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LIMIT LAWS FOR RANDOM VECTORS WITH
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Models based on assumptions of multivariate regular variation and hid-
den regular variation provide ways to describe a broad range of extremal de-
pendence structures when marginal distributions are heavy tailed. Multivari-
ate regular variation provides a rich description of extremal dependence in the
case of asymptotic dependence, but fails to distinguish between exact inde-
pendence and asymptotic independence. Hidden regular variation addresses
this problem by requiring components of the random vector to be simultane-
ously large but on a smaller scale than the scale for the marginal distributions.
In doing so, hidden regular variation typically restricts attention to that part
of the probability space where all variables are simultaneously large. How-
ever, since under asymptotic independence the largest values do not occur
in the same observation, the region where variables are simultaneously large
may not be of primary interest. A different philosophy was offered in the pa-
per of Heffernan and Tawn [J. R. Stat. Soc. Ser. B Stat. Methodol. 66 (2004)
497–546] which allows examination of distributional tails other than the joint
tail. This approach used an asymptotic argument which conditions on one
component of the random vector and finds the limiting conditional distribu-
tion of the remaining components as the conditioning variable becomes large.
In this paper, we provide a thorough mathematical examination of the limit-
ing arguments building on the orientation of Heffernan and Tawn [J. R. Stat.
Soc. Ser. B Stat. Methodol. 66 (2004) 497–546]. We examine the conditions
required for the assumptions made by the conditioning approach to hold, and
highlight simililarities and differences between the new and established meth-
ods.

1. Introduction. Extreme value theory motivates statistical models for the
tails of multivariate probability distributions. All such theory relies on some form
of asymptotic argument; it is this limiting argument which forces us into the dis-
tributional tails and allows the examination of the extremal behavior of random
vectors.

The first such arguments relied upon limiting behavior imposed by considering
componentwise maxima of random vectors [19, 15, 30, 34]. This approach was
extended by Coles and Tawn [5, 6], de Haan and de Ronde [16] in a multivariate

Received February 2005; revised October 2006.
1Supported in part by NSF Grant DMS-03-03493.
AMS 2000 subject classifications. Primary 60G70; secondary 62G32.
Key words and phrases. Conditional models, heavy tails, regular variation, coefficient of tail de-

pendence, hidden regular variation, asymptotic independence.

537

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/105051606000000835
http://www.imstat.org
http://www.ams.org/msc/


538 J. E. HEFFERNAN AND S. I. RESNICK

analogue of the one-dimensional threshold methods of Davison and Smith [39],
Smith [8]. The methods provide a rich class of models to describe asymptotic
dependence but cannot distinguish between asymptotic independence and ex-
act independence. In response to this weakness, theory and models offering a
richer description of asymptotic independence behavior have been developed by
Heffernan and Resnick [20], Ledford and Tawn [24–26], Maulik and Resnick [27]
and Resnick [36]. The assumptions underlying this broader class of models have
been termed hidden regular variation which elaborates the concept of the coeffi-
cient of tail dependence.

Models based on assumptions of multivariate regular variation and hidden reg-
ular variation have a common reliance on limiting procedures in which all vector
components are scaled by functions increasing to infinity. In the case of asymp-
totic dependence, reliance only on multivariate regular variation is sufficient since
in this case the largest values of the components of the random vector tend to oc-
cur together. However, models based on multivariate regular variation fail to dis-
tinguish between asymptotic independence and exact independence and as such
provide an inadequate description of dependence within the asymptotic indepen-
dence class. Hidden regular variation attempts to repair this defect by allowing a
different scale function which gives nontrivial limit behavior when vector compo-
nents are simultaneously large. Although the hidden regular variation as typically
formulated provides a more satisfactory description of the joint tail of the distri-
bution for asymptotically independent variables, this approach still has practical
limitations in applications where interest is in tail regions other than the joint tail.
These other tail regions are of practical significance since under asymptotic inde-
pendence, the largest values of the components of the random vector tend not to
occur in the same observation.

The philosophy of examining distributional tails in which one or more but not
necessarily all of the vector components are simultaneously large was explained
in [21]. They focused on a single variable being large by conditioning on one
component of the random vector and finding the limiting conditional distribution
of the remaining components as the conditioning variable becomes large. Simu-
lation studies in [21] suggested that this alternative approach is useful in accu-
rately describing a range of qualitatively different dependence structures including
asymptotic dependence, asymptotic independence and negative dependence. The
approach is flexible and readily applicable to general d-dimensional distributions.
However, this new basis for modeling multivariate extremes was criticized in the
discussion to the paper as lacking a rigorous theoretical underpinning. The dis-
cussion highlighted the need for further work to clarify how the approach extends
and/or differs from established methodologies which rely on multivariate regular
variation and hidden regular variation.

In this paper, we use the philosophy of Heffernan and Tawn [21] and offer a
mathematical framework for a theory of conditional distributions given a compo-
nent is large. We have changed the formulation of Heffernan and Tawn [21] for
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two reasons. First, it is difficult to construct an asymptotic theory based on regular
conditional distributions which are readily manageable only for the case in which
smooth densities are assumed and secondly our formulation readily allows for con-
nections to classical multivariate extreme value theory and regular variation.

1.1. Content of the paper. Here are more details about the content of the pa-
per. We consider the distribution of a bivariate random vector (X,Y ) on R

2 un-
der the condition that Y is large. Generalizations could be made to the case of
a (d + 1)-dimensional vector

(X, Y ) := (
X(1), . . . ,X(d), Y

)
where we seek conditional limits of X given Y is large. However, we leave such
generalizations to subsequent investigations. We assume the distribution function
F of Y is in a domain of attraction of an extreme value distribution Gγ (x), written
F ∈ D(Gγ ). This means there exist functions a(t) > 0, b(t) ∈ R, such that,

F t (a(t)y + b(t)
) → Gγ (y) (t → ∞),(1)

weakly, where

Gγ (y) = exp{−(1 + γy)−1/γ }, 1 + γy > 0, γ ∈ R,(2)

and the expression on the right is interpreted as e−e−y
if γ = 0. See, for example,

[7, 9, 12, 31, 34]. We can and do assume

b(t) =
(

1

1 − F(·)
)←

(t),

where for a nondecreasing function U we define the left continuous inverse

U←(t) = inf{y :U(y) ≥ t}.
Setting �F = 1 − F , we have relation (1) is equivalent to

t �F (
a(t)y + b(t)

) → (1 + γy)−1/γ , 1 + γy > 0,(3)

or taking inverses

b(tx) − b(t)

a(t)
→ xγ − 1

γ
, x > 0.(4)

For convenience we write Eγ := {y ∈ R : 1 + γy > 0}. When considering vague
convergence, it is convenient to close the interval {y ∈ R : 1 + γy > 0} on the right
and denote by �Eγ this closure. So, for instance, �E0 = (−∞,∞].

In Section 2, we explore the implications of assuming the existence of:

1. Scaling function a(·) > 0, and centering function b(·) ∈ R so that (1) holds for
F(x) = P [Y ≤ x];
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2. Scaling function α(·) > 0, and centering function β(·) ∈ R and a nonnull Radon
measure µ on Borel subsets of [−∞,∞] × (−∞,∞], such that for each
fixed y ∈ Eγ ,

(a) µ([−∞, x] × (y,∞]) is not a degenerate distribution function in x,
(b) µ([−∞, x] × (y,∞]) < ∞,
(c) and

tP

[
X − β(t)

α(t)
≤ x,

Y − b(t)

a(t)
> y

]
→ µ

([−∞, x] × (y,∞]),(5)

at continuity points (x, y) of the limit.

If we interpret (5) as vague convergence (cf. Section A.3) in M+([−∞,∞]×�Eγ ),

the Radon measures on [−∞,∞] × �Eγ , then in fact (5) implies F ∈ D(Gγ ) for
some γ ∈ R. Also, we will see that (5) is equivalent to assuming the existence of
the conditional limiting distribution of the scaled and centered X variable given Y

is extreme:

P

[
X − β ◦ b←(t)

α ◦ b←(t)
≤ x

∣∣∣Y > t

]
→ µ

([−∞, x] × (0,∞]),(6)

as t converges to the right end point of F . This observation motivates our focusing
on the convergence (5).

Thus we make a different assumption from that of Heffernan and Tawn [21], in
that in (6) we condition on the event Y > t rather than Y = t as in [21] which re-
quires regular conditional distributions which are only defined up to almost every-
where equivalence. Our formulation also has a natural connection with extreme
value theory as it implies Y is in a domain of attraction. In cases where densities
exist, the two formulations are similar. See Section 2.5.

Having established conditions for the existence of a limit in (5), in Section 3 we
characterize the class of attainable limiting measures. These measures are found to
be either product measures or to have a spectral form after a standardization proce-
dure and then transformation to polar coordinates. The standardization renders (5)
into a standard multivariate regular variation condition on the cone [0,∞]×(0,∞]
and puts us in familiar territory. Relating (5) to standard multivariate regular vari-
ation allows us to identify the class of possible limit measures [32, 34, 37].

Section 4 is motivated by the Heffernan and Tawn [21] approach. Instead of nor-
malizing X by deterministic functions of the threshold t , we normalize by func-
tions of the precise value of Y occurring with X. This leads to a product limit form
in all cases.

In Section 5, we highlight connections between assumption (5) and standard
assumptions of multivariate regular variation and hidden regular variation, and in
particular show that under multivariate regular variation, (5) assumes something
additional beyond multivariate regular variation only in the presence of asymptotic
independence.
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Section 6 illustrates our results with a range of examples. Of particular interest
is the bivariate Normal example which shows a transformation of X for which the
limit (5) does not exist. This leads to Section 7, in which we explore how flexible
one can be in the choice of measurement units in which to record X such that the
limit measure in (5) does exist. Our results suggest how to construct change of
variable functions which will give such a limit.

Section 8 returns in more detail to the modeling assumptions made by Heffernan
and Tawn [21] which motivated the work of this paper, and discusses the implica-
tions of the new results for their conditional approach to modeling multivariate
extreme values.

1.2. Symbol and concept glossary. The Appendix contains several appendices
reviewing and referencing needed background. We merely list here some concepts
and symbols; explanations and references in the appendices can be consulted as
needed.

vectors Bold lower case is reserved for deterministic vectors and bold upper
case is reserved for random vectors. Relations are interpreted compo-
nentwise. See Section A.1.

E A nice subset of compactified finite dimensional Euclidean space.
M+(E) The class of Radon measures on Borel subsets of E.
U← The left continuous inverse of the nondecreasing function U .
RVρ The class of regularly varying functions with index ρ defined in (64).
� The function class � reviewed in Section A.2 along with subclasses

�+(a(·)) and �−(a(·)) and auxiliary function a(·).
� The function class � reviewed in Section A.2 along with �(f ) and aux-

iliary function f .
v→ Vague convergence of measures; see Section A.3.

Gγ An extreme value distribution given by (2) in the Von Mises parameter-
ization.

Eγ {x : 1 + γ x > 0}.
�Eγ The closure on the right of the interval Eγ .
D(Gγ ) The domain of attraction of the extreme value distribution Gγ . This is

the set of F ’s satisfying (1). Note for γ > 0, F ∈ D(Gγ ) is equivalent
to 1 − F ∈ RV1/γ .

2. Basic results. In this section we give some implications of (5) and the as-
sumptions (1), (2) given in Section 1.

2.1. Standardization of Y . Without loss of generality, we may assume Y is
heavy tailed and F ∈ D(G1). The usual standardization procedure in extreme
value theory (e.g., [34], Chapter 5, [17], Chapter 6.1.2, [32], Section 6.5.6) means
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that (1) implies for x > 0, as t → ∞,

tP

[
b←(Y )

t
> x

]
= tP

[
Y − b(t)

a(t)
>

b(tx) − b(t)

a(t)

]

→
(

1 + γ
(xγ − 1)

γ

)−1/γ

= x−1.

Note if the distribution F of Y is continuous, b←(Y ) has a Pareto distribution and,
in any case, b←(Y ) will always have a distribution tail which is asymptotically
Pareto. For y > 0, (5) and (4) imply

tP

[
X − β(t)

α(t)
≤ x,

b←(Y )

t
> y

]

= tP

[
X − β(t)

α(t)
≤ x,

Y − b(t)

a(t)
>

b(ty) − b(t)

a(t)

]
(7)

→

µ

(
[−∞, x] ×

(
yγ − 1

γ
,∞

])
, if γ 	= 0,

µ
([−∞, x] × (logy,∞]), if γ = 0.

So at the expense of replacing Y by b←(Y ), theoretical development proceeds
without loss of generality by replacing the conditions around (5) with



µ
([−∞, x] × (y,∞]) is not a degenerate distribution function in x,

for each y > 0,

P [Y ≤ t] ∈ D(G1), lim
t→∞ tP [Y > t] = 1,

tP

[
X − β(t)

α(t)
≤ x,

Y

t
> y

]
→ µ

([−∞, x] × (y,∞]),
x ∈ R, y > 0, at continuity points (x, y) of the limit.

(8)

We refer to (8) as the basic convergence with the Y -variable standardized.

REMARK 1. The argument leading to (8) shows that we are free to change
the marginal distribution of the Y -variable without disturbing the conditional con-
vergence (6). We will see in Section 6, that this is not always possible for the
X-variable.

We reiterate the connection with conditional modeling when (8) is assumed. For
x which are continuity points of H(x) := µ([−∞, x] × (1,∞]),

Ht

(
α(t)x + β(t)

) := P

[
X − β(t)

α(t)
≤ x

∣∣∣Y > t

]

= P [(X − β(t))/α(t) ≤ x,Y > t]
P [Y > t](9)
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∼ tP

[
X − β(t)

α(t)
≤ x,

Y

t
> 1

]

→ µ
([−∞, x] × (1,∞]) =: H(x).

Interpreting (8) as vague convergence on M+([−∞,∞]×(0,∞]), we obtain from
marginal convergence that

H(∞) = µ
([−∞,∞] × (1,∞]) = 1.

2.2. Properties of the functions α(·) and β(·). The following is an initial at-
tempt to understand the properties of the functions α(·) and β(·).

PROPOSITION 1. Suppose (X,Y ) satisfy the standard form condition (8).
Then there exist two functions ψ1(·), ψ2(·), such that for all c > 0,

lim
t→∞

α(tc)

α(t)
= ψ1(c)(10)

and

lim
t→∞

β(tc) − β(t)

α(t)
= ψ2(c).(11)

The convergence in (10) and (11) is uniform on compact subsets of (0,∞).

PROOF. Pick c > 0. For all but an at most countable set � of x-values, (x,1)

and (x, c−1) are continuity points of µ. For x ∈ �c, on the one hand we have (9)
and on the other we have

lim
t→∞P

[
X − β(tc)

α(tc)
≤ x

∣∣∣∣Yt > 1
]

= lim
t→∞ tP

[
X − β(tc)

α(tc)
≤ x,

Y

t
> 1

]
(12)

= lim
t→∞

tc

c
P

[
X − β(tc)

α(tc)
≤ x,

Y

tc
> c−1

]

= µ([−∞, x] × (c−1,∞])
c

=: H(c)(x).

Thus the family {Ht } converges with two different normalizations:

Ht

(
α(t)x + β(t)

) → H(x), Ht

(
α(tc)x + β(tc)

) → H(c)(x).

The convergence to types theorem (see, e.g., [10] or [35], page 275) implies that
(10) and (11) hold and also

H(c)(x) = H
(
ψ1(c)x + ψ2(c)

)
.(13)
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To prove local uniform convergence in (10) and (11), replace c > 0 in the argu-
ment with c(t) where c(t) → c ∈ (0,∞). Then (10) and (11) still hold and since
ψ1,ψ2 are continuous (see next paragraph), the result follows from continuous
convergence. See [34], page 2, or [23]. �

From (10), we have that α(·) is regularly varying with some index ρ ∈ R, written
α ∈ RVρ , so that ψ1(x) = xρ . (See [34], page 14, [4, 10–12, 38].) The function
ψ2(x) may be identically zero. However, if it is not, then from [11], page 16, we
have

ψ2(x) =
{

k(xρ − 1)/ρ, if ρ 	= 0, x > 0,

k logx, if ρ = 0, x > 0,
(14)

for k 	= 0. Also, there is more detailed information:

(i) If ρ > 0, then β(·) ∈ RVρ and β(t) ∼ 1
ρ
α(t). So it is enough to scale X

in (8) with a consequent location change in the x-variable for µ.
(ii) If ρ = 0, then β(·) ∈ �(α) and α ∈ RV0. So α is the auxiliary function of

the �-function β .
(iii) If ρ < 0, then β(∞) = limt→∞ β(t) exists finite and

β(∞) − β(t) ∈ RVρ; (
β(∞) − β(t)

) ∼ 1

|ρ|α(t).

Case (iii) can be reduced to case (i) by a change of variable. From case (iii)
of (8) we get

tP

[
X − β(∞) + [β(∞) − β(t)]

|ρ|(β(∞) − β(t))
≤ x,

Y

t
> y

]
→ µ

([−∞, x] × (y,∞]).
Write

X̃ := 1

X − β(∞)
, β̃(t) := 1

|ρ|(β(∞) − β(t))
,(15)

so that

tP

[
X̃

β̃(t)
≤ x,

Y

t
> y

]

= tP

[
X − β(∞)

|ρ|(β(∞) − β(t))
≥ 1

x
,
Y

t
> y

]
(16)

= tP

[
X − β(∞)

|ρ|(β(∞) − β(t))
+ 1

|ρ| ≥ 1

x
+ 1

|ρ| ,
Y

t
> y

]

→ µ

([
1

x
+ 1

|ρ| ,∞
]

× (y,∞]
)

=: µ̃([−∞, x] × (y,∞]).
Since case (iii) can be reduced to case (i), it does not need separate theoretical
attention.
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2.3. Conditions for the limit µ to be a product measure. It turns out that µ

being a product measure is equivalent to ψ1 ≡ 1 and ψ2 ≡ 0.

PROPOSITION 2. We have µ = H × ν1, where ν1((y,∞]) = y−1, y > 0 (i.e.,
µ([−∞, x] × (y,∞]) = H(x)y−1), iff for all c > 0,

ψ1(c) = lim
t→∞

α(tc)

α(t)
= 1, ψ2(c) = lim

t→∞
β(tc) − β(t)

α(t)
= 0.(17)

PROOF. Given that µ is a product, we have from (9) and (12), that H(c)(x) =
H(x). Hence (17) follows from the convergence to types theorem. Conversely, if
(17) holds, H(c)(x) = H(x) and from (12) we have, for all c > 0, µ([−∞, x] ×
(c−1,∞]) = cH(x). So for all y > 0, µ([−∞, x] × (y,∞]) = H(x)y−1. �

REMARK 2. What if ψ2 ≡ 0 but ψ1 	≡ 1? Then α ∈ RVρ for some ρ ∈ R,
ρ 	= 0 and ψ1(c) = cρ , for c > 0. The reasoning in the previous proof shows that
µ has the form

µ
([−∞, x] × (y,∞]) = y−1H(x/yρ),(18)

for x ∈ R, and y > 0 and where H is a proper nondegenerate probability distribu-
tion.

2.4. When the X-variable can be standardized. Standardization is the process
of transforming variables so that their distributions have regularly varying tails
in standard form. See [34], Chapter 5, [17], Chapter 6.1.2, [32], Section 6.5.6.
Once standard form regular variation is achieved, limit measures have a scaling
property and characterization of these limits becomes possible. We know we can
standardize the Y variable. What about the X variable?

It is possible to standardize the X-variable if β(t) ≥ 0 and ψ2(·) in (11) is not
constant and β← is nondecreasing on the range of X since in this case we have for
x > 0,

tP

[
β←(X)

t
≤ x,

Y

t
> y

]
= tP

[
X − β(t)

α(t)
≤ β(tx) − β(t)

α(t)
,
Y

t
> y

]
(19)

→ µ
([−∞,ψ2(x)] × (y,∞]),

at continuity points of the limit. We emphasize there are important cases where
ψ2(x) is identically zero and thefore where X cannot be standardized by the pro-
cedure in (19); see Section 6.1.

Standardization is also possible if ψ2 ≡ 0, provided X > 0 and ψ1 	≡ 1; that is
if α(·) ∈ RVρ with ρ 	= 0. If ρ > 0, then [4], Theorem 3.1.12a, c, page 136, gives
β(t)/α(t) → 0 and by the convergence to types theorem (8) can be rewritten as

tP

[
X

α(t)
≤ x,

Y

t
> y

]
→ µ

([0, x] × (y,∞]), x > 0, y > 0.
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Therefore, supposing without loss of generality that α(·) is strictly increasing and
continuous (e.g., [38]), we have

tP

[
α←(X)

t
≤ x,

Y

t
> y

]
= tP

[
X

α(t)
≤ α(tx)

α(t)
,
Y

t
> y

]

→ µ
(
(0, xρ] × (y,∞])

and (α←(X),Y ) are the standardized variables. If ρ < 0, [4], Theorem 3.1.10a, c,
page 134, implies β(∞) := limt→∞ β(t) exists finite and (β(∞) − β(t))/

α(t) → 0. Therefore, if we suppose P [X ≤ β(∞)] = 1, we have for x > 0,

lim
t→∞ tP

[
1/(β(∞) − X)

1/α(t)
≤ x,

Y

t
> y

]

= lim
t→∞ tP

[
β(∞) − X

α(t)
≥ x−1,

Y

t
> y

]

= lim
t→∞ tP

[
β(∞) − X − (β(∞) − β(t))

α(t)
≥ x−1,

Y

t
> y

]

= lim
t→∞ tP

[
X − β(t)

α(t)
≤ −x−1,

Y

t
> y

]

= µ
([−∞,−x−1] × (y,∞]),

and the variables ((β(∞) − X)−1, Y ) can be standardized according to the recipe
for the ρ > 0 case.

2.4.1. When β(t) is monotone. The standardization of the X variable in (19)
begs the question of when β is monotone. Consider the case where ψ2 	≡ 0 and ψ2
is given by (14) and indexed by ρ ∈ R. For discussing when β(t) is monotone, it
is important to remember that β(·) is only determined up to the asymptotic equiv-
alence given by the convergence to types theorem.

Consider the following cases.

1. ρ > 0: For this case, we have β ∈ RVρ and there exists β̃(t) ∈ RVρ such
that β̃(·) is continuous, strictly increasing to ∞ with β ∼ β̃ . (See, e.g., [38].) So
without loss of generality, for the case ρ > 0, we may assume β(·) is continuous
and strictly increasing.

2. ρ < 0: The transformation described in (15) and (16), show that the pair
(X,Y ) can be transformed to (X̃, Y ) satisfying ρ > 0.

3. ρ = 0: Suppose β(·) ∈ �+(a) after which we consider β ∈ �−(a). From
[18] as reviewed in Section A.2, there exists β̃(t) which is continuous, strictly
increasing and such that β − β̃ = o(α) so that the convergence of types theorem
allows us to replace β by β̃ . Assume this is done which is tantamount to dropping
the tilde. Then there are two cases to consider.



RANDOM VECTORS WITH AN EXTREME COMPONENT 547

(a) β(∞) = ∞.

(b) β(∞) < ∞.

For 3(a) it is clear that β(t) has the desired properties of being continuous and
strictly increasing to ∞. For 3(b), proceed as follows to transform (X,Y ): Define

X̃ = 1

β(∞) − X
, β̃(t) = 1

β(∞) − β(t)
,

(20)

α̃(t) = α(t)

(β(∞) − β(t))2 .

Then β̃(t) ↑ ∞ is continuous and strictly monotone and β̃ ∈ �+(α̃) and after some
calculation we get

tP

[
X̃ − β̃(t)

α̃(t)
≤ x,

Y

t
> y

]

= tP

[
X − β(t)

α(t)
≤ x

1 + α(t)x/(β(∞) − β(t))
,
Y

t
> y

]

→ µ
([−∞, x] × (y,∞])

since β̃ ∈ �+(α̃) implies β̃(t)/α̃(t) → ∞ which is identical to (β(∞) −
β(t))/α(t) → ∞. Thus after the transformation of (X,Y ) to (X̃, Y ), case 3(b)
is reduced to case 3(a).

What if β ∈ �−(a)? Then define

X̃ = −X, β̃(t) = −β(t), α̃(t) = α(t),

and β̃ ∈ �+(a) and this case reduces to the case when β ∈ �+(a) since

tP

[
X̃ − β̃(t)

α̃(t)
≤ x,

Y

t
> y

]
= tP

[
X − β(t)

α(t)
≥ −x,

Y

t
> y

]

→ µ
([−x,∞] × (y,∞]).

2.4.2. Summary. When ψ2 	≡ 0, if we make the transformation X → X̃ and
consider the analogue of (8) for (X̃, Y ), we can standardize the X̃-variable. If
ψ2 ≡ 0, but ψ1(c) = cρ, for c > 0, ρ 	= 0, then for ρ > 0, (α←(X),Y ) are a stan-
dardized pair and for ρ < 0, ((1/α)←(X̃), Y ) is a standardized pair.

When the limit µ is a product measure, (ψ1,ψ2) ≡ (1,0) and standardization is
not possible; an example is given in Section 6.1.3 and a proof of the assertion is
easy using the change of coordinate system techniques of Section 7.

2.5. Densities. In this section we see what form the basic convergence takes
when (X,Y ) has a density. Since it is sufficient to suppose that the Y -variable has
been transformed to the standard case, for this section, we assume the following:
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1. The pair (X,Y ) has density f (x, y).
2. The marginal density fY (y) = ∫ ∞

−∞ f (x, y) dx of the Y -variable satisfies

fY (y) = y−2, y > 1.

Since we have densities, we assume the transformation to Y being standard renders
Y a Pareto random variable with unit shape parameter.

3. The joint density f (x, y) satisfies

t2α(t)f
(
α(t)x + β(t), ty

) → g(x, y) ∈ L1
([−∞,∞] × (0,∞]),(21)

where the limit g(x, y) ≥ 0 is integrable, not identically zero and satisfies for each
fixed v > 0,

v2g(u, v) is a probability density in u.(22)

PROPOSITION 3. With the assumptions just listed, (8) holds with

µ
([−∞, x] × (y,∞]) =

∫
u≤x

∫
v>y

g(u, v) dv du,

and H(∞) = µ([−∞,∞] × (1,∞]) = 1.

PROOF. We use standard notation for conditional densities. So for instance,
fX|Y=v(u|v) is the conditional density of X given Y = v.

We need two facts:

1. First we evaluate the integrand. For v > 0, (21) implies

f(X−β(t))/α(t)|Y/t=v(u|v) → v2g(u, v) (t → ∞).(23)

To see this, observe

f(X−β(t))/α(t)|Y/t=v(u|v) = f(X−β(t))/α(t),Y/t (u, v)

fY/t (v)
= tα(t)f (α(t)u + β(t), tv)

tfY (tv)

= t2α(t)v2f
(
α(t)u + β(t), tv

) → v2g(u, v).

2. We now show convergence of the integral. The function of u

f(X−β(t))/α(t)|Y/t=v(u|v)

is a probability density for fixed v.

Now write

tP

[
X − β(t)

α(t)
≤ x,

Y

t
> y

]

= t

∫
[v>y]

[∫
[u≤x]

f(X−β(t))/α(t)|Y/t=v(u|v) du

]
fY/t (v) dv

=
∫
[v>y]

[∫
[u≤x]

f(X−β(t))/α(t)|Y/t=v(u|v) du

]
v−2 dv.
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The integral inside the square bracket has an integrand which is a family of prob-
ability densities in the variable u (with v fixed) indexed by t which converges to
a limiting probability density v2g(u, v). Hence by Scheffé’s lemma (e.g., [35],
page 253) [∫

[u≤x]
f(X−β(t))/α(t)|Y/t=v(u|v) du

]
→

∫
[u≤x]

v2g(u, v) du.

Now the square bracket term is a conditional probability and hence is a function
of v bounded almost surely by 1. So by dominated convergence, we have proven
(8) as required.

To check the last assertion that H(∞) = 1, note∫ ∞
−∞

∫
v>1

g(u, v) dudv =
∫
v>1

v−2
(∫ ∞

−∞
v2g(u, v) du

)
dv

=
∫
v>1

v−2dv = 1. �

Heffernan and Tawn [21] assume that (X,Y ) have been transformed to have
Gumbel marginal distributions, that is, P(X ≤ t) = P(Y ≤ t) = exp(− exp(−t))

for t ∈ R and that for such (X,Y )

tP

[
X − β̃(t)

α̃(t)
≤ x

∣∣∣Y = t

]
(24)

converges to a nondegenerate limit distribution as t → ∞, for some scaling func-
tion α̃(·) > 0 and centering function β̃(·) ∈ R.

Thus we see that since (23) implies [21] condition (24), (21) implies (24). This
makes explicit the link between our assumptions (5) and those of Heffernan and
Tawn [21] under the above conditions for densities. We have

P

[
X − β̃(t)

α̃(t)
≤ x

∣∣∣Y = ty

]
=

∫
u≤x

f(X−β̃(t))/α̃(t)|Y/t=y(u|y)du

→
∫
u≤x

y2g(u, y) du,

and letting y = 1 gives

P

[
X − β̃(t)

α̃(t)
≤ x

∣∣∣Y = t

]
→

∫
u≤x

g(u,1) du.

3. Characterizing the class of limit measures. Assuming the Y -variable is
standardized, what is the class of limits in (8)? We divide this issue in two parts,
depending on whether the limit measure µ is a product or not.
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3.1. The limit measure is a product. For this case, there is not much discussion
required since for any distribution function H(x) on R, the limit

µ = H × ν1 or µ
([−∞, x] × (y,∞]) = H(x)y−1

is possible. To achieve this limit, suppose X,Y are independent random variables
with X having distribution H and Y being standard Pareto. Then with β(t) = 0
and α(t) = 1, (8) is satisfied.

3.2. The limit measure is not a product. When µ is not a product, we change
coordinate systems and transform X to some X∗ and assume (X∗, Y ) is a standard
pair and

tP

[(
X∗

t
,
Y

t

)
∈ ·

]
v→ µ∗(·) in M+

([0,∞] × (0,∞]),(25)

where µ∗ is a transformation of µ as described in Section 2.4.
From (25), we see that the distribution of (X∗, Y ) is standard regularly varying

with limit measure µ∗ (see [3, 32, 37]) on the cone [0,∞] × (0,∞] and, therefore
µ∗ is homogeneous of order -1:

µ∗(c�) = c−1µ∗(�) ∀c > 0,

where � is a Borel subset of [0,∞] × (0,∞]. This means µ∗ has a spectral form.
We pick a norm. Any norm would do but for convenience define

‖(x, y)‖ = |x| + |y|, (x, y) ∈ R
2.

Of course, when restricting attention to [0,∞] × (0,∞], the absolute value bars
can be dropped. Then the standard argument using homogeneity ([34], Chapter 5),
yields for r > 0 and � a Borel subset of [0,1),

µ∗
{
(x, y) ∈ [0,∞] × (0,∞] :x + y > r,

x

x + y
∈ �

}

= µ∗
{
r(x, y) ∈ [0,∞] × (0,∞] :x + y > 1,

x

x + y
∈ �

}
(26)

= r−1µ∗
{
(x, y) ∈ [0,∞] × (0,∞] :x + y > 1,

x

x + y
∈ �

}

=: r−1S(�).

The Radon measure S need not be a finite measure on [0,1) but to guarantee that

H∗(x) = µ∗
([0, x] × (1,∞])(27)

is a probability measure, we need∫ 1

0
(1 − w)S(dw) = 1.(28)
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This will be clear from the following calculation to get the canonical form of H∗(x)

for x > 0:
Using (26), write for x > 0,

µ∗
([0, x] × (y,∞])

=
∫ ∫

0≤rw≤x
r(1 − w) > y

0 ≤ w < 1

r−2 drS(dw)

=
∫ ∞
r=0

(∫
0≤w≤x/r

1 − y/r > w

0 ≤ w < 1

S(dw)

)
r−2 dr(29)

=
∫ ∞

0
S

([
0,

x

r
∧

(
1 − y

r

)
∧ 1

))
r−2 dr

=
∫ ∞

0
S
([

0, xv ∧ (1 − yv) ∧ 1
))

dv.

Integrating the double integral in reverse order yields the alternate expression

µ∗
([0, x] × (y,∞])

=
∫
w∈[0,1)

(∫
y/(1−w)<r≤x/w

r−2 dr

)
S(dw)

(30)
=

∫
w∈[0,1)

(
(1 − w)y−1 − wx−1)

+S(dw)

= y−1
∫ x/(x+y)

0
(1 − w)S(dw) − x−1

∫ x/(x+y)

0
wS(dw).

Conclusion: The class of limits µ∗ or conditional limits

H∗(x) = lim
t→∞P

[
X∗

t
≤ x

∣∣∣Y > t

]
is indexed by Radon measures S on [0,1) satisfying the integrability condi-
tion (28).

EXAMPLE. As an example, suppose S is uniform on [0,1): S(dw) = dw
c

,

where c is chosen so that (28) is satisfied:
∫ 1

0
w
c

dw= 1 which implies c = 1/2.
This yields

µ∗
([0, x] × (y,∞]) = x

x + y

[
2

y
−

(
1 + x/y

x + y

)]
and setting y = 1 we get a Pareto distribution

H∗(x) = x

1 + x
= 1 − 1

1 + x
, x > 0.
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4. Random norming. In [21], it was necessary to normalize X by a function
of the precise value of Y occurring with X to achieve nondegeneracy of the limit-
ing conditional distribution. Motivated by this, we consider how to normalize the
X-variable with a function of Y rather than a deterministic affine transformation,
using functions of the threshold t in (6). This leads to a product form limit in all
cases.

It is significant that normalizing by using functions of the threshold t in (6) does
not result in a product limit in all cases, but that the inclusion of the precise value
of Y occurring with X adds enough detail to the normalization to allow the limit
always to factorize. In statistical applications the factorization of the limit distri-
bution will constitute a welcome simplification of models based on this limiting
form. Indeed, the statistical model of Heffernan and Tawn [21]relies on such fac-
torization to ensure that the residuals formed by normalizing observed values of X

by functions of the observed values of Y are independent of the Y values.
We discuss this random normalization in two stages:

• The X-variable can be standardized and the limit in (8) is not a product.
• The limit measure µ in (8) is a product measure.

4.1. The X-variable can be standardized and the limit measure µ is not a prod-
uct. We suppose X can be transformed to X∗ so that (X∗, Y ) is a standardized
pair and (25) holds with limit measure µ∗. As in Section 3.2, let S be the spectral
measure of µ∗. Then we have the following result which forms the basis of the
estimation procedure proposed in [21].

PROPOSITION 4. If (25) holds, then

tP

[(
X∗

Y
,
Y

t

)
∈ ·

]
v→ G × ν1 in M+

([0,∞] × (0,∞]),(31)

where for x > 0

ν1((x,∞]) = x−1 and G(x) =
∫ x/(1+x)

0
(1 − w)S(dw).(32)

This means

P

[
X∗

Y
≤ x

∣∣∣Y > t

]
→ G(x), x > 0.

Conversely, if (31) holds, then so does (25).

PROOF. This proof is discussed in Theorem 2.1 of [28]. The outline of the
argument is as follows. Applying the map T1(x, y) = (x

y
, y) to (25) yields after a

compactification argument that

tP

[(
X∗

Y
,
Y

t

)
∈ ·

]
v→ µ∗ ◦ T −1

1 .
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So the limit evaluated on [0, x] × (y,∞] is

µ∗
{
(u, v) :

u

v
≤ x, v > y

}

= y−1µ∗
{
(u, v) :

u

v
≤ x, v > 1

}

= y−1
∫ ∫

rw/(r(1−w))≤x
r(1 − w) > 1

r−2 dr S(dw)

= y−1
∫
w≤x/(1+x)

(∫
r>1/(1−w)

r−2 dr

)
S(dw)

= y−1
∫ x/(1+x)

0
(1 − w)S(dw).

The converse proceeds similarly using the map T2(x, y) = (xy, y) = T −1
1 (x, y).

�

4.2. The limit measure µ is a product measure. Now we suppose (8) holds
with µ = H × ν1. In this case, from Proposition 2, (10) and (11) hold with
ψ1(x) ≡ 1, ψ2(x) ≡ 0.

PROPOSITION 5. If,

tP

[
X − β(t)

α(t)
≤ x,

Y

t
> y

]
→ H(x)y−1 (x ∈ R, y > 0)(33)

for a nondegenerate probability distribution function H(x), then also

tP

[
X − β(Y )

α(Y )
≤ x,

Y

t
> y

]
→ H(x)y−1 (x ∈ R, y > 0)(34)

and

P

[
X − β(Y )

α(Y )
≤ x

∣∣∣Y > t

]
→ H(x).

Conversely, if (34) holds and α(·) and β(·) satisfy (10), (11) locally uniformly
with ψ1(x) ≡ 1, and ψ2(x) ≡ 0, then (33) also holds.

PROOF. For any K > y > 0 we have

tP

[
X − β(Y )

α(Y )
≤ x,

Y

t
∈ (y,K]

]

= tP

[
X − β(t)

α(t)
≤ α(tY/t)

α(t)
x + β(tY/t) − β(t)

α(t)
,
Y

t
∈ (y,K]

]
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and because of local uniform convergence in (10) and (11), this converges to

µ
([−∞, x] × (y,K]) = H(x)(y−1 − K−1).

Therefore

lim inf
t→∞ tP

[
X − β(Y )

α(Y )
≤ x,

Y

t
> y

]
≥ lim inf

t→∞ tP

[
X − β(Y )

α(Y )
≤ x,

Y

t
∈ (y,K]

]

= H(x)(y−1 − K−1).

Since this is true for all K > y, we have

lim inf
t→∞ tP

[
X − β(Y )

α(Y )
≤ x,

Y

t
> y

]
≥ H(x)y−1.

Also,

lim sup
t→∞

tP

[
X − β(Y )

α(Y )
≤ x,

Y

t
> y

]
≤ lim

t→∞ tP

[
X − β(Y )

α(Y )
≤ x,

Y

t
∈ (y,K]

]

+ lim sup
t→∞

tP

[
Y

t
> K

]

= H(x)(y−1 − K−1) + K−1.

Letting K → ∞ provides the other half of the sandwich and (34) is proven.
For the converse, write

tP

[
X − β(t)

α(t)
≤ x,

Y

t
∈ (y,K]

]

= tP

[
X − β(Y )

α(Y )
≤ α(t)

α(Y )
x + β(t) − β(Y )

α(Y )
,
Y

t
∈ (y,K]

]
.

Proceed as before using uniform convergence. �

5. Connection to multivariate extreme value theory and asymptotic inde-
pendence. We now make some comments on the relationship between our con-
ditioned limit condition (8) and multivariate extreme value theory.

Suppose the distribution of (X,Y ) is in the domain of attraction of a multivariate
extreme value distribution. This means that for i.i.d. replicates {(Xi, Yi), i ≥ 1} of
(X,Y ) there exist centering bj (t) ∈ R and scaling aj (t) > 0 functions, j = 1,2,
and

P

[∨n
i=1 Xi − b1(n)

a1(n)
≤ x,

∨n
i=1 Yi − b2(n)

a2(n)
≤ y

]
→ G(x,y),(35)

where G is a multivariate extreme value distribution. Let the marginal distributions
of G be Gj , j = 1,2. Asymptotic independence means G(x,y) = G1(x)G2(y).
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Define

U1(x) = 1

P [X > x] , U2(y) = 1

P [Y > y] ,

χj (x) =
(

1

− logGj

)←
(x), x > 0, j = 1,2,

G∗(x, y) = G(χ1(x),χ2(y)), x > 0, y > 0.

According to Resnick [34], Proposition 5.10, page 265, we can standardize the
condition (35) by transforming (X,Y ) → (X∗, Y ∗) = (U1(X),U2(Y )) and then

P

[∨n
i=1 X∗

i

n
≤ x,

∨n
i=1 Y ∗

i

n
≤ y

]
→ G∗(x, y),(36)

and G∗ is max-stable. From [34], Proposition 5.15, page 277 and [32], Section 6.1,
this is equivalent to marginal convergence and multivariate regular variation of the
distribution of (X∗, Y ∗):

tP

[(
X∗

t
,
Y ∗

t

)
∈ ·

]
v→ ν∗(·),(37)

in M+([0,∞]2 \ {0}). Here ν∗ is a Radon measure on [0,∞]2 \ {0} satisfying

ν∗(t ·) = t−1ν∗(·).(38)

Asymptotic independence means

ν∗([0, x] × [0, y])c = − logG∗(x, y) = − logG∗(x,∞) − logG∗(∞, y)

= ν∗(
(x,∞] × [0,∞]) + ν∗([0,∞] × (y,∞]),

and ν∗ concentrates on the lines {(x,0) :x > 0} ∪ {(0, y) :y > 0}.
Suppose the domain of attraction condition (37) holds but asymptotic indepen-

dence does not hold. Condition (37) implies for x > 0, y > 0,

tP

[
X∗

t
≤ x,

Y ∗

t
> y

]
→ ν∗([0, x] × (y,∞])

and we claim for fixed y > 0, ν∗([0, x] × (y,∞]) is not degenerate in x. This
follows, for instance, from (38). Conclusion: the domain of attraction condition
(37) in standard form without asymptotic independence implies that (X∗, Y ∗) sat-
isfy (8). Condition (8) is equivalent to vague convergence on the cone [0,∞] ×
(0,∞] while the regular variation condition (37) gives vague convergence on the
bigger cone [0,∞]2 \ {0}.

Suppose (37) holds with asymptotic independence. Consider (8) with X∗/t in
place of (X − β(t))/α(t). The nondegeneracy condition in (8) fails because for
fixed y > 0, µ([−∞, x]× (y,∞]) = ν∗([−∞, x]× (y,∞]) concentrates all mass
at x = 0. If one wants (8) to hold, one must make an additional assumption be-
yond the domain of attraction condition (37) and the X∗ variable in (37) must be
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normalized differently. For a simple particular case which is somewhat familiar,
consider the following: Suppose we assume the condition (37) with asymptotic in-
dependence and in addition we assume that X∗ can be normalized by α(t) instead
of by t , so that (8) holds in the form

tP

[
X∗

α(t)
≤ x,

Y ∗

t
> y

]
→ µ

([0, x] × (y,∞]), x > 0, y > 0.(39)

From (39) and (37), we have for 0 < a < b ≤ ∞ and y > 0

tP

[
X∗

α(t)
∈ (a, b], Y ∗

t
> y

]
→ µ

(
(a, b] × (y,∞]),

tP

[
X∗

t
∈ (a, b], Y ∗

t
> y

]
→ 0.

We claim that t/α(t) → ∞ so that α(·) is of smaller order than t . If not, there
exist tn → ∞ and 0 ≤ c < ∞ and tn/α(tn) → c. From the nondegeneracy condi-
tion in (8), we may pick 0 < a < b such that µ((a, b] × (1,∞]) > 0. Then

0 < µ
(
(a, b] × (1,∞]) = lim

n→∞ tnP

[
X∗

tn
∈

(
α(tn)

tn
a,

α(tn)

tn
b

]
,
Y ∗

tn
> 1

]
= 0

giving a contradiction. So α(·) is of smaller order than t and we have the situation
of hidden regular variation [20, 27, 36]; that is, the regular variation condition (37)
holds on the big cone [0,∞]2 \ {0} but a different regular variation condition holds
on the smaller cone [0,∞] × (0,∞].

To summarize: The multivariate extreme value paradigm without asymptotic
independence subsumes our conditioned limit condition (5). However, in the pres-
ence of asymptotic independence, the multivariate extreme value condition is re-
fined by (5) which uses a more delicate normalization to track mass into the part
of the distributional tail where the conditioning variable Y is large.

6. Examples. We give examples to illustrate some intricacies.

6.1. Bivariate normal. Suppose N1,N2 are i.i.d. N(0,1) random variables

and |ρ| ≤ 1. Define (X,Y ) = (

√
1 − ρ2N1 + ρN2,N2) which is a bivariate normal

vector with means 0, variances 1 and correlation ρ. Denote the standard normal
distribution function by N(x). Recall (e.g., from [34], page 71) that we may set

a(t) = 1√
2 log t

,

(40)

b(t) =
(

1

1 − N

)←
(t) =

√
2 log t − (1/2)(log log t + log 4π)√

2 log t
+ o(a(t)),

and then for x ∈ R,

lim
t→∞ tP

[
N1 − b(t)

a(t)
> x

]
= e−x.
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6.1.1. Conditional limits for (X,Y ). We begin by discussing the following
result learned from [1]. Suppose N(x) is the standard normal distribution function
and n(y) is its density. Then

tP

[
X − ρb(t) ≤ x,

Y − b(t)

a(t)
> y

]
→ N

(
x/

√
1 − ρ2

)
e−y,(41)

or standardizing the Y -variable,

tP

[
X − ρb(t) ≤ x,

b←(Y )

t
> y

]
→ N

(
x/

√
1 − ρ2

)
y−1.(42)

Here we claimed β(t) = ρb(t) and α(t) = 1. It is well known (e.g., [34], page 71)
that b(·) ∈ �(a(·)) and therefore

β(tc) − β(t)

α(t)
= ρ

(
b(tc) − b(t)

)
(43)

= ρ
(b(tc) − b(t))

a(t)
a(t) ∼ ρ log c · a(t) → 0.

Thus ψ2(x) in (11) is identically 0 and ψ1(x) ≡ 1.

We now see why (41) and (42) are true. We write,

tP

[
X − ρb(t) ≤ x,

Y − b(t)

a(t)
> y

]

= tP

[√
1 − ρ2N1 + ρN2 − ρb(t) ≤ x,

N2 − b(t)

a(t)
> y

]

=
∫ ∞
a(t)y+b(t)

P
[√

1 − ρ2N1 + ρs − ρb(t) ≤ x
]
tn(s) ds

=
∫ ∞
y

P
[√

1 − ρ2N1 + ρ
(
a(t)u + b(t)

) − ρb(t) ≤ x
]

× ta(t)n
(
a(t)u + b(t)

)
du

∼
∫ ∞
y

P
[√

1 − ρ2N1 ≤ x − ρa(t)u
]
e−u du

since ta(t)n(a(t)u + b(t)) → e−u. Using the fact that a(t) → 0, we get conver-
gence to

→
∫ ∞
y

P
[√

1 − ρ2N1 ≤ x
]
e−u du = N

(
x/

√
1 − ρ2

)
e−y,

as claimed.
Conclusion: The limit measure is a product measure, (ψ1,ψ2) ≡ (1,0) and

α(t) = 1. We have an illustration of Proposition 2.
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6.1.2. Exponential marginals for X. In light of the standard form result (42) it
is tempting to look at limits for (b←(X), b←(Y )) but this turns out not to work. The
reason for this is explored in Section 6.1.3. Instead, following [21], we consider
(logb←(X), logb←(Y )). Thus we can transform X to have exponential marginals
but not Pareto marginals.

We show the standard form

tP

[
logb←(X) − logb←(ρb(t))

ρb(t)
≤ x,

b←(Y )

t
> y

]
(44)

→ N

(
x√

1 − ρ2

)
y−1.

The verification of (44) needs the following lemma.

LEMMA 1. The function

V (t):= − log �N(log t) = logb←(log t) ∈ �(log t)

is �-varying with auxiliary function g(t) = log t.

PROOF. To prove membership in the �-class, it suffices according to de Haan
[14] (see alternatively [34], page 30), to show V ′(t) ∈ RV−1 and then the auxiliary
function can be taken to be tV ′(t). So it suffices to show

(− log �N(log t))′ ∼ log t

t
∈ RV−1.

The derivative is

n(log t)t−1

�N(log t)
∼ n(log t)t−1

n(log t)/ log t
= t−1 log t ∈ RV−1. �

To show (44), we use (42) and the Delta method. The left-hand side of (44) is

tP

[
V (eX−ρb(t)eρb(t)) − V (eρb(t))

g(eρb(t))
≤ x,

b←(Y )

t
> y

]

→ P
[
log eN1

√
1−ρ2 ≤ x

]
y−1 = N

(
x√

1 − ρ2

)
y−1.

Here is the conditional form of (44), where X is transformed to have exponential
marginals:

lim
t→∞P

[
logb←(X) − logb←(ρb(t))

ρb(t)
≤ x

∣∣∣Y > b(t)

]

= lim
t→∞P

[
logb←(X) − logb←(ρt)

ρt
≤ x

∣∣∣Y > t

]
= N

(
x√

1 − ρ2

)
.
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The conditional form of (42), where the marginal distribution is normal, has the
same limit:

lim
t→∞P [X − ρb(t) ≤ x|Y > b(t)] = lim

t→∞P [X − ρt ≤ x|Y > t] = N

(
x√

1 − ρ2

)
.

This result seems natural when one observes that the normal distribution is in the
domain of attraction of the Gumbel distribution.

After transformation of X to exponential marginals, we have for (44)

β(t) = − log �N(ρb(t)), α(t) = ρb(t),

and again ψ2(t) = 0, since

β(tc) − β(t)

ρb(t)
= log(�N(ρb(tc))/�N(ρb(t)))

ρb(t)
∼ log(n(ρb(tc))/n(ρb(t)))

ρb(t)

∼ log e(ρ2/2)(b2(tc)−b2(t))

ρb(t)
= ρ2

2

(
b(tc) − b(t)

)(b(tc) + b(t))

ρb(t)

∼ ρ
(
b(tc) − b(t)

) → 0,

using the same argument as in (43). (This provides another illustration of Proposi-
tion 2.)

6.1.3. Why X cannot be transformed to Pareto. It is noteworthy that one can-
not transform X to have Pareto marginals and expect the analogue of (41) to hold.
Here is the explanation which also relates to the discussion in Section 7.

Suppose for some choice of centering and scaling α2(t) > 0, β2(t) ∈ R we have

lim
t→∞ tP

[
b←(X) − β2(t)

α2(t)
≤ x,

b←(Y )

t
> y

]
(45)

exists and is nondegenerate in the sense of condition (iii) stated at the beginning of
Section 2. This expression (45) equals

lim
t→∞P

[
X − ρb(t) ≤ b

(
α2(t)x + β2(t)

) − ρb(t),
b←(Y )

t
> y

]
(46)

and from (41) we would have for some nondecreasing limit ψ(x), that as t → ∞,

b
(
α2(t)x + β2(t)

) − ρb(t) → ψ(x).(47)

Furthermore, the limit in (45) would have to be

N

(
ψ(x)√
1 − ρ2

)
y−1.(48)

Inverting (47), we would need

b←(y + ρb(t)) − β2(t)

α2(t)
→ ψ←(y).
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Changing variables leads to

b←(log tx)) − β2(b
←(log t/ρ))

α2(b←(log t/ρ))
→ ψ←(logx).

If ψ← is not constant, then ([11], page 16)

b← ◦ log =
(

1

1 − N

)
◦ log

is either regularly varying with positive index or it is �-varying. Neither of these
possibilities is true. If ψ← is constant, then the limit (48) fails the nondegeneracy
assumptions.

So assuming the nondegenerate limit exists in (45) leads to a contradiction. This
illustrates the restrictions in our ability to standardize the X variable discussed in
Section 2.4.

6.2. Heavy tailed examples. In this section, we present examples of heavy
tailed random variables possessing asymptotic independence.

6.2.1. Mixture of independent standard regularly varying random variables I:
positive ρ. Suppose nonnegative random variables (U,V ) have a joint distrib-
ution which is standard regularly varying; that is, there is a limit measure ν on
[0,∞]2 \ {0} such that

tP

[(
U

t
,
V

t

)
∈ ·

]
v→ ν

in M+([0,∞]2 \ {0}). For example, (U,V ) could be max-stable ([34], Chapter 5),
[17] with exponent ν. Suppose (Ui,Vi), i = 1,2, are i.i.d. copies of (U,V ). For
0 < p < 1, define

(X,Y ) = B(U1,V
p
1 ) + (1 − B)(U

p
2 ,V2),(49)

where P [B = 0] = P [B = 1] = 1
2 , and B is independent of (Ui,Vi), i = 1,2.

Observe that for any x > 0, y > 0

tP

{[
X

t
≤ x,

Y

t
≤ y

]c}

= t

2
P

[
U1

t
> x or

V
p
1

t
> y

]
+ t

2
P

[
U

p
2

t
> x or

V2

t
> y

]
(50)

= t

2
P [U1 > tx] + o(1) + t

2
P [V2 > ty] + o(1) → 1

2
(x−1 + y−1).

So (X,Y ) is standard regularly varying, in a domain of attraction of a multivariate
extreme value distribution, and possesses asymptotic independence. The asymp-
totic independence holds even if (U,V ) has no asymptotic independence.
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Now observe that

tP

[
X

tp
≤ x,

Y

t
> y

]

= t

2
P [U1 ≤ tpx,V

p
1 > ty] + t

2
P [Up

2 ≤ tpx,V2 > ty]
(51)

= t

2
P [U1 ≤ tpx,V1 > t1/py1/p] + t

2
P [U2 ≤ tx1/p,V2 > ty]

→ 0 + 1

2
ν
([0, x1/p] × (y,∞]) =: µ([0, x] × (y,∞]).

If (U,V ) possess asymptotic independence, then ν((0,∞]2) = 0 and the non-
degeneracy assumption for µ stated in (8) fails since for fixed y > 0, the function
of x given by ν([0, x1/p] × (y,∞]) concentrates at x = 0. So for this example,
(X,Y ) is standard regularly varying, asymptotically independent and provided
(U,V ) does not possess asymptotic independence, we can refine the asymptotic
independence to get the limit in (8). This gives an example of case (i) of (14) with
ρ = p, β(t) = (1/ρ)α(t) = tp. The conditional limit distribution can most simply
be written as

lim
t→∞P

[
X

tp
≤ x

∣∣∣Y > t

]
= 1

2
ν
([0, x1/p] × (1,∞]).

(Note that the normalization of the X variable may have to be properly scaled by
ctp for some c > 0 to ensure the limit is a probability distribution.)

The details of this construction can be repeated in modestly greater generality
with (49) modified as

(X,Y ) = B(U1, h(V1)) + (1 − B)(h(U2),V2),(52)

with h ∈ RVp and h(t)/t → 0. As before, (X,Y ) is standard regularly varying and
asymptotically independent and

tP

[(
X

h(t)
,
Y

t

)
∈ ·

]
v→ µ(·),(53)

where µ is given as in (51). The condition h(t)/t → 0 is necessary and sufficient
for (X,Y ) to be asymptotically independent as can be seen by examining the cal-
culations leading to (50).

6.2.2. Mixture of independent standard regularly varying random variables II;
negative ρ. To exemplify case (iii) of (14) where ρ < 0, suppose (52), (53)
still hold, h(t)/t → 0 and (U,V ) are not asymptotically independent. Define
X̃ = 1/X, h̃ = 1/h ∈ RV−p, and a measure µ̃ on [0,∞] × (0,∞] by

µ̃
([0, x] × (y,∞]) = µ

([
1

x
,∞

]
× (y,∞]

)
.
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Then

tP

[(
X̃

h̃(t)
,
Y

t

)
∈ ·

]
v→ µ̃(·),

in M+([0,∞]× (0,∞]). The reason this works is that the first space in the product
[0,∞] × (0,∞] is compact:

tP

[
X̃

h̃(t)
≤ x,

Y

t
> y

]
= tP

[
X

h(t)
≥ 1

x
,
Y

t
> y

]
→ µ

([
1

x
,∞

]
× (y,∞]

)
.

So using (X̃, Y ), we have an example of case (iii) of (14) where ρ = −p < 0,
α(t) = β(t) = h̃(t). The conditioned limit distribution is

H(x) = lim
t→∞P [X̃/h̃(t) ≤ x|Y > t] = µ

([
1

x
,∞

]
× (1,∞]

)
.

6.2.3. Mixture of independent standard regularly varying random variables III;
ρ = 0. Finally, suppose (52) still holds but this time suppose h ∈ �(g) is non-
decreasing and �-varying with auxiliary function g(t). [E.g., we could take
h(t) = log t, g(t) = 1.] Then h(t)/t → 0 as t → ∞ so (X,Y ) is standard regu-
larly varying as well as asymptotically independent. To verify this we need the
fact that if ξ is either U or V , then

tP

[
h(ξ)

t
> x

]
→ 0 (x > 0, t → ∞).(54)

To see this, let K be a large number and

tP

[
h(ξ)

t
> x

]
= tP

[
h(ξ)

t
> x, ξ ≤ tK

]
+ tP

[
h(ξ)

t
> x, ξ > tK

]

≤ o(1) + tP [ξ > tK] → K−1.

The upper bound is arbitrarily small and thus we verified (54).
Now we check that (X,Y ) is standard regularly varying and asymptotically in-

dependent:

tP

[
X

t
> x or

Y

t
> y

]

= t

2
P

[
U1

t
> x or

h(V1)

t
> y

]
+ t

2
P

[
h(U2)

t
> x or

V2

t
> y

]

= o(1) + t

2
P

[
U1

t
> x

]
+ t

2
P

[
V2

t
> y

]
→ 1

2
(x−1 + y−1).

Note we applied (54).
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Next consider

tP

[
X − h(t)

g(t)
≤ x,

Y

t
> y

]

= o(1) + t

2
P

[
h(U2) − h(t)

g(t)
≤ x,

V2

t
> y

]

∼ t

2
P

[
U2

t
≤ h←(g(t)x + h(t))

t
,
V2

t
> y

]
∼ t

2
P

[
U2

t
≤ ex,

V2

t
> y

]

→ 1

2
ν
([0, ex] × (y,∞]).

This exemplifies case (ii) of (14) with ρ = 0, β(t) = h(t) and α(t) = g(t). The
form of the conditioned limit is

P

[
X − h(t)

g(t)
≤ x

∣∣∣Y > t

]
→ 1

2
ν
([0, ex] × (1,∞]) =: H(x), x ∈ R.

7. Change of coordinate system. How much freedom do we have to mea-
sure the X-variable in different units? This issue was raised in the discussion to
Heffernan and Tawn [21] and we try to offer further insight on the matter here. For
the example in Section 6.1.3 we saw that for (X,Y ) bivariate normal, it was possi-
ble to transform X → logb←(X) and get a conditional limit but the transformation
X → b←(X) did not preserve existence of conditional limits. Can something more
general be said about this issue?

Starting with (8) where the Y -variable is standardized, for what monotone in-
creasing functions h(·) do there exist centering and scaling functions α2(t) > 0,
β2(t) ∈ R, such that for some limit measure µ2 satisfying the nondegeneracy as-
sumptions at the beginning of Section 2 we have

tP

[(
h(X) − β2(t)

α2(t)
,
Y

t

)
∈ ·

]
v→ µ2(55)

in M+([−∞,∞] × (0,∞])? This problem has many similarities to ones consid-
ered in [2, 33] and the experience gained in Section 6.1.3 is helpful.

In (8), assume centering by β(t) is really necessary; that is, suppose it is not the
case that β(t) = o(α(t)). [If β(t) = o(α(t)), the following arguments are easier
and lead to regular variation of h.] Assume (55) and rewrite the left side of (55)
evaluated on [−∞, x] × (y,∞] as

tP

[
X − β(t)

α(t)
≤ h←(α2(t)x + β2(t)) − β(t)

α(t)
,
Y

t
> y

]
.

Since this converges, there must exist a limit ψ(x) such that

h←(α2(t)x + β2(t)) − β(t)

α(t)
→ ψ(x)(56)
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and then we see that

µ
([−∞,ψ(x)] × (y,∞]) = µ2

([−∞, x] × (y,∞]).(57)

The limit ψ cannot be constant without violating the nondegeneracy assumption
for µ2. Inverting (56) we get

h(yα(t) + β(t)) − β2(t)

α2(t)
→ ψ←(y).

This suggests we set

β2(t) = h(β(t)),(58)

since

h(yα(t) + β(t)) − h(β(t))

α2(t)
→ ψ←(y) − ψ←(0) =: χ(y)(59)

and presuming χ(1) > 0, we could set

α2(t) = h
(
α(t) + β(t)

) − h(β(t)).

We now look at some possible forms of h which allow change of coordinate
system (55). We do not achieve necessary and sufficient conditions but come to an
understanding of how to generate broad classes of functions h permitting nonlinear
transformation of X.

7.1. Case A: α(t) is asymptotically a constant. Assume β(t) ↑ ∞ as t → ∞.
If α ∼ 1, then

h(y + β(t)) − h(β(t))

α2(t)
→ χ(y),

and changing variables yields

h(y + t) − h(t)

α2(β←(t))
→ χ(y),

or

h(log tx) − h(log t)

α2(β←(log t))
→ χ(logx), x > 0.(60)

Since h ◦ log is nondecreasing, either [11]

(a) h ◦ log ∈ RVp,p > 0, in which case α2(β
←(log t)) ∼ h(log t)

or
(b) h ◦ log ∈ �(α2 ◦ β←(log t)).

Conclusion: If α ∼ 1, we may change coordinates X → h(X), provided h ◦
log ∈ RVp ∪ �(α2 ◦ β←(log t)).
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REMARK 3. 1. In Section 6.1.3, α(t) = 1. We tried h(x) = b←(x) but did not
get a conditioned limit law. In Section 6.1.3, h◦ log = b← ◦ log is neither regularly
varying, nor �-varying.
2. In Section 6.1.2, α(t) = 1. We tried h(x) = logb←(x) which led to a condi-

tioned limit law because Lemma 1 proved h ◦ log = logb← ◦ log ∈ �(log).

3. The result in (b) suggests how to construct other examples of h which lead to
conditioned limits. If g is any slowly varying function, then

∫ x
1 g(u)u−1du is �-

varying with auxiliary function g ([14], [34], page 30). Define h by h(logx) =∫ x
1 g(u)/udu or

h′(x) = g(ex), h(x) =
∫ x

0
g(eu) du.

Any such h will lead to a conditioned limit. Examples include:
• g(x) = logx and h(x) = x2/2.

• g(x) = log logx and h(x) = ∫ x
0 logudu ∼ x logx.

• g(x) = (logx)p and h(x) = xp+1

p+1 for p > 0.
For an example where h ◦ log ∈ RVp for p > 0, set

h(logx) = U(x) ∈ RVp or h(x) = U(ex).

Apply this to the convergence (42) for the bivariate normal pair (X,Y ) where
recall

β(t) = ρb(t), α(t) = 1, µ
([−∞, x] × (y,∞]) = N

(
x√

1 − ρ2

)
y−1.

Then evaluating (60) with h(log t) = U(t) ∈ RVp,p > 0, gives, with α2 ◦
β←◦ log = U that

U(tx) − U(t)

U(t)
→ xp − 1 = χ(logx).

Therefore, χ(y) = epy − 1, and from (57)

tP

[
U(eX) − U(eρb(t))

U(eρb(t))
≤ x,

b←(Y )

t
> y

]
= µ

([−∞, χ←(x)] × (y,∞])

= N

(
p−1 log(1 + x)√

1 − ρ2

)
y−1.

So for this example, β2(t) = α2(t) = U(eρb(t)).

7.2. Case B: α(t) is not asymptotically a constant. Again assume β(t) ↑ ∞
as t → ∞. Transform (59) to get

h(yα ◦ β←(t) + t) − h(t)

α2 ◦ β←(t)
→ χ(y)(61)
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which is of the form
h(t + f (t)y) − h(t)

α∗(t)
→ χ(y).

To proceed further in a way that generates a broad class examples, suppose f (t) =
α ◦ β←(t) is self-neglecting [4]. A simple sufficient condition is f ′(t) → 0 and
f self-neglecting means it is the auxiliary function of a �-varying function (see
Appendix A.2) and that

H(x) := exp
{∫ x

1

1

f (u)
du

}
∈ �(f ).

Then defining the function V by

h = V ◦ H or equivalently V = h ◦ H←

we have either ([14], page 249, [34], page 36)

(a) V ∈ � and χ(y) = log ey = y;

or

(b) V ∈ RVp,p > 0 and χ(y) = epy − 1.

Conclusion: We considered the case that β 	= o(α) and β(t) ↑ ∞ and α not
asymptotically a constant. For such a case, the change of variable X → h(X) pre-
serves conditioned limits provided h is either the composition of a �-varying func-
tion and a �-varying function or the composition of a regularly varying function
and a �-varying function. (The composition of a regularly varying function and a
�-varying function is another �-varying function; see [12], [34], page 36).

8. Discussion and concluding remarks. The statistical models proposed by
Heffernan and Tawn [21] are based on the assumption that for (X,Y ) having Gum-
bel marginal distributions, there exist normalizing functions α(·) and β(·) such that
the conditional distribution of (X −β(y))/α(y) given Y = y can be approximated
for large y by some nondegenerate, proper G(x). We have built our theory by
standardizing Y to have asymptotically Pareto distribution and looked at the con-
ditional distribution of (X−β(t))/α(t) given Y > t which also leads to conditional
distributions for (X−β(Y ))/α(Y ) given Y > t . This formulation is consistent with
the Heffernan and Tawn [21] approach and allows a mathematically precise theory
which can be related to the extended theory of multivariate regular variation.

From the perspective of statistical modeling, important results are contained in
Propositions 4 and 5. These propositions reveal the factorization of the limit dis-
tribution obtained when X is normalized by the value of Y that occurs with it.
This factorization permits a significant simplification of models based on the limit
form, as it enables the assumption of limiting independence between the condi-
tioning and standardized variables. This independence assumption was employed
in [21] and is key to statistical modeling and extrapolation.
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One issue we have not resolved is consistency of different models. The defi-
nition (5) or its standardized version (8) is not symmetric in the X,Y variables.
However, when fitting models to data one has a choice of which variable to con-
dition being large and a logical issue is whether the various models obtained by
conditioning on different variables are related to each other in any way. Conditions
for consistency would strengthen the statistical model assumptions based on this
representation and therefore potentially improve the ability of such approaches to
describe the joint distribution in tail regions where there is naturally little data.
Currently we have nothing terribly useful to say on this issue other than to point
out that it seems important to understand consistency better.

APPENDICES

For convenience, this section collects some notation, needed background on
regular variation and notions on vague convergence needed for some formulations
and proofs.

A.1. Vector notation. Vectors are denoted by bold letters, capitals for random
vectors and lower case for nonrandom vectors. For example: x = (x(1), . . . , x(d)) ∈
R

d . Operations between vectors should be interpreted componentwize so that for
two vectors x and z

x < z means x(i) < z(i), i = 1, . . . , d,

x ≤ z means x(i) ≤ z(i), i = 1, . . . , d,

x = z means x(i) = z(i), i = 1, . . . , d,

zx = (
z(1)x(1), . . . , z(d)x(d)),

x ∨ z = (
x(1) ∨ z(1), . . . , x(d) ∨ z(d)), x

z
=

(
x(1)

z(1)
, . . . ,

x(d)

z(d)

)
,

and so on. Also define 0 = (0, . . . ,0). For a real number c, denote as usual cx =
(cx(1), . . . , cx(d)). We denote the rectangles (or the higher dimensional intervals)
by

[a,b] = {x ∈ R
d : a ≤ x ≤ b}.

Higher dimensional rectangles with one or both endpoints open are defined analo-
gously, for example,

(a,b] = {x ∈ R
d : a < x ≤ b}.

A.2. The function classes � and �. Continue the domain of attraction dis-
cussion: Writing (3) as(

1

1 − F(a(t)x + b(t))

)/
t → (1 + γ x)1/γ
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and inverting yields as t → ∞

b(ty) − b(t)

a(t)
→




yγ − 1

γ
, if γ 	= 0,

logy, if γ = 0.
(62)

In case γ = 0, (62) says that b(·) ∈ �(a(·)); that is, the function b(·) is �-varying
with auxiliary function a(·) ([34], pages 26ff, [4, 11, 12]).

More generally ([4], Chapter 3, [18]) define for an auxiliary function a(t) > 0,
�+(a) to be the set of all functions π : R+ → R+ such that

lim
t→∞

π(tx) − π(t)

a(t)
= k logx, x > 0, k > 0.(63)

The class �−(a) is defined similarly except that k < 0 and

�(a) = �+(a) ∪ �−(a).

By adjusting the auxiliary function in the denominator, it is always possible to
assume k = ±1.

Two functions πi ∈ �±(a), i = 1,2, are �(a)-equivalent if for some c ∈ R

lim
t→∞

π1(t) − π2(t)

a(t)
= c.

There is usually no loss of generality in assuming c = 0.
The class of regularly varying functions with index ρ ∈ R is denoted by RVρ so

that U : R+ → R+ satisfies U ∈ RVρ if

lim
t→∞

U(tx)

U(t)
= xρ, x > 0.(64)

The following are known facts about �-varying functions.

1. We have π ∈ �+(a) iff 1/π ∈ �−(a/π2).

2. If π ∈ �+(a), then ([4], page 159 or [18], page 1031) there exists a continuous
and strictly increasing �(a)-equivalent function π0 with π − π0 = o(a).

3. If π ∈ �+(a), then

lim
t→∞π(t) =: π(∞)

exists. If π(∞) = ∞, then π ∈ RV0 and π(t)/a(t) → ∞. If π(∞) < ∞,
then π(∞) − π(t) ∈ �−(a) and π(∞) − π(t) ∈ RV0 and (π(∞) − π(t))/

a(t) → ∞. (Cf. [11], page 25.) Furthermore,

1

π(∞) − π(t)
∈ �+

(
a/

(
π(∞) − π(t)

)2)
.
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In addition to the function class � we need de Haan’s class � ([4, 11–13,
34]). A function V : R+ → R+ is a �-function with auxiliary function f [written
V ∈ �(f )] if, as t → ∞,

V (t + xf (t))

V (t)
→ ex, x > 0.

For V nondecreasing, V ∈ �(f ) iff V ← ∈ �(f ◦ V ←).

A.3. Vague convergence. For a nice space E, that is, a space which is locally
compact with countable base (e.g., a finite dimensional Euclidean space), denote
M+(E) for the nonnegative Radon measures on Borel subsets of E. This space is
metrized by the vague metric. The notion of vague convergence in this space is
as follows: If µn ∈ M+(E) for n ≥ 0, then µn converge vaguely to µ0 (written
µn

v→ µ0) if for all bounded continuous functions f with compact support we
have ∫

E

f dµn →
∫

E

f dµ0 (n → ∞).

This concept allows us to write (3) as

tP

[
Y − b(t)

a(t)
∈ ·

]
v→ mγ (·),(65)

vaguely in M+((−∞,∞]) where

mγ ((x,∞]) = (1 + γ x)−1/γ .

Standard references include [22, 29] and [34], Chapter 3.
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