
chastic networks. In this paper, assuming certain conditions on the domains
and directions of reflection, a perturbation result, or invariance principle, for
SRBMs is proved. This provides sufficient conditions for a process that satis-
fies the definition of an SRBM, except for small random perturbations in the
defining conditions, to be close in distribution to an SRBM. A crucial ingre-
dient in the proof of this result is an oscillation inequality for solutions of a
perturbed Skorokhod problem. We use the invariance principle to show weak
existence of SRBMs under mild conditions. We also use the invariance princi-
ple, in conjunction with known uniqueness results for SRBMs, to give some
sufficient conditions for validating approximations involving (i) SRBMs in
convex polyhedrons with a constant reflection vector field on each face of
the polyhedron, and (ii) SRBMs in bounded domains with piecewise smooth
boundaries and possibly nonconstant reflection vector fields on the boundary
surfaces.

1. Introduction. Semimartingale reflecting Brownian motions (SRBMs) liv-
ing in the closures of domains with piecewise smooth boundaries are of interest
in applied probability because of their role as heavy traffic diffusion approxima-
tions for some stochastic networks. The nonsmoothness of the boundary for such
a domain, combined with discontinuities in the oblique directions of reflection at
intersections of smooth boundary surfaces, present challenges in the development
of a rigorous theory of existence, uniqueness and approximation for such SRBMs.

When the state space is an orthant and the direction of reflection is constant
on each boundary face, a necessary and sufficient condition for weak existence
and uniqueness of an SRBM is known [14]. This condition involves a so-called
completely-S condition on the matrix formed by the reflection directions. An in-
variance principle for such SRBMs was established in [15] and used in [16] to
justify heavy traffic diffusion approximations for certain open multiclass queueing
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networks. Loosely speaking, the invariance principle shows that, assuming unique-
ness in law for the SRBM, a process satisfying the definition of the SRBM, except
for small perturbations in the defining conditions, is close in distribution to the
SRBM.

For more general domains with piecewise smooth boundaries, some conditions
for existence and uniqueness of SRBMs are known. In particular, for convex poly-
hedrons with a constant direction of reflection on each boundary face, necessary
and sufficient conditions for weak existence and uniqueness of SRBMs are known
for simple convex polyhedrons (where precisely d faces meet at each vertex in
d-dimensions) and sufficient conditions are known for nonsimple convex polyhe-
drons, see [4]. For a bounded domain that can be represented as a finite intersection
of domains, each of which has a C1-boundary and an associated uniformly Lip-
schitz continuous reflection vector field, sufficient conditions for strong existence
and uniqueness were provided by Dupuis and Ishii [6]; in fact, these authors study
stochastic differential equations with reflection which include SRBMs. Despite
these existence and uniqueness results, a general invariance principle for SRBMs
living in the closures of domains with piecewise smooth boundaries has not been
proved to date. (We note that for the special case when the directions of reflection
are normal, that is, perpendicular to the boundary, there are a number of pertur-
bation results for reflecting Brownian motions. Our emphasis here is on treating a
wide range of oblique reflection directions.)

Motivated by its potential for use in approximating heavily loaded stochastic
networks that are more general than open multiclass queueing networks, in this
paper, we formulate and prove an invariance principle for SRBMs living in the
closures of domains with piecewise smooth boundaries with possibly nonconstant
directions of reflection on each of the smooth boundary surfaces. An application
of the results of this paper to the analysis of an internet congestion control model
can be found in [13]. An outline of the current paper is as follows.

The definition of an SRBM and assumptions on the domains and directions of
reflection are given in Sections 2 and 3, respectively. Some sufficient conditions
for these assumptions to hold are provided in Section 3. Section 4 is devoted to
proving the main result of this paper, namely, the invariance principle. A key ele-
ment for our proof of this result is an oscillation inequality for solutions of a per-
turbed Skorokhod problem; this inequality, which may be of independent interest,
is proved in Section 4.1. In Section 5 we give some applications of the invariance
principle. We prove weak existence of SRBMs under the conditions specified in
Section 3. We also use the invariance principle, in conjunction with known unique-
ness results for SRBMs, to give sufficient conditions for validating approximations
involving (i) SRBMs in convex polyhedrons with a constant reflection vector field
on each face of the polyhedron, and (ii) SRBMs in bounded domains with piece-
wise smooth boundaries and possibly nonconstant reflection vector fields on the
boundary surfaces.
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Beyond its possible use in justifying SRBM approximations for stochastic net-
works, the invariance principle might be used to justify numerical approximations
to SRBMs. A further possible extension of the results stated here would involve an
invariance principle for stochastic differential equations with reflection. The os-
cillation inequality for the perturbed Skorokhod problem and associated criteria
for C-tightness described in Sections 4.1 and 4.2 are likely to be useful for this.
We have not developed such an extension here as that would involve introduction
of extra assumptions that would make the result less relevant for potential appli-
cations to stochastic networks. In particular, the approximating processes would
involve stochastic integrals driven by a Brownian motion, whereas in stochastic
network applications, the Brownian motion typically only appears in the limit.

1.1. Notation, terminology and preliminaries. Let N denote the set of all pos-
itive integers, that is, N = {1,2, . . .}, R denote the set of real numbers, which is
also denoted by (−∞,∞), R+ denote the nonnegative half-line, which is also
denoted by [0,∞). For x ∈ R, we write |x| for the absolute value of x, [x] for
the largest integer less than or equal to x, x+ for the positive part of x. For
any positive integer d , we let R

d denote d-dimensional Euclidean space, where
any element in R

d is denoted by a column vector. Let ‖ · ‖ denote the Euclid-
ean norm on R

d , that is, ‖x‖ = (
∑d

i=1 x2
i )1/2 for x ∈ R

d , and 〈·, ·〉 denote the
inner product on R

d , that is, 〈x, y〉 = ∑d
i=1 xiyi , for x, y ∈ R

d . We note that
for any x ∈ R

d , ‖x‖ ≤ ∑d
i=1 |xi |. Let R

d+ denote the positive orthant in R
d ,

that is, R
d+ = {x ∈ R

d :xi ≥ 0,1 ≤ i ≤ d}. Let B(S) denote the Borel σ -algebra
on S ⊂ R

d , that is, the collection formed by intersecting all Borel sets in R
d

with S. Let dist(x, S) denote the distance between x ∈ R
d and S ⊂ R

d , that is,
dist(x, S) = inf{‖x − y‖ :y ∈ S}, with the convention that dist(x,∅) = ∞ for
x ∈ R

d . Let Ur(S) denote the closed set {x ∈ R
d : dist(x, S) ≤ r} for any r > 0

and S ⊂ R
d , where if S = ∅, Ur(S) = ∅ for all r > 0. Let Br(x) denote the closed

ball {y ∈ R
d :‖y −x‖ ≤ r} for any x ∈ R

d and r > 0. For any set S ⊂ R
d , we write

S for the closure of S, So for the interior of S and ∂S = S \ So. For a finite set S,
|S| denotes the number of elements in S. For any v ∈ R

d , v′ denotes the transpose
of v. Inequalities between vectors in R

d should be interpreted componentwise, that
is, if u, v ∈ R

d , then u ≤ (<)v means that ui ≤ (<)vi for each i ∈ {1, . . . , d}. For
any matrix A, let A′ denote the transpose of A. For any function x : R+ → R

d ,
x(t−) denotes the left limit of x at t > 0 whenever x has a left limit at t ; unless
explicitly stated otherwise, x(0−) ≡ 0, where 0 is the zero vector in R

d . For any
function x : R+ → R

d , we let �x(t) = x(t)−x(t−) for t ∈ R+ when x(t−) exists.
We let 0 be the constant deterministic function x : R+ → R

d such that x(t) = 0 for
all t ∈ R+.

A domain in R
d is an open connected subset of R

d . For each continuously
differentiable function f defined on some nonempty domain S ⊂ R

d , ∇f (x) is
the gradient of f at x ∈ S. For each x ∈ R

d , a neighborhood Vx of x is a bounded
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domain in R
d that contains x. For any nonempty domain S ⊂ R

d , we say that the
boundary ∂S of S is C1, if for each x ∈ ∂S there exists a Euclidean coordinate
system Cx for R

d centered at x, an rx > 0, and a once continuously differentiable
function ϕx : Rd−1 → R such that ϕx(0) = 0 and

S ∩ Brx (x) = {z = (z1, . . . , zd)′ in Cx : zd > ϕx(z1, . . . , zd−1)} ∩ Brx (x).

Then, for x ∈ ∂S, the inward unit normal to ∂S at z ∈ ∂S ∩ Brx (x) is given in the
coordinate system Cx by

n(z) = 1

(1 + ‖∇ϕx(z1, . . . , zd−1)‖2)1/2

(−∇ϕx(z1, . . . , zd−1)
′,1

)′
,

where ∇ϕx(z1, . . . , zd−1) = (
∂ϕx

∂z1
, . . . ,

∂ϕx

∂zd−1
)′(z1, . . . , zd−1). For any nonempty

convex set S ⊂ R
d , we call a vector n ∈ R

d \ {0} an inward unit normal vector
to S at x ∈ ∂S if ‖n‖ = 1 and 〈n,y − x〉 ≥ 0 for all y ∈ S. Note that such a vector
need not be unique.

All stochastic processes used in this paper will be assumed to have paths that are
right continuous with finite left limits (abbreviated henceforth as r.c.l.l.). A process
is called continuous if almost surely its sample paths are continuous. We denote
by D([0,∞),R

d) the space of r.c.l.l. functions from [0,∞) into R
d and we en-

dow this space with the usual Skorokhod J1-topology (cf. Chapter 3 of [7]). We
denote by C([0,∞),R

d) the space of continuous functions from [0,∞) into R
d .

The Borel σ -algebra on either D([0,∞),R
d) or C([0,∞),R

d) will be denoted
by Md . The abbreviation u.o.c. will stand for uniformly on compacts and will be
used to indicate that a sequence of functions in D([0,∞),R

d) (or C([0,∞),R
d))

is converging uniformly on compact time intervals to a limit in D([0,∞),R
d)

(or C([0,∞),R
d)). Consider W 1,W 2, . . . ,W , each of which is a d-dimensional

process (possibly defined on different probability spaces). The sequence {Wn}∞n=1
is said to be tight if the probability measures induced by the Wn on the mea-
surable space (D([0,∞),R

d),Md) form a tight sequence, that is, they form
a weakly relatively compact sequence in the space of probability measures on
(D([0,∞),R

d),Md). The notation “Wn ⇒ W ” will mean that, as n → ∞, the
sequence of probability measures induced on (D([0,∞),R

d),Md) by {Wn} con-
verges weakly to the probability measure induced on the same space by W . We
shall describe this in words by saying that Wn converges weakly (or in distribu-
tion) to W as n → ∞. The sequence of processes {Wn}∞n=1 is called C-tight if it is
tight, and if each weak limit point, obtained as a weak limit along a subsequence,
almost surely has sample paths in C([0,∞),R

d). The following proposition pro-
vides a useful criterion for checking C-tightness.

PROPOSITION 1.1. Suppose that, for each n ∈ N, Wn is a d-dimensional
process defined on the probability space (�n,F n,P n). The sequence {Wn}∞n=1
is C-tight if and only if the following two conditions hold:
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(i) For each η > 0 and T ≥ 0, there exists a finite constant Mη,T > 0 such that

lim inf
n→∞ P n

{
sup

0≤t≤T

‖Wn(t)‖ ≤ Mη,T

}
≥ 1 − η.(1)

(ii) For each ε > 0, η > 0 and T > 0, there exists λ ∈ (0, T ) such that

lim sup
n→∞

P n{wT (Wn,λ) ≥ ε} ≤ η,(2)

where for x ∈ D([0,∞),R
d),

wT (x,λ) = sup
{

sup
u,v∈[t,t+λ]

‖x(u) − x(v)‖ : 0 ≤ t < t + λ ≤ T

}
.(3)

PROOF. See Proposition VI.3.26 in [12]. �

A d-dimensional process W is said to be locally of bounded variation if all
sample paths of W are of bounded variation on each finite time interval. For such
a process W , we define V(W) = {V(W)(t), t ≥ 0} such that for each t ≥ 0,

V(W)(t) = ‖W(0)‖

+ sup

{
l∑

i=1

‖W(ti) − W(ti−1)‖ : 0 = t0 < t1 < · · · < tl = t, l ≥ 1

}
.

A triple (�,F , {Ft , t ≥ 0}) will be called a filtered space if � is a set,
F is a σ -algebra of subsets of �, and {Ft , t ≥ 0} is an increasing family of
sub-σ -algebras of F , that is, a filtration. Henceforth, the filtration {Ft , t ≥ 0}
will be simply written as {Ft }. If P is a probability measure on (�,F ), then
(�,F , {Ft },P ) is called a filtered probability space. A d-dimensional process
X = {X(t), t ≥ 0} defined on (�,F ,P ) is called {Ft }-adapted if for each t ≥ 0,
X(t) :� → R

d is measurable when � is endowed with the σ -algebra Ft .
Given a filtered probability space (�,F , {Ft },P ), a vector µ ∈ R

d , a d × d

symmetric, strictly positive definite matrix 	, and a probability distribution ν

on (Rd,B(Rd)), an {Ft }-Brownian motion with drift vector µ, covariance ma-
trix 	, and initial distribution ν, is a d-dimensional {Ft }-adapted process defined
on (�,F , {Ft },P ) such that the following hold under P :

(a) X is a d-dimensional Brownian motion whose sample paths are almost
surely continuous and that has initial distribution ν,

(b) {Xi(t) − Xi(0) − µit,Ft , t ≥ 0} is a martingale for i = 1, . . . , d , and
(c) {(Xi(t) − Xi(0) − µit)(Xj (t) − Xj(0) − µj t) − 	ij t,Ft , t ≥ 0} is a mar-

tingale for i, j = 1, . . . , d .

In this definition, the filtration {Ft } may be larger than the one generated by X;
however, for each t ≥ 0, under P , the σ -algebra Ft is independent of the incre-
ments of X from t onward. The latter follows from the martingale properties of X.
If ν = δx , the unit mass at x ∈ R

d , we say that X starts from x.
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2. Definition of an SRBM. Let G = ⋂
i∈I Gi be a nonempty domain in R

d ,
where I is a nonempty finite index set and for each i ∈ I, Gi is a nonempty do-
main in R

d . For simplicity, we assume that I = {1,2, . . . , I} and then |I| = I. For
each i ∈ I, let γ i(·) be a vector valued function defined from R

d into R
d . Fix

µ ∈ R
d , 	 a d ×d symmetric and strictly positive definite covariance matrix and ν

a probability measure on (G,B(G)), where B(G) denotes the σ -algebra of Borel
subsets of the closure G of G.

DEFINITION 2.1 (Semimartingale reflecting Brownian motion). A semi-
martingale reflecting Brownian motion (abbreviated as SRBM) associated with
the data (G,µ,	, {γ i, i ∈ I}, ν) is an {Ft }-adapted, d-dimensional process W

defined on some filtered probability space (�,F , {Ft },P ) such that:

(i) P -a.s., W(t) = X(t) + ∑
i∈I

∫
(0,t] γ i(W(s)) dYi(s) for all t ≥ 0,

(ii) P -a.s., W has continuous paths and W(t) ∈ G for all t ≥ 0,
(iii) under P , X is a d-dimensional {Ft }-Brownian motion with drift vector µ,

covariance matrix 	 and initial distribution ν,
(iv) for each i ∈ I, Yi is an {Ft }-adapted, one-dimensional process such that

P -a.s.,

(a) Yi(0) = 0,
(b) Yi is continuous and nondecreasing,
(c) Yi(t) = ∫

(0,t] 1{W(s)∈∂Gi∩∂G} dYi(s) for all t ≥ 0.

We shall often refer to Y = {Yi, i ∈ I} as the “pushing process” associated
with the SRBM W . When ν = δx , we may alternatively say that W is an SRBM
associated with the data (G,µ,	, {γ i, i ∈ I}) that starts from x. We will call
(W,X,Y ) satisfying Definition 2.1 an extended SRBM associated with the data
(G,µ,	, {γ i, i ∈ I}, ν).

Loosely speaking, an SRBM behaves like a Brownian motion in the interior of
the domain G and it is confined to G by instantaneous “reflection” (or “pushing”)
at the boundary, where the allowed directions of “reflection” at x ∈ ∂G are convex
combinations of the vectors γ i(x) for i such that x ∈ ∂Gi . Under the assumptions
imposed on G and {γ i, i ∈ I} in Sections 3.1 and 3.2 below, at each point on the
boundary of G there is an allowed direction of reflection that can be used there
which “points into the interior of G.” We end this section by introducing a related
set-valued function I(·) and show a key property of it.

DEFINITION 2.2. For each x ∈ R
d , let I(x) = {i ∈ I :x ∈ ∂Gi}.

The set-valued function I(·) has the following property called upper semiconti-
nuity on ∂G.
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LEMMA 2.1. For each x ∈ ∂G, there is an open neighborhood Vx of x in R
d

such that

I(y) ⊂ I(x) for all y ∈ Vx.(4)

PROOF. We prove this lemma by contradiction. Suppose that the function I(·)
does not satisfy (4). Then there is a point x ∈ ∂G such that there is no open neigh-
borhood Vx of x such that I(y) ⊂ I(x) for all y ∈ Vx . Since the index set I is
finite, there is an index k ∈ I \ I(x) and a sequence of points {yn} ⊂ R

d such that
‖yn − x‖ < 1

n
and k ∈ I(yn) for each n ≥ 1. Hence yn ∈ ∂Gk for all n ≥ 1. Since

∂Gk is closed and yn → x as n → ∞, we conclude that x ∈ ∂Gk . This implies that
k ∈ I(x), which is a contradiction, as desired. �

3. Assumptions on the domain G and the reflection vector fields {γ i}.

3.1. Assumptions on the domain G. We henceforth assume that the domain G

satisfies assumptions (A1)–(A3) below. In the case when G is bounded, assump-
tions (A2)–(A3) follow from assumption (A1) (see Lemmas A.1 and A.2 in the
Appendix for details). If the domain G is a convex polyhedron satisfying assump-
tion (A1), then assumptions (A2)–(A3) hold by Lemma A.3 in the Appendix.

(A1) G is a nonempty domain in R
d with representation

G = ⋂
i∈I

Gi,(5)

where for each i ∈ I, Gi is a nonempty domain, Gi �= R
d , and the boundary ∂Gi

of Gi is C1. For each i ∈ I, we let ni(·) be the unit normal vector field on ∂Gi that
points into Gi .

(A2) For each ε ∈ (0,1) there exists R(ε) > 0 such that for each i ∈ I, x ∈
∂Gi ∩ ∂G and y ∈ G satisfying ‖x − y‖ < R(ε), we have

〈ni(x), y − x〉 ≥ −ε‖x − y‖.(6)

(A3) The function D : [0,∞) → [0,∞] defined such that D(0) = 0 and

D(r) = sup
J⊂I
J �=∅

sup

{
dist

(
x,

⋂
j∈J

(∂Gj ∩ ∂G)

)
:x ∈ ⋂

j∈J

Ur(∂Gj ∩ ∂G)

}
(7)

for r > 0, satisfies

D(r) → 0 as r → 0.(8)

REMARK. Assumption (A2) is reminiscent of the uniform exterior cone con-
dition (cf. [9], page 195). We say that a region G ⊂ R

d satisfies a uniform exte-
rior cone condition if for each x0 ∈ ∂G, there is a truncated closed right circular
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cone Vx0 , with nonempty interior and vertex x0, satisfying Vx0 ∩G = {x0}, and the
truncated cones Vx0 are all congruent to some fixed truncated closed right circular
cone V . By comparing assumption (A2) with the uniform exterior cone condition,
we see that assumption (A2) implies the uniform exterior cone condition. On the
other hand, under assumption (A1), assumption (A2) is implied by a family of
uniform exterior cone conditions where for each ε ∈ (0,1), the axis of the trun-
cated closed right circular cone at x ∈ ∂G is along the vector −ni(x) and all of
the truncated closed right circular cones are congruent to a truncated closed right
circular cone whose height and base radius are R(ε) and R(ε)( 1

ε2 − 1)1/2 respec-
tively. Assumption (A2) holds automatically if G is convex. We also note that
assumption (A2) is strictly weaker than the uniform exterior sphere condition. The
definition of the uniform exterior sphere condition is similar to that for the uni-
form exterior cone condition where a closed ball with x0 on its boundary takes the
place of the truncated closed right circular cone Vx0 . It can be checked that for the
domain G = {(x, y) ∈ R

2 :y < |x|α} with α ∈ (1,2), the uniform exterior sphere
condition fails to hold, but assumption (A2) holds. In fact, at the point (0,0) ∈ R

2,
there is no r > 0 and y ∈ R

2 such that Br(y) ∩ ∂G = {(0,0)}.
REMARK. For the definition of D(·) in (A3), we adopt the convention that the

supremum over an empty set is zero and dist(x,∅) = ∞. Since ∂Gi ∩ ∂G �= ∅

for at least one i ∈ I, the function D(·) satisfies limr→∞ D(r) = ∞. Furthermore,
D(r1) ≤ D(r2) whenever r1, r2 ∈ [0,∞) and r1 ≤ r2. Assumption (A3) requires
that for any nonempty subset J ⊂ I, the intersection of tubular neighborhoods of
the boundaries {∂Gj ∩ ∂G : j ∈ J} given by the set

⋂
j∈J Ur(∂Gj ∩ ∂G) “con-

verges” to the intersection of the boundaries given by the set
⋂

j∈J(∂Gj ∩ ∂G)

as r approaches 0. Property (8) need not always hold. For example, let G1 =
{(x, y) ∈ R

2 :y < e−x2/2, x ∈ R} and G2 = {(x, y) ∈ R
2 :y > 0, x ∈ R}. Then

∂G1 ∩ ∂G2 = ∅. But for each r > 0, Ur(∂G1) ∩ Ur(∂G2) �= ∅. Hence D(r) = ∞
for each r > 0.

3.2. Assumptions on the reflection vector fields {γ i}. We henceforth assume
that there are vector fields {γ i(·), i ∈ I} satisfying assumptions (A4)–(A5) below.

(A4) There is a constant L > 0 such that for each i ∈ I, γ i(·) is a uniformly
Lipschitz continuous function from R

d into R
d with Lipschitz constant L and

‖γ i(x)‖ = 1 for each x ∈ R
d .

(A5) There is a constant a ∈ (0,1), and vector valued functions b(·) =
(b1(·), . . . , bI(·)) and c(·) = (c1(·), . . . , cI(·)) from ∂G into R

I+ such that for each
x ∈ ∂G,

(i)
∑

i∈I(x) bi(x) = 1,

min
j∈I(x)

〈 ∑
i∈I(x)

bi(x)ni(x), γ j (x)

〉
≥ a,(9)
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(ii)
∑

i∈I(x) ci(x) = 1,

min
j∈I(x)

〈 ∑
i∈I(x)

ci(x)γ i(x), nj (x)

〉
≥ a.(10)

We note here for future use that by (A4), if we set ρ0 = a
4L

, then for any x, y ∈ R
d

satisfying ‖x − y‖ < ρ0, we have ‖γ i(x) − γ i(y)‖ < a/4 for each i ∈ I. So for
each 0 < ρ < ρ0/4, by (9)–(10) and the normalization of b(·), c(·), γ i(·), nj (·) for
i, j ∈ I, we obtain

inf
x∈∂G

min
j∈I(x)

inf
y∈B4ρ(x)

〈 ∑
i∈I(x)

bi(x)ni(x), γ j (y)

〉
≥ a/2(11)

and

inf
x∈∂G

min
j∈I(x)

inf
y∈B4ρ(x)

〈 ∑
i∈I(x)

ci(x)γ i(y), nj (x)

〉
≥ a/2.(12)

The use of B4ρ(x) here is related to the form in which this is used in Section 4.1.

REMARK. Assumption (A4) is equivalent to (3.4) in [6] when G is bounded.
Property (10) means that, at each point x ∈ ∂G, there is a convex combination
γ (x) = ∑

i∈I(x) ci(x)γ i(x) of the vectors {γ i(x), i ∈ I(x)} that can be used there
such that γ (x) “points into” G. Property (9) is in a sense a dual condition to prop-
erty (10), where the roles of γ i and ni are reversed for i ∈ I(x). This property (9) is
used in showing the oscillation inequality in Theorem 4.1 below. Assumption (A5)
is an analogue of Assumption 1.1 in [4]. When G is bounded, (10) is similar to
condition (3.6) in [6] (we assume some additional uniformity through the lack of
dependence of a on x).

It is straightforward to see using the triangle inequality that the following con-
dition (A5)′ implies (A5).

(A5)′ There is a ∈ (0,1) and vector valued functions b, c from ∂G into R
I+

such that for each x ∈ ∂G,

(i)
∑

i∈I(x) bi(x) = 1, and for each i ∈ I(x),

bi(x)〈ni(x), γ i(x)〉 ≥ a + ∑
j∈I(x)\{i}

bj (x)|〈nj (x), γ i(x)〉|,(13)

(ii)
∑

i∈I(x) ci(x) = 1, and for each i ∈ I(x),

ci(x)〈γ i(x), ni(x)〉 ≥ a + ∑
j∈I(x)\{i}

cj (x)|〈γ j (x), ni(x)〉|.(14)
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Condition (A5)′(ii) is similar to condition (3.8) in [6], although here we assume
additional uniformity through the lack of dependence of a on x. As noted in [6],
their condition (3.8) can be phrased in terms of a nonsingular M-matrix require-
ment [2]. (This is sometimes also called a generalized Harrison–Reiman type of
condition [10].) Since that nonsingular M-matrix property is invariant under trans-
pose, and this property for the transpose corresponds to a local form of (A5)′(i),
one might conjecture that there is an equivalence between the existence of a non-
negative vector valued function b such that (A5)′(i) holds for each x ∈ ∂G and the
existence of a nonnegative vector valued function c such that (A5)′(ii) holds for
each x ∈ ∂G. Indeed we have the following lemma. We have stated the two (equiv-
alent) conditions (i) and (ii) in specifying (A5)′ to preserve a parallel with (A5) and
since both properties can be useful in proofs. Furthermore, in light of the following
lemma, verifying either condition suffices for both to hold.

LEMMA 3.1. There is a constant a ∈ (0,1) and a vector valued function
b : ∂G → R

I+ such that (A5)′(i) holds for each x ∈ ∂G if and only if there is a
constant a ∈ (0,1) and a vector valued function c : ∂G → R

I+ such that (A5)′(ii)
holds for each x ∈ ∂G.

PROOF. We just prove the “if” part; the “only if” part can be proved in a
similar manner.

We suppose that there is a constant a ∈ (0,1) and a vector valued function
c : ∂G → R

I+ such that (A5)′(ii) holds for each x ∈ ∂G. For fixed x ∈ ∂G, con-
sider the square matrix A(x) whose diagonal entries are given by the (positive)
elements 〈ni(x), γ i(x)〉 for i ∈ I(x) and whose off-diagonal entries are given by
−|〈ni(x), γ j (x)〉| for i ∈ I(x), j ∈ I(x), j �= i. Let E be the square matrix having
the same dimensions as A(x) and whose entries are all equal to one. By the the-
ory of M-matrices (see [2], Chapter 6, especially condition (M35)), condition (ii)
of (A5)′ implies that A(x) − a

2E is a nonsingular M-matrix, that is, A(x) − a
2E

has nonnegative diagonal entries and nonpositive off-diagonal entries and it can be
written in the form s(x)I − B(x) where B(x) is a matrix with nonnegative entries
and s(x) > 0 is a constant that is strictly larger than the spectral radius of B(x).

Since the nonsingular M-matrix property is invariant under transpose (cf. (G21)

in Chapter 6 of [2]), then A′(x) − a
2E is also a nonsingular M-matrix. Hence,

there is a vector b̃(x) = (b̃i(x) : i ∈ I(x)) with nonnegative entries such that
(A′(x) − a

2E)b̃(x) > 0 (cf. (I27) in Chapter 6 of [2]). We can extend b̃(x) to
an I-dimensional vector b(x) and normalize it so that

∑
i∈I(x) bi(x) = 1. Then

(A5)′(i) holds with a
2 in place of a. �

4. Invariance principle. In this section we state and prove an invariance prin-
ciple for an SRBM living in the closure of a domain G with piecewise smooth
boundary and having associated reflection fields {γ i, i ∈ I}, where G, {γ i, i ∈ I}
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satisfy assumptions (A1)–(A5) of Section 3. (These assumptions hold throughout
this section.) We shall first state a preliminary result called an oscillation inequal-
ity (see Theorem 4.1), then we use it to prove a tightness result (see Theorem 4.2).
Finally, we establish the invariance principle (see Theorem 4.3).

4.1. Oscillation inequality. The following oscillation inequality is the key to
the proof of the tightness result claimed in Theorem 4.2. In this subsection, for any
0 ≤ t1 < t2 < ∞ and any integer k ≥ 1, D([t1, t2],R

k) denotes the set of functions
w : [t1, t2] → R

k that are right continuous on [t1, t2) and have finite left limits on
(t1, t2]. For w ∈ D([t1, t2],R

k),

Osc(w, [t1, t2]) = sup{‖w(t) − w(s)‖ : t1 ≤ s < t ≤ t2},(15)

Osc(w, [t1, t2)) = sup{‖w(t) − w(s)‖ : t1 ≤ s < t < t2}.(16)

Note that we do not explicitly indicate the dependence on k in the notation.
Recall the constants a,L from assumptions (A4)–(A5), the functions R(·) from

assumption (A2) and D(·) from (7). Let ρ0 = a
4L

.

THEOREM 4.1 (Oscillation inequality). There exists a nondecreasing func-
tion � : (0,∞) → (0,∞] satisfying �(u) → 0 as u → 0, such that � de-
pends only on the constants I, a and the function D(·), and such that whenever
0 < ρ < min{ρ0

4 ,
R(a/4)

4 }, 0 < δ <
ρ
2 , 0 ≤ s < t < ∞, w,x ∈ D([s, t],R

d) and
y ∈ D([s, t],R

I) satisfy:

(i) w(u) ∈ Bρ(x0) ∩ Uδ(G) for all u ∈ [s, t], for some x0 ∈ G,
(ii) w(u) = w(s)+x(u)−x(s)+∑

i∈I

∫
(s,u] γ i(w(v)) dyi(v) for all u ∈ [s, t],

(iii) for each i ∈ I,

(a) yi(s) ≥ 0,
(b) yi is nondecreasing and �yi(u) ≤ δ for all u ∈ (s, t],
(c) yi(u) = yi(s) + ∫

(s,u] 1{w(v)∈Uδ(∂Gi∩∂G)} dyi(v) for all u ∈ [s, t],
(iv) D(�(Osc(x, [s, t]) + δ)) <

ρ
2 ,

then we have that the following hold:

Osc(w, [s, t]) ≤ �
(
Osc(x, [s, t]) + δ

)
,(17)

Osc(y, [s, t]) ≤ �
(
Osc(x, [s, t]) + δ

)
.(18)

PROOF. Let

�0(u) = u for all u > 0.

Define �m : (0,∞) → (0,∞], m = 1, . . . , I, inductively such that

�m(u) = �m−1(u) + (I + 2)u +
(

1 + 4

a

)(
D

(
�m−1(u) + (I + 2)u

) + 2u
)
.
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Here the sum of any element of [0,∞) with ∞ is ∞ and D(∞) is defined to
equal ∞. For each m = 0,1, . . . , I, the function �m is nondecreasing and depends
only on I, a and D(·). For each m = 1, . . . , I and u > 0, �m−1(u) ≤ �m(u). By
assumption (A3), we conclude (using an induction proof) that

�m(u) → 0 as u → 0, for m = 0,1, . . . , I.

Let �(·) = �I(·).
Fix 0 < ρ < min{ρ0

4 ,
R(a/4)

4 }, 0 < δ <
ρ
2 , 0 ≤ s < t < ∞. Suppose that w,x ∈

D([s, t],R
d) and y ∈ D([s, t],R

I) satisfy (i)–(iv) in the statement of Theorem 4.1.
For each nonempty interval [t1, t2] ⊂ [s, t], let

I[t1,t2] = {i ∈ I :w(u) ∈ Uδ(∂Gi ∩ ∂G) for some u ∈ [t1, t2]},
the indices of the boundary surfaces that w(·) comes close to in the time inter-
val [t1, t2]. For each 0 ≤ m ≤ I, define Tm = {[t1, t2] ⊂ [s, t] : |I[t1,t2]| ≤ m}. Note
that under the partial ordering of set inclusion, Tm increases with m. To prove the
theorem, we will prove by induction that for each 0 ≤ m ≤ I and each interval
[t1, t2] ∈ Tm, (17)–(18) hold with [t1, t2] in place of [s, t] and �m(·) in place of
�(·). The result for m = I yields the theorem.

Suppose that m = 0. Then T0 = {[t1, t2] ⊂ [s, t] : |I[t1,t2]| = 0}. Fix an interval
[t1, t2] ∈ T0. Since I[t1,t2] = ∅ and (iii)(c) holds, the function y does not increase
on the time interval (t1, t2], that is, yi(t2) − yi(t1) = 0 for all i ∈ I. Then, for
t1 ≤ u < v ≤ t2,

w(v) − w(u) = x(v) − x(u).(19)

So in this case,

Osc(w, [t1, t2]) = Osc(x, [t1, t2]) ≤ Osc(x, [t1, t2]) + δ,(20)

Osc(y, [t1, t2]) = 0 ≤ Osc(x, [t1, t2]) + δ.(21)

Thus, (17)–(18) hold with �0(·) in place of �(·) and [t1, t2] in place of [s, t] for
each interval [t1, t2] ∈ T0.

For the induction step, let 1 ≤ m ≤ I and suppose that (17)–(18) hold with
�m−1(·) in place of �(·) and [t1, t2] in place of [s, t] for each interval [t1, t2] ∈
Tm−1.

Now fix [t1, t2] ∈ Tm. If |I[t1,t2]| ≤ m − 1, then [t1, t2] ∈ Tm−1 and so by the
induction assumption we have that (17)–(18) hold with [t1, t2] in place of [s, t]
and �m−1(·) [and hence �m(·)] in place of �(·). Thus, it suffices to consider
[t1, t2] ⊂ [s, t] such that |I[t1,t2]| = m. For i /∈ I[t1,t2], by (iii)(c), yi(t2)−yi(t1) = 0,
and so by (ii), for t1 ≤ u < v ≤ t2, we have

w(v) − w(u) = x(v) − x(u) + ∑
i∈I[t1,t2]

∫
(u,v]

γ i(w(r)) dyi(r).(22)
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Let �m(u) = �m−1(u) + (I + 2)u for all u > 0, and η = Osc(x, [t1, t2]) + δ. For
any M ∈ (0,∞] and any nonempty set J ⊂ I, let

FM
J = {z ∈ R

d : dist(z, ∂Gi ∩ ∂G) < M for all i ∈ J}.
Note that FM

J = ∅ when there is an i ∈ J such that ∂Gi ∩ ∂G = ∅. Since

�m(·) ≤ �m(·) ≤ �(·), D(·) and �(·) are nondecreasing, and Osc(x, [t1, t2]) ≤
Osc(x, [s, t]), we have by (iv) that

D(�m(η)) ≤ D(�m(η)) ≤ D(�(η)) <
ρ

2
.(23)

Note that this implies �m(η) < ∞ since D(∞) = ∞.
We now consider two cases.
Case 1. Suppose that w(r) ∈ F

�m(η)
I[t1,t2] for all r ∈ [t1, t2].

Fix u, v such that t1 ≤ u < v ≤ t2. Since we have that

w(v) ∈ ⋂
j∈I[t1,t2]

U�m(η)(∂Gj ∩ ∂G),

by the definition of D(·) and (23), there is z ∈ ⋂
j∈I[t1,t2](∂Gj ∩ ∂G) such that

‖w(v) − z‖ ≤ D(�m(η)) <
ρ

2
.(24)

For each r ∈ [t1, t2], by (i) we have that w(r) ∈ Uδ(G), and so there is zr ∈ G such
that

‖w(r) − zr‖ ≤ 2δ.

Hence by (i) and (24) we have

‖zr − z‖ ≤ ‖zr − w(r)‖ + ‖w(r) − x0‖ + ‖x0 − w(v)‖ + ‖w(v) − z‖
(25)

≤ 2δ + ρ + ρ + ρ/2 < 4ρ < R(a/4)

and

‖w(r) − z‖ ≤ ‖w(r) − x0‖ + ‖x0 − w(v)‖ + ‖w(v) − z‖
(26)

≤ ρ + ρ + ρ/2 < 4ρ.

By (6) and (25) we have

〈nj (z), z − zr〉 ≤ a

4
‖z − zr‖ for each j ∈ I(z) and r ∈ [t1, t2].(27)

Note that I(z) ⊃ I[t1,t2]. Recalling the definition of b(·) from assumption (A5), on
dotting the vector

∑
j∈I(z) bj (z)n

j (z) with both sides of (22) and rearranging, we
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obtain ∑
i∈I[t1,t2]

∫
(u,v]

〈 ∑
j∈I(z)

bj (z)n
j (z), γ i(w(r))

〉
dyi(r)

= ∑
j∈I(z)

bj (z)〈nj (z),w(v) − w(u)〉(28)

− ∑
j∈I(z)

bj (z)〈nj (z), x(v) − x(u)〉.

So by (11), (22), (24)–(28), and the fact that
∑

j∈I(z) bj (z) = 1, bj (z) ≥ 0 for
j ∈ I, we have
a

2

∑
i∈I[t1,t2]

(
yi(v) − yi(u)

)

≤ ∑
i∈I[t1,t2]

∫
(u,v]

〈 ∑
j∈I(z)

bj (z)n
j (z), γ i(w(r))

〉
dyi(r)

= ∑
j∈I(z)

bj (z)〈nj (z),w(v) − z〉 + ∑
j∈I(z)

bj (z)〈nj (z), z − zu〉

+ ∑
j∈I(z)

bj (z)〈nj (z), zu − w(u)〉 − ∑
j∈I(z)

bj (z)〈nj (z), x(v) − x(u)〉

≤ D(�m(η)) + a

4
‖z − zu‖ + 2δ + ‖x(v) − x(u)‖

≤ D(�m(η)) + 2δ + ‖x(v) − x(u)‖
+ a

4

(‖z − w(v)‖ + ‖w(v) − w(u)‖ + ‖w(u) − zu‖)
≤ D(�m(η)) + 2δ + ‖x(v) − x(u)‖

+ a

4

(
D(�m(η)) + ‖x(v) − x(u)‖ + ∑

i∈I[t1,t2]

(
yi(v) − yi(u)

) + 2δ

)

≤
(

1 + a

4

)
{D(�m(η)) + 2δ + ‖x(v) − x(u)‖} + a

4

∑
i∈I[t1,t2]

(
yi(v) − yi(u)

)
.

Hence
a

4

∑
i∈I[t1,t2]

(
yi(v) − yi(u)

) ≤
(

1 + a

4

)
{D(�m(η)) + 2δ + ‖x(v) − x(u)‖}

≤
(

1 + a

4

)
{D(�m(η)) + 2η}.
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On multiplying through by 4
a

, we obtain∑
i∈I[t1,t2]

(
yi(v) − yi(u)

) ≤
(

1 + 4

a

)
{D(�m(η)) + 2η} ≤ �m(η).(29)

Hence, by (29) and the fact that for any x ∈ R
d , ‖x‖ ≤ ∑d

i=1 |xi |, we have

Osc(y, [t1, t2]) ≤ �m

(
Osc(x, [t1, t2]) + δ

)
,(30)

and by (22), (29) and the definitions of �m(·) and �m(·), we have

Osc(w, [t1, t2]) ≤ Osc(x, [t1, t2]) +
(

1 + 4

a

)
{D(�m(η)) + 2η}

≤ �m

(
Osc(x, [t1, t2]) + δ

)
,

as desired.
Case 2. Suppose that there is t3 ∈ [t1, t2] such that w(t3) /∈ F

�m(η)
I[t1,t2] .

Define σ = inf{u ∈ [t1, t2] :w(u) /∈ F
�m(η)
I[t1,t2] }. Then σ ≤ t2. For each u ∈ [t1, σ ),

w(u) ∈ F
�m(η)
I[t1,t2] and so by a similar analysis to that for Case 1, we obtain for each

v ∈ [t1, σ ),

Osc(w, [t1, v]) ≤ η +
(

1 + 4

a

)(
D(�m(η)) + 2η

)
and

Osc(y, [t1, v]) ≤
(

1 + 4

a

)(
D(�m(η)) + 2η

)
.

By the right continuity of paths we have w(σ) /∈ F
�m(η)
I[t1,t2] . Then there is an

i ∈ I[t1,t2] such that dist(w(σ), ∂Gi ∩ ∂G) ≥ �m(η), and it follows that w does
not reach Uδ(∂Gi ∩ ∂G) during the interval [σ, t2]. To see this, let τ = inf{u ∈
[σ, t2] : dist(w(u), ∂Gi ∩ ∂G) ≤ δ} with the convention that the infimum of an
empty set is ∞. If τ ≤ t2, then by the right continuity of w(·) and since �m(η) > δ,
we have τ > σ and dist(w(τ), ∂Gi ∩ ∂G) ≤ δ. Also, since |I[t1,t2]| = m, we have
[σ,u] ∈ Tm−1 for each u ∈ [σ, τ). By the induction assumption and letting u → τ ,
we have ‖w(τ−) − w(σ)‖ ≤ �m−1(η). By (ii), (iii)(b) and since ‖γ i(·)‖ = 1, we
have

‖�w(τ)‖ ≤ ‖�x(τ)‖ + ∑
i∈I

�yi(τ ) ≤ Osc(x, [t1, t2]) + Iδ ≤ Iη.

Then simple manipulations yield

dist
(
w(σ), ∂Gi ∩ ∂G

) ≤ ‖w(σ) − w(τ−)‖ + ‖�w(τ)‖ + dist
(
w(τ), ∂Gi ∩ ∂G

)
≤ �m−1(η) + Iη + δ

< �m(η).



756 W. KANG AND R. J. WILLIAMS

This contradicts the fact that dist(w(σ), ∂Gi ∩ ∂G) ≥ �m(η), and so confirms
that w does not reach Uδ(∂Gi ∩ ∂G) in [σ, t2]. Thus we must have [σ, t2] ∈ Tm−1.
Hence we have by the induction assumption that

Osc(w, [t1, t2]) ≤ sup
v∈[t1,σ )

Osc(w, [t1, v]) + ‖�w(σ)‖ + Osc(w, [σ, t2])

≤ η +
(

1 + 4

a

)(
D(�m(η)) + 2η

) + Iη + �m−1(η)

≤ �m

(
Osc(x, [t1, t2]) + δ

)
and

Osc(y, [t1, t2]) ≤ sup
v∈[t1,σ )

Osc(y, [t1, v]) + ‖�y(σ)‖ + Osc(y, [σ, t2])

≤
(

1 + 4

a

)(
D(�m(η)) + 2η

) + Iη + �m−1(η)

≤ �m

(
Osc(x, [t1, t2]) + δ

)
.

On combining all of the cases above, we have

Osc(w, [t1, t2]) ≤ �m

(
Osc(x, [t1, t2]) + δ

)
,(31)

Osc(y, [t1, t2]) ≤ �m

(
Osc(x, [t1, t2]) + δ

)
.(32)

This completes the induction step. �

REMARK. The proof of the above theorem was inspired by the proof of
Lemma 4.3 of [4]. Because of the condition (i) in Theorem 4.1, the oscillation in-
equality given here is localized. Similar, but nonlocalized, oscillation inequalities
were proved in [15] when G = R

d+ and in [3] for a sequence of convex polyhe-
drons; in these cases, the direction of reflection was constant on each boundary
face.

4.2. C-tightness result. Throughout this subsection and the next, we suppose
that the following assumption holds in addition to (A1)–(A5).

ASSUMPTION 4.1. There is a sequence of strictly positive constants {δn}∞n=1
such that for each positive integer n, there are processes Wn, W̃n,Xn,αn having
paths in D([0,∞),R

d) and processes Yn, Ỹ n, βn having paths in D([0,∞),R
I)

defined on some probability space (�n,F n,P n) such that:

(i) P n-a.s., Wn = W̃n + αn and W̃n(t) ∈ Uδn(G) for all t ≥ 0,
(ii) P n-a.s., Wn(t) = Xn(t)+∑

i∈I

∫
(0,t] γ i,n(Wn(s−),Wn(s)) dY n

i (s) for all

t ≥ 0, where for each i ∈ I, γ i,n : Rd × R
d → R

d is Borel measurable and
‖γ i,n(y, x)‖ = 1 for all x, y ∈ R

d ,
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(iii) Yn = Ỹ n + βn, where βn is locally of bounded variation and P n-a.s., for
each i ∈ I,

(a) Ỹ n
i (0) = 0,

(b) Ỹ n
i is nondecreasing and �Ỹn

i (t) ≤ δn for all t > 0,
(c) Ỹ n

i (t) = ∫
(0,t] 1{W̃n(s)∈Uδn(∂Gi∩∂G)} dỸ n

i (s),

(iv) δn → 0 as n → ∞, and for each ε > 0, there is ηε > 0 and nε > 0 such
that for each i ∈ I, ‖γ i,n(y, x) − γ i(x)‖ < ε whenever ‖x − y‖ < ηε and n ≥ nε ,

(v) αn → 0 and V(βn) → 0 in probability, as n → ∞,
(vi) {Xn} is C-tight.

REMARK. A simple case in which (iv) above holds is where γ i,n(y, x) ≡
γ i(y). In (v), V(βn) is the total variation process for βn (cf. Section 1.1).

The following theorem will play an important role in the proof of the invariance
principle. It will be used to show that a sequence of processes satisfying suitably
perturbed versions of the defining conditions for an SRBM [cf. (i)–(vi) above] is
C-tight.

THEOREM 4.2 (C-tightness). Suppose that Assumption 4.1 holds. Define
Zn = (Wn,Xn,Y n) for each n. Then the sequence of processes {Zn}∞n=1 is C-tight.

REMARK. Note that C-tightness of {Wn}, {Xn} and {Yn} implies C-tightness
of {Zn} (see Chapter VI, Corollary 3.33 of [12] for details).

PROOF OF THEOREM 4.2. References here to (i)–(vi) are to the conditions in
Assumption 4.1.

Simple algebraic manipulations yield P n-a.s.,

W̃n(t) = X̃n(t) + ∑
i∈I

∫
(0,t]

γ i,n(Wn(s−),Wn(s)) dỸ n
i (s)(33)

= X̃n(t) + Ṽ n(t) + ∑
i∈I

∫
(0,t]

γ i(W̃ n(s)) dỸ n
i (s),(34)

where

X̃n(t) = Xn(t) +
(
−αn(t) + ∑

i∈I

∫
(0,t]

γ i,n(Wn(s−),Wn(s)) dβn
i (s)

)
(35)

and

Ṽ n(t) = ∑
i∈I

∫
(0,t]

(
γ i,n(Wn(s−),Wn(s)) − γ i(Wn(s))

)
dỸ n

i (s)

(36)
+ ∑

i∈I

∫
(0,t]

(
γ i(Wn(s)) − γ i(W̃ n(s))

)
dỸ n

i (s).
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The hypotheses on αn, the total variation process V(βn) of βn, and the fact that
‖γ i,n(y, x)‖ = 1 for all x, y ∈ R

d and each i ∈ I, imply that the process

−αn(·) + ∑
i∈I

∫
(0,·]

γ i,n(Wn(s−),Wn(s)) dβn
i (s)

converges to 0 in probability as n → ∞. Combining this with the fact that {Xn}∞n=1
is C-tight, we obtain that {X̃n}∞n=1 is C-tight.

Recall the positive nondecreasing function �(·) from Theorem 4.1, and the con-
stants a, L and functions R(·) and D(·) from assumptions (A1)–(A5) in Section 3.
Recall also that ρ0 = a

4L
.

Fix ρ, ε, η, T such that 0 < ρ < min{ρ0
4 ,

R(a/4)
4 }, ε > 0, η > 0 and T > 0. By

assumption (A3), there is a constant r1 > 0 such that

D(r) < min
{
ρ

2
, ε

}
for all r ∈ (0, r1].(37)

Since �(u) → 0 as u → 0, there are constants 0 < r3 < r2 < min{r1,
ρ
4 , ε

2I} such
that

�(r) <
r2

2
for all r ∈ (0, r3].(38)

By (iv), there are 0 < ε̃ < min{ρ
8 , ε

8 ,
r3
3 } and n0 > 0 such that for all n ≥ n0,

sup
x∈Rd

sup
‖y−x‖<2ε̃

max
i∈I

‖γ i,n(y, x) − γ i(x)‖ <
r3

6Ir2
.(39)

By (iv)–(vi), and Proposition 1.1, there exist an integer n1 > n0, a constant
M̃η,T > 0 and λ̃ ∈ (0, T ), such that for all n ≥ n1,

P n

{
sup

0≤s≤T

‖X̃n(s)‖ ≤ M̃η,T

}
≥ 1 − η/2,(40)

P n{wT (X̃n, λ̃) ≥ ε̃} ≤ η/4,(41)

P n

{
sup

0≤s≤T

‖αn(s)‖ <
r3

6ILr2
∧ ε̃

8

}
≥ 1 − η/4,(42)

δn < min
{
r3

3
,
r2

2I
,

ρ

8(1 + I)
,

ε̃

2I

}
.(43)

To prove C-tightness of {W̃n} and {Ỹ n} (and hence of {Wn}, {Yn}), by Propo-
sition 1.1, it suffices to show that there exists a constant Nη,T > 0 such that for all
n ≥ n1,

P n{wT (W̃n, λ̃) ≥ ε} ≤ η,(44)

P n{wT (Ỹ n, λ̃) ≥ ε} ≤ η,(45)
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P n

{
sup

0≤s≤T

‖W̃n(s)‖ ≤ Nη,T

}
≥ 1 − η,(46)

P n

{
sup

0≤s≤T

‖Ỹ n(s)‖ ≤ Nη,T

}
≥ 1 − η.(47)

For each n ≥ 1, let Fn be a set in F n such that P n(Fn) = 1 and on Fn, prop-
erties (iii)(a)–(c) hold, (33)–(36) hold, and W̃n(t) ∈ Uδn(G) for all t ≥ 0. Fix a t

such that 0 ≤ t < t + λ̃ ≤ T . Let

τn = inf{s ≥ t : W̃n(s) ∈ Uδn(∂Gi ∩ ∂G) for some i ∈ I}.(48)

For each n ≥ n1, let

Hn =
{
wT (X̃n, λ̃) < ε̃, sup

0≤s≤T

‖αn(s)‖ <
r3

6ILr2
∧ ε̃

8
,

(49)

sup
0≤s≤T

‖X̃n(s)‖ ≤ M̃η,T

}
∩ Fn.

Then by (40)–(42) and the definition of Fn,

P {Hn} ≥ 1 − η.(50)

Fix ωn ∈ Hn. By the definition of wT (x,λ) in (3), we have that,

sup
r,s∈[t,t+λ̃]

‖X̃n(s,ωn) − X̃n(r,ωn)‖ < ε̃.(51)

Now there are two cases to consider for n ≥ n1 and u, v fixed such that t ≤ u <

v ≤ t + λ̃.
Case 1. ωn ∈ {τn > v}. In this case, by (iii)(c), Ỹ n(·,ωn) does not increase on

the interval (u, v], that is, Ỹ n
i (v,ωn) − Ỹ n

i (u,ωn) = 0 for all i ∈ I. Then by (34)
and (36),

W̃n(v,ωn) − W̃n(u,ωn) = X̃n(v,ωn) − X̃n(u,ωn).(52)

Hence, by (51),

‖W̃n(v,ωn) − W̃n(u,ωn)‖ ≤ sup
r,s∈[t,t+λ̃]

‖X̃n(s,ωn) − X̃n(r,ωn)‖ < ε̃ < ε/8,

and we also have

‖Ỹ n(v,ωn) − Ỹ n(u,ωn)‖ = 0 < ε/2.

Case 2. ωn ∈ {τn ≤ v}. Then there is an i ∈ I such that W̃n(τn,ωn) ∈
Uδn(∂Gi ∩ ∂G), since the set Uδn(∂Gi ∩ ∂G) is closed and W̃n(·,ωn) is right
continuous. It follows that there is some x0 ∈ ∂G (which depends on ωn) such
that W̃n(τn,ωn) is in the closed ball Bδn(x0) ⊂ Bρ(x0). To apply the oscillation
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inequality in Theorem 4.1, we first prove the following:

W̃n(r,ωn) ∈ Bρ(x0) for all r satisfying τn ≤ r ≤ v.(53)

For the proof of (53), let

ξn = inf{r ≥ τn : W̃n(r,ωn) /∈ Bρ(x0)} ∧ v.(54)

By the definition of ξn, W̃n(r,ωn) ∈ Bρ(x0) for each r ∈ [τn, ξn). In order to
apply the oscillation inequality in Theorem 4.1 on the time interval [τn, ξn), we
show that

D
(
�

(
Osc

(
X̃n(·,ωn) + Ṽ n(·,ωn), [τn, ξn)

) + δn))
<

ρ

2
.(55)

For each r ∈ (0, T ], by (i)–(iii) and (33), (49), (43), we have that

‖Wn(r−,ωn) − Wn(r,ωn)‖
≤ ‖W̃n(r−,ωn) − W̃n(r,ωn)‖ + ‖αn(r−,ωn) − αn(r,ωn)‖
≤ ‖�X̃n(r,ωn)‖ + 2 sup

0≤s≤T

‖αn(s)‖ + Iδn

≤ ε̃ + ε̃

4
+ ε̃

2
< 2ε̃.

Hence by (39), for each r ∈ (0, T ],
‖γ i,n(Wn(r−,ωn),Wn(r,ωn)) − γ i(Wn(r,ωn))‖ ≤ r3

6Ir2
.(56)

By (36), (56), Assumption (A4), (i) and (49), we have that for any s1, s2 such
that u ≤ s1 < s2 ≤ v,

‖Ṽ n(s2,ω
n) − Ṽ n(s1,ω

n)‖
≤ ∑

i∈I

∫
(s1,s2]

‖γ i,n(Wn(r−,ωn),Wn(r,ωn))

− γ i(Wn(r,ωn))‖dỸ n
i (r,ωn)

+ ∑
i∈I

∫
(s1,s2]

‖γ i(Wn(r,ωn)) − γ i(W̃ n(r,ωn))‖dỸ n
i (r,ωn)

≤ ∑
i∈I

r3

6Ir2

(
Ỹ n

i (s2,ω
n) − Ỹ n

i (s1,ω
n)

)
(57)

+ ∑
i∈I

∫
(s1,s2]

L‖Wn(r,ωn) − W̃n(r,ωn)‖dỸ n
i (r,ωn)

≤ ∑
i∈I

r3

6Ir2

(
Ỹ n

i (s2,ω
n) − Ỹ n

i (s1,ω
n)

)
+ ∑

i∈I

L
r3

6ILr2

(
Ỹ n

i (s2,ω
n) − Ỹ n

i (s1,ω
n)

)
≤ r3

3r2
‖Ỹ n(s2,ω

n) − Ỹ n(s1,ω
n)‖.
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Let

σn = inf{s ≥ τn : Osc(Ỹ n(·,ωn), [τn, s)) > r2}.(58)

Note that Osc(Ỹ n(·,ωn), [τn, s)) as a function of s defined on (τn,∞) is left con-
tinuous with finite right limits and is nondecreasing. By the right continuity of Ỹ n,
we know that

Osc(Ỹ n(·,ωn), [τn, s)) → 0 as s ↓ τn.

Thus, σn > τn, Osc(Ỹ n(·,ωn), [τn, σn)) ≤ r2 and on {σn < ∞}, Osc(Ỹ n(·,ωn),

[τn, σn]) ≥ r2. By (57), (51), (43), the choice of ε, and since t ≤ τn ≤ ξn ≤ v ≤
t + λ̃, we have

Osc
(
X̃n(·,ωn) + Ṽ n(·,ωn), [τn, ξn ∧ σn)

) + δn

≤ Osc(X̃n(·,ωn), [τn, ξn ∧ σn))

+ Osc(Ṽ n(·,ωn), [τn, ξn ∧ σn)) + δn

(59)
≤ Osc(X̃n(·,ωn), [τn, ξn ∧ σn))

+ r3

3r2
Osc(Ỹ n(·,ωn), [τn, ξn ∧ σn)) + δn

≤ ε̃ + r3

3r2
r2 + δn < r3.

Then by (38) and the monotonicity of D(·), we have

D
(
�

(
Osc

(
X̃n(·,ωn) + Ṽ n(·,ωn), [τn, ξn ∧ σn)

) + δn))
(60)

≤ D

(
r2

2

)
≤ D(r2) ≤ D(r1) <

ρ

2
.

We claim that

σn ≥ ξn.(61)

To prove (61), we proceed by contradiction and suppose that σn < ξn. Then
by (60), with x = X̃n(·,ωn)+ Ṽ n(·,ωn) and δ = δn, condition (iv) of Theorem 4.1
holds with [s, t] = [τn, σn − 1/m] for all m sufficiently large. By applying Theo-
rem 4.1 and letting m → ∞, we obtain using (34), (38) and (59) that,

Osc(Ỹ n(·,ωn), [τn, σn))

≤ �
(
Osc

(
X̃n(·,ωn) + Ṽ n(·,ωn), [τn, ξn ∧ σn)

) + δn)
(62)

≤ �(r3) <
r2

2
.

By (62), (iii)(b) and (43), we obtain that

Osc(Ỹ n(·,ωn), [τn, σn]) ≤ r2

2
+ Iδn < r2.
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This contradicts the fact that Osc(Ỹ n(·,ωn), [τn, σn]) ≥ r2 on {σn < ∞}, and
so (61) holds and (55) follows by (60).

By applying Theorem 4.1 on [τn, ξn−1/m] and then letting m → ∞, we obtain
using (61), (59) and (38), that

Osc(W̃ n(·,ωn), [τn, ξn))

≤ �
(
Osc

(
X̃n(·,ωn) + Ṽ n(·,ωn), [τn, ξn ∧ σn)

) + δn)
<

r2

2
,

and similarly,

Osc(Ỹ n(·,ωn), [τn, ξn)) <
r2

2
.(63)

Then we have

‖W̃n(ξn−,ωn) − x0‖
≤ ‖W̃n(ξn−,ωn) − W̃n(τn,ωn)‖ + ‖W̃n(τn,ωn) − x0‖
≤ r2

2
+ δn.

Using hypotheses (ii), (iii)(b), and (33), (51), we obtain

‖W̃n(ξn,ωn) − W̃n(ξn−,ωn)‖
≤ ‖X̃n(ξn,ωn) − X̃n(ξn−,ωn)‖

+ ∑
i∈I

∥∥γ i,n(
Wn(ξn−,ωn),Wn(ξn,ωn)

)∥∥
× (

Ỹ n
i (ξn,ωn) − Ỹ n

i (ξn−,ωn)
)

≤ ε̃ + Iδn.

Hence

‖W̃n(ξn,ωn) − x0‖ ≤ ‖W̃n(ξn−,ωn) − x0‖
+ ‖W̃n(ξn,ωn) − W̃n(ξn−,ωn)‖

≤ r2

2
+ δn + ε̃ + Iδn

≤ ε̃ + (I + 1)δn + r2

2
< ρ/8 + ρ/8 + ρ/8 < ρ/2.

It follows from this that ξn = v and (53) holds, as desired.
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Then, by (33), (51), (iii)(b), (iii)(c), (63) and (43), we have

‖W̃n(v,ωn) − W̃n(u,ωn)‖
≤ sup

r,s∈[u,v]
‖X̃n(s,ωn) − X̃n(r,ωn)‖ + ∑

i∈I

(
Ỹ n

i (v,ωn) − Ỹ n
i (u,ωn)

)
≤ ε̃ + ∑

i∈I

(
Ỹ n

i (v,ωn) − Ỹ n
i (u ∨ τn,ωn)

)
+ ∑

i∈I

(
Ỹ n

i (u ∨ τn,ωn) − Ỹ n
i (u,ωn)

)
(64)

≤ ε̃ + I Osc
(
Ỹ n(·,ωn), [u ∨ τn, v)

) + ∑
i∈I

�Ỹn
i (v,ωn) + Iδn

≤ ε̃ + I
r2

2
+ Iδn + Iδn <

ε

8
+ ε

4
+ ε

16
+ ε

16
= ε

2
and

‖Ỹ n(v,ωn) − Ỹ n(u,ωn)‖ ≤ ∑
i∈I

(
Ỹ n

i (v,ωn) − Ỹ n
i (u,ωn)

)
≤ ∑

i∈I

(
Ỹ n

i (v,ωn) − Ỹ n
i (u ∨ τn,ωn)

)
(65)

+ ∑
i∈I

(
Ỹ n

i (u ∨ τn,ωn) − Ỹ n
i (u,ωn)

)
<

ε

2
.

Here we have used the fact that Ỹi does not increase on (u, τn ∨ u) and can jump
at most by δn at τn, by the definition of τn and (iii)(c).

On combining the results from Case 1 and Case 2, we obtain that for each
n ≥ n1,

sup
{

sup
u,v∈[t,t+λ̃]

‖W̃n(v,ωn) − W̃n(u,ωn)‖ : 0 ≤ t ≤ t + λ̃ ≤ T

}
≤ ε

2
< ε(66)

and

sup
{

sup
u,v∈[t,t+λ̃]

‖Ỹ n(v,ωn) − Ỹ n(u,ωn)‖ : 0 ≤ t ≤ t + λ̃ ≤ T

}
≤ ε

2
< ε.(67)

Hence since ωn ∈ Hn was arbitrary, by (50), we have that (44) and (45) hold for
all n ≥ n1.

Next we show that there is a constant Nη,T > 0 such that (46) and (47) hold for
all n ≥ n1. By (66)–(67) above, we have that for each n ≥ n1, ωn ∈ Hn, t such that
0 ≤ t < t + λ̃ ≤ T and t ≤ u < v ≤ t + λ̃,

‖W̃n(v,ωn) − W̃n(u,ωn)‖ < ε(68)
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and

‖Ỹ n(v,ωn) − Ỹ n(u,ωn)‖ < ε.(69)

Then, for each 0 ≤ s ≤ T , by (68), (69), (49) and (33), we have

‖W̃n(s,ωn)‖ ≤ ‖W̃n(s,ωn) − W̃n(0,ωn)‖ + ‖W̃n(0,ωn)‖

≤
[T /̃λ]+1∑

i=1

‖W̃n(iλ̃ ∧ s,ωn) − W̃n((i − 1)̃λ ∧ s,ωn)‖ + ‖X̃n(0,ωn)‖

≤ ([T /̃λ] + 1)ε + M̃η,T

and

‖Ỹ n(s,ωn)‖ ≤ ‖Ỹ n(s,ωn) − Ỹ n(0,ωn)‖

≤
[T /̃λ]+1∑

i=1

∥∥Ỹ n(iλ̃ ∧ s,ωn) − Ỹ n(
(i − 1)̃λ ∧ s,ωn)∥∥

≤ ([T /̃λ] + 1)ε.

Here [T /̃λ] is the greatest integer less than or equal to T /̃λ. Let Nη,T = ([T /̃λ] +
1)ε + M̃η,T . Then we obtain that for n ≥ n1 and ωn ∈ Hn,

sup
0≤s≤T

‖W̃n(s,ωn)‖ ≤ Nη,T(70)

and

sup
0≤s≤T

‖Ỹ n(s,ωn)‖ ≤ Nη,T .(71)

Then by (50), we have that (46) and (47) hold for all n ≥ n1.
Finally by applying Proposition 1.1, we have the C-tightness of {W̃n} and {Ỹ n}.

It then follows that {(W̃ n,Xn, Ỹ n)}∞n=1 is C-tight. Since Zn = (W̃ n,Xn,

Ỹ n) + (αn,0, βn) where αn,V(βn) → 0 in probability as n → ∞, then {Zn}∞n=1
is also C-tight. �

4.3. Invariance principle for SRBMs. The main theorem of the paper is the
following.

THEOREM 4.3 (Invariance principle for SRBMs). Suppose that Assump-
tion 4.1 holds. Define Zn = (Wn,Xn,Y n) for each n. Then the sequence of
processes {Zn}∞n=1 is C-tight and any (weak) limit point of this sequence is of the
form Z = (W,X,Y ) where continuous d-dimensional processes W,X and a con-
tinuous I-dimensional process Y are defined on some probability space (�,F ,P )

such that conditions (i), (ii) and (iv) of Definition 2.1 hold with Ft = σ {Z(s) :
0 ≤ s ≤ t}, t ≥ 0.
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If, in addition, the following conditions (vi)′ and (vii) hold, then any weak
limit point of the sequence {Zn}∞n=1 is an extended SRBM associated with the
data (G,µ,	, {γ i, i ∈ I}, ν). If furthermore the following condition (viii) holds,
then Wn ⇒ W as n → ∞ where W is an SRBM associated with (G,µ,	, {γ i,

i ∈ I}, ν).

(vi)′ {Xn} converges in distribution to a d-dimensional Brownian motion with
drift µ, covariance matrix 	 and initial distribution ν.

(vii) For each (weak) limit point Z = (W,X,Y ) of {Zn}∞n=1, {X(t) − X(0) −
µt , Ft , t ≥ 0} is a martingale.

(viii) If a process W satisfies the properties in Definition 2.1, the law of W is
unique, that is, the law of an SRBM associated with the data (G,µ,	, {γ i, i ∈ I},
ν) is unique.

REMARK. We note that (vi)′ implies that (vi) of Assumption 4.1 holds.

PROOF OF THEOREM 4.3. By Theorem 4.2, we have that the sequence
{Zn}∞n=1 is C-tight. Let Z = (W,X,Y ) be a (weak) limit point of {Zn}∞n=1, that
is, there is a subsequence {nk} of {n} such that Znk ⇒ Z as k → ∞. It also follows
that Z̃nk ≡ (W̃ nk ,Xnk , Ỹ nk ) ⇒ Z as k → ∞. By the C-tightness of {Zn}, we ob-
tain that Z has continuous paths a.s. For the purpose of verifying that Z satisfies
the listed properties in Definition 2.1, one may invoke the Skorokhod represen-
tation theorem to assume, without loss of generality, that Znk and Z̃nk converge
u.o.c. to Z a.s. as k → ∞ and V(βnk ) converges u.o.c. to 0 a.s. as k → ∞. With
this simplification, it is easily verified that the properties of {Znk } and {Z̃nk } imply
that Z has properties (ii) and (iv)(a)–(b) of Definition 2.1. For the verification of
property (i) of Definition 2.1, note that for each k, a.s. for each t ≥ 0,

Wnk(t) = Xnk(t) + ∑
i∈I

∫
(0,t]

γ i,nk (Wnk (s−),Wnk(s)) dβ
nk

i (s)

+ ∑
i∈I

∫
(0,t]

(
γ i,nk (Wnk (s−),Wnk(s)) − γ i(Wnk (s))

)
dỸ

nk

i (s)

+ ∑
i∈I

∫
(0,t]

γ i(Wnk (s)) dỸ
nk

i (s).

The sum of the first two terms on the right-hand side of the above equality con-
verges a.s. to X(t) as k → ∞. The third term on the right-hand side converges a.s.
to 0 as k → ∞, by property (iv) and the fact that a.s.,

sup
s∈(0,t]

‖Wnk(s) − Wnk(s−)‖

≤ sup
s∈(0,t]

‖�Xnk(s)‖ + I sup
s∈(0,t]

‖�Ynk(s)‖ → 0 as k → ∞.
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It remains to show that for each i ∈ I and t ≥ 0, a.s.,∫
(0,t]

γ i(Wnk (s)) dỸ
nk

i (s) →
∫
(0,t]

γ i(W(s)) dYi(s) as k → ∞.

This follows directly from Lemma A.4.
For the verification of property (iv)(c) of Definition 2.1, it suffices to show that

for each i ∈ I, m = 1,2, . . . , a.s. for each t ≥ 0,

Yi(t) =
∫
(0,t]

fm(W(s)) dYi(s),(72)

where {fm}∞m=1 is a sequence of real valued continuous functions defined on R
d

such that for each m, the range of fm is [0,1], fm(x) = 1 for x ∈ U1/m(∂Gi ∩
∂G) and fm(x) = 0 for x /∈ U2/m(∂Gi ∩ ∂G). The existence of such a sequence
of continuous functions {fm}∞m=1 can be shown using Urysohn’s lemma (cf. [8],
page 122). Then (72) is a consequence of Lemma A.4, property (iii) of Ỹ

nk

i and
the fact that δnk → 0 as k → ∞. Indeed, a.s., for each t ≥ 0,

Yi(t) = lim
k→∞ Ỹ

nk

i (t) = lim
k→∞

∫
(0,t]

1{W̃nk (s)∈Uδnk (∂Gi∩∂G)} dỸ
nk

i (s)

= lim
k→∞

∫
(0,t]

fm(W̃nk (s)) dỸ
nk

i (s)

=
∫
(0,t]

fm(W(s)) dYi(s).

Thus, Z satisfies properties (i), (ii) and (iv) of Definition 2.1 with Ft =
σ {Z(s) : 0 ≤ s ≤ t}, t ≥ 0.

Assuming properties (vi)′ and (vii) hold, Z satisfies (iii) of Definition 2.1. Then
Z is an extended SRBM associated with the data (G,µ,	, {γ i, i ∈ I}, ν). If in ad-
dition, property (viii) holds, then the law of W is unique. Since each weak limit W

is an SRBM associated with the data (G,µ,	, {γ i, i ∈ I}, ν) and the law of such
an SRBM is unique, then by a standard argument, Wn ⇒ W as n → ∞ where W

is an SRBM associated with (G,µ,	, {γ i, i ∈ I}, ν). �

Some sufficient conditions for (vii) to hold are given in Proposition 4.2 of [15]
for a simpler setting where G = R

d+. Two of those conditions generalize to our
setting here and can be proved in the same manner as in [15]. For completeness,
we state the ensuing result here.

PROPOSITION 4.1. Suppose that Assumption 4.1 and (vi)′ of Theorem 4.3
hold. If, in addition, one of the following conditions (I)–(II) holds, then condi-
tion (vii) of Theorem 4.3 is satisfied, and any weak limit point of {Zn}∞n=1 is an
extended SRBM associated with (G,µ,	, {γ i, i ∈ I}, ν).
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(I) For any triple of d-dimensional {Ft }-adapted processes (W,X,Y ) defined
on some filtered probability space (�,F , {Ft },P ) and satisfying conditions (i),
(ii) and (iv) of Definition 2.1 together with the condition that X, under P , is a
d-dimensional Brownian motion with drift vector µ, covariance matrix 	 and ini-
tial distribution ν, the pair (W,Y ) is adapted to the filtration generated by X and
the P -null sets.

(II) Xn = X̌n + εn
1 , Yn = Y̌ n + εn

2 , Wn = W̌n + εn
3 , where εn

1 , εn
2 , εn

3 are
processes converging to 0 in probability as n → ∞, and:

(a) {X̌n(t) − X̌n(0)}∞n=1 is uniformly integrable for each t ≥ 0,
(b) there is a sequence of constants {µn}∞n=1 in R

d such that
limn→∞ µn = µ,

(c) for each n, {X̌n(t) − X̌n(0) − µnt, t ≥ 0} is a P n-martingale with re-
spect to the filtration generated by (W̌ n, X̌n, Y̌ n).

In the rest of this work, we focus on applications of the invariance principle and
in particular on giving sufficient conditions for property (viii) of Theorem 4.3 to
hold.

5. Applications of the invariance principle. In Section 5.1, we prove weak
existence of SRBMs associated with data (G,µ,	, {γ i, i ∈ I}, ν) satisfying
(A1)–(A5) of Section 3. This is accomplished by constructing a sequence of ap-
proximations whose weak limit points are SRBMs. The invariance principle is
used to prove the C-tightness of the approximations and that any weak limit point
is an SRBM. In Sections 5.2 and 5.3, using known results on uniqueness in law for
SRBMs, we illustrate the invariance principle for certain domains and directions
of reflection.

5.1. Weak existence of SRBMs.

THEOREM 5.1. Suppose that assumptions (A1)–(A5) of Section 3 hold. Then
there exists an SRBM associated with the data (G,µ,	, {γ i, i ∈ I}, ν).

PROOF. We construct a sequence of approximations to an SRBM and use
the invariance principle to establish weak convergence along a subsequence to an
SRBM.

In the following we will use R(·) from assumption (A2), L > 0 from assump-
tion (A4), a > 0 from assumption (A5), and ρ0 = a

4L
. Fix ε > 0 and 0 < ρ <

min{ρ0
4 ,

R(a/4)
4 }. By assumption (A3), there is a constant r1 > 0 such that

D(r) < min
{
ρ

2
, ε

}
for all r ∈ (0, r1].
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Recall the properties of �(·) from Theorem 4.1. Since �(u) → 0 as u → 0, there
are constants 0 < r3 < r2 < min{r1,

ρ
4 , ε

2I} such that

�(r) <
r2

2
for all r ∈ (0, r3].

Fix ε̃ and δ such that 0 < ε̃ < min{ρ
8 , ε

8 ,
r3
3 ,

r3
24ILr2

} and 0 < 2δ < min{ r3
3 , r2

2I ,
ρ

8(1+I) ,
ε̃
2I}.

We will construct a d-dimensional stochastic process Wδ and an I-dimensional
“pushing” process Y δ , such that Wδ approximately satisfies the conditions defin-
ing an SRBM for the data (G,µ,	, {γ i, i ∈ I}, ν) (cf. Assumption 4.1). The idea
for this construction is to use a Brownian motion X with drift vector µ, covari-
ance matrix 	 and initial distribution ν. Away from ∂G, the increments of Wδ are
determined by those of X. For any time t ≥ 0 such that Wδ(t−) ∈ ∂G, we add
an instantaneous jump to Wδ(t−) to obtain Wδ(t) ∈ G. Here Wδ(0−) = X(0).
The size of the jump is such that Wδ(t) is a strictly positive distance (depending
on δ) from the boundary of G. The jump vector is obtained as a measurable func-
tion of Wδ(t−). To ensure the measurability, each point x on ∂G is associated
with a nearby point x̄, chosen in a measurable way from a fixed countable set of
points in ∂G. The jump vector for x is one associated with x̄. We now specify the
mapping x → x̄ and the associated jump vector more precisely.

By assumption (A5)(ii), for each x ∈ ∂G, there is c(x) ∈ R
I+ such that

∑
i∈I(x)

ci(x) = 1 and min
j∈I(x)

〈 ∑
i∈I(x)

ci(x)γ i(x), nj (x)

〉
≥ a.(73)

By (73), Lemma 2.1 and the fact that ni(·) is continuous on ∂Gi for each i ∈ I, we
have that for each x ∈ ∂G there is rx ∈ (0, δ) such that for each y ∈ Brx (x) ∩ ∂G,

I(y) ⊂ I(x)(74)

and

min
j∈I(x)

〈 ∑
i∈I(x)

ci(x)γ i(x), nj (y)

〉
≥ a

2
.(75)

It follows, using the C1 nature of ∂Gi and the fact that ni(y) is the inward unit
normal to ∂Gi at y ∈ ∂G for each i ∈ I(y), that (by choosing rx even smaller if
necessary) for each x ∈ ∂G there is m(x) > 0 and rx ∈ (0, δ) such that for each
y ∈ Brx (x) ∩ ∂G, (74)–(75) hold and

y + λ
∑

i∈I(x)

ci(x)γ i(x) ∈ G for all λ ∈ (0,m(x)).(76)

Let Bo
rx

(x) denote the interior of the closed ball Brx (x) for each x ∈ ∂G. The
collection {Bo

rx
(x) :x ∈ ∂G} is an open cover of ∂G and it follows that there is
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a countable set {xk} such that ∂G ⊂ ⋃
k Brxk

(xk) and {xk} ∩ BN(0) is a finite set
for each integer N ≥ 1. We can further choose the set {xk} to be minimal in the
sense that for each strict subset C of {xk}, {Brx (x) :x ∈ C} does not cover ∂G. Let
Dk = (Brxk

(xk) \ (
⋃k−1

i=1 Brxi
(xi)) ∩ ∂G for each k. Then Dk �= ∅ for each k, {Dk}

is a partition of ∂G, and for each x ∈ ∂G there is a unique index i(x) such that
x ∈ Di(x). For each x ∈ R

d , let

x̄ =
{

x, if x /∈ ∂G,
xi(x), if x ∈ ∂G.

Note that for all x ∈ R
d ,

‖x − x̄‖ < δ.(77)

For each i ∈ I and x ∈ R
d , let

γ i,δ(x) = γ i(x̄).(78)

The mapping x → x̄ is Borel measurable on R
d and hence γ i,δ is a Borel measur-

able function from R
d into R

d .
We construct (Wδ,Y δ) as follows. Let X defined on some filtered probability

space (�,F , {Ft },P ) be a d-dimensional {Ft }-Brownian motion with drift µ and
covariance matrix 	 such that X is continuous surely and X(0) has distribution ν.
Let

τ1 = inf{t ≥ 0 :X(t) ∈ ∂G}
and

Wδ(t) = X(t), Y δ(t) = 0 for 0 ≤ t < τ1.

Note that Wδ(τ1−) exists on {τ1 < ∞} since X has continuous paths and in the
case that τ1 = 0, Wδ(0−) ≡ X(0). On {τ1 < ∞}, define

Y δ
i (τ1) =


0, i /∈ I(Wδ(τ1−)),

ci(Wδ(τ1−))

(
m(Wδ(τ1−))

2
∧ δ

)
, i ∈ I(Wδ(τ1−)),

and

Wδ(τ1) = X(τ1)

+
(

m(Wδ(τ1−))

2
∧ δ

)( ∑
i∈I(Wδ(τ1−))

ci(Wδ(τ1−))γ i,δ(Wδ(τ1−))

)
.

So Wδ,Y δ have been defined on [0, τ1) and at τ1 on {τ1 < ∞}, such that:

(i) Wδ(t) = X(t) + ∑
i∈I γ i,δ(Wδ(0−))Y δ

i (0) + ∑
i∈I

∫
(0,t]

γ i,δ(Wδ(s−)) dY δ
i (s) for all t ∈ [0, τ1] ∩ [0,∞), where Wδ(0−) = X(0),
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(ii) Wδ(t) ∈ G for t ∈ [0, τ1] ∩ [0,∞),
(iii) for i ∈ I,

(a) Y δ
i (0) ≥ 0,

(b) Y δ
i is nondecreasing on [0, τ1] ∩ [0,∞),

(c) Y δ
i (t) = Y δ

i (0) + ∫
(0,t] 1{Wδ(s)∈U2δ(∂Gi∩∂G)} dY δ

i (s) for t ∈ [0, τ1] ∩
[0,∞),

(iv) ‖�Yδ(t)‖ ≡ ‖Y δ(t) − Y δ(t−)‖ ≤ δ for t ∈ [0, τ1] ∩ [0,∞), where
Y δ(0−) ≡ 0.

Note that (iii)(c) above contains the expression Wδ(s) ∈ U2δ(∂Gi ∩ ∂G). The
reader may wonder why 2δ appears instead of δ. The reason is that at a jump
time s of Y δ

i , Wδ(s−) ∈ ∂Gi ∩ ∂G and so

dist
(
Wδ(s), ∂Gi ∩ ∂G

) ≤ ‖Wδ(s) − Wδ(s−)‖ + ‖Wδ(s−) − Wδ(s−)‖
≤ δ + δ = 2δ.

Proceeding by induction, we assume that for some n ≥ 2, τ1 ≤ · · · ≤ τn−1 have
been defined, and Wδ,Y δ have been defined on [0, τn−1) and at τn−1 on {τn−1 <

∞}, such that (i)–(iv) above hold with τn−1 in place of τ1. Then we define τn = ∞
on {τn−1 = ∞}, and on {τn−1 < ∞} we define

τn = inf{t ≥ τn−1 :Wδ(τn−1) + X(t) − X(τn−1) ∈ ∂G}.
For τn−1 ≤ t < τn, let

Y δ(t) = Y δ(τn−1),

Wδ(t) = Wδ(τn−1) + X(t) − X(τn−1),

and on {τn < ∞}, let

Y δ
i (τn) =


Y δ

i (τn−1), i /∈ I(Wδ(τn−)),

Y δ
i (τn−1) + ci(Wδ(τn−))

(
m(Wδ(τn−))

2
∧ δ

)
, i ∈ I(Wδ(τn−)),

and

Wδ(τn) = Wδ(τn−)

+
(

m(Wδ(τn−))

2
∧ δ

)( ∑
i∈I(Wδ(τn−))

ci(Wδ(τn−))γ i,δ(Wδ(τn−))

)
.

In this way, Wδ,Y δ have been defined on [0, τn) and at τn on {τn < ∞} such that
(i)–(iv) hold with τn in place of τ1.

By construction {τn}∞n=1 is a nondecreasing sequence of stopping times. Let
τ = limn→∞ τn. On {τ = ∞}, the construction of (Wδ, Y δ) is complete. We now
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show that {τ < ∞} = ∅. In fact, if {τ < ∞} �= ∅, let ω ∈ {τ < ∞}. The above
construction gives (Wδ(·,ω), Y δ(·,ω)) on the time interval [0, τ (ω)). For each
t ∈ [0, τ (ω)), we have

Wδ(t,ω) = X(t,ω) + ∑
i∈I

γ i,δ(Wδ(0−,ω))Y δ
i (0,ω)

(79)
+ ∑

i∈I

∫
(0,t]

γ i,δ(Wδ(s−,ω)) dY δ
i (s,ω).

Since X is continuous on [0,∞), ‖γ i,δ(x)‖ = 1 for each x ∈ R
d and

∑
i∈I Y δ

i (0,

ω) ≤ δ, there are constants λ̃ ∈ (0, τ (ω)) and M̃ > 0 (depending on ω) such that

wτ(ω)

(
X(·,ω) + γ i,δ(Wδ(0−,ω))Y δ

i (0,ω), λ̃
)
< ε̃(80)

and

sup
0≤t≤τ(ω)

∥∥∥∥∥X(·,ω) + ∑
i∈I

γ i,δ(Wδ(0−,ω))Y δ
i (0,ω)

∥∥∥∥∥ ≤ M̃,(81)

where w·(·, ·) is defined in (3). By the choice of ε̃, δ made at the beginning of this
proof, (77)–(78) and the uniform Lipschitz property of the γ i(·), i ∈ I, it follows
that (39) and (43) hold with γ i,δ(y) and 2δ in place of γ i,n(y, x) and δn, respec-
tively. Then by similar pathwise analysis to that used in Case 1 and 2 of the proof
of Theorem 4.2, with W̃n = Wn = Wδ , αn = 0, γ i,n(y, x) = γ i,δ(y) for each i ∈ I
and x, y ∈ R

d , Xn = X + ∑
i∈I γ i,δ(Wδ(0−))Y δ

i (0), Yn = Y δ , Ỹ n = Y δ − Y δ(0),
βn = Y δ(0) and δn = 2δ, we obtain that (71) holds for any T < τ(ω) with ωn = ω,
Nη,T = ([τ(ω)/λ̃] + 1)ε + M̃ . It follows that supi∈I sups∈[0,τ (ω)) Y

δ
i (s,ω) is fi-

nite. By the nondecreasing property of Y δ
i (·,ω) on [0, τ (ω)) for each i ∈ I,

Y δ
i (τ (ω)−,ω) exists and is finite for each i ∈ I. Then by (79) and the continu-

ity of X, we see that Wδ(τ(ω)−,ω) exists and is finite. By the construction of Y δ

and the fact that
∑

i∈I(x) ci(x) = 1 for all x ∈ ∂G, we have that

∑
i∈I

Y δ
i (τ (ω)−,ω) =

∞∑
n=1

m(Wδ(τn(ω)−,ω))

2
∧ δ.(82)

Since τn(ω) ↑ τ(ω) as n → ∞ and Wδ(τ(ω)−,ω) exists, it follows that
{Wδ(τn(ω)−,ω)}∞n=1 converges to Wδ(τ(ω)−,ω) ∈ ∂G as n → ∞. Conse-
quently, {Wδ(τn(ω)−,ω)}∞n=1 is a bounded sequence in ∂G and so by the defi-
nition of the sets {Dk} which form a partition of ∂G, there is a finite set C such
that

{Wδ(τn(ω)−,ω)}∞n=1 ⊂ ⋃
k∈C

Dk.

Hence,

inf
n≥1

m(Wδ(τn(ω)−,ω)) ≤ inf
k∈C

m(xk) > 0,(83)
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and so the right-hand side of (82) is infinite. On the other hand, since
supi∈I sups∈[0,τ (ω)) Y

δ
i (s,ω) is finite, the left-hand side of (82) is finite. This yields

the desired contradiction and so {τ < ∞} = ∅ and we have constructed (Wδ,Y δ)

on [0,∞).
From the construction above, we can see that Wδ and Y δ are well-defined sto-

chastic processes with sample paths in D([0,∞),R
d) and D([0,∞),R

I). They
are adapted to the filtration generated by X and satisfy (i)–(iv) above with [0,∞)

in place of [0, τ1].
Consider a sequence of sufficiently small δ’s, denoted by {δn}, such that δn ↓ 0

as n → ∞. For each δn, let (Wδn
, Y δn

) be the pair constructed as above for the
same process X. By the above properties and the fact that for each i ∈ I and
x, y ∈ R

d ,

‖γ i,δn

(y) − γ i(x)‖ ≤ ‖γ i(ȳ) − γ i(x)‖ ≤ L‖ȳ − x‖ ≤ L(δn + ‖y − x‖),
we obtain that Assumption 4.1 holds with W̃n = Wn = Wδn

, αn = 0, γ i,n(y, x) =
γ i,δn

(y) for each i ∈ I and x, y ∈ R
d , Xn = X + ∑

i∈I γ i,δn
(Wδn

(0−))Y δn

i (0),
Yn = Y δn

, Ỹ n = Y δn − Y δn
(0), βn = Y δn

(0) and 2δn in place of δn. By invok-
ing the first part of Theorem 4.3, we obtain that {Zδn}∞n=1 = {(Wδn

,Xδn
, Y δn

)}∞n=1
is C-tight and any weak limit point Z of this sequence satisfies conditions (i),
(ii) and (iv) of Definition 2.1 with Ft = σ {Z(s) : 0 ≤ s ≤ t}, t ≥ 0. Note that
condition (vi)′ of Theorem 4.3 holds trivially. Furthermore, Mδn = {Xδn

(t) −
Xδn

(0) − µt , t ≥ 0} = {X(t) − X(0) − µt, t ≥ 0} is a martingale with respect
to the filtration generated by X. Since Wδn

, Y δn
are adapted to this filtration, it

follows that Mδn
is a martingale with respect to the filtration generated by Wδn

,
Xδn

, Y δn
(which in fact is the same as that generated by X). For each t ≥ 0,

Xδn
(t) − Xδn

(0) = X(t) − X(0) and so trivially this forms a uniformly integrable
sequence as n varies. It follows from Proposition 4.1 that condition (vii) of The-
orem 4.3 holds. Hence, any weak limit point of {Zδn}∞n=1 is an extended SRBM
with the data (G,µ,	, {γ i, i ∈ I}, ν). �

5.2. SRBMs in convex polyhedrons with constant reflection fields. Existence
and uniqueness in law for SRBMs living in convex polyhedrons with a constant
reflection field on each boundary face has been studied by Dai and Williams [4].
In this subsection, we state a consequence of our invariance principle using the
results in [4] to establish uniqueness in law. In this case, G is defined in terms
of I (I ≥ 1) d-dimensional unit vectors {ni, i ∈ I} and an I-dimensional vector
β = (β1, . . . , βI)

′ such that

G ≡ {x ∈ R
d : 〈ni, x〉 ≥ βi for all i ∈ I}.(84)

It is assumed that G is nonempty and that the set {(n1, β1), . . . , (n
I, βI)} is min-

imal in the sense that no proper subset defines G. For each i ∈ I, let Fi denote
the boundary face: {x ∈ G : 〈ni, x〉 = βi}. Then, ni is the inward unit normal to Fi .
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A constant vector field γ i of unit length specifies the direction of reflection asso-
ciated with Fi .

DEFINITION 5.2. For each ∅ �= K ⊂ I, define FK = ⋂
i∈K Fi . Let F∅ = G.

A set K ⊂ I is maximal if K �= ∅, FK �= ∅ and FK �= FK̄ for any K̄ ⊃ K such
that K̄ �= K .

In [4], Dai and Williams introduced the following assumption.

ASSUMPTION 5.1. For each maximal K ⊂ I,

(S.a) there is a positive linear combination n = ∑
i∈K bin

i (bi > 0 ∀i ∈ K) of
the {ni, i ∈ K} such that 〈n,γ i〉 > 0 for all i ∈ K ,

(S.b) there is a positive linear combination γ = ∑
i∈K ciγ

i (ci > 0 ∀i ∈ K) of
the {γ i, i ∈ K} such that 〈ni, γ 〉 > 0 for all i ∈ K .

REMARK. For the given G and constant vector fields {γ i, i ∈ I}, Assump-
tion 5.1 is equivalent to assumption (A5).

DEFINITION 5.3. The convex polyhedron G is simple if for each K ⊂ I such
that K �= ∅ and FK �= ∅, exactly |K| distinct faces contain FK .

REMARK. The polyhedron G is simple if and only if K is maximal for every
K such that ∅ �= K ⊂ I and FK �= ∅. It is shown in [4] that when G is simple,
(S.a) holds for all maximal K ⊂ I if and only if (S.b) holds for all maximal K ⊂ I.

Dai and Williams [4] showed that Assumption 5.1 is sufficient for existence
and uniqueness in law of SRBMs living in G with the reflection fields {γ i, i ∈ I}
and fixed starting point. [They also showed that condition (S.b) holding for all
maximal K ⊂ I is necessary for existence of an SRBM starting from each point
in G. Consequently, when G is simple, Assumption 5.1 is necessary and sufficient
for existence of an SRBM starting from each point in G.] This yields the following
consequence of our invariance principle.

THEOREM 5.4. Let G be a nonempty domain such that G is a convex poly-
hedron of the form (84) (with minimal description), and let {γ i, i ∈ I} be a family
of constant vector fields of unit length satisfying Assumption 5.1. Suppose that As-
sumption 4.1 and (vi)′, (vii) of Theorem 4.3 hold. Then Wn ⇒ W as n → ∞ where
W is an SRBM associated with (G,µ,	, {γ i, i ∈ I}, ν).

PROOF. Clearly (A1) holds. Assumptions (A2)–(A3) hold by Lemma A.3.
Since for each i ∈ I, γ i(·) is a constant vector field of unit length, assumption (A4)
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holds trivially. Assumption (A5) is implied by Assumption 5.1. Hence by Theo-
rem 4.3, the only thing that we have to check is condition (viii) of Theorem 4.3,
that is, uniqueness in law for SRBMs in convex polyhedrons with constant re-
flection fields of unit length. But this is proved in Theorem 1.3 of [4] for a fixed
starting point in G and follows by a standard conditioning argument for the initial
distribution ν. �

5.3. SRBMs in bounded domains with piecewise smooth boundaries. Dupuis
and Ishii [6] have established sufficient conditions for the existence and pathwise
uniqueness of reflecting diffusions living in the closures of bounded domains with
piecewise smooth boundaries. In this subsection, we state a consequence of our
invariance principle using the results in [6] to establish uniqueness in law.

THEOREM 5.5. Let G be a bounded domain and {γ i, i ∈ I} be a family of
reflection fields that satisfy assumptions (A1)–(A4) and (A5)′ in Section 3. We
further assume that for each i ∈ I, γ i(·) is once continuously differentiable with
locally Lipschitz continuous first partial derivatives. Suppose that Assumption 4.1
and (vi)′, (vii) of Theorem 4.3 hold. Then Wn ⇒ W as n → ∞ where W is an
SRBM associated with (G,µ,	, {γ i, i ∈ I}, ν).

REMARK. We remind the reader that in view of Lemma 3.1, to verify condi-
tion (A5)′, one only needs to show that (i) or (ii) holds for all x ∈ ∂G. However, as
can be seen from the proof below, both forms of the condition can be useful.

PROOF OF THEOREM 5.5. This theorem follows from Theorem 4.3 and
uniqueness in law for the associated SRBMs. The latter follows by a standard
argument from the pathwise uniqueness established in Corollary 5.2 of [6] for
their Case 2. The conditions required for that case are satisfied in particular be-
cause (A5)′(ii) implies condition (3.8) of [6]. That condition (3.8) readily implies
condition (3.6) of [6]; and, by [5], under the additional smoothness assumptions
imposed on the γ i in the statement of our theorem, condition (3.8) also im-
plies condition (3.7) in [6]. In addition, (A5)′(i) implies that for each x ∈ ∂G,
〈γ i(x), ni(x)〉 > 0 for each i ∈ I(x), and furthermore, since (A5)′ implies (A5),
we have by (A5)(i) that the origin does not belong to the convex hull of the
{γ i(x) : i ∈ I(x)}. �

APPENDIX: AUXILIARY LEMMAS

LEMMA A.1. Suppose that G is bounded. If assumption (A1) holds, then as-
sumption (A2) holds.

PROOF. To see this, suppose G is bounded and assumption (A1) holds. Fix
ε ∈ (0,1). For each i ∈ I and z ∈ ∂Gi ∩ ∂G, by the C1 property of ∂Gi , there is a
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neighborhood Vz of z and a constant R(ε, i, z) > 0 such that for all x ∈ Vz ∩ ∂Gi ∩
∂G and y ∈ Gi such that ‖x − y‖ < R(ε, i, z),

〈ni(x), y − x〉 ≥ −ε‖y − x‖.(85)

Assumption (A2) then follows by a standard compactness argument. �

LEMMA A.2. Suppose that G is a nonempty bounded domain satisfying (5),
where for each i ∈ I, Gi is a nonempty domain. Then assumption (A3) holds.

PROOF. We prove the lemma by contradiction. Suppose that assumption (A3)
does not hold. Then, since there are only finite many J ⊂ I, J �= ∅, there is
an ε > 0, a nonempty set J ⊂ I, a sequence {rn} ⊂ (0,∞) with rn → 0 as
n → ∞, a sequence {xn} ⊂ R

d such that for each n, xn ∈ ⋂
j∈J Urn(∂Gj ∩ ∂G)

and dist(xn,
⋂

j∈J(∂Gj ∩ ∂G)) > ε. But since G is bounded, {xn} is bounded and
without loss of generality we may assume that xn → x as n → ∞ for some x ∈ R

d .
It follows that x ∈ ⋂

j∈J(∂Gj ∩ ∂G), since for each j ∈ J,

dist(x, ∂Gj ∩ ∂G) ≤ ‖xn − x‖ + dist(xn, ∂Gj ∩ ∂G) ≤ ‖xn − x‖ + rn → 0

as n → ∞. This is inconsistent with xn → x and dist(xn,
⋂

j∈J(∂Gj ∩ ∂G)) > ε.
�

LEMMA A.3. Suppose (A1) holds where

Gi = {x ∈ R
d : 〈ni, x〉 > βi} for i ∈ I,(86)

{ni, i ∈ I} is a finite collection of d-dimensional vectors of unit length, and
for I = |I|, β = (β1, . . . , βI)

′ is an I-dimensional vector. (Thus, G is a convex
polyhedron.) Assume that for each i ∈ I, ∂Gi ∩ ∂G �= ∅. Then assumptions
(A2) and (A3) hold.

PROOF. Assumption (A2) holds automatically since G is convex. In order to
show that assumption (A3) holds, we just need to show that for each J ⊂ I with
J �= ∅,

sup

{
dist

(
x,

⋂
j∈J

(∂Gj ∩ ∂G)

)
:x ∈ ⋂

j∈J

Ur(∂Gj ∩ ∂G)

}
→ 0(87)

as r → 0. Fix J ⊂ I such that J �= ∅. Then
⋂

j∈J(∂Gj ∩ ∂G) is the collection of
all solutions x ∈ R

d to the following system of linear inequalities:

〈ni, x〉 ≥ βi for all i ∈ I,
(LS)

〈−ni, x〉 ≥ −βi for all i ∈ J.
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Suppose that
⋂

j∈J(∂Gj ∩ ∂G) �= ∅, that is, (LS) has at least one solution. By
a theorem of Hoffman [11], with supporting lemmas proved by Agmon [1], there
is a constant C > 0 (depending only on {ni, i ∈ I} and not on β) such that for any
x ∈ R

d there exists a solution x0 ∈ R
d of (LS) with

‖x − x0‖ ≤ C

(∑
i∈I

(βi − 〈ni, x〉)+ + ∑
i∈J

(−βi − 〈−ni, x〉)+
)
.(88)

For r > 0, any x ∈ ⋂
j∈J Ur(∂Gj ∩ ∂G) satisfies the following:

〈ni, x〉 ≥ βi − r for all i ∈ I,
(r-LS)

〈−ni, x〉 ≥ −βi − r for all i ∈ J.

Then by (88), there is x0 ∈ ⋂
j∈J(∂Gj ∩ ∂G) such that

dist

(
x,

⋂
j∈J

(∂Gj ∩ ∂G)

)
≤ ‖x − x0‖ ≤ 2C|I|r.

It follows that (87) holds when
⋂

j∈J(∂Gj ∩ ∂G) �= ∅.
Now suppose that

⋂
j∈J(∂Gj ∩ ∂G) = ∅, that is, (LS) has no solution. We

shall use an argument by contradiction to show that
⋂

j∈J Ur(∂Gj ∩ ∂G) = ∅

for all r sufficiently small. Suppose that this is not true. Then we have that⋂
j∈J Ur(∂Gj ∩ ∂G) �= ∅ for all r ∈ (0,∞). As we have seen before, any x ∈⋂
j∈J Ur(∂Gj ∩∂G) is a solution to (r-LS). We now construct a Cauchy sequence.

Let x1 ∈ ⋂
j∈J U1/2(∂Gj ∩ ∂G). Then x1 is a solution to ( 1

2 -LS). Since ( 1
22 -LS)

has at least one solution, by the theorem of Hoffman [11] (using the fact that the
constant C depends only on {ni, i ∈ I}), we conclude that there is a solution x2

to ( 1
22 -LS) such that ‖x1 − x2‖ ≤ C′

22 , where C′ = 2C|I|. Continuing in this man-

ner, we can obtain a sequence {xn}∞n=1 such that for each n ≥ 1, ‖xn−xn+1‖ ≤ C′
2n+1

and xn+1 is a solution of ( 1
2n+1 -LS). The sequence {xn}∞n=1 is Cauchy. Hence,

there is an x∗ ∈ R
d such that xn → x∗ as n → ∞, and x∗ is a solution to (LS).

This contradicts the supposition that
⋂

j∈J(∂Gj ∩ ∂G) = ∅. Thus we have that⋂
j∈J Ur(∂Gj ∩ ∂G) = ∅ for all r sufficiently small, and for such r ,

sup

{
dist

(
x,

⋂
j∈J

(∂Gj ∩ ∂G)

)
:x ∈ ⋂

j∈J

Ur(∂Gj ∩ ∂G)

}
= 0,

by convention.
Combining the above we see that for each J ⊂ I with J �= ∅, (87) holds and

hence assumption (A3) holds. �

REMARK. In fact, under the assumptions of Lemma A.3, there is a constant
C > 0 such that D(u) ≤ Cu for each u ≥ 0 and D(·) defined as in assumption (A3).
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LEMMA A.4. Given T > 0, functions φ, {φn}∞n=1 in D([0,∞),R
d), and

χ, {χn}∞n=1 in D([0,∞),R), suppose that sup0≤s≤T ‖φn(s) − φ(s)‖ → 0 and
sup0≤s≤T |χn(s) − χ(s)| → 0 as n → ∞. Assume that χn is nondecreasing for
each n. Then for any sequence of real valued continuous functions {f n}∞n=1 de-
fined on R

d such that f n converges uniformly on each compact set to a continuous
function f : Rd → R, we have∫

(0,t]
f n(φn(s)) dχn(s) →

∫
(0,t]

f (φ(s)) dχ(s) as n → ∞,(89)

uniformly for t ∈ [0, T ].

PROOF. By replacing χn(·) and χ(·) by χn(·) − χn(0) and χ(·) − χ(0), re-
spectively, we may assume that χn(0) = χ(0) = 0. It is straightforward to see by
the uniform convergence of {χn} to χ on [0, T ] that χ inherits the nondecreasing
property of the {χn}.

By the triangle inequality,

sup
0≤t≤T

∣∣∣∣∫
(0,t]

f n(φn(s)) dχn(s) −
∫
(0,t]

f (φ(s)) dχ(s)

∣∣∣∣
≤ sup

0≤t≤T

∣∣∣∣∫
(0,t]

(
f n(φn(s)) − f (φ(s))

)
dχn(s)

∣∣∣∣(90)

+ sup
0≤t≤T

∣∣∣∣∫
(0,t]

f (φ(s)) d
(
χn(s) − χ(s)

)∣∣∣∣.
For the first term on the right-hand side of the above inequality, we have

sup
0≤t≤T

∣∣∣∣∫
(0,t]

(
f n(φn(s)) − f (φ(s))

)
dχn(s)

∣∣∣∣
≤ sup

0≤s≤T

|f n(φn(s)) − f (φ(s))|χn(T ),

where the right-hand side member above tends to zero as n → ∞ by the uniform
convergence of φn to φ on [0, T ] (which implies uniform boundedness of {φn}
on [0, T ]), the uniform convergence of f n to f on compact sets, the continuity of
f , and the convergence of χn(T ) to χ(T ). For the second term, note that since
f (φ(·)) ∈ D([0,∞),R), by Theorem 3.5.6, Proposition 3.5.3 and Remark 3.5.4
of [7], there is a sequence of step functions {zk}∞k=1 of the form

zk(·) =
lk∑

i=1

zk(tki )1[tki ,tki+1)
(·),(91)

where 1 ≤ lk < ∞, 0 = tk1 < tk2 < · · · < tklk+1 < ∞ and sup0≤s≤T |f (φ(s)) −
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zk(s)| → 0 as k → ∞. Then

sup
0≤t≤T

∣∣∣∣∫
(0,t]

f (φ(s)) d
(
χn(s) − χ(s)

)∣∣∣∣
≤ sup

0≤t≤T

∣∣∣∣∫
(0,t]

(
f (φ(s)) − zk(s)

)
d
(
χn(s) − χ(s)

)∣∣∣∣
+ sup

0≤t≤T

∣∣∣∣∫
(0,t]

zk(s) d
(
χn(s) − χ(s)

)∣∣∣∣
≤ sup

0≤s≤T

|f (φ(s)) − zk(s)|(χn(T ) + χ(T )
)

+ sup
0≤t≤T

lk∑
i=1

|zk(tki )|∣∣(χn − χ)
(
(tki+1 ∧ t)−) − (χn − χ)

(
(tki ∧ t)−)∣∣.

For fixed k, the last term above can be made as small as we like for all n sufficiently
large since χn → χ uniformly on [0, T ]. The desired result follows. �

REMARK. The proof of Lemma A.4 is a modification of the proof of the
related Lemma 2.4 in [4]. The difference in assumptions is that in [4] it is as-
sumed that φn → φ in the J1-topology rather than uniformly on [0, T ], χn,
χ ∈ C([0,∞),R+) rather than χn, χ ∈ D([0,∞),R), and there is a single func-
tion f rather than a sequence {f n}.
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