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EFFICIENT IMPORTANCE SAMPLING FOR MONTE CARLO
EVALUATION OF EXCEEDANCE PROBABILITIES

BY HOCK PENG CHAN1 AND TZE LEUNG LAI2

National University of Singapore and Stanford University

Large deviation theory has provided important clues for the choice of
importance sampling measures for Monte Carlo evaluation of exceedance
probabilities. However, Glasserman and Wang [Ann. Appl. Probab. 7 (1997)
731–746] have given examples in which importance sampling measures that
are consistent with large deviations can perform much worse than direct
Monte Carlo. We address this problem by using certain mixtures of exponen-
tially twisted measures for importance sampling. Their asymptotic optimality
is established by using a new class of likelihood ratio martingales and renewal
theory.

1. Introduction. Importance sampling is a powerful technique to compute
the probabilities of rare events by Monte Carlo simulation. For an event occurring
with probability 10−4, one expects the occurrence of 1 event in every 10,000 sim-
ulation runs. Therefore, to generate 100 events would require around one million
runs for direct Monte Carlo. To simulate a small probability P(A), importance
sampling changes the measure P to Q under which A is no longer a rare event and
evaluates P(A) by

P(A) =
∫
A
(dP/dQ)dQ = EQ(L1A),(1.1)

where L = dP/dQ is the likelihood ratio. Whereas VarP (1A) = P(A)− (P (A))2,

VarQ(L1A) = EQ(L21A) − (P (A))2.(1.2)

Therefore, VarQ(L1A) can be of the order O((P (A))2) if L1A ≤ ε = O(P (A)),
whereas VarP (1A) ∼ P(A) as P(A) → 0.

In practice, it may be difficult to find Q such that (dP/dQ)1A is bounded by
ε = O(P (A)). What is needed is EQ(L21A) be of the order O((P (A))2), which
is much weaker than L1A be bounded by O(P (A)). Note that EQL = 1 whereas
EQ(L1A) = P(A) and A is not a rare event under Q. Therefore, even though
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one does not have to choose Q such that L1A is bounded by some small num-
ber, one has to be careful to avoid the situation where L1A is small with a large
Q-probability but so large with a small Q-probability that EQ(L21A) is of a larger
order of magnitude than (P (A))2. Glasserman and Wang [10] have given examples
to show how easily such situations can arise and “how poorly seemingly optimal
estimators can perform” when one does not pay attention to avoid such situations.
Their paper also gives a brief review of previous work on the choice of Q based on
large deviation theory to evaluate exceedance probabilities of random walks, and
provides examples for two types of exceedance probabilities which we describe in
greater generality below.

Let ξ, ξ1, ξ2, . . . be i.i.d. d-dimensional random vectors with common distribu-
tion F such that ψ(θ) := log(Eeθ ′ξ ) < ∞ for ‖θ‖ < θ0. Let Sn = ξ1 + · · · + ξn,
µ0 = Eξ , � = {θ :ψ(θ) < ∞}, and let � be the closure of ∇ψ(�) and �o be its
interior. Here and in the sequel we use ∇ψ to denote the gradient vector and ∇2ψ

the Hessian matrix of second partial derivatives of ψ . Then ∇ψ is a diffeomor-
phism from �o onto �o. Letting θµ = (∇ψ)−1(µ), define

φ(µ) = sup
θ∈�

{θ ′µ − ψ(θ)} = θ ′
µµ − ψ(θµ),(1.3)

which is called the rate function in the theory of large deviations. We can embed F

in the exponential family {Fθ, θ ∈ �} with dFθ(x) = eθ ′x−ψ(θ) dF (x). Letting
g :� → R, we consider in Section 2 the exceedance probabilities

pc = P

{
max

n0≤n≤n1
ng(Sn/n) ≥ c

}
,(1.4)

pn = P {g(Sn/n) ≥ b} with b > g(µ0).(1.5)

Let Qn (or Pn) denote the restriction of Q (or P ) to the σ -field Fn generated
by ξ1, . . . , ξn, and let Pµ,n denote the joint distribution of i.i.d. ξ1, . . . , ξn with
common distribution Fθµ and having mean µ. For a stopping time T , we also
denote the restriction of Q (or P , Pµ) to the stopped σ -field FT by QT (or PT ,
Pµ,T ). In the special case d = 1 and g(x) = x2 of (1.5) considered by Glasserman
and Wang [10],

pn = P
{|Sn|/n ≥ √

b
}= P {|Sn| ≥ an},

where a = √
b > |µ0| and a ∈ �o. By large deviation theory, n−1 logP {Sn ≥

an} → −φ(a) and n−1 logP {Sn ≤ −an} → −φ(−a). Suppose φ(a) < φ(−a).
Then pn ∼ P {Sn ≥ an} and

n−1 logLn
P→ −φ(a) = lim

n→∞ logP {|Sn| ≥ an},(1.6)

where Ln = dPn/dPa,n. Therefore choosing Qn = Pa,n as the importance sam-
pling measure in (1.1) for Monte Carlo computation of P {Sn ≥ an} is “consis-
tent with large deviations,” in the terminology of Glasserman and Wang ([10],
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page 734), whose Theorem 2 also shows, however, that

lim
n→∞EQn

(
L2

n1{|Sn|≥an}
)= ∞ if θa + θ−a > 0.(1.7)

Since VarP (1{|Sn|≥an}) ∼ P {|Sn| ≥ an} = e−{φ(a)+o(1)}n, (1.7) implies that using
the importance sampling measure Qn = Pa,n performs much worse than direct
Monte Carlo.

Noting that A has two “minimum rate points” ±a, Glasserman and Wang [10]
point out that the preceding difficulty with importance sampling disappears if one
uses a mixture Qn = ρPa,n + (1 − ρ)P−a,n over the minimum rate points (0 <

ρ < 1), following an earlier suggestion of Sadowsky and Bucklew [17] who have
shown that these mixture-type importance sampling measures are “asymptotically
efficient” in the sense that

EQn

(
L2

n1{|Sn|≥an}
)= e−2{φ(a)+o(1)}n.(1.8)

In Section 2 we give a considerably more precise definition of asymptotic opti-
mality, replacing the right-hand side of (1.8) by O(

√
np2

n) which we show to be
the asymptotically minimal order of the left-hand side over reasonable choices
of Qn. More importantly, we provide a much more general way for constructing
the asymptotically efficient importance sampling distribution than taking a mixture
of Pµ,n over the set of minimum rate points µ, which Sadowsky and Bucklew [17]
assume to be a finite set, for general functions g in (1.5).

Glasserman and Wang [10] also consider (1.4) for the special case d = 2 and
g(µ) = max(µ1,µ2), using xj to denote the j th component of a vector x. They
assume that Eξ1j < 0 for j = 1,2. Setting n0 = 1 and letting n1 → ∞, this special
case of (1.4) reduces to

pc = P {max(Sn,1, Sn,2) ≥ c for some n ≥ 1} = P {Tc < ∞} ∼ P
{
τ (1)
c < ∞}

if γ1 < γ2, where γ1 and γ2 are the positive solutions of ψ(γ1,0) = 0 = ψ(0, γ2)

and τ
(j)
c = inf{n :Sn,j ≥ c}, Tc = min(τ

(1)
c , τ

(2)
c ). In fact, by Cramér’s theorem

(cf. [9], page 378), P {τ (j)
c < ∞} ∼ Aje

−γj c (in which Aj is a positive constant
not depending on c). Glasserman and Wang ([10], Proposition 2) have shown that
choosing Q to be the measure under which ξ1, ξ2, . . . are i.i.d. with common dis-
tribution F(γ1,0) for Monte Carlo computation of P {Tc < ∞} is “consistent with
large deviations,” in the sense that

eγ1cLTc has a nondegenerate limiting distribution as c → ∞.(1.9)

However, they have also shown that if min{θ1 :ψ(θ1, θ2) = 0 for some θ2} > −γ1,
then

lim
c→∞EQ

(
L2

Tc
1{Tc<∞}

)= ∞,(1.10)

and therefore this choice of the importance sampling measure Q gives much larger
standard error than the direct Monte Carlo estimate of P {Tc < ∞}, for which
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EP (12{Tc<∞}) = P {Tc < ∞} ∼ A1e
−γ1c. In Section 2 we resolve this difficulty

with importance sampling based on large deviation tilting by using a mixture of
the form

QTc∧n1 =
∫

Pµ,Tc∧n1wc(µ)dµ(1.11)

for Monte Carlo evaluation of the general boundary crossing probability (1.4). We
provide an explicit formula for wc(µ) and make use of Theorem 1 of [4] to show
that this choice of Q is asymptotically optimal in the sense that EQ(L2

Tc
1{Tc<∞})

attains the asymptotically minimal order of p2
c .

Section 3 generalizes the methods and results of Section 2 to the case where Sn

is a Markov random walk, in which ξn has distribution F(·|Xn,Xn−1) depending
on a Markov chain {Xt }. Whereas the methods and results of methods and results
of [4] for asymptotic approximations of (1.4) and (1.5) when the increments ξi

of Sn are i.i.d. provide basic tools for the derivation of the asymptotically optimal
importance sampling measure Q in Section 2, the extension to Markov random
walks in Section 3 requires new probabilistic ideas. One important idea, given in
Section 3.1, is a modification of the usual likelihood ratio martingale to circumvent
difficulties with the analysis of eigenfunctions in the Ney–Nummelin [15] formula
for likelihood ratios. Section 3.2 develops a new renewal-theoretic approach to
the analysis of i.i.d. blocks between regeneration times introduced by Ney and
Nummelin [15] for Markov random walks satisfying their minorization condition.
Combining these new tools with the results and methods in [5] for the analysis of
boundary crossing probabilities, Section 3.3 generalizes (1.11) to Markov random
walks. Further refinements of these ideas are used in Section 3.4 for the exceedance
probability (1.5).

The complexity due to Markov dependence and nonlinearity in multidimen-
sional settings causes not only analytic difficulties that we resolve in Sections 2 and
3 but also implementation difficulties as the asymptotically optimal importance
sampling measure developed in these sections may be difficult to sample directly
from. In Section 4 we describe numerical methods to address certain implemen-
tation issues and provide numerical examples to illustrate the effectiveness of the
methods.

2. Asymptotically optimal importance sampling measure for Monte Carlo
evaluation of exceedance probabilities. In this section, we derive asymptoti-
cally optimal importance sampling measures Q∗

c and Q∗
n for Monte Carlo evalu-

ation of the boundary crossing probability (1.4) and the tail probability (1.5). In
particular, it gives an explicit formula (2.1) for a mixing density wc(µ) in (1.11)
that yields Q∗

c . The measure Q∗
n involves a similar mixing density w̃n(µ) given

by (2.13).
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2.1. Boundary crossing probabilities. Let Tc = inf{n ≥ n0 :ng(Sn/n) ≥ c}.
Then (1.4) can be written as pc = P {Tc ≤ n1}. To derive an asymptotically op-
timal importance sampling measure Q∗

c for Monte Carlo evaluation of pc, we as-
sume the following regularity conditions (A1)–(A5) on g that have been used by
Chan and Lai [4] to develop large deviation approximations to pc. Define the rate
function φ by (1.3) and let ∂� be the boundary of �, | · | denote the determinant of
a square matrix, 
(µ) = ∇2ψ(θµ), and T M(µ) be the tangent space and T M⊥(µ)

the normal space of a manifold M at µ.

(A1) There exist 0 < δ < a < ∞ and 0 < ε0 < a−1 such that n0 ∼ δc, n1 ∼ ac

and

sup
a−1−ε0<g(µ)<δ−1+ε0

g(µ)/φ(µ) = r < ∞.

(A2) Mε := {µ :a−1 − ε < g(µ) < δ−1 + ε and g(µ)/φ(µ) = r} is a
q-dimensional oriented manifold for all 0 ≤ ε ≤ ε0, where q ≤ d .

(A3) lim infµ→∂� φ(µ) > (δr)−1 and there exists ε1 > 0 such that φ(µ) >

(δr)−1 + ε1 if g(µ) > δ−1 + ε0.
(A4) g is twice continuously differentiable and σ({µ :g(µ) = δ−1 and g(µ)/

φ(µ) = r}) = 0, where σ is the volume element measure of Mε0 .
(A5) infµ∈M0 |∇2⊥ρ(µ)| > 0 with ρ = φ − g/r , where ∇2⊥ρ(µ) =

(�⊥
µ)′∇2ρ(µ)�⊥

µ and �⊥
µ denotes the d × (d − q) matrix whose column vectors

form an orthonormal basis of T M⊥
0 (µ) in the case d > q , and we set |∇2⊥ρ(µ)| = 1

if d = q .

Chan and Lai [4] have given a number of important statistical applications in
which (A1)–(A5) are satisfied. In particular, if g = φ, then (A1)–(A5) hold with
r = 1, q = d and Mε = {µ :a−1 − ε < g(µ) < δ−1 + ε}. The linear function
g(µ) = r[θ ′

µ0
µ − ψ(θµ0)] also satisfies (A1)–(A5) with Mε = {µ0} and q = 0

if a−1 < g(µ0) < δ−1, but violates (A4) if g(µ0) = δ−1. Under (A1)–(A5), let
�∗ = {µ ∈ � :φ(µ) ≤ (δr)−1 + ε1 and δ−1 + ε0 > g(µ) > a−1 − ε0} and define

wc(µ) = βc

{[g(µ)]−d/2e−cφ(µ)/g(µ)1{µ∈�∗}
(2.1)

+ δd/2e−n0φ(µ)1{φ(µ)>(δr)−1+ε1/2}
}
,

where βc is a normalizing constant such that
∫
� wc(µ)dµ = 1. With this choice

of wc, define Q∗
c by the right-hand side of (1.11). The importance sampling

method to evaluate pc by Monte Carlo involves generating m independent sam-
ples (ξ

(i)
1 , . . . , ξ

(i)
Tc∧n1

), i = 1, . . . ,m, from Q∗
c so that

p̂c = m−1
m∑

i=1

L(i)
c 1{T (i)

c ≤n1}(2.2)
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provides an unbiased estimate of pc, where

1

L
(i)
c

= dQ∗
c

dP
T

(i)
c ∧n1

(
ξ

(i)
1 , . . . , ξ

(i)

T
(i)
c ∧n1

)
(2.3)

=
∫
�

e
θ ′
µS

(i)
Tc∧n1

−(T
(i)
c ∧n1)ψ(θµ)

wc(µ)dµ.

In Section 4, we give details about how to draw the ξ
(i)
t from the mixture distribu-

tion Q∗
c .

To explain the motivation underlying the definition of wc(µ), we begin by con-
sidering importance sampling to evaluate P {Sn/n ∈ An} for a closed bounded
set An such that Eξ1 /∈ An. An asymptotically optimal importance density is one
that is proportional to e−nφ(µ)1{µ∈An}. This suggests that to simulate the probabil-
ity of the event

{Tc ≤ n1} = {ng(Sn/n) ≥ c for some n0 ≤ n ≤ n1} =
n1⋃

n=n0

{ng(Sn/n) ≥ c},

it may be optimal to choose an importance density that is proportional to

sup
n0≤n≤n1

e−nφ(µ)1{ng(µ)≥c}

= e−[c/g(µ)]φ(µ)1{c/n0≥g(µ)≥c/n1} + e−n0φ(µ)1{g(µ)>c/n0},

in which the supremum on the left-hand side is taken over all real numbers lying
between n0 and n1. The formula (2.1) modifies this slightly to facilitate the proof
of asymptotic optimality.

We call an importance sampling measure Qc asymptotically optimal for evalu-
ating pc if

EQc

[(
dPTc∧n1

dQc

)2

1{Tc≤n1}
]

= O(p2
c ).(2.4)

As will be shown in Section 4, there is considerable flexibility in the choice of an
asymptotically optimal mixing density. Since EQc [(dPTc∧n1/dQc)1{Tc≤n1}] = pc,
the left-hand side of (2.4) is ≥ p2

c by the Cauchy–Schwarz inequality, so the right-
hand side of (2.4) indeed gives an asymptotically minimal order to justify the “as-
ymptotic optimality” of (2.4). The following theorem establishes the asymptotic
optimality of Q∗

c defined by (1.11) and (2.1).

THEOREM 1. Assume (A1)–(A5) and define Q∗
c by (1.11) and (2.1). Then

Q∗
c satisfies (2.4) and is therefore an asymptotically optimal importance sampling

measure.
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PROOF. By considering g/r and c/r , we can assume without loss of general-
ity that r = 1. We first assume also that F is nonlattice so that Theorem 1 of [4]
can be applied, yielding

pc ∼ C′cq/2e−c(2.5)

for some C′ > 0. By (2.1) and (A3),

β−1
c =

∫
�
[wc(µ)/βc]dµ

≤ δd/2
∫
φ(µ)>δ−1+ε1/2

e−n0φ(µ) dµ(2.6)

+ (a−1 − ε0)
−d/2e−c

∫
a−1−ε0<g(µ)<δ−1+ε0

e−cρ(µ)/g(µ) dµ.

Making use of (A5) and arguments similar to those in the proofs of Theorems 1
and 2 of [4], it can be shown that∫

a−1−ε0<g(µ)<δ−1+ε0

e−cρ(µ)/g(µ) dµ = O
(
c−(d−q)/2),(2.7) ∫

φ(µ)>δ−1+ε1/2
e−n0φ(µ) dµ = O

(
n

−(d−1)/2
0 e−n0(δ

−1+ε1/2))
(2.8)

= O
(
c−(d−1)/2e−c(1+δε1/3)).

Combining (2.7) and (2.8) with (2.6) yields

β−1
c = O

(
c(q−d)/2e−c) as c → ∞.(2.9)

Let B(c; µ̂) = {µ :‖µ − µ̂‖ ≤ c−1/2}. Recalling that n0 ∼ δc and n1 ∼ ac, we
show in the next paragraph that as c → ∞,

βc

/(∫
B(c;µ̂)

eT [θ ′
µµ̂−ψ(θµ)]wc(µ)dµ

)
= O(cd/2)(2.10)

uniformly in n0 ≤ T ≤ n1 and T g(µ̂) ≥ c. Let ξ̄n = Sn/n. From (2.9) and (2.10),
it follows that(∫

�
eTc[θ ′

µξ̄Tc−ψ(θµ)]wc(µ)dµ

)−2

1{Tc≤n1} = O(cqe−2c),(2.11)

recalling that Tcg(ξ̄Tc) ≥ c. In view of (2.3), the desired conclusion (2.4) for Q∗
c

follows from (2.5) and (2.11).
To prove (2.10), first consider the case infµ∈B(c;µ̂) φ(µ) > δ−1 + ε1/2. Then for

T ≥ n0,∫
B(c;µ̂)

eT [θ ′
µµ̂−ψ(θµ)][wc(µ)/βc]dµ ≥ δd/2

∫
B(c;µ̂)

eT [θ ′
µµ̂−ψ(θµ)]−T φ(µ) dµ

= δd/2
∫
B(c;µ̂)

eT θ ′
µ(µ̂−µ) dµ,
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so (2.10) holds. The complementary case infµ∈B(c;µ̂) φ(µ) ≤ δ−1 + ε1/2 implies
that there exists A > 0 such that ‖µ̂‖ ≤ A, uniformly in c ≥ 1. Since

sup
‖µ̂‖≤A

[
sup

µ∈B(c;µ̂)

φ(µ) − inf
µ∈B(c;µ̂)

φ(µ)

]
≤ ε1/2

for all large c, it suffices to consider the case supµ∈B(c;µ̂) φ(µ) ≤ δ−1 + ε1. In this
case, for T ≤ n1 and T g(µ̂) ≥ c with c sufficiently large, g(µ̂) ≥ c/n1 ≥ a−1 +
o(1), so µ ∈ �∗ for all µ ∈ B(c; µ̂). Therefore, letting ζ = infµ∈�∗[g(µ)]−d/2,∫

B(c;µ̂)
[wc(µ)/βc] exp{T [θ ′

µµ̂ − ψ(θµ)]}dµ

≥ ζ

∫
B(c;µ̂)

exp{T [θ ′
µµ̂ − ψ(θµ)] − cφ(µ)/g(µ)}dµ

= ζ

∫
B(c;µ̂)

exp{T θ ′
µ(µ̂ − µ)

+ [T − c/g(µ̂)]φ(µ) + c[1/g(µ̂) − 1/g(µ)]φ(µ)}dµ

≥ ζe−η/2 Vol
(
B(c; µ̂) ∩ {µ : (µ − µ̂)′∇f (µ̂) ≥ 0}),

where f (µ) = (T /c)θ ′
µ(µ̂ − µ) + [1/g(µ̂) − 1/g(µ)]φ(µ) so that f (µ̂) = 0, and

Taylor’s theorem yields η > 0 such that f (µ) ≥ (µ − µ̂)′∇f (µ̂) − η‖µ − µ̂‖2/2
for all µ ∈ B(c; µ̂) and large c. It then follows that (2.10) also holds when
supµ∈B(c;µ̂) φ(µ) ≤ δ−1 + ε1, noting that ζ ≥ (δ−1 + ε1)

−d/2 by (A1), with r = 1,
in this case.

When F is lattice, the preceding arguments can still be used with some minor
modifications. In particular, the asymptotic formula (2.5) can be replaced by the
weaker result

0 < lim inf
c→∞ pc/{cq/2e−c} ≤ lim sup

c→∞
pc/{cq/2e−c} < ∞(2.12)

in the lattice case, which suffices to yield (2.4) for Q∗
c from (2.3) and (2.10); see

the remark following the proof of Theorem 2. �

2.2. Tail probabilities of g(Sn/n). Define

w̃n(µ) = β̃ne
−nφ(µ)1{g(µ)≥b}, µ ∈ �,(2.13)

where φ is the rate function given in (1.3) and β̃n is a normalizing constant such
that

∫
� w̃n(µ)dµ = 1. Let

Q∗
n =

∫
�

Pµ,nw̃n(µ)dµ.(2.14)
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We propose to use Q∗
n as the importance sampling measure from which (ξ

(i)
1 , . . . ,

ξ
(i)
n ), i = 1, . . . ,m, are generated so that

p̂n = m−1
m∑

i=1

L(i)
n 1{g(S

(i)
n /n)≥b}(2.15)

provides a Monte Carlo estimate of pn, where S
(i)
n = ξ

(i)
1 + · · · + ξ

(i)
n and

1

L
(i)
n

= dQ∗
n

dPn

(
ξ

(i)
1 , . . . , ξ (i)

n

)= ∫
�

eθ ′
µS

(i)
n −nψ(θµ)w̃n(µ)dµ.

Note that p̂n is an unbiased estimate of pn with

Var(p̂n) = m−1VarQ∗
n

(
L(i)

n 1{g(S
(i)
n /n)≥b}

)
(2.16)

= [
EQ∗

n

(
L2

n1{g(Sn/n)≥b}
)− p2

n

]
/m.

We call an importance sampling measure Qn asymptotically optimal for evalu-
ating the tail probability (1.5) if

EQn

[(
dPn

dQn

)2

1{g(Sn/n)≥b}
]

= O
(√

np2
n

)
.(2.17)

Under certain regularity conditions, the following theorem shows that Q∗
n is as-

ymptotically optimal. These regularity conditions are the same as those in The-
orem 2 of [4] on large deviation approximations to P {g(Sn/n) ≥ b}, which we
restate below using the same notation:

(B1) g is continuous on �o and inf{φ(µ) :g(µ) ≥ b} = b/r for some r > 0.
(B2) g is twice continuously differentiable on {µ ∈ �o :b − ε0 < g(µ) < b +

ε0} for some ε0 > 0.
(B3) ∇g(µ) �= 0 on N := {µ ∈ �o :g(µ) = b}, and M := {µ ∈ �o :g(µ) =

b,φ(µ) = b/r} is a smooth q-dimensional manifold (possibly with boundary) for
some 0 ≤ q ≤ d − 1.

(B4) lim infµ→∂� φ(µ) > br−1 and infg(µ)>b+δ φ(µ) > br−1 for every δ > 0.
(B5) infµ∈M |�′

µ{
−1(µ) − s∇2g(µ)}�µ| > 0 if d > q + 1, where s =
‖∇φ(µ)‖/‖∇g(µ)‖, e1(µ) = ∇φ(µ)/‖∇φ(µ)‖, {e1(µ), e2(µ), . . . , ed−q(µ)} is
an orthonormal basis of T M⊥(µ) which is a (d − q)-dimensional linear space in
view of (B3), and �µ is the d × (d − q − 1) matrix (e2(µ) · · · ed−q(µ)).

Chan and Lai ([4], pages 1646–1648) have given several important statistical
examples in which (B1)–(B5) are satisfied.

Bucklew, Nitinawarat and Wierer [3] have considered an alternative to
w̃n(µ)dµ for the mixing measure in (2.14). Specifically they consider Q̃n =∫

Pµ,n dW̃ (µ), in which unlike (2.1), W̃ does not depend on n and the distrib-
ution of ξ and assigns all its mass to {µ :g(µ) = b}. The price for using these
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universal simulation distributions is that (2.17) has to be replaced by a weaker
logarithmic efficiency property

Ep̂2
n = p2

ne
o(n) as n → ∞.(2.18)

The following theorem justifies the definition (2.17) of asymptotic optimality by
showing that

√
np2

n is the minimal order of magnitude for the left-hand side
of (2.17) when Qn is the joint distribution of i.i.d. ξ1, . . . , ξn with distribution G

such that

F(A) > 0 ⇒ G(A) > 0(2.19)

for any Borel set A ⊂ Rd , and such that λ(θ) := log[∫ eθ ′xG(dx)] < ∞ for all
‖θ‖ ≤ θ1. More generally, letting � = {θ :λ(θ) < ∞}, Gθ be the distribution func-
tion defined by dGθ(x) = exp{θ ′x − λ(θ)}dG(x) for θ ∈ �, θ̃µ = (∇λ)−1(µ)

and Wn be a distribution function on � := ∇λ(�), it considers Qn of the form

Qn =
∫
�

Qµ,n dWn(µ),(2.20)

where Qµ,n is the joint distribution of i.i.d. ξ1, . . . , ξn with common distribu-
tion Gθ̃µ

.

THEOREM 2. Assume that g satisfies (B1)–(B5). Let G be a distribution func-
tion on Rd satisfying (2.19) and such that

∫
eθ ′x dG(x) < ∞ for θ in some neigh-

borhood of the origin. Define Qn from G via (2.20), where Wn is any probability
distribution on � := ∇λ(�). Then

lim inf
n→∞ EQn

[(
dPn

dQn

)2

1{g(Sn/n)≥b}
]/(√

np2
n

)
> 0.(2.21)

Moreover, (2.17) holds for Qn = Q∗
n, where Q∗

n is defined by (2.13) and (2.14).

PROOF. Dividing g and b by r , we assume without loss of generality that
r = 1. To prove that (2.17) holds for Q = Q∗

n, let B(n; µ̂) = {µ :‖µ− µ̂‖ ≤ n−1/2}
be a ball of radius n−1/2 centered at µ̂, and we shall show that there exists α > 0
such that∫

B(n;µ̂)
en{θ ′

µµ̂−ψ(θµ)}w̃n(µ)dµ ≥ αn−q/2ebn whenever g(µ̂) ≥ b.(2.22)

Note that (2.13) yields

en{θ ′
µµ̂−ψ(θµ)}w̃n(µ) = β̃ne

nθ ′
µ(µ̂−µ)1{g(µ)≥b}.(2.23)

We first assume that F is nonlattice so that we can apply Theorem 2 of [4] and its
proof to show that for some C > 0,

pn ∼ Cn(q−1)/2e−bn,(2.24)
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β̃−1
n =

∫
g(µ)≥b

e−nφ(µ) dµ = O
(
n(q−1−d)/2e−bn),(2.25)

and that there exists α′ > 0 for which∫
B(n;µ̂)∩{µ:g(µ)≥b}

enθ ′
µ(µ̂−µ) dµ ≥ α′n−(d+1)/2 whenever g(µ̂) ≥ b.(2.26)

Combining (2.23) with (2.25) and (2.26) yields (2.22) for some α > 0. Let ξ̄n =
n−1∑n

1 ξi . Then

EQ∗
n

[(
dPn

dQ∗
n

)2

1{g(ξ̄n)≥b}
]

≤ EQ∗
n

[{∫
B(n,ξ̄n)

en(θ ′
µξ̄n−ψ(θµ))w̃n(µ)dµ

}−1 dPn

dQ∗
n

1{g(ξ̄n)≥b}
]

(2.27)

≤ α−1nq/2e−bnP {g(Sn/n) ≥ b}
by (2.22), noting that EQ∗

n
[(dPn/dQ∗

n)1{g(ξ̄n)≥b}] = P {g(ξ̄n) ≥ b}. From (2.24)
and (2.27), it follows that (2.17) holds for Qn = Q∗

n.
To prove that (2.21) holds for Qn of the form (2.20), we construct neighbor-

hoods Un of M such that g(µ) ≥ b for µ ∈ Un and

lim inf
n→∞ P {Sn/n ∈ Un}/pn > 0.(2.28)

Recall that e1(y), . . . , ed−q(y) form an orthonormal basis of T M⊥(y) and that
g = φ on M . By (B1) and (B3) with r = 1, φ − g ≥ 0 on N with equality at-
tained on M . Hence, for all y ∈ M , ∇(φ − g)(y) ∈ T N⊥(y). Similarly, g is
constant on N and therefore ∇g(y) ∈ T N⊥(y) for all y ∈ N . Since T N⊥(y) is
of dimension 1, it then follows that for every y ∈ M , ∇g(y) is a scalar multi-
ple of e1(y) = ∇φ(y)/‖∇φ(y)‖. For y ∈ M and max1≤i≤d−q |vi | ≤ n−1/2, since

g(y) = b and (∇g(y))′∑d−q
i=1 viei(y) = v1‖∇φ(y)‖/s, Taylor’s expansion yields

g

(
y +

d−q∑
i=1

viei(y)

)
= b + v1‖∇φ(y)‖/s + O(v2

1) − c(v) + o(‖v‖2),(2.29)

where v = (v2, . . . , vd−q)
′ and c(v) = −v′�′

y∇2g(y)�yv/2. Let

Un =
{
y +

d−q∑
i=1

viei(y) :y ∈ M,2n−1 ≥ v1 − sc(v)/‖∇φ(y)‖ ≥ n−1,

max
2≤i≤d−q

|vi | ≤ n−1/2

}
,

and note that g ≥ b on Un by (2.29). When m−1Sm has a bounded continuous
density f (m) for some m ≥ 1, the saddlepoint approximation

f (n)(µ) = (
1 + o(1)

)
(n/2π)d/2|
(µ)|−1/2e−nφ(µ)(2.30)
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holds uniformly over compact sets of µ, and we can integrate (2.30) over Un to
obtain

P {Sn/n ∈ Un} = (
1 + o(1)

)
(n/2π)d/2

∫
Un

|
(µ)|−1/2e−nφ(µ) dµ.(2.31)

More generally, when F is nonlattice, we can use a tilting argument and a local
central limit theorem as in [4], pages 1651–1652, to show that (2.31) still holds.
The integral in (2.31) can be evaluated by the same method as that in [4], pages
1650–1653, involving a change of variables for tubular neighborhoods, thereby
deriving (2.28) from (2.31) and (2.24).

Let Un,µ = {√n(x − µ) :x ∈ Un} and apply the central limit theorem to con-
clude that

Qµ,n{Sn/n ∈ Un}
= Qµ,n{n−1/2(Sn − nµ) ∈ Un,µ}
=
∫
Un,µ

(2π)−d/2|∇2λ(θ̃µ)|−1/2 exp
(−z′∇2λ(θ̃µ)z/2

)
dz(2.32)

+ O(n−1/2)

= O(n−1/2)

uniformly in �. Let Qn be of the form (2.20). In view of (2.32),

Qn{Sn/n ∈ Un} = O(n−1/2).(2.33)

Letting γn = Qn{Sn/n ∈ Un} and defining the probability measure Q̂n(·) =
Qn(·|Sn/n ∈ Un), note that γn ≤ δn−1/2 for some δ > 0 by (2.33) and that

EQn

[(
dPn

dQn

)2

1{g(Sn/n)≥b}
]

≥ EQn

[(
dPn

dQn

)2

1{Sn/n∈Un}
]

= γnEQ̂n
[(dPn/dQn)

2] ≥ γn

{
E

Q̂n
(dPn/dQn)

}2

= γn{γ −1
n P (Sn/n ∈ Un)}2 ≥ δ−1√nP 2(Sn/n ∈ Un).

Therefore (2.21) follows from (2.28).
When F is lattice, we have in place of (2.24),

0 < lim inf
c→∞ pn/

{
n(q−1)/2e−bn}≤ lim sup

c→∞
pn/

{
n(q−1)/2e−bn}< ∞,(2.34)

and hence (2.17) follows from (2.25)–(2.27). �

REMARK. Suppose F is lattice and let L0 (of full rank d) be the minimal
lattice of ξ1. In place of (2.30), we now have

P {Sn = u} = (
h0 + o(1)

)
(2πn)−d/2|
(u/n)|−1/2e−nφ(u/n),(2.35)



452 H. P. CHAN AND T. L. LAI

uniformly over compact subsets of u/n, with u ∈ L0, where h0 > 0 is some con-
stant depending only on L0. By summing up (2.35) over u/n ∈ Un, we obtain

P {Sn/n ∈ Un} = (
h0 + o(1)

)
(2πn)−d/2

∑
u/n∈Un,u∈L0

|
(u/n)|−1/2e−nφ(u/n),

which can be used to replace (2.31) in the preceding argument.

3. Regeneration, eigenfunctions, eigenmeasures and extension of Theo-
rem 1 to Markov random walks. Let {(Xn,Sn) :n = 0,1, . . .} be a Markov ad-
ditive process on X × Rd with transition kernel

P(x,A × B) := P {(X1, S1) ∈ A × (B + s)|(X0, S0) = (x, s)}
= P {(X1, S1) ∈ A × B|(X0, S0) = (x,0)},

for any measurable subset A ⊂ X, Borel set B ⊂ Rd and s ∈ Rd . We assume
that {Xn} is aperiodic and irreducible with respect to some maximal irreducibility
measure ϕ. Let S0 = 0 and define ξn = Sn − Sn−1, so that Sn = ξ1 + · · · + ξn

is a Markov random walk with increments ξi . We shall assume the minorization
condition

P(x,A × B) ≥ h(x,B)ν(A)(3.1)

for some probability measure ν and measure h(x, ·) that is positive for all x be-
longing to a ϕ-positive set. Under (3.1) or its variant P(x,A×B) ≥ h(x)ν(A×B),
Ney and Nummelin [15] have shown that (Xn,Sn) admits a regeneration scheme
with i.i.d. inter-regeneration times for an augmented Markov chain, which is called
the “split chain.” Letting τ be the first time (> 0) to reach the atom of the split
chain and assuming that

� := {
(θ, ζ ) :Eνe

θ ′Sτ −τζ < ∞}
is an open neighborhood of 0,(3.2)

they have shown that for θ ∈ � := {θ : (θ, ζ ) ∈ � for some ζ }, the kernel
P̂θ (x,A) := ∫

eθ ′sP (x,A × ds) has a maximal simple eigenvalue eψ(θ), whe-
re ψ(θ) is the unique solution of the equation Eνe

θ ′Sτ −τψ(θ) = 1, with correspond-
ing eigenfunction

r(x; θ) = Exe
θ ′Sτ −τψ(θ).(3.3)

Moreover, ψ(θ) is strictly convex and analytic on � and there exists a full set F

[i.e., ϕ(F c) = 0] such that

Exe
θ ′Sτ −τζ < ∞ for all x ∈ F and (θ, ζ ) ∈ �.(3.4)

Therefore, under (3.1) and (3.2), P can be embedded in an exponential family

Pθ(x, dy × ds) = eθ ′s−ψ(θ)P (x, dy × ds)r(y; θ)/r(x; θ), θ ∈ �.(3.5)
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By (3.1) and (3.5), Pθ satisfies the minorization condition

Pθ(x,A × B) ≥ hθ(x,B)νθ (A) where νθ (dy) =
∫
A

r(y; θ)ν(dy)(3.6)

and hθ(x,B) = ∫
B h(x, dz)eθ ′z−ψ(θ)/r(x; θ). Let π(θ) be the stationary distribu-

tion under Pθ and denote π(0) simply by π .
For the special case of i.i.d. ξi , eψ(θ) is the moment generating function E(eθ ′ξi )

and r(·; θ) = 1. Since r(x; θ) is uniformly positive and bounded under the uni-
form recurrence condition that there exist b > a > 0 and a probability measure
ν on X × Rd for which aν(A × B) ≤ P(x,A × B) ≤ bν(A × B),∀x ∈ X, and
measurable subsets A and B (cf. [11]), it is straightforward to generalize Theorem
1 to uniformly recurrent Markov additive processes. While the uniform recurrence
assumption covers the case of finite X, it is too strong for applications to time
series and stochastic dynamical systems. Although the same exponential tilting
formula (3.5) still holds under the much weaker minorization condition (3.1) than
uniform recurrence, r(XT ; θ) needs no longer be uniformly positive and bounded
and its presence in the likelihood ratio statistic dPθ,T /dP0,T makes the latter in-
tractable. Thus, Ney and Nummelin [15, 16] have to restrict Xn to “s-sets” on
which r(Xn; θ) is within certain bounds when they use (3.5) to analyze large de-
viation probabilities on Sn/n.

To circumvent the intractability of the likelihood ratio statistic, we make use
of regeneration times and the representation (3.3) of the eigenfunction to con-
struct a modified likelihood ratio martingale in Section 3.1. We then bound the
second moment of the likelihood ratio statistic multiplied by 1{T g(ST /T )≥c} by that
of the modified likelihood ratio martingale, which we analyze by applying renewal
theory to the independent blocks between regeneration times and using an eigen-
measure to bound each of these blocks. Finiteness of the eigenmeasures has been
established in Section 3 of [5] under certain “drift conditions” of the type in [14],
and we weaken somewhat these conditions in Section 3.1. To highlight the new
ideas that are needed for Markov random walks satisfying the minorization condi-
tion (3.1), we consider in Section 3.2 the special case d = 1 and g(µ) = µ, with
n0 = 1 and n1 = ∞, and prove a general theorem (Theorem 4) that yields as corol-
laries (i) a generalization, to the Markovian setting, of Siegmund’s [18] result on
asymptotic optimality of Pθ∗,Tc (degenerate mixture over θ ) for i.i.d. ξi , and (ii)
a definitive solution of Collamore’s [7] closely related problem on simulating ruin
probabilities of multidimensional Markov random walks. Theorem 4 is also used
to generalize Theorems 1 and 2 to the Markovian setting in Sections 3.3 and 3.4,
where comparison with the dynamic importance sampling method recently devel-
oped by Dupuis and Wang [8] is also given.

3.1. A modified likelihood ratio martingale. Let Fn be the σ -field generated
by X0, . . . ,Xn, ξ1, . . . , ξn. Assuming (3.1), Ney and Nummelin ([16], page 596)
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have shown how a sequence of regeneration times 0 < τ = τ(1) < τ(2) < · · · can
be constructed with the following three properties: For k ≥ 1,

τ(k + 1) − τ(k) are i.i.d. random variables;(3.7)

the random blocks
{
Xτ(k), . . . ,Xτ(k+1)−1, ξτ(k)+1, . . . , ξτ(k+1)

}
(3.8)

are independent;
Px

{
Xτ(k) ∈ A|Fτ(k)−1, ξτ(k)

}= ν(A) for all x ∈ X
(3.9)

and measurable subsets A of X.

Moreover, for every n ≥ 1, there exists a measure hn(x, ·) such that

Px{τ = n and (Xn, ξn) ∈ A × B} = ν(A)hn(x,B) for all x ∈ X,(3.10)

which is an extension of the regeneration lemma of Athreya and Ney [1] to Markov
additive processes.

Set τ(0) = 0. Given a stopping time T , define the stopping time

U = inf{u > T :u = τ(k) for some k ≥ 1}.(3.11)

For θ ∈ �, define

Zn(θ) =
{

eθ ′Sn−nψ(θ)r(Xn; θ), if n < U ,
eθ ′SU−Uψ(θ), if n ≥ U.

(3.12)

Let Gn be the smallest σ -field containing Fn ∪ σ {τ(k)1{τ(k)≤n}, k ≥ 1}.
THEOREM 3. Zn(θ) is a martingale with respect to Gn under the transition

kernel P .

PROOF. For simplicity we shall write Zn instead of Zn(θ). Let Wn =
eθ ′Sn∧U−(n∧U)ψ(θ) r(Xn∧U ; θ). Then Wn is a martingale; in fact, (3.5) yields the
likelihood ratio martingale

n∏
i=1

{
eθ ′ξi−ψ(θ)r(Xi; θ)/r(Xi−1; θ)

}= eθ ′Sn−nψ(θ)r(Xn; θ)/r(x; θ)(3.13)

under P . Combining (3.12) with

Wn =
{

eθ ′Sn−nψ(θ)r(Xn; θ), if n < U,

eθ ′SU−Uψ(θ)r(XU ; θ), if n ≥ U,

and noting that Zn = Wn on {U > n}, we obtain

E
[
(Zn+1 − Wn+1)1{U>n+1}|Gn

]= (Zn − Wn)1{U>n+1} = 0,

E
[
(Zn+1 − Wn+1)1{U≤n}|Gn

]= (Zn − Wn)1{U≤n} = Zn − Wn,

E
[
Zn+11{U=n+1}|Gn

]= eθ ′Sn−nψ(θ)EXn

[
eθ ′ξ1−ψ(θ)1{τ=1}

]
1{T ≤n,U>n},

E
[
Wn+11{U=n+1}|Gn

]= eθ ′Sn−nψ(θ)

× EXn

[
eθ ′ξ1−ψ(θ)r(X1; θ)1{τ=1}

]
1{T ≤n,U>n}.
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Since Px{τ = 1 and (X1, ξ1) ∈ A × B} = ν(A)h1(x,B) by (3.10) and since
ν(X) = 1 and

∫
r(z; θ)ν(dz) = Eνe

θ ′Sτ −τψ(θ) = 1,

Ex

[
eθ ′ξ1−ψ(θ)1{τ=1}

]= ∫
eθ ′z−ψ(θ)h1(x, dz),

Ex

[
eθ ′ξ1−ψ(θ)r(X1; θ)1{τ=1}

]= [∫
eθ ′z−ψ(θ)h1(x, dz)

][∫
r(y; θ)ν(dy)

]
=
∫

eθ ′z−ψ(θ)h1(x, dz).

Therefore, E[(Zn+1 − Wn+1)1{U=n+1}|Gn] = 0. It then follows that E[(Zn+1 −
Wn+1)|Gn] = Zn − Wn. �

The preceding proof shows that for a given stopping time T (in particular the Tc

in Section 2.1), we first replace T by the regeneration time U immediately after T

and consider the stopped likelihood ratio martingale Wn that replaces n in (3.13) by
n∧U . The modified likelihood ratio martingale (3.12) further replaces r(Xn∧U ; θ)

by 1 on the event {n ≥ U}. The reason why this modification helps is that it enables
us to bound each of the independent blocks in (3.8) up to the stopping time U by
some eigenmeasure of X. For x ∈ X, define

�x(A; θ, ζ ) = Ex

[
τ−1∑
n=0

eθ ′Sn−nζ 1{Xn∈A}
]
,(3.14)

and let �ν denote
∫

�x dν(x). Then �ν(·; θ,ψ(θ)) is the left eigenmeasure asso-
ciated with the eigenvalue eψ(θ); see [15, 16]. The finiteness of �ν(X; θ,ψ(θ))

and �x(X; θ,ψ(θ)) has been studied by Chan and Lai ([5], pages 406–409) un-
der certain drift-type conditions. The following lemma considers more generally
�ω(θ, ζ ) := �ω(X; θ, ζ ) instead of requiring ζ = ψ(θ), with ω = x or ν, and can
be proved by the same arguments as those used to prove Theorem 4 of [5].

LEMMA 1. Assume (3.1) and (3.2). Let (θ, ζ ) ∈ �. Suppose there exist 0 <

β < 1, a > 0, a measurable subset C of X with �ν(C; θ, ζ ) < ∞ and �x(C; θ, ζ ) <

∞ for all x ∈ X, and a measurable function u :X → [1,∞) such that:

(U1) Ex[eθ ′ξ1−ζ u(X1)] ≤ (1 − β)u(x) for all x /∈ C,
(U2) supx∈C Ex[eθ ′ξ1−ζ u(X1)] ≤ a and

∫
u(x)ν(dx) < ∞.

Then �ν(θ, ζ ) < ∞ and �x(θ, ζ ) < ∞ for all x ∈ X.

3.2. Extension of Siegmund’s result on exponential tilting to Markov random
walks. In the case of i.i.d. ξi for which eψ(θ) is the moment generating func-
tion and whose common mean is negative, Siegmund [18] considered the stopping
times

Tc = inf{n ≥ 1 :Sn ≥ c}, T ′ = inf{n ≥ 1 :Sn ≤ −a},(3.15)
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with 0 < a < ∞, and proposed to use the importance sampling measure Pθ∗ for
Monte Carlo evaluation of pc := P {Tc < T ′}, where θ∗ is the unique positive root
of ψ(θ) = 0. He also showed that when Pθ is used as the importance sampling
measure, yielding the unbiased estimator

p̂θ,c := e−θSTc+Tcψ(θ)1{Tc<T ′},(3.16)

the asymptotically optimal choice of θ as c → ∞ is θ∗ because Eθ∗p̂
2
θ∗,c/

Eθ p̂
2
θ,c → 0 exponentially fast, for all θ �= θ∗. Lehtonen and Nyrhinen [12, 13]

considered estimation of pc for a = ∞ and showed that the logarithmic efficiency
property

Ep̂2
c,θ∗ = p2

c e
o(c) as c → ∞(3.17)

holds when the Markov additive process is uniformly recurrent. In this section we
make use of the tools developed in Section 3.1 to extend these results to more
general Markov random walks and provide a more precise measure of asymptotic
efficiency; see Corollary 1. More importantly, we use these tools to prove the fol-
lowing theorem in which the stopping time T need not be of the form (3.15).
The theorem, which will be applied in Section 3.3 to generalize Theorem 1 to the
Markovian setting, considers the more general d-dimensional case and involves
the reciprocal Rn(θ, ζ ) of a modified likelihood ratio statistic which is similar to
that in (3.12):

Rn(θ, ζ ) = e−θ ′Sn+nζ .(3.18)

Let x0 denote the initial state which we assume to belong to the full set F satisfy-
ing (3.4).

THEOREM 4. Assume (3.1) and (3.2). Let T be a stopping time and de-
fine U by (3.11). Suppose (4θ,4ζ ) and (−2θ,−2ζ ) belong to �, �x0(4θ,4ζ ) +
�ν(4θ,4ζ ) < ∞ and θ ′Eπ(θ)ξ1 �= ζ . Then Eθ [R2

U(θ, ζ )1{θ ′ST −T ζ≥c}] = O(e−2c)

as c → ∞, where Rn(θ, ζ ) is defined in (3.18).

COROLLARY 1. Let d = 1 and define Tc by (3.15) and

p̂θ∗,c = e−θ∗STc
[
r(x0; θ∗)/r

(
XTc; θ∗

)]
1{Tc<∞}.(3.19)

Assume that (4θ∗,0) and (−2θ∗,0) belong to � and that �x0(4θ∗,0)+�ν(4θ∗,0) <

∞. Then Eθ∗p̂
2
θ∗,c = O(e−2θ∗c) = O(p2

c ) and therefore Pθ∗ is an asymptotically
optimal importance sampling measure.

PROOF. Here and throughout the sequel, if the initial state (or transition ker-
nel) is not specified under the expectation sign, it is assumed to be x0 (or P ). Define
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Zn(θ) by (3.12) with T = Tc in (3.11) and write Zn instead of Zn(θ∗) for simplic-
ity. Since f (y) = y−1 is a convex function, {Z−1

n ,Gn, n ≥ 1} is a submartingale
under P by Theorem 3. Moreover, since U > Tc by (3.11),

ZTc = eθ∗STc r
(
XTc; θ∗

)
.(3.20)

Therefore by Jensen’s inequality,

E
{
Z−1

U |Tc < ∞,
(
XTc, STc

)= (x, s)
}

= e−θ∗sEx[e−θ∗τ ] ≥ e−θ∗s(Ex[eθ∗τ ])−1 = e−θ∗s[r(x; θ∗)]−1

= E
{
Z−1

Tc
|Tc < ∞,

(
XTc, STc

)= (x, s)
}
.

Multiplying the above conditional expectations by 1{Tc<∞} and then taking expec-
tations yields

E
(
Z−1

U 1{Tc<∞}
)≥ E

(
Z−1

Tc
1{Tc<∞}

)
.(3.21)

By (3.9), Xτ(k) is independent of {X1, . . . ,Xτ(k)−1, ξ1, . . . , ξτ(k)} for all k ≥ 1,
implying that XU is independent of (SU ,Tc). Therefore,

Eθ∗
(
Z−2

U 1{Tc<∞}
)= Eθ∗

(
e−2θ∗SU 1{Tc<∞}

)
= E

[
e−θ∗SU r(XU ; θ∗)1{Tc<∞}

]
/r(x0; θ∗)(3.22)

= E
(
Z−1

U 1{Tc<∞}
)
/r(x0; θ∗),

noting that E[r(XU ; θ)] = ∫
r(z; θ)ν(dz) = 1. Combining (3.18), (3.21)

and (3.22) yields

Eθ∗
[
R2

U(θ∗,0)1{θ∗STc≥θ∗c}
]= Eθ∗

(
Z−2

U 1{Tc<∞}
)= E

(
Z−1

U 1{Tc<∞}
)
/r(x0, θ∗)

≥ E
(
Z−1

Tc
1{Tc<∞}

)
/r(x0; θ∗) = Eθ∗

(
Z−2

Tc
1{Tc<∞}

)
= Eθ∗p̂

2
θ∗,c/r2(x0; θ∗),

where the last equality follows from (3.20). In the nonlattice case, pc ∼ Ae−cθ∗ for
some constant A; see Theorem 3 of [5]. Without the nonlattice assumption, the as-
ymptotic formula can be weakened to (A1 + o(1))e−cθ∗ ≤ pc ≤ (A2 + o(1))e−cθ∗ .
Since θ∗Eπ(θ∗)ξ1 > 0, Corollary 1 then follows from Theorem 4. �

PROOF OF THEOREM 4. For notational simplicity, denote RU(θ, ζ ) by RU . It
suffices to show that there exists a constant B such that

Eθ

(
R2

U 1{θ ′ST −T ζ≥c}
)

≤ e−2c{[�x0(4θ,4ζ )Ex0e
−2θSτ +2τζ ]1/2

/r(x0; θ)(3.23)

+ B[�ν(4θ,4ζ )Eνe
−2θSτ +2τζ ]1/2}.
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Let yk = θ ′[Sτ(k) − Sτ(k−1)] − ζ [τ(k) − τ(k − 1)] and λk = maxτ(k−1)≤n<τ(k)

{θ ′[Sn − Sτ(k−1)] − ζ [n − τ(k − 1)]}. By (3.7) and (3.8), the random vectors
(yk, λk) are i.i.d. for k ≥ 2. Define the renewal function

V (s) =
∞∑

k=2

Pθ {y1 + · · · + yk−1 ≤ s}.(3.24)

Since Eπ(θ)θ
′[Sτ(k) − Sτ(k−1)] = θ ′(Eπ(θ)ξ1)(Eπ(θ)τ ), Eθyk �= 0 for k ≥ 2. If

Eθyk > 0, it follows from Blackwell’s renewal theorem that there exists a con-
stant α > 0 such that V (s + 1) − V (s) ≤ α for all s ∈ R. We can then use this
bound in

Eθ

(
e−2θ ′SU+2Uζ 1{θ ′ST −T ζ≥c}

)
=

∞∑
k=1

Eθ

(
e−2(y1+···+yk)1{τ(k−1)≤T <τ(k),θ ′ST −T ζ≥c}

)
≤ Eθ

(
e−2y11{λ1≥c}

)
(3.25)

+
∞∑

k=2

∞∑
s=−∞

Eθ

(
e−2(s+yk)1{λk≥c−s−1}

)
Pθ {s < y1 + · · · + yk−1 ≤ s + 1}

≤ e−2c

[
Eθ

(
e2(λ1−y1)

)+ α

∞∑
s=−∞

e2(c−s)Eνθ ,θ

(
e−2y11{λ1≥c−s−1}

)]
,

noting that for k ≥ 2, Eθ(e
−2yk 1{λk≥c−s−1}) = Eνθ ,θ (e

−2y11{λ1≥c−s−1}) since
Xτ(k−1) has distribution νθ ; see (3.9) with ν replaced by νθ . If Eθyk < 0, then∑∞

k=2 Pθ {s < y1 +· · ·+ yk−1 ≤ s + 1} is also bounded by α (sufficiently large) for
all s ∈ R, so (3.25) still holds. Note that (3.9) basically says that Xτ is an “atom”
independent of the past history {X0, . . . ,Xτ−1, ξ1, . . . , ξτ }, and therefore in par-
ticular is independent of (y1, λ1). Since Er(Xτ ; θ) = ∫

r(z; θ)ν(dz) = 1, it then
follows that

Eθ

(
e2(λ1−y1)

)
(3.26)

= E
[
e(2λ1−y1)r(Xτ ; θ)

]
/r(x0; θ) = E(e2λ1−y1)/r(x0; θ);

∞∑
s=−∞

e2(c−s)Eνθ ,θ

(
e−2y11{λ1≥c−s−1}

)

≤
∞∑

s=−∞
e4
∫ c−s−1

c−s−2
e2tEνθ ,θ

(
e−2y11{λ1≥t}

)
dt

(3.27)

= e4
∫ ∞
−∞

e2tEνθ ,θ

(
e−2y11{λ1≥t}

)
dt = e4Eνθ ,θ

(
e−2y1

∫ λ1

−∞
e2t dt

)
= e4Eνθ ,θ

(
e2(λ1−y1)

)
/2 = e4Eν(e

2λ1−y1)/2.
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The last equality of (3.27) follows from

Eνθ ,θ

(
e2(λ1−y1)

)= ∫
Ex[e2λ1−y1r(Xτ ; θ)/r(x; θ)]r(x; θ) dν(x),

since dνθ (x) = r(x; θ) dν(x) by (3.6). By the Cauchy–Schwarz inequality and the
definition of �ω in (3.14),

Eω(e2λ1−y1) ≤ [Eω(e4λ1)Eω(e−2y1)]1/2 ≤ [�ω(4θ,4ζ )Eωe−2θ ′Sτ +2τζ ]1/2(3.28)

for ω = x0 and ν. From (3.25)–(3.28), (3.23) follows. �

In the case d > 1, Collamore [7] considered the stopping time

Tc = inf{n :Sn ∈ cA}(3.29)

as a generalization of (3.15), where A ⊂ Rd and cA = {cµ :µ ∈ A}. Assume that

A is a convex set such that ∂A is a smooth submanifold and Eπξ1 /∈ cA
for all c > 0.

(3.30)

Then there exist unique θ∗ �= 0 and α ∈ ∂A such that ψ(θ∗) = 0 and θ ′∗(µ−α) ≥ 0
for all µ ∈ A; see Lemma 3.2 of [7] that proposes to use (3.19), with θ∗STc replaced
by θ ′∗STc , to estimate pc = P {Tc < ∞} in this multidimensional setting. Under cer-
tain regularity conditions, Collamore [7] proved the logarithmic efficiency prop-
erty (3.17). By applying Theorem 4, we can improve (3.17) by providing a much
more precise bound on Eθ∗p̂

2
c/p

2
c , thereby establishing the asymptotic optimality

of Pθ∗ .

COROLLARY 2. Assume that (3.30) holds, that (4θ∗,0) and (−2θ∗,0) belong
to � and that �x0(4θ∗,0) + �ν(4θ∗,0) < ∞. Then

Eθ∗p̂
2
θ∗,c = O

(
e−2cθ ′∗α)= O(p2

c ) as c → ∞.(3.31)

The derivation of Corollary 2 from Theorem 4 uses the same arguments as those
used to prove Corollary 1. In particular, note that

pc = Eθ∗
[
e−θ ′∗STc r(x0; θ∗)/r

(
XTc; θ∗

)]∼ Be−θ ′∗αc

for some constant B in the nonlattice case, as can be shown by a modification of
the proof of Theorem 3 of [5]. This asymptotic formula for pc can be weakened to
(B1 + o(1))e−θ ′∗αc ≤ pc ≤ (B2 + o(1))e−θ ′∗αc in the lattice case.

3.3. Extension of Theorem 1 to the Markov setting. Define wc by (2.1) and
let Q∗

c = ∫
Pµ,Tc∧n1wc(µ)dµ, where Pµ denotes the transition kernel Pθµ . The

following theorem, whose proof is given in the Appendix, generalizes Theorem 1
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to Markov additive processes. It shows that pc can be estimated efficiently by
p̂c = Lc1{Tc≤n1}, where

1

Lc

= dQ∗
c

dPTc∧n1

(
ξ1, . . . , ξTc∧n1

)
=
∫
�

{
exp
[
θ ′
µSTc∧n1 − (Tc ∧ n1)ψ(θµ)

]}
(3.32)

× r
(
XTc∧n1; θµ

)
wc(µ)dµ/r(x0; θµ),

and (ξ1, . . . , ξTc∧n1) is generated from Q∗
c . Note that the set �∗ in (2.1) has a

compact closure under (A1) and (A4).

THEOREM 5. Assume (A1)–(A5). If (4θµ,4ψ(θµ)) and (−2θµ,−2ψ(θµ)) be-
long to � and �x0(4θµ,4ψ(θµ)) + �ν(4θµ,4ψ(θµ)) < ∞ for all µ ∈ �∗, then
EQ∗

c
(L2

c1{Tc≤n1}) = O(p2
c ), where Lc is defined in (3.32).

3.4. Extension of Theorem 2 to Markov additive processes. First consider the
case d = 1 and g(µ) = µ. Bucklew, Ney and Sadowsky [2] considered impor-
tance sampling for Monte Carlo evaluation of pn := P {Sn/n ≥ b} for uniformly
recurrent Markov additive processes with Eπξ1 < b. They showed that for all
Markov kernels Q �= Pb satisfying P � Q, Ebp̂

2
n/EQp̂2

n,Q → 0 exponentially
fast as c → ∞, where p̂n,Q = (dP/dQ)(ξ1, . . . , ξn)1{Sn/n≥b} and

p̂n = e−θbSn+nψ(θb)[r(x0; θb)/r(Xn; θb)]1{Sn/n≥b}.(3.33)

Their proof uses the property that r(Xn; θb) is bounded away from 0 and therefore
it suffices to analyze the exponential term e−θbSn+nψ(θb). The following theorem,
whose proof is given in the Appendix, considers more general Markov additive
processes in which the eigenfunctions need not be uniformly positive and show
that Pb is still an asymptotically optimal importance measure. It provides a more
precise bound on Ebp̂

2
n/p

2
n than that provided by Bucklew, Ney and Sadowsky [2].

THEOREM 6. Suppose d = 1, g(µ) = µ, and define p̂n by (3.33). Assume
that (−2θb,−2ψ(θb)) and (4θb, ζ ) belong to � for some ζ < 4ψ(θb) and that
�x0(4θb, ζ ) + �ν(4θb, ζ ) < ∞. Then Ebp̂

2
n = O(

√
np2

n).

We next consider the general setting of Theorem 2 and extend it to Markov ad-
ditive processes. To estimate pn := Px0{g(Sn/n) ≥ b} by Monte Carlo simulations

using the importance measure (2.13)–(2.14), the L
(i)
n in the estimate (2.15) is given

by

1

L
(i)
n

= dQ∗
n

dPn

(
ξ

(i)
1 , . . . , ξ (i)

n

)
(3.34)

=
∫
�

eθ ′
µS

(i)
n −nψ(θµ)w̃n(µ)r

(
X(i)

n ; θµ

)
dµ/r(x0; θµ)
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in the Markovian setting, where θµ is the solution of ∇ψ(θ) = µ (see [15],
Lemma 3.5, for existence of θµ).

THEOREM 7. Assume (B1)–(B5), and define p̂n by (2.15) with L
(i)
n given

by (3.34). Assume that for each µ in a neighborhood of M [see (B3)], there exists
ζµ < 4ψ(θµ) such that (4θµ, ζµ) and (−2θµ,−2ψ(θµ)) belong to � and

�x0(4θµ, ζµ) + �ν(4θµ, ζµ) < ∞.

Then EQ∗
n
p̂2

n = O(
√

np2
n).

The proof of Theorem 7 is given in the Appendix. Instead of using the
method of mixtures to construct the importance sampling measure, Dupuis and
Wang [8] proposed to perform importance sampling via adaptive choice of the
tilting parameter at each step to simulate P {Sn/n ∈ A} for uniformly recurrent
Markov additive processes. Suppose (Xk, Sk) = (x, s) has been generated. Let
Ak = {(na − s)/(n − k) :a ∈ A}. Their dynamic importance sampling method
chooses µk ∈ Ak such that φ(µk) = inf{φ(a) :a ∈ Ak} and generates (Xk+1, ξk+1)

from Pθµk
(x, ·). Under certain regularity conditions on A, they have established

the logarithmic efficiency property (2.18) of the method.

4. Implementation and examples. Since Q∗
n is a mixture of Pµ,n with mix-

ing distribution Wn that has density function (2.13) with respect to Lebesgue mea-
sure, we can draw the ξ

(i)
j from Q∗

n by generating m i.i.d. vectors (µ(i), ξ
(i)
1 , . . . ,

ξ
(i)
n ) as follows: Generate µ(i) from Wn and then generate ξ

(i)
1 , . . . , ξ

(i)
n from Pµ(i)

in the i.i.d. case, and X
(i)
1 , ξ

(i)
1 , . . . ,X

(i)
n , ξ

(i)
n from Pµ(i) in the Markov case.

These m simulated vectors are used to evaluate pn by Monte Carlo via (2.15).
Likewise, to evaluate pc by Monte Carlo, we generate m independent trajecto-
ries (ξ

(i)
1 , . . . , ξ

(i)

T
(i)
c ∧n1

) from Pµ(i), where µ(i) is generated from the distribution

with density function wc given in (2.1). Note that (2.1) and (2.13) involve nor-
malizing constants βc and β̃n. Instead of using the asymptotically optimal mixture
density (2.1), it is often more convenient to use variants thereof that also yield as-
ymptotically optimal importance sampling measures. For example, suppose vc(µ)

is a density function satisfying

inf
wc(µ)>0

[vc(µ)/wc(µ)] ≥ ε > 0,(4.1)

and let Qv and p̂v denote the corresponding importance sampling measure and
associated estimator of pc, respectively. Then Qv is also an asymptotically optimal
importance sampling measure. This property provides us with the flexibility of
choosing an importance density vc(µ) that does not involve difficult calculation of
normalizing constants and such that the likelihood ratio∫

�
eθ ′

µST ∧n1−(T ∧n1)ψ(θµ)vc(µ)[r(XT ; θµ)/r(x0; θµ)]dµ(4.2)
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has a closed-form expression or can be easily computed by numerical integra-
tion. A statistical application illustrating this point is provided by Chan and Lai
([6], pages 266–268) whose Table 2 shows a large variance reduction over direct
Monte Carlo by using a convenient asymptotically optimal importance sampling
measure Qv satisfying (4.1).

Instead of using the mixture of Pµ with mixing density wc in (2.1) or w̃n

in (2.13), asymptotically optimal importance sampling measures can also be at-
tained by using discrete mixtures of Pµ whose likelihood ratios do not involve
numerical integration. To fix the ideas, first consider the boundary crossing proba-
bility pc. Defining

Kc(µ) =
d∏

i=1

[µi,µi + c−1/2) for µ = (µ1, . . . ,µd) ∈ Rd,(4.3)

and letting �c = {µ ∈ (c−1/2Z)d :Kc(µ) ∩ �∗ �= ∅}, a discrete analogue of (2.1)
is the probability mass function

w∗
c (µ) = β̂c

{[g(µ)]−d/2e−cφ(µ)/g(µ)1{µ∈�c}
+ δd/2e−n0φ(µ)1{φ(µ)>(δr)−1+ε1/2}

}
, µ ∈ (c−1/2Z)d,(4.4)

where β̂c is a normalizing constant so that
∑

µ∈(c−1/2Z)d w∗
c (µ) = 1. The proof of

Theorem 5 shows that the theorem still holds if (2.1) is replaced by the probability
mass function (4.4). Note that for the special case d = 1 and g(µ) = µ, Corollary 1
only involves a single Pθ∗ for the discrete mixture. We next generalize this result to
finite mixtures (with support independent of c). With r and δ given in (A1)–(A5),
let

J (µ) = {s ∈ � : r[θ ′
µs − ψ(θµ)] ≥ min[δ−1, g(s)]}.(4.5)

COROLLARY 3. Assume (A1)–(A5) with q = 0, n0 = δc and n1 = ac and de-
fine J (µ) by (4.5). Suppose there exists a finite set G such that {µ ∈ � :g(µ) ≥
a−1} ⊂ ⋃

µ∈G J(µ). If (4θµ,4ψ(θµ)) and (−2θµ,−2ψ(θµ)) belong to � and
�x0(4θµ,4ψ(θµ)) + �ν(4θµ,4ψ(θµ)) < ∞ for every µ ∈ G, then

∑
µ∈G ωµPµ

is an asymptotically optimal importance sampling measure for any choice of
weights ωµ such that minµ∈G ωµ > 0 and

∑
µ∈G ωµ = 1.

PROOF. Let Q = ∑
µ∈G ωµPµ. Since n1 = ac, g(STc) ≥ a−1 on {Tc ≤

n1}. Since {µ ∈ � :g(µ) ≥ a−1} ⊂ ⋃
µ∈G J(µ) and since LTc = dPTc/dQTc ≤

ω−1
µ dPTc/dPµ,Tc for every µ ∈ G, it then follows that

EQ

[
L2

Tc
1{Tc≤n1}

] ≤ ∑
µ∈G

EQ

[
L2

Tc
1{STc /Tc∈J (µ),Tc≤n1}

]
= ∑

µ∈G

E
[
LTc1{STc /Tc∈J (µ),Tc≤n1}

]
(4.6)
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≤ ∑
µ∈G

ω−1
µ Eµ

[(
dPTc

dPµ,Tc

)2

1{STc /Tc∈J (µ),Tc≤n1}
]
.

Since Tc ≥ n0 = δc and Tcg(STc/Tc) ≥ c, it follows from (4.5) that {STc/Tc ∈
J (µ)} ⊂ {θ ′

µSTc − Tcψ(θµ) ≥ c/r}. Therefore, by Theorem 4 [with ζ = ψ(θµ)]
and the proof of Corollary 1,

Eµ

[(
dPTc/dPµ,Tc

)21{STc /Tc∈J (µ),Tc≤n1}
]= O(e−2c/r )(4.7)

for every µ ∈ G. Combining (4.6) with (4.7) yields EQ[L2
Tc

1{Tc≤n1}] =
O(e−2c/r ) = O(p2

c ), in view of (2.12) with q = 0 and with c replaced by the
more general form c/r . �

Note that Corollary 1 is a special case of Corollary 3 for d = 1, g(x) = x, δ = 0,
a = ∞ and G = {µ∗}, where µ∗ = ψ ′(θ∗). In this special case, since r = θ−1∗
and ψ(θ∗) = 0, {µ ∈ � :g(µ) ≥ a−1} = {µ :µ ≥ 0} ⊂ J (µ∗). Finite mixtures of
the form Q =∑

µ∈G ωµPµ are also asymptotically optimal for estimating pn =
P {g(Sn/n) ≥ b} under conditions similar to those in Corollary 3. Motivated by
Glasserman and Wang’s [10] example for Monte Carlo evaluation of P {|Sn| ≥ an},
the following corollary of Theorems 4 and 6 considers more general finite mixtures
of the form

∑
µ∈G ωµ,nPµ,n. Its proof is given in the Appendix.

COROLLARY 4. Assume (B1)–(B5) for q = 0. Suppose there exists a finite set
G such that g(µ) ≥ b for all µ ∈ G, minµ∈G φ(µ) = b/r and {µ ∈ � :g(µ) ≥
b} ⊂⋃

µ∈G H(µ), where H(µ) = {s ∈ � : θ ′
µ(s − µ) ≥ 0}. Assume also that for

each µ ∈ G, (−2θµ,−2ψ(θµ)) and (4θµ, ζµ) belong to � for some ζµ < 4ψ(θµ)

and �x0(4θµ, ζµ) + �ν(4θµ, ζµ) < ∞. Then
∑

µ∈G ωµ,nPµ,n is an asymptotically
optimal importance sampling measure for any choice of positive weights ωµ,n such
that

∑
µ∈G ωµ,n = 1 and

lim inf
n→∞ ωµ,n/e

−2n[φ(µ)−b/r] > 0 for all µ ∈ G.(4.8)

EXAMPLE 1. For the tail probability P {|Sn| ≥ an} considered by Glasser-
man and Wang [10], {µ : |µ| ≥ a} ⊂ H(a) ∪ H(−a), so we can apply Corol-
lary 4 with G = {a,−a}. Note that their choice of the mixture weights ωµ,n =
e−nφ(µ)/[e−nφ(a) + e−nφ(−a)] = e−nφ(µ)/{(1 + o(1))e−bn/r } satisfies (4.8) and
that min{φ(a),φ(−a)} = b/r . We study the performance of this importance sam-
pling measure in a more general example of a Markov additive process in which
the underlying Markov chain {Xn}n≥0 has state space {1,2,3} and transition
matrix (pxy)x,y∈X such that pxx = 0.5 for every x, p12 = p23 = p31 = 0.3,
p13 = p21 = p32 = 0.2. Letting ξi = Xi so that Sn = X1 + · · · + Xn, consider the
Monte Carlo evaluation of Pπ {Sn/n ≥ 2.7 or Sn/n ≤ 1.5}, where π is the station-
ary distribution with π(1) = π(2) = π(3) = 1/3; this corresponds to Corollary 4
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with g(µ) = (µ − 2.1)2 and
√

b = 0.6. Table 1 compares direct Monte Carlo eval-
uation of this probability with two importance sampling procedures, the first using
Qn = P1.5,n that tilts to the minimum rate point µ = 1.5, and the second using the
mixture

Qn = ωnP1.5,n + (1 − ωn)P2.7,n
(4.9)

with ωn = e−nφ(1.5)/
(
e−nφ(1.5) + e−nφ(2.7)

)
,

as advocated by Glasserman and Wang [10]. The eigenvalues and eigenvectors
used to define P1.5,n and P2.7,n are given by

θ1.5 = −0.507, eψ(θ1.5) = 0.688,

θ2.7 = 0.815, eψ(θ2.7) = 3.11,

r(1; θ1.5) = 1.20, r(1; θ2.7) = 0.747,

r(2; θ1.5) = 0.88, r(2; θ2.7) = 1.02,

r(3; θ1.5) = 0.92, r(3; θ2.7) = 1.23.

Moreover, φ(1.5) = 0.120 and φ(2.7) = 0.251 are used to evaluate ωn. Each result
in Table 1 is a Monte Carlo estimate based on m =10,000 simulation runs, and the
standard error of the estimate is given in parentheses. Table 1 shows that direct
Monte Carlo has much larger standard error than importance sampling with (4.9)
and that it is unable to provide a meaningful estimate when the probabilities are
smaller than 10−4. The minimum rate point method (Qn = P1.5,n) has much larger
standard error than (4.9) for n = 10 and tends to underestimate the true probability
for n = 20.

EXAMPLE 2. Let ε1, ε2, . . . be i.i.d. three-dimensional standard normal vec-
tors and 1 ≤ n0 ≤ n1 < ∞. Consider the regime-switching Gaussian random walk
Sn =∑n

i=1 ξi , with ξi = (Xi − 2,0,0)′ + εi , where {Xn}n≥0 is the Markov chain
in Example 1. Let Tc = inf{n ≥ n0 :‖Sn‖2 ≥ cn}, which corresponds to the case

TABLE 1

Direct Importance sampling

n Monte Carlo Qn = P 1.5,n Qn given by (4.9)

10 1.04(0.03) × 10−1 1.1(0.3) × 10−1 1.04(0.01) × 10−1

20 2.0(0.1) × 10−2 1.91(0.03) × 10−2 2.02(0.03) × 10−2

40 1.1(0.3) × 10−3 1.25(0.02) × 10−3 1.25(0.02) × 10−3

60 2(1) × 10−4 0.93(0.02) × 10−4 0.96(0.02) × 10−4

80 0 7.4(0.2) × 10−6 7.4(0.2) × 10−6

100 0 5.9(0.1) × 10−7 5.9(0.1) × 10−7
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g(µ) = ‖µ‖2 in Theorem 5. To compute pc = Pπ {Tc ≤ n1} via importance sam-
pling, where π = (1/3,1/3,1/3)′ is the stationary distribution of X0, we use a
slight modification of (4.4) to define the discrete mixture density function by

w̄c(µ) = β̄c

{[g(µ)]−3/2e−cφ(µ)/g(µ)1{c/n1≤g(µ)≤c/n0}
(4.10)

+ (c/n0)
3/2e−n0φ(µ)1{c/n0<g(µ)≤b}

}
,

for µ ∈ (c−1/2Z)3, with b ≥ c/n0 and normalizing constant β̄c such that∑
µ∈(c−1/2Z)3 w̄c(µ) = 1. Note that

P̂θ := (
Ex

[
eθ ′ξ11{X1=y}

])
1≤x,y≤3 = e‖θ‖2/2P̃a,

where a is the first component of θ and

P̃a =
0.5e−a 0.3 0.2ea

0.2e−a 0.5 0.3ea

0.3e−a 0.2 0.5ea

 .

Let λ(a) be the largest log-eigenvalue of P̃a , with associated eigenvector r(·;a).
Then ψ(θµ) = λ(aµ) + ‖θµ‖2/2, where we use superscripts to denote the com-
ponents of the vectors µ = (µ1,µ2,µ3)′ and θµ = (aµ, θ2

µ, θ3
µ)′. Let λ̇ denote the

derivative of λ. Since µ = ∇ψ(θµ) = (λ̇(aµ),0,0)′ + θµ, θ2
µ = µ2 and θ3

µ = µ3.
Moreover, λ is convex and therefore we can use the bisection method to solve the
equation λ̇(a) + a = µ1 for a = aµ. We first generate µ from the mixture density
function (4.10) and then use the measure Pθµ to generate ξi = (Xi − 2,0,0)′ +
θµ + εi so that {Xn}n≥0 has the transition probabilities

Paµ(x, y) = P̃aµ(x, y)e−λ(aµ)r(y;aµ)/r(x;aµ).

Table 2 gives Monte Carlo estimates of pc for eight choices of (c, n0, n1), based
on m = 10,000 runs for each entry, in which the standard error is shown in paren-
theses. We compare direct Monte Carlo with importance sampling using the mix-
ture density function (4.10) in which b = 7. The results show the effectiveness of

TABLE 2

Direct Importance sampling
c n0 n1 Monte Carlo with weights (4.10)

20 5 50 3.0(0.2) × 10−2 3.19(0.05) × 10−2

25 5 50 9(1) × 10−3 8.57(0.08) × 10−3

30 5 50 3.1(0.6) × 10−3 2.75(0.03) × 10−3

35 5 50 5(2) × 10−4 5.58(0.07) × 10−4

40 10 100 4(2) × 10−4 7.3(0.3) × 10−4

50 10 100 0 3.37(0.09) × 10−5

60 10 100 0 1.82(0.04) × 10−6

70 10 100 0 9.2(0.2) × 10−8
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using (4.10) to compute probabilities of order as small as 10−7, and that direct
Monte Carlo becomes unreliable even for probabilities of order 10−4. Although
extra time is used by importance sampling to compute the likelihood ratio LTc ,
direct Monte Carlo and importance sampling have similar simulation times be-
cause direct Monte Carlo has to generate Xn until n = n1 for most runs whereas
importance sampling can stop at Tc < n1.

APPENDIX

PROOF OF THEOREM 5. Assume without loss of generality r = 1. First
note that (2.9) is still valid. Moreover, (2.12) still holds, as can be shown by
arguments similar to the proof of Theorem 6 of [5]. Define �c = {µ :φ(µ) ≤
δ−1 + ε1} ∩ (c−1/2Z)d and Ac(µ

∗) = {Tc ≤ n1, STc/Tc ∈ Kc(µ
∗)}, where Kc(µ)

is defined in (4.3). We next apply Theorem 4 to show that uniformly in µ∗ ∈ �c

with Kc(µ
∗) ∩ �∗ �= ∅,

EQ∗
c

(
L2

c1Ac(µ∗)
)

= O

(
β−1

c cd/2 exp
{
c

[
−2 inf

µ∈Kc(µ∗)
φ(µ)/g(µ)(A.1)

+ sup
µ∈Kc(µ∗)

φ(µ)/g(µ)

]})
.

Define Zn(θ) as in (3.12). Let ηc,µ∗ = ∫
Kc(µ∗) wc(µ)dµ and w̃c(µ) = wc(µ)/

ηc,µ∗ . Then

EQ∗
c

(
L2

c1Ac(µ∗)
)= E

(
Lc1Ac(µ∗)

)
≤ E

[(∫
Kc(µ∗)

ZTc(θµ)wc(µ)dµ

)−1

1Ac(µ∗)

]
(A.2)

= η−1
c,µ∗E

[(∫
Kc(µ∗)

ZTc(θµ)w̃c(µ)dµ

)−1

1Ac(µ∗)

]
.

Since
∫
Kc(µ∗) w̃c(µ)dµ = 1, Jensen’s inequality yields(∫

Kc(µ∗)
ZTc(θµ)w̃c(µ)dµ

)−1

≤
∫
Kc(µ∗)

Z−1
Tc

(θµ)w̃c(µ)dµ.

Putting this in (A.2), we obtain

EQ∗
c

(
L2

c1Ac(µ∗)
)≤ η−1

c,µ∗
∫
Kc(µ∗)

E
[
Z−1

Tc
(θµ)1Ac(µ∗)

]
w̃c(µ)dµ

(A.3)
≤ η−1

c,µ∗ sup
µ∈Kc(µ∗)

E
[
Z−1

Tc
(θµ)1Ac(µ∗)

]
.



EFFICIENT IMPORTANCE SAMPLING 467

Since the function hµ(θ) := θ ′µ − ψ(θ) is maximized at θ = θµ with maxi-
mum value φ(µ), ∇hµ(θµ) = 0 and there exists α1 > 0 such that hSTc/Tc(θµ) ≥
φ(STc/Tc) − α1c

−1 if µ and STc/Tc belong to Kc(µ
∗). Therefore on Ac(µ

∗) and
for µ ∈ Kc(µ

∗),

θ ′
µSTc − Tcψ(θµ)

= TchSTc /Tc(θµ) ≥ Tcφ
(
STc/Tc

)− Tcα1c
−1

≥ cφ
(
STc/Tc

)
/g
(
STc/Tc

)− α2(A.4)

≥ c inf
µ∈Kc(µ∗)

[φ(µ)/g(µ)] − α2.

In view of (A.4), application of Theorem 4 with ζ = ψ(θµ) and Jensen’s inequality
as in the proof of Corollary 1 then shows that for µ ∈ Kc(µ

∗),

E
[
Z−1

Tc
(θµ)1Ac(µ∗)

]
≤ E

[
Z−1

U (θµ)1Ac(µ∗)
]

= r(x0; θµ)Eθµ

[
Z−2

U (θµ)1Ac(µ∗)
]

(A.5)

= O

(
exp
{
−2c inf

µ∈Kc(µ∗)
[φ(µ)/g(µ)]

})
.

From (2.1), it follows that uniformly in µ∗ ∈ �c with Kc(µ
∗) ∩ �∗ �= ∅,

η−1
c,µ∗ = O

(
β−1

c cd/2 exp
{
c sup

µ∈Kc(µ∗)
[φ(µ)/g(µ)]

})
.(A.6)

Combining (A.3) with (A.5) and (A.6) yields (A.1).
Making use of (A1)–(A5), we can use geometric integration as in [4], page 1651,

to show that ∑
µ∗∈�c:Kc(µ∗)∩�∗�=∅

exp
{
c

[
−2 inf

µ∈Kc(µ∗)

(
φ(µ)

g(µ)
− 1

)

+ sup
µ∈Kc(µ∗)

(
φ(µ)

g(µ)
− 1

)]}
= O(cq/2).

Combining this with (A.1), in which β−1
c = O(c(q−d)/2e−c), then yields∑

µ∗∈�c:Kc(µ∗)∩�∗�=∅

EQ∗
c

(
L2

c1Ac(µ∗)
)= O(cqe−2c) = O(p2

c )(A.7)

by (2.12). Moreover, the proof of Lemma 2 in [5], pages 418–419, can be used to
show that

EQ∗
c

(
L2

c1{Tc≤n1,STc /Tc /∈�∗}
)= o(e−2c).(A.8)



468 H. P. CHAN AND T. L. LAI

From (A.7) and (A.8), the desired conclusion follows. �

PROOF OF THEOREM 6. Let U be the stopping time (3.11) associated with
the fixed time T = n. We shall make use of the i.i.d. inter-regeneration blocks as
in the proof of Theorem 4 to show that

Eb

(
e−2θbSU+2Uψ(θb)1{θbSn−nψ(θb)≥nφ(b)}

)= O
(
n−1/2e−2nφ(b)),(A.9)

in which the additional n−1/2 factor that is not present in Theorem 4 is due to the
use of a local limit bound

sup
y∈R,1≤k≤n1/2

Pb{y ≤ θbSn−k − (n − k)ψ(θb) < y + 1} = O(n−1/2),(A.10)

in place of Blackwell’s theorem for the renewal function (3.24). The proof
of (A.10) is given in the next paragraph. Making use of Theorem 3 and Jensen’s in-
equality and noting that {θbSn − nψ(θb) ≥ nφ(b)} = {Sn/n ≥ b}, it can be shown
by using arguments similar to those in the proof of Corollary 1 that

Ebp̂
2
n/r2(x0; θb) ≤ Eb

(
e−2θbSU+2Uψ(θb)1{θbSn−nψ(θb)≥nφ(b)}

)
.(A.11)

The desired conclusion then follows from (2.34) for the case q = 0 (see proof of
Theorem 2 of [5]) together with (A.9) and (A.11).

Let ξ̃i = θbξi − ψ(θb) and S̃i = ξ̃1 + · · · + ξ̃i . For the special case of i.i.d. non-
lattice ξi with variance σ 2 > 0, Theorem 1 of [19] yields

Pb

{
nφ(b) − √

nσz − 1 ≤ S̃n < nφ(b) − √
nσz

}
(A.12)

= (2πnσ 2)−1/2[e−z2/2 + o(1)
]

as n → ∞,

uniformly over z ∈ R, so (A.10) holds. For Markov additive processes with nonlat-
tice increments and satisfying the minorization condition (3.1), Chan and Lai [5]
have shown that∫

g(y)Pb

{
Xn ∈ dy,nφ(b) − √

nσz − 1 ≤ S̃n < nφ(b) − √
nσz

}
= (2πnσ 2)−1/2e−z2/2

{∫
g(y) dπ(θb) + o(1)

}
for any nonnegative bounded measurable function g; see their (6.11) and the ar-
guments leading to their (6.12). Taking g ≡ 1 then yields (A.12) and therefore
also (A.10). When the Markov additive process has lattice increments, although
one no longer has the precise formula (A.12), (A.10) still holds by a modification
of these equations in [5], similar to that used to weaken (2.24) into (2.34) for lattice
random walks.
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To prove (A.9), let τ ∗ be the last regeneration time at or before time n. Then
analogously to (3.25),

Eb

(
e2[nφ(b)−S̃U ]1{S̃n≥nφ(b)}

)
=

n∑
k=0

∞∑
y=−∞

Eb

(
e2[nφ(b)−S̃U ]1{S̃n≥nφ(b)}(A.13)

× 1{τ∗=n−k,nφ(b)−y−1≤S̃τ∗<nφ(b)−y}
)
.

Let k ≤ n. Using the decomposition S̃U = S̃n−k + (S̃U − S̃n−k) on the event {τ ∗ =
n − k}, we obtain

Eb

(
e2[nφ(b)−S̃U ]1{S̃n≥nφ(b)}1{τ∗=n−k,nφ(b)−y−1≤S̃τ∗<nφ(b)−y}

)
= Eb

(
e2[nφ(b)−S̃n−k]

× 1{τ∗=n−k,nφ(b)−y−1≤S̃n−k<nφ(b)−y}e−2(S̃U−S̃n−k)1{S̃n≥nφ(b)}
)

(A.14)

≤ e2(y+1)Eb

(
e−2(S̃U−S̃n−k)

× 1{τ∗=n−k,S̃n−S̃τ∗≥y,nφ(b)−y−1≤S̃τ∗≤nφ(b)−y}
)
.

Conditioned on the event {τ(i) = n − k,nφ(b) − y − 1 ≤ S̃τ (i) < nφ(b) − y},
the vector (S̃τ (i+1) − S̃τ (i), S̃n − S̃τ (i), τ (i + 1) − τ(i)) has the same distribution
as (S̃τ , S̃k, τ ) that is initialized at the regeneration distribution under Pb. Hence
by (A.10), for k ≤ n1/2,

Eb

(
e−2(S̃U−S̃n−k)1{τ∗=n−k,S̃n−S̃τ∗≥y,nφ(b)−y−1≤S̃τ∗≤nφ(b)−y}

)
=

∞∑
i=0

Eb

(
e−2(S̃τ (i+1)−S̃τ (i))

× 1{τ(i)=n−k,τ (i+1)−τ(i)>k,S̃n−S̃τ (i)≥y,nφ(b)−y−1≤S̃τ (i)<nφ(b)−y}
)

= Eνb,b

(
e−2S̃τ 1{S̃k≥y,τ>k}

)
×

∞∑
i=0

Pb

{
τ(i) = n − k,nφ(b) − y − 1 ≤ S̃τ (i) < nφ(b) − y

}
(A.15)

≤ Eνb,b

(
e−2S̃τ 1{S̃k≥y,τ>k}

)
× Pb{τ(i) = n − k for some i,

nφ(b) − y − 1 ≤ S̃n−k < nφ(b) − y}
= O(n−1/2)Eνb,b

(
e−2S̃τ 1{S̃k≥y,τ>k}

)
.
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Moreover, ∑
0≤k≤n1/2

∞∑
y=−∞

Eνb,b

(
e2(y+1)−2S̃τ 1{S̃k≥y}1{τ>k}

)

≤ [e2/(1 − e−2)]
∞∑

k=0

Eνb,b

[
e2S̃k−2S̃τ 1{τ>k}

]
(A.16)

= [e2/(1 − e−2)]Eνb,b

[
τ−1∑
k=0

e2S̃k−2S̃τ

]

= [e2/(1 − e−2)]Eν

[
τ−1∑
k=0

e2S̃k−S̃τ

]
,

in which the last equality can be shown by using the same arguments as in (3.27).
By (A.14)–(A.16),∑

0≤k≤n1/2

∞∑
y=−∞

Eb

(
e2[nφ(b)−S̃U ]1{S̃n≥nφ(b)}

× 1{τ∗=n−k,nφ(b)−y−1≤S̃τ∗<nφ(b)−y}
)

(A.17)

= O(n−1/2)Eν

(
τ−1∑
k=0

e2S̃k−S̃τ

)
= O(n−1/2),

where the last relation follows from Lemma 2 below.
Let n1/2 < k < n and λ = [4ψ(θb)− ζ ]/2. The bound in (A.15) can be modified

to

Eb

(
e−2(S̃U−S̃n−k)1{τ∗=n−k,S̃n−S̃τ∗≥y,nφ(b)−y−1≤S̃τ∗<nφ(b)−y}

)
≤ Eνb,b

(
e−2S̃τ 1{S̃k≥y,τ>k}

)
,

and therefore by (A.14), we can modify (A.16) and (A.17) to∑
n1/2<k<n

∞∑
y=−∞

Eb

(
e2[nφ(b)−S̃U ]1{S̃n≥nφ(b)}

× 1{τ∗=n−k,nφ(b)−y−1≤S̃τ∗<nφ(b)−y}
)

≤ e−n1/2λ
∑

n1/2<k<n

ekλ
∞∑

y=−∞
Eb

(
e2[nφ(b)−S̃U ]1{S̃n≥nφ(b)}(A.18)

× 1{τ∗=n−k,nφ(b)−y−1≤S̃τ∗<nφ(b)−y}
)

≤ [e−n1/2λ+2/(1 − e−2)]Eν

(
τ−1∑
k=0

e2S̃k−S̃τ +kλ

)
= O

(
e−λ

√
n)
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since Eν(
∑τ−1

k=0 e2S̃k−S̃τ +kλ) < ∞ by Lemma 2 below. Finally, for the case k = n,
by the Cauchy–Schwarz inequality,

∞∑
y=−∞

Eb

(
e2[nφ(b)−S̃U ]1{S̃n≥nφ(b)}1{τ∗=0,nφ(b)−y−1≤S̃0<nφ(b)−y}

)
= Eb

(
e2[nφ(b)−S̃τ ]1{S̃n≥nφ(b),τ>n}

)≤ e−nλEb

(
e2[S̃n−S̃τ ]+nλ1{τ>n}

)
(A.19)

= e−nλE
(
e2S̃n−S̃τ +nλ1{τ>n}

)
/r(x0; θb) = O(e−nλ),

where the last relation follows from Lemma 2. From (A.13) and (A.17)–(A.19),
(A.9) follows. �

LEMMA 2. With the same notation and assumptions as in Theorem 6, let ξ̃i =
θbξi − ψ(θb), S̃i = ξ̃1 + · · · + ξ̃i and λ = [4ψ(θb) − ζ ]/2. Then

Eν

(
τ−1∑
k=0

e2S̃k−S̃τ

)
+ Eν

(
τ−1∑
k=0

e2S̃k−S̃τ +kλ

)
< ∞,

E
(
e2S̃n−S̃τ +nλ1{τ>n}

)= O(1),

where τ is the regeneration time as in (A.15)–(A.19).

PROOF. Let Wk = e2S̃k+kλ1{τ>k} and Y = e−S̃τ . Then

Eν

(
τ−1∑
k=0

e2S̃k−S̃τ +kλ

)
= Eν

( ∞∑
k=0

WkY

)
= Eν

( ∞∑
k=0

WkY1{τ>k}
)

≤ 1
2

[
Eν

( ∞∑
k=0

W 2
k

)
+ Eν(τY 2)

]

= {�ν(4θb, ζ ) + Eν(τY 2)}/2.

Since (−2θb,2ψ(θb)) ∈ � and � is open, Eν(τY 2) < ∞. Therefore

Eν

(
τ−1∑
k=0

e2S̃k−S̃τ +kλ

)
< ∞.

Since λ > 0, this implies that Eν(
∑τ−1

k=0 e2S̃k−S̃τ ) is also finite. By the Cauchy–
Schwarz inequality,

E
(
e2S̃n−S̃τ +nλ1{τ>n}

)≤ [Ee4S̃n+2nλ1{τ>n}
]1/2[

Ee−2S̃τ
]1/2 = O(1),

since Ee−2S̃τ = EY 2 < ∞ and since E(e4S̃n+2nλ1{τ>n}) = E(e4θbSn−nζ 1{τ>n}) ≤
�x0(4θb, ζ ) < ∞. �
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PROOF OF THEOREM 7. The first step is to generalize Theorem 2 of [4] to
the Markov case. This can be done by combining the basic ideas of the proof
of that theorem with those of the proof of Theorem 3 of [5]. Assuming r = 1
without loss of generality, we can use these arguments to show that (2.24) still
holds in the nonlattice case and that (2.34) holds without the nonlattice assumption.
Whereas pn = EQ∗

n
p̂n can be analyzed by using Chan and Lai’s [5] truncation

argument to handle 1/r(X
(i)
n ; θµ) in (2.15) [see (3.34)], the analysis of EQ∗

n
p̂2

n

involves 1/r2(X
(i)
n ; θµ) which does not relate to the finiteness of eigenmeasures

via the truncation argument. For the special case d = 1 and g(µ) = µ, the proof
of Theorem 6 uses regeneration and Theorem 3 to circumvent this difficulty. Note
that in this special case, the exponential tilting involves a single θb instead of a
mixture of θµ’s. We can use geometric integration over a suitably chosen tubular
neighborhood of the manifold M as in the proof of Theorem 2 of [4] to piece
together the conclusions of Theorem 6 for the local tiltings. �

PROOF OF COROLLARY 4. Let Qn =∑
µ∈G ωµ,nPµ,n. Arguments similar to

those in (4.6) can be used to show

EQn

[
L2

n1{g(Sn/n)≥b}
]≤ ∑

µ∈G

ω−1
µ,nEµ

[(
dPn

dPµ,n

)2

1{Sn/n∈H(µ)}
]
.(A.20)

Noting that {Sn/n ∈ H(µ)} = {θ ′
µSn − nψ(θµ) ≥ nφ(µ)}, it follows from the

proof of Theorem 6 [in particular from the multidimensional versions of (A.9)
and (A.11)] that

Eµ

[(
dPn

dPµ,n

)2

1{Sn/n∈H(µ)}
]

= O
(
n−1/2e−2nφ(µ)), µ ∈ G.(A.21)

By (2.34) with q = 0 and with c replaced by the more general c/r , pn is
of the order n−1/2e−bn/r , and therefore Qn is asymptotically optimal in view
of (4.8), (A.20) and (A.21). �
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