
The Annals of Applied Probability
2007, Vol. 17, No. 2, 654–675
DOI: 10.1214/105051606000000790
© Institute of Mathematical Statistics, 2007

AVERAGE OPTIMALITY FOR RISK-SENSITIVE CONTROL WITH
GENERAL STATE SPACE1

BY ANNA JAŚKIEWICZ

Wrocław University of Technology

This paper deals with discrete-time Markov control processes on a gen-
eral state space. A long-run risk-sensitive average cost criterion is used as a
performance measure. The one-step cost function is nonnegative and possi-
bly unbounded. Using the vanishing discount factor approach, the optimality
inequality and an optimal stationary strategy for the decision maker are es-
tablished.

1. Introduction and the model. This paper deals with discrete-time Markov
control processes on a general state space. The one-step cost function is nonneg-
ative and possibly unbounded. The decision maker is supposed to be risk-averse
with a constant risk coefficient γ > 0. The risk-sensitive average cost criterion is
used as a performance measure. The aim of the work is to establish the optimality
inequality for risk-sensitive dynamic programming and derive an optimal station-
ary policy. The result is proved under two different sets of compactness-continuity
assumptions, namely, for Markov control processes with weakly continuous tran-
sition probabilities [Condition (W)], as well as transition probabilities that are con-
tinuous with respect to setwise convergence [Condition (S)]. A similar problem for
risk-neutral stochastic control models has been examined in [27] using the vanish-
ing discount factor approach. However, it is well known that, for risk-sensitive
control models, an analogous approximation of the average cost via a sequence
of the corresponding discounted models does not work. Instead of this, following
[9, 15, 16], we introduce an auxiliary discounted minimax problem. A variational
formula that expresses the mutual relationship between the relative entropy func-
tion and the logarithmic moment-generating function enables us to connect the dis-
counted minimax model with the original one. Next, assuming that a certain family
of functions is bounded [Condition (B)] and using Fatou’s lemma (for weakly or
setwise convergent measures), we obtain the optimality inequality.

The predecessor of our result is Theorem 4.1 in [16], where the optimality in-
equality for the risk-sensitive dynamic programming with a countable state space
was established. Instead of boundedness assumption (B), Hernández-Hernández
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and Marcus [16] assume that there exists a stationary policy which induces a fi-
nite average cost that is equal some constant in each state. On the other hand, it is
well known that an optimal risk-sensitive average cost may depend on the initial
state (see Example 1). This behavior happens if the risk factor is too large. Instead
of this restriction on the risk coefficient, we use Condition (B), which makes the
process reach “good states” sufficiently fast.

There is a rich literature in risk-sensitive control, going back at least to the sem-
inal works of Howard and Matheson [18] and Jacobson [19], which covered the
finite horizon case. The average cost criterion on the infinite horizon was studied
in [5, 8, 14–16, 31] for a denumerable state space and in [10, 11, 20] for a general
state space. It is also worth mentioning that risk-sensitive control finds natural ap-
plications in portfolio managment, where the objective is to maximize the growth
rate of the expected utility of wealth; see [3, 4, 30] and the references cited therein.

The paper is organized as follows. Below a Markov control model with the long-
run average cost criterion as a performance measure is described, as well as some
basic notation is set up. In Section 2 we introduce preliminaries and present the
auxiliary discounted minimax problem, which is, in turn, solved in Section 3. The
main result is established in Section 4. Section 5 contains a discussion of Condi-
tion (B), and in the Appendix a variational formula for the logarithmic moment-
generating function is stated.

A discrete-time Markov control process is specified by the following objects:

(i) The state space X is a standard Borel space (i.e., a nonempty Borel subset
of some Polish space).

(ii) A is a Borel action space.
(iii) K is a nonempty Borel subset of X×A. We assume that, for each x ∈ X,

the nonempty x-section

A(x) = {a ∈ A : (x, a) ∈ K}
of K is compact and represents the set of actions available in state x.

(iv) q is a regular conditional distribution from K to X.

(v) The one-step cost function c is a Borel measurable mapping from K to
[0,+∞].

Then the history spaces are defined as H0 = X, Hk = (X × A)k × X and
H∞ = (X × A)∞. As usual, a policy π = {πk, k = 0,1, . . .} ∈ � is a sequence
of transition probabilities from Hk to A such that πk(A(xk)|hk) = 1, where
hk = (x0, a0, . . . , xk) ∈ Hk. The class of stationary policies is identified with the
class F of measurable functions f from X to A such that f (x) ∈ A(x). It is well
known that F is nonempty [6]. By the Ionescu–Tulcea theorem [24], for each pol-
icy π and each initial state x0 = x, a probability measure Pπ

x and a stochastic
process {(xk, ak)} are defined on H∞ in a canonical way, where xk and ak describe
the state and the decision at stage k, respectively. By Eπ

x we denote the expectation
operator with respect to the probability measure Pπ

x .
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Let γ > 0 be a given risk factor. For any initial state x ∈ X and policy π ∈ �,
we define the following risk-sensitive average cost criterion:

J (x,π) = lim sup
n→∞

1

γ n
logEπ

x exp

{
γ

n−1∑
k=0

c(xk, ak)

}
.

Our aim is to minimize J (x,π) within the class of all policies and find a policy π∗,
for which

J ∗(x) := inf
π∈�

J(x,π) = J (x,π∗).

Throughout the paper the following assumption will be supposed to hold true
even without explicit reference:

∃π̃ ∈ � J(x, π̃) < +∞.(G)

REMARK 1. Throughout the remainder, we assume that the risk factor γ > 0
is arbitrary and fixed. Therefore, here and subsequently, we shall not indicate that
some quantities depend on γ [e.g., we write J (x,π) instead of J γ (x,π), dropping
the index γ ].

2. Preliminaries. Let Pr(X) be the set of all probability measures on X. Fix
ν ∈ Pr(X). The relative entropy function R(·‖ν) is a mapping from Pr(X) into R

defined as follows:

R(µ‖ν) :=


∫
X

log
dµ

dν
dµ, µ � ν,

+∞, otherwise.

It is well known that R(µ‖ν) is nonnegative for any µ ∈ Pr(X) and R(µ‖ν) = 0 if
and only if µ = ν (consult Lemma 1.4.1 in [12]).

We shall consider the following auxiliary minimax problem, associated with our
original Markov control process. The set X is the state space, while A and Pr(X)

are the action sets for the decision maker and opponent, respectively. The process
then operates as follows. In a state xn, n = 0,1, . . . , the controller chooses an
action an ∈ A(xn), while the opponent selects µn(·)[xn, an] ∈ Pr(X). As a con-
sequence, the controller pays γ c(xn, an) − R(µn‖q(·|xn, an)) to his opponent,
and the system moves to the next state according to the probability distribution
µn(·)[xn, an].

We shall deal with the following classes of strategies. It will cause no confu-
sion if we continue to use the same letters to denote strategies for the controller.
Namely, π stands for a randomized control strategy (policy), whereas f denotes a
stationary strategy. We write � and F to denote the sets of corresponding strate-
gies. For the opponent’s class of strategies, we confine to the stationary one, which
is identified with the class P of stochastic kernels p on X given K.

Let (�,F ) be the measurable space consisting of the sample space � = (X ×
A)∞ and its product σ -algebra F . Then for an initial state x ∈ X, and strategies π
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and p, there exists a unique probability measure P
πp
x and, again, a stochastic

process {(xk, ak)} is defined (�,F ) in a canonical way, where xk denotes the state
at time k and ak is the action for the controller. With some abuse of notation, we
let hk stand for the history of the process up to the kth state, that is,

hk = (x0, a0, x1, . . . , ak−1, xk).

The corresponding expectation operator is denoted by E
πp
x .

For fixed x ∈ X, π ∈ � and p ∈ P , we define the following functional costs:

Vβ(x,π,p) =
∞∑

k=0

βkEπp
x

[
γ c(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]
,(1)

where β ∈ (0,1) is the discount factor, and

j (x,π,p) = lim sup
n→∞

1

nγ

n−1∑
k=0

Eπp
x

[
γ c(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]
.

Note that, since the function R(·‖·) is lower semicontinuous on Pr(X) × Pr(X)

and p and q are stochastic kernels [i.e., measurable functions of (x, a)], it follows
that the mapping

(x, a) �→ R
(
p(·|x, a)‖q(·|x, a)

)
is measurable (Lemma 1.4.3(f) in [12]). Observe that Vβ(x,π,p) and j (x,π,p)

might be undetermined, because c can be unbounded. We thus restrict the set of
admissible strategies for the opponent in the following way.

DEFINITION 1. Given π = {πk} ∈ �, we say that p ∈ P is a π -admissible
strategy iff ∫

A(xk)
R

(
p(·|xk, a)‖q(·|xk, a)

)
πk(da|hk) < +∞,(2)

and moreover, there exists a constant C ≥ 0, possibly depending on π and p, such
that ∫

A(xk)

[
γ c(xk, a) − R

(
p(·|xk, a)‖q(·|xk, a)

)]
πk(da|hk) + C ≥ 0,

for all histories of the process hk, k ≥ 0, induced by p and π. We denote this set
by Q(π). [Note that this set is nonempty, since p = q ∈ Q(π) for any π ∈ �.]

Let us introduce the following notation. For any π ∈ �, p ∈ Q(π) and n ≥ 1,

define

Jn(x,π) = logEπ
x exp

{
γ

n−1∑
k=0

c(xk, ak)

}
,(3)
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and

jn(x,π,p) =
n−1∑
k=0

Eπp
x

[
γ c(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]
.

Now we are ready to present the result that was originally proved in [16] for
Markov strategies. However, it still remains valid when arbitrary strategies for the
decision maker are considered. Therefore, for the sake of clarity, we state the result
with its proof.

PROPOSITION 1. Let x ∈ X and p ∈ Q(π). Then:

(a) supp∈Q(π) jn(x,π,p) ≤ Jn(x,π) for each n ≥ 1,

(b) lim supn→∞ supp∈Q(π)
1
n
jn(x,π,p) ≤ γ J (x,π).

PROOF. (a) Let p ∈ Q(π) be any stochastic kernel. For n = 1, we conclude

j1(x,π,p) ≤ Eπp
x

(
γ c(x, a0)

) ≤ logEπ
x eγ c(x,a0) = J1(x,π),

where the first inequality holds since the relative entropy is nonnegative, and the
second one is due to Jensen’s inequality. Now assume that the hypothesis is true
for some n ≥ 1. Clearly,

jn+1(x,π,p) =
n∑

k=0

Eπp
x

[
γ c(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]

= Eπp
x

n∑
k=0

[
γ c(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]
, n ≥ 1.

Denote by π(1) the “1-shifted” strategy, that is,

π
(1)
k (·|hk) = πk+1(·|x0, a0, hk), k ≥ 0.

Then, we have

jn+1(x,π,p)

= Eπp
x

[
γ c(x, a0) + jn

(
x1, π

(1), p
) − R(p(·|x, a0)‖q(·|x, a0))

]
≤ Eπp

x (γ c(x, a0))

+ Eπp
x

(
Eπp

x

{[
Jn

(
x1, π

(1)) − R(p(·|x, a0)‖q(·|x, a0))
]|a0

})
= Eπ

x log eγ c(x,a0)

+ Eπp
x

[∫
X

Jn

(
x1, π

(1))p(dx1|x, a0) − R(p(·|x, a0)‖q(·|x, a0))

]
≤

∫
A(x)

log eγ c(x,a0)π0(da0|x)
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+
∫
A(x)

log
∫
X

eJn(x1,π
(1))q(dx1|x, a0)π0(da0|x)

=
∫
A(x)

log
∫
X

Eπ(1)

x1
eγ c(x,a0)+∑n+1

k=1 γ c(xk,ak)q(dx1|x, a0)π0(da0|x)

≤ log
∫
A(x)

∫
X

Eπ(1)

x1
eγ c(x,a0)+∑n+1

k=1 γ c(xk,ak)q(dx1|x, a0)π0(da0|x)

= Jn+1(x,π).

Clearly, the first inequality follows from the induction hypothesis. The third in-
equality is due to Jensen’s inequality, whilst the second one follows from Lemma A
in the Appendix. Since p ∈ Q(π) is arbitrary, we get the desired conclusion.

Part (b) follows directly from part (a). �

REMARK 2. Note that in the proof of Proposition 1 we did not really have to
use the fact that p ∈ Q(π). The only assumption which plays an essential role is
condition (2). Namely, it guarantees that jn(x,π,p) is well defined for all n ≥ 1,

x ∈ X and π ∈ �. However, in Definition 1 we restrict the opponent’s class of
strategies to the set Q(π) in order to be able to apply the Hardy–Littlewood the-
orem. In actual fact, later on it will be clear that the set Q(π), where π ∈ �, is
sufficiently large. Namely, the supremum of certain discounted functional costs
over the set Q(π) will not change if we add new elements to Q(π); see the proofs
of Lemmas 1 and 2.

Let π̃ be as in assumption (G) and let p ∈ Q(π̃). Then from the Hardy–
Littlewood theorem (Theorem H.2 in [13]), we get

lim sup
β→1

(1 − β)Vβ(x, π̃,p) ≤ lim sup
n→∞

1

n
jn(x, π̃,p)

and from Proposition 1(b),

lim sup
n→∞

sup
p∈Q(π̃)

1

n
jn(x, π̃,p) ≤ γ J (x, π̃).

Combining these two inequalities, we conclude that

lim sup
β→1

(1 − β)Vβ(x, π̃,p) ≤ γ J (x, π̃) for every p ∈ Q(π̃).

This in turn yields

lim sup
β→1

(1 − β)Vβ(x) ≤ γ J (x, π̃),(4)

where Vβ(x) is the upper value of functional cost (1), that is,

Vβ(x) = inf
π∈�

sup
p∈Q(π)

Vβ(x,π,p).
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Consequently, inequality (4) and assumption (G) together lead to the following:

Vβ(x) < +∞(5)

for each x ∈ X and β ∈ (0,1). In addition, Vβ(x) ≥ 0. Now defining

ρ := inf
x∈X

inf
π∈�

J(x,π), mβ := inf
x∈X

Vβ(x)

and observing that

lim sup
β→1

(1 − β)mβ ≤ γρ,(6)

one can deduce that there exists a sequence of discount factors {βn} converging
to 1 for which

lim
n→∞(1 − βn)mβn = l,(7)

where l is a certain nonnegative constant.

3. A solution to the auxiliary discounted minimax problem. The main
thrust of this section is to solve the auxiliary discounted minimax problem intro-
duced in the previous section. In other words, we look for a discounted functional
equation whose solution is the function Vβ. This is done by an approximation of
the above-mentioned minimax models by ones with bounded cost functions. These
models in turn are solved by a fixed point argument in Proposition 1. Next, we
show in Lemma 1 that the corresponding solutions equal the upper values of some
discounted costs on the infinite horizon. Finally, the limit passage in Lemma 2
gives the desired discounted functional equation with the function Vβ as a solu-
tion.

We shall need the following two sets of compactness-semicontinuity assump-
tions, which will be used alternatively.

CONDITION (S).

(i) The set A(x) is compact.
(ii) For each x ∈ X and every Borel set D ⊂ X, the function q(D|x, ·) is con-

tinuous on A(x).

(iii) The cost function c(x, ·) is lower semicontinuous for each x ∈ X.

CONDITION (W).

(i) The set A(x) is compact and the set-valued mapping x �→ A(x) is upper
semicontinuous, that is, {x ∈ X : A(x) ∩ B = ∅} is closed for every closed set B

in A.

(ii) The transition law q is weakly continuous on K, that is, the function

(x, a) �→
∫
X

u(y)q(dy|x, a), (x, a) ∈ K,

is continuous function for each bounded continuous function u.
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(iii) The cost function c is lower semicontinuous on K.

By Lb(X) and Bb(X), we denote the set of all bounded lower semicontinuous
and bounded Borel measurable functions on X, respectively. Further, let N stand
for the set of positive integers. Choose N ∈ N and define the truncated cost func-
tion

cN(x, a) = min{N,c(x, a)}.
The following result was proved under Condition (W) for bounded cost functions
by a fixed point argument; see page 72 in [10]. However, a simple and obvious
modification of the proof gives the conclusion under Condition (S) as well.

PROPOSITION 2. Under (W) [(S)], for any discount factor β ∈ (0,1) and a
number N ∈ N, there exists a unique function wN

β ∈ Lb(X) [wN
β ∈ Bb(X)] such

that

e
wN

β (x) = min
a∈A(x)

[
eγ cN (x,a)

∫
X

e
βwN

β (y)
q(dy|x, a)

]
(8)

for each x ∈ X, and

0 ≤ (1 − β)wN
β (x) ≤ Nγ.(9)

Moreover, there exists a stationary strategy f 0 ∈ F (possibly depending on β

and N ) that attains the minimum in (8).

Let β and N be fixed just in the next lemma.

LEMMA 1. Assume (W) or (S). Then, it holds

wN
β (x)

(10)

= inf
π∈�

sup
p∈Q(π)

∞∑
k=0

Eπp
x βk[γ cN(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]
for any initial state x ∈ X.

PROOF. Note that (8) can be rewritten in the following equivalent form:

wN
β (x) = min

a∈A(x)

[
γ cN(x, a) + log

∫
X

e
βwN

β (y)
q(dy|x, a)

]
.(11)

Applying Lemma A in the Appendix to (11), we get

wN
β (x)

(12)

= min
a∈A(x)

sup
µ∈	(x,a)

[
γ cN(x, a) − R

(
µ‖q(·|x, a)

) + β

∫
X

wN
β (y)µ(dy)

]
,
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with

	(x,a) := {
µ ∈ Pr(X) :R

(
µ‖q(·|x, a)

)
< +∞}

, (x, a) ∈ K.

Moreover, the measure

µ0(dy)[x, a] = e
βwN

β (y)
q(dy|x, a)∫

X e
βwN

β (y)
q(dy|x, a)

achieves the supremum in (12). Put

p0(dy|x, a) = µ0(dy)[x, a] for each (x, a) ∈ K.(13)

Note that p0 ∈ Q(π) for any strategy π ∈ �. This directly follows from the defin-
ition of R(p0(·|x, a)‖q(·|x, a)) and (9). Simple calculations give the upper bound

R
(
p0(·|x, a)‖q(·|x, a)

) ≤ 2
βNγ

1 − β
exp

(
βNγ

1 − β

)
for every (x, a) ∈ K.

Let p0 be defined as in (13). By (12), we then have

wN
β (x) ≤ γ cN(x, a) − R

(
p0(·|x, a)‖q(·|x, a)

) + β

∫
X

wN
β (y)p0(dy|x, a).

By iteration of this inequality n times, it follows

wN
β (x) ≤

n∑
k=0

βkEπp0

x

[
γ cN(xk, ak) − R

(
p0(·|xk, ak)‖q(·|xk, ak)

)]
+ βn+1Eπp0

x wN
β (xn+1),

where π is any strategy for the controller. Now, letting n → ∞ and making use
of (9), we conclude

wN
β (x) ≤

∞∑
k=0

βkEπp0

x

[
γ cN(xk, ak) − R

(
p0(·|xk, ak)‖q(·|xk, ak)

)]
.

Since π is arbitrary, we get

wN
β (x) ≤ inf

π∈�

∞∑
k=0

βkEπp0

x

[
γ cN(xk, ak) − R

(
p0(·|xk, ak)‖q(·|xk, ak)

)]

≤ inf
π∈�

sup
p∈Q(π)

∞∑
k=0

βkEπp
x

[
γ cN(xk, ak)(14)

− R
(
p(·|xk, ak)‖q(·|xk, ak)

)]
.

Note that inequality (14) is valid because p0 ∈ Q(π).
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On the other hand, by (12), we can write

wN
β (x) ≥ γ cN (

x,f 0(x)
) − R

(
p

(·|x,f 0(x)
)‖q(·|x,f 0(x)

))
+ β

∫
X

wN
β (y)p

(
dy|x,f 0(x)

)
,

with f 0 as in Proposition 2 and any p ∈ Q(f 0). Proceeding along the same line,
we infer

wN
β (x) ≥

∞∑
k=0

βkEf 0p
x

[
γ cN (

xk, f
0(xk)

) − R
(
p

(·|xk, f
0(xk)

)‖q(·|xk, f
0(xk)

))]
.

Since p ∈ Q(f 0) is arbitrary, we easily deduce

wN
β (x) ≥ sup

p∈Q(f 0)

∞∑
k=0

βkEf 0p
x

[
γ cN (

xk, f
0(xk)

)
− R

(
p

(·|xk, f
0(xk)

)‖q(·|xk, f
0(xk)

))]
(15)

≥ inf
π∈�

sup
p∈Q(π)

∞∑
k=0

βkEπp
x

[
γ cN(xk, ak)

− R
(
p(·|xk, ak)‖q(·|xk, ak)

)]
.

Finally, combining (14) with (15) completes the proof. �

In the remainder of the paper, we shall use the following notation. Let L(X)

denote the set of all lower semicontinuous functions on X, whereas B(X) stands
for the set of all Borel measurable functions on X.

LEMMA 2. Let (W) [(S)] hold and β ∈ (0,1). Then, we have the following:

(a) The function

wβ(x) := lim
N→∞wN

β (x)

is finite and nonnegative for each x ∈ X. Moreover, wβ ∈ L(X) [wβ ∈ B(X)].
(b) The functional equation holds

ewβ(x) = min
a∈A(x)

[
eγ c(x,a)

∫
X

eβwβ(y)q(dy|x, a)

]
(16)

for all x ∈ X. Furthermore, there exists a Borel measurable selector fβ ∈ F of the
minima in (16).

(c) For any x ∈ X, wβ(x) = Vβ(x).
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PROOF. Let x ∈ X and β ∈ (0,1) be fixed. From (10), it is easily seen that the
sequence {wN

β (x)} is nondecreasing in N. Therefore, wβ(x) = limN→∞ wN
β (x)

exists and by (9), it is nonnegative. Clearly, under (S), wβ ∈ B(X), whereas, un-
der (W), wβ ∈ L(X); see Proposition 10.1 in [26].

In order to prove that wβ(x) is finite for each x ∈ X, observe first that, for any
π ∈ �, p ∈ Q(π) and N ∈ N,

Vβ(x,π,p) =
∞∑

k=0

βkEπp
x

[
γ c(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]

≥
∞∑

k=0

βkEπp
x

[
γ cN(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]
.

Moreover, from Lemma 1, we have

Vβ(x) = inf
π∈�

sup
p∈Q(π)

Vβ(x,π,p)

≥ inf
π∈�

sup
p∈Q(π)

∞∑
k=0

βkEπp
x

[
γ cN(xk, ak) − R

(
p(·|xk, ak)‖q(·|xk, ak)

)]
= wN

β (x).

Hence, letting N → ∞, it follows

Vβ(x) ≥ lim
N→∞wN

β (x) = wβ(x).(17)

By (5), Vβ(x) is finite for each x ∈ X, so is wβ(x). This finishes the proof of
part (a).

In order to prove part (b), note that by (11) and part (a) the limit

lim
N→∞ min

a∈A(x)

[
γ cN(x, a) + log

∫
X

e
βwN

β (y)
q(dy|x, a)

]
(18)

exists. Since the first and the second term in (18) are nondecreasing and (W) or (S)
holds, then we may interchange the limit with the minimum (see Proposition 10.1
in [26]). Furthermore, making use of the Lebesgue monotone convergence the-
orem, we conclude (16). The existence of a Borel measurable selector fβ ∈ F

follows from the compactness–semicontinuity assumptions and Proposition D.5
in [17].

We now turn to proving part (c). Again, taking a logarithm on both sides of (16),
it follows

wβ(x) = min
a∈A(x)

[
γ c(x, a) + log

∫
X

eβwβ(y)q(dy|x, a)

]
.(19)
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Applying Lemma A in the Appendix to (19), we easily obtain

wβ(x)
(20)

= min
a∈A(x)

sup
µ∈	(x,a)

[
γ c(x, a) − R

(
µ‖q(·|x, a)

) + β

∫
X

wβ(y)µ(dy)

]
,

with

	(x,a) = {
µ ∈ Pr(X) :R

(
µ‖q(·|x, a)

)
< +∞}

, (x, a) ∈ K.

Observe that by (20), for any p ∈ Q(fβ), the following holds:

wβ(x) ≥ γ c
(
x,fβ(x)

) − R
(
p

(·|x,fβ(x)
)‖q(·|x,fβ(x)

))
+ β

∫
X

wβ(y)p
(
dy|x,fβ(x)

)
.

Iterating this inequality n times, we immediately obtain

wβ(x) ≥
n∑

k=0

βkE
fβp
x

[
γ c

(
xk, fβ(xk)

)
− R

(
p

(·|xk, fβ(xk)
)‖q(·|xk, fβ(xk)

))]
+ βn+1E

fβp
x wβ(xn+1)(21)

≥
n∑

k=0

βkE
fβp
x

[
γ c

(
xk, fβ(xk)

)
− R

(
p

(·|xk, fβ(xk)
)‖q(·|xk, fβ(xk)

))]
.

Now note that, by Definition 1,

E
fβp
x

[
γ c

(
xk, fβ(xk)

) − R
(
p

(·|xk, fβ(xk)
)‖q(·|xk, fβ(xk)

))] ≥ −C,

for some C ≥ 0 and k ≥ 1. Thus, letting n → ∞ in (21), it follows

wβ(x) ≥
∞∑

k=0

βkE
fβp
x

[
γ c

(
xk, fβ(xk)

) − R
(
p

(·|xk, fβ(xk)
)‖q(·|xk, fβ(xk)

))]
= Vβ(x, fβ,p).

Since p ∈ Q(fβ) is arbitrary, we see that

wβ(x) ≥ sup
p∈Q(fβ)

Vβ(x, fβ,p) ≥ Vβ(x).(22)

Inequalities (17) and (22) combined conclude the proof of part (c). �
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4. A solution to the risk-sensitive control problem. For any x ∈ X and any
discount factor β ∈ (0,1), define

hβ(x) := Vβ(x) − mβ

with mβ = infx∈X Vβ(x). Obviously, hβ is nonnegative.
The following boundedness assumption is supposed to hold true. As mentioned

in the Introduction, we put off discussing it until Section 5:

CONDITION (B). For any x ∈ X, supβ∈(0,1) hβ(x) < +∞.

REMARK 3. A similar assumption and its equivalent variants were used
to study the expected average cost criterion for Markov decision processes in
the risk-neutral setting [17, 27, 28]. Roughly speaking, Hernández-Lerma and
Lasserre [17], Schäl [27], and Sennott [28] assume that the family of the so-called
normalized β-discounted cost functions is bounded. This assumption, however,
simply holds for ergodic Markov decision processes. More precisely, if the n-step
transition probabilities converge to the unique invariant probability measure geo-
metrically fast, and the cost functions are bounded (or more generally satisfy a
certain growth hypothesis), then the aforementioned family of functions is point-
wise relatively compact [21, 22]. It is worth pointing out that this requirement is
crucial to obtain the optimality inequality in the risk-neutral case; see [27, 28]. In
Section 5 we provide an example that illustrates that also in the risk-sensitive case
Condition (B) cannot be weakened.

We shall need the following two versions of Fatou’s lemma for converging mea-
sures.

LEMMA 3. Let {µn} be a sequence of probability measures converging to µ ∈
Pr(X) and let {hn} be a sequence of measurable nonnegative functions on X. Then,∫

X
h(y)µ(dy) ≤ lim inf

n→∞

∫
X

hn(y)µn(dy)

in the following cases:

(a) {µn} converges setwise to µ [i.e.,
∫
X f (y) dµn(y) → ∫

X f (y) dµ(y)∀f ∈
Bb(X)], and h(x) = lim infn→∞ hn(x);

(b) {µn} converges weakly to µ, and h(x) = inf{lim infn→∞ hn(xn) :xn → x};
moreover, h ∈ L(X).

PROOF. Part (a) is due to Royden [25], page 231, whereas part (b) was proved
by Serfozo [29]. For the proof of lower semicontinuity of h, the reader is referred
to Lemma 3.1 in [22]. �
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Now we are in a position to state the main result of the paper. This theorem
concerns a study of the risk-sensitive average cost optimality inequality, which is
sufficient to establish the existence of an optimal stationary policy.

THEOREM 1. Assume (B) and (W) [or (S)]. Then, for each risk factor γ > 0,
there exist a constant l̂ and a nonnegative function h ∈ L(X) [h ∈ B(X)] and
f̂ ∈ F such that

h(x) + l̂ ≥ min
a∈A(x)

[
γ c(x, a) + log

∫
X

eh(y)q(dy|x, a)

]
(23)

= γ c
(
x, f̂ (x)

) + log
∫
X

eh(y)q
(
dy|x, f̂ (x)

)
for all x ∈ X. Moreover,

l̂

γ
= inf

π∈�
J(x,π) = J (x, f̂ ).

In other words, l̂/γ is the optimal risk-sensitive average cost and f̂ is a risk-
sensitive average cost optimal stationary policy.

REMARK 4. (a) There are two papers [16, 27] that can be treated as prede-
cessors of our work. They both deal with the optimality inequality but within two
different frameworks. The first work [16] establishes the optimality equation for
the risk-sensitive dynamic programming on a denumarable state space. In the other
one, the result is obtained for Markov control processes on an uncountable state
space for the risk factor γ = 0. From this point of view, our result is an extention
of Theorem 4.1 in [16] to a general state space and Theorem 3.8 in [27] to the
risk-sensitive case. Moreover, the common feature of the discussed results is that
their proofs are based on the vanishing discount factor approach. Our proof also
relies on this method, and similarly, as in [27] or [21, 22], makes use of the Fatou
lemmas for setwise and weakly convergent measures.

(b) Finally, it is also worth mentioning that there are papers studying the opti-
mality equation in the risk-sensitive dynamic programming, which is of the fol-
lowing form:

h(x) + l̂ = min
a∈A(x)

[
γ c(x, a) + log

∫
X

eh(y)q(dy|x, a)

]
.(24)

The constant l̂
γ

is (under suitable assumptions) an optimal cost with respect to
the risk-sensitive average cost criterion. Let us mention and discuss a few repre-
sentative papers that deal with equation (24). In [8, 15] Markov control models
satisfying a simultaneous Doeblin condition, on a finite and countable state space,
respectively, are considered. The cost functions are supposed to be bounded and
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the risk factor must be sufficiently small. Otherwise, as argued in [8], the optimal-
ity equation need not have a solution.

In [10] Di Masi and Stettner extend the result to a general state space by re-
taining bounded cost functions and replacing a simultaneous Doeblin condition
with a very strong assumption on transition probabilities. In [11], however, they
replace this assumption by one imposed on the risk coefficient. Finally, the class
of Markov control models that requires neither any ergodicity conditions nor the
smallness of the risk factor was pointed out by Jaśkiewicz in [20].

Fairly recently Borkar and Meyn [5] considered Markov decision processes with
unbounded cost functions on a denumarable state space. Their result assumes the
following: the state space is irreducible under all Markov policies, the costs are
norm-like, and there exists a policy that induces a finite average risk-sensitive cost.
Moreover, their proof is based on a multiplicative ergodic theorem that was studied
in more detail in [1].

PROOF OF THEOREM 1. Let {βn} be a sequence of discount factors converg-
ing to 1 for which (7) holds. Defining

l̂ := l = lim
n→∞(1 − βn)mβn

and applying (6), we note that

l̂

γ
≤ inf

π∈�
J(x,π)(25)

for any x ∈ X. Assume for a while that inequality (23) is satisfied and there exists
f̂ ∈ F as in the statement of Theorem 1. We prove that f̂ is an optimal policy.
From (23), we have

h(x) ≥ γ c
(
x, f̂ (x)

) − l̂ + log
∫
X

eh(y)q
(
dy|x, f̂ (x)

)
.

By iteration of this inequality n times, we obtain

h(x) ≥ logEπ
x exp

(
n∑

k=0

γ c
(
xk, f̂ (xk)

) + h(xn+1)

)
− (n + 1)̂l.

Since h is nonnegative, we infer

h(x)

n + 1
+ l̂ ≥ Jn+1(x, f̂ )

n + 1
,

with Jn+1(x, f̂ ) defined in (3). Letting n → ∞, it follows

l̂

γ
≥ J (x, f̂ ), x ∈ X.(26)
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Hence, (25) and (26) together imply

l̂

γ
= J (x, f̂ ) = inf

π∈�
J(x,�)

for each x ∈ X.

We next focus on showing inequality (23). Let n ≥ 1 and put hn := hβn, fn :=
fβn. Note that (19) can be rewritten in the following form:

(1 − βn)mβn + hn(x) = min
a∈A(x)

[
γ c(x, a) + log

∫
X

eβnhn(y)q(dy|x, a)

]
(27)

= γ c
(
x,fn(x)

) + log
∫
X

eβnhn(y)q
(
dy|x,fn(x)

)
.

(i) Assume first (S) and define

h(x) = lim inf
n→∞ hn(x).

Taking the lim inf on both sides of (27), we get

lim inf
n→∞

(
(1 − βn)mβn + hn(x)

)
= l̂ + h(x) = lim inf

n→∞ min
a∈A(x)

[
γ c(x, a) + log

∫
X

eβnhn(y)q(dy|x, a)

]
.

Making use of Lemma 3(a) and the measurable selection theorem (see Proposi-
tion D.5(a) in [17]), one can prove that there exists f̂ ∈ F such that (23) holds.

(ii) Now assume (W). Fix x0 ∈ X and choose any xn → x0, n → ∞. Take a
subsequence {nk} of positive integers such that

lim inf
n→∞ hn(xn) = lim

k→∞hnk
(xnk

).

Then by (27),

lim inf
n→∞

(
(1 − βn)mβn + hn(xn)

)
= l̂ + lim inf

n→∞ hn(xn) = l̂ + lim
k→∞hnk

(xnk
)

(28)

= lim
k→∞ min

a∈A(xnk
)

[
γ c(xnk

, a) + log
∫
X

eβnk
hnk

(y)q(dy|xnk
, a)

]

= lim
k→∞

[
γ c

(
xnk

, fnk
(xnk

)
) + log

∫
X

eβnk
hnk

(y)q
(
dy|xnk

, fnk
(xnk

)
)]

.

Note that G = {x0} ∪ {xn} is compact in X. From the upper semicontinuity of
x �→ A(x), compactness of every A(z) and Berge’s theorem (see [2] or Theo-
rem 7.4.2 in [23]), it follows that

⋃
z∈G A(z) is compact in A. Therefore, {fnk

(xnk
)}

has a subsequence converging to some a0 ∈ A. By (W)(i), a0 ∈ A(x0), that is,
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(x0, a0) ∈ K. Without loss of generality, assume that fnk
(xnk

) → a0, k → ∞. By
the lower semicontinuity of the cost function c and (28), we have

l̂ + lim inf
n→∞ hn(xn) ≥ γ c(x0, a0) + lim

k→∞ log
∫
X

eβnk
hnk

(y)q
(
dy|xnk

, fnk
(xnk

)
)
.

This and Lemma 3(b) imply that

l̂ + lim inf
n→∞ hn(xn) ≥ γ c(x0, a0) + log

∫
X

eh̃(y)q(dy|x0, a0),

where eh̃ is the generalized lim inf of the sequence eh̃k = ehnk . Clearly, h ≤ h̃. By
Lemma 3(b), h ∈ L(X). Thus,

l̂ + lim inf
n→∞ hn(xn) ≥ γ c(x0, a0) + log

∫
X

eh(y)q(dy|x0, a0).(29)

Since xn → x0 was chosen arbitrarily, we infer from (29) that

l̂ + h(x0) ≥ γ c(x0, a0) + log
∫
X

eh(y)q(dy|x0, a0).

The last inequality shows that, for any x ∈ X, there exists an ax ∈ A(x) such that

l̂ + h(x) ≥ γ c(x, ax) + log
∫
X

eh(y)q(dy|x, ax)

(30)

≥ min
a∈A(x)

[
γ c(x, a) +

∫
X

eh(y)(y)q(dy|x, a)

]
.

By our compactness–semicontinuity assumptions and Proposition D.5(b) in [17],
there exists some f̂ ∈ F such that (23) holds. �

5. A discussion. This section is devoted to a discussion of Condition (B). We
start with revisiting Example 3.1 in [8].

EXAMPLE 1. Put X = {0,1}, A = {a}, c(x) := c(x, a) = x and the transition
matrix is as follows: [

1 0
ρ 1 − ρ

]
,

where ρ ∈ (0,1). Recall that the following was proved.
Let us consider three cases for the risk factor γ :

(I) γ < − log(1 − ρ),

(II) γ = − log(1 − ρ),

(III) γ > − log(1 − ρ).

Then if (I) or (II) hold, the optimal risk-sensitive average cost equals 0 and
is independent of the initial state. In case (III) we have J ∗(0) = 0 and J ∗(1) =
1+ log(1−ρ)

γ
> 0. In addition, it is interesting to observe that, for (II) and (III) cases,
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there does not exist a function h :X �→ R such that optimality inequality (23) is
satisfied. Indeed, to see this take x = 1 and consider (III). The optimality inequality
is then as follows:

γ J ∗(1) + h(1) = γ + log(1 − ρ) + h(1) ≥ γ + log
(
eh(1)(1 − ρ) + eh(0)ρ

)
.

Note that the right-hand side is strictly greater than γ + log(eh(1)(1 − ρ)), which
equals to the left-hand side. Similar calculations for case (II) also lead to a con-
tradiction. Hence, although an optimal cost is constant, the optimality inequality
need not have a solution.

Now we turn to checking Condition (B). Let Vβ be as in Lemma 2. Clearly,
Vβ = wN

β for N ≥ 1 and Vβ(0) = 0. Then, by (8) under (I), we get

Vβ(1) = γ + log
[
eβVβ(1)(1 − ρ) + ρ

]
< γ + log

[
eVβ(1)(1 − ρ) + ρ

]
.

Hence,

Vβ(1) < log
(

eγ (1 − ρ)

1 − eγ (1 − ρ)

)
∀β ∈ (0,1),

and consequently, supβ∈(0,1) hβ(x) < +∞.

Now let the risk factor γ be as in (III). Then by (8),

Vβ(1) > γ + log(1 − ρ) + βVβ(1),

which in turn implies that

Vβ(1) >
γ + log(1 − ρ)

1 − β
.

Thus, hβ(1) = Vβ(1) goes to the infinity when β ↗ 1.

For case (II), we obtain

Vβ(1) = − log(1 − ρ) + log
[
eβVβ(1)(1 − ρ) + ρ

]
(31)

= βVβ(1) + log
[
1 + e−βVβ(1) ρ

1 − ρ

]
.

If Vβ(1) ↗ +∞ when β ↗ 1, then the right-hand side of (31) also goes to the in-
finity. On the contrary, assume that supβ∈(0,1) Vβ(1) ≤ C for some constant C > 0.

Then,

Vβ(1) ≥ log[1 + e−Cρ/(1 − ρ)]
1 − β

,

which leads to a contradiction when β ↗ 1. In consequence, in case (II) the family
{hβ(1)} does not satisfy Condition (B) either.

Therefore, the following conclusion can be drawn. Condition (B) is necessary
to obtain a solution to the optimality inequality.
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For a verification of Condition (B), one can use Lemma 4 below. For a similar
result in the risk-neutral, case we refer to [27, 28]. For some η ≥ 0, define the
stopping time

τ = τ(β) := inf{n ≥ 0 :Vβ(xn) ≤ mβ + η}.

LEMMA 4. For η ≥ 0, β ∈ (0,1) and x ∈ X,

hβ(x) ≤ η + inf
π∈�

logEπ
x exp

(
τ−1∑
k=0

γ c(xk, ak)

)
.

PROOF. By Lemma 2(b), (c) and the fact that Vβ(y) ≥ 0, y ∈ X, we have

Vβ(x) = min
a∈A(x)

[
γ c(x, a) + log

∫
X

eβVβ(y)q(dy|x, a)

]
(32)

< γc(x, a) + log
∫
X

eVβ(y)q(dy|x, a)

for each x ∈ X. Subtracting mβ from both sides in (32), we obtain

Vβ(x) − mβ < γ c(x, a) + log
∫
X

e(Vβ(y)−mβ)q(dy|x, a).

Iteration of this inequality up to the stopping time τ yields

Vβ(x) − mβ < logEπ
x eγ

∑τ−1
k=0 c(xk,ak)+η

= η + logEπ
x exp

(
γ

τ−1∑
k=0

c(xk, ak)

)
.

Since π ∈ � is an arbitrary policy, we easily get the conclusion. �

Note that the fact

Eπ
x exp

(
τ−1∑
k=0

γ c(xk, ak)

)
< +∞(33)

has the following interpretation: before the process will reach “good states,” the
incurred costs at “early stages” should not be too large. Indeed, let us define a
set D as follows. We say that

x ∈ D iff Vβ(x) ≤ mβ + η

for a certain η ≥ 0. Clearly, D = ∅. Denote by τD the first return time of the
process, governed by fβ, to set D. Certainly, if (33) holds with τ := τD, then
Condition (B) is satisfied.
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In Example 1 we can take D = {0} and η = 0, since Vβ(0) ≤ 0 + 0. If γ is as
in (I), then (33) holds:

E1 exp

(
τ0−1∑
k=0

γ c(xk)

)
=

∞∑
n=1

enγ (1 − ρ)n−1ρ = ρ

1 − ρ

(
eγ (1 − ρ)

1 − eγ (1 − ρ)

)
.

In other cases (33) fails to hold and, in addition, the earlier calculations show that
hβ(1) = +∞.

Summing up, the presented example shows that, without Condition (B) imposed
on the family of functions {hβ(x)}, β ∈ (0,1), a solution to the optimality inequal-
ity need not exist, and moreover, the optimal risk-sensitive average cost may de-
pend on the initial state. In view of the above discussion, Condition (B) is designed
to prevent the accrual of infinite expected costs. Namely, the costs incurred at tran-
sient states, that may be occupied only at “early stages,” have an important and
definite influence on a long-run performance measure. Therefore, Condition (B)
requires the model to be sort of communicating insofar as certain sets of “good
states” to be reached sufficiently fast. Then, the optimal risk-sensitive average cost
is constant and the optimality inequality takes place. In addition, it is worth men-
tioning that the ergodicity itself of a Markov process/chain does not help so much
as in the risk-neutral case. In other words, for an ergodic Markov chain, it may
happen that the optimal risk-sensitive average cost depends on the initial state as
in Example 1. Moreover, in this example one can even prove in a straightforward
way that under case (I) [either under Condition (B) or for sufficiently small risk
factors], the optimality equation (24) is satisfied. Therefore, it would be interest-
ing to know whether Condition (B) (together with some compactness–continuity
assumptions) is sufficient to obtain a solution to the optimality equation. There is a
conjecture that, since in the risk-neutral case a counterpart of Condition (B) is not
sufficient [7], neither is it in the risk-sensitive setting. But this question is beyond
the scope of the paper and remains open.

APPENDIX

The lemma below establishes a variational formula for the logarithmic moment-
generating function. The reader is referred to Theorem 4.5.1 and Proposition 1.4.2
in [12] for its proof.

LEMMA A. Let X be a Polish space, h a measurable function mapping on X
into R, which is either bounded from below or bounded from above, and ν a prob-
ability measure on X.

(a) Then, we have the variational formula

log
∫
X

ehdν = sup
µ∈	

(
−R(µ‖ν) +

∫
X

hdµ

)
,
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where

	 = {µ ∈ Pr(X) :R(µ‖ν) < +∞}.
(b) Let µ0 denote the probability measure on X, which is µ0 � ν and satisfies

dµ0

dν
(x) = eh(x)∫

X eh dν
.

Then, the supremum in the variational formula is attained uniquely at µ0.
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