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SINGULARLY PERTURBED MARKOV CHAINS: LIMIT RESULTS
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This work focuses on time-inhomogeneous Markov chains with two time
scales. Our motivations stem from applications in reliability and dependabil-
ity, queueing networks, financial engineering and manufacturing systems,
where two-time-scale scenarios naturally arise. One of the important ques-
tions is: As the rate of fluctuation of the Markov chain goes to infinity, if
the limit distributions of suitably centered and scaled sequences of occupa-
tion measures exist, what can be said about the convergence rate? By com-
bining singular perturbation techniques and probabilistic methods, this pa-
per addresses the issue by concentrating on sequences of centered and scaled
functional occupation processes. The results obtained are then applied to treat
a queueing system example.

1. Introduction. This work focuses on time-inhomogeneous Markov chains
with two time scales. Our motivations stem from applications in reliability, de-
pendability theory, financial engineering, queueing networks and manufacturing
systems, where two-time-scale scenarios naturally arise. By two time scales, we
mean that the systems under consideration involve a fast varying time as well as
a slowly changing one. A convenient way of formulation is to introduce a small
parameter ε > 0. Then the fast and slow times can be represented by t/ε and t ,
respectively. The characteristics of the systems associated with the slowly vary-
ing time t represent the steady-state behavior, whereas those of the fast changing
time t/ε represent the transient behavior. One aims to reduce the complexity of the
underlying systems by taking advantages of the two-time-scale formulations.

Such two-time-scale models have been used in mathematical finance by Fouque,
Papanicolaou and Sircar [12], in manufacturing systems by Sethi and Zhang [28]
and in control, optimization and filtering by Kushner [22]. The two-time-scale ap-
proach may also be adopted to treat reliability and dependability; see [10] and
references therein for dependability models. In a wide variety of situations, one
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uses time-scale separation to model physical, biological and economical phenom-
ena and to highlight the distinct rates of variations leading to a rapidly fluctuating
Markov chain. To make the computation manageable and to reduce the complexity,
one often uses asymptotic results to devise approximation strategies.

For example, a challenging and important problem in queueing theory is con-
cerned with a time-varying queueing length process. Consider the queue length
process of an Mt/Mt/1/m0 queue, which is a single server queue with m0 waiting
rooms and the corresponding stochastic process is a time-inhomogeneous birth-
death Markov process. The time-varying nature makes the process difficult to han-
dle. Nevertheless, under certain circumstances, the time-dependent characteristics
at time t may be approximated by their quasi-stationary distribution at that time;
see [16], [24] and [25]. To achieve such an approximation, one of the approaches is
to model the underlying systems with the help of singular perturbation theory (see,
e.g., [2]) resulting in a two-time-scale formulation leading to the use of singularly
perturbed Markov chains.

Consider a continuous-time Markov chain αε(t) with a countable state space
N = {1,2, . . .} or a finite state space M = {1, . . . ,m0}, where ε > 0 is a small
parameter. Suppose that the infinitesimal generator of αε(t) is

Gε(t) = A(t)

ε
+ B(t),(1.1)

where A(t) and B(t) are themselves generators of certain Markov chains. We fo-
cus on the convergence rate of a normalized sequence of functional occupation
measures of αε(t) for t ≥ 0. When ε gets smaller and smaller, the Markov chain
αε(t) fluctuates more and more rapidly. Within a short period of time, the chain
will reach its quasi-stationary regime. Thus, we can approximate its instantaneous
behavior by its quasi-steady-state characteristics. This brings us to the problem
under study with the focus on the limit behavior as ε → 0. For real-world ap-
plications involving piecewise deterministic processes, we refer to [9]; for such
processes having two-time-scale structures, see [25] for queueing networks, and
[28] for manufacturing and production planning.

Owing to its importance in emerging applications, asymptotic properties of
two-time-scale Markov chains have been studied extensively. When the Markov
chain αε(t) has a finite state space, under smoothness conditions of the generators,
Khasminskii, Yin and Zhang [18] constructed asymptotic expansions of probabil-
ity vectors and transition probability matrices. Assuming the fast changing part of
the generator consisting of several ergodic classes, Yin, Zhang and Badowski [32]
showed that a suitably scaled sequence of occupation measures converges weakly
to a regime-switching diffusion that is a system of diffusion processes modulated
by a continuous-time Markov chain. Yin and Zhang [30] extended the results to
the case in which the state space is countable. Although convergence of the scaled
occupation measures has been obtained, the convergence rate has not been deter-
mined for such singularly perturbed Markov chains in [30]. Nevertheless, in many
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applications, it is crucial to estimate the rate of convergence of functional occupa-
tion measures to the limit process; see [20]. One of the pertinent ways of dealing
with this relies on certain strong invariance principles; see [26].

There is a vast literature concerning strong invariance principles. Based on
quantile transforms, Csörgö and Révész [7] obtained a strong invariance princi-
ple for partial sums of independent and identically distributed random variables. It
was subsequently refined by Komlós, Major and Tusnády [19] with the best pos-
sible error bounds. Csörgö, Horváth and Steinebach [6] established strong invari-
ance principles for renewal processes; Csörgö, Deheuvels and Horváth [5] treated
random stopped sums; Kurtz [23] presented a strong approximation theorem for
density-dependent Markov chains. Recently, Csáki, Csörgö, Földes and Révész [4]
obtained strong approximation results for additive functions.

In this paper, our aim is to establish order of magnitude estimates of the rates of
convergence of functional occupation measures to the limit processes. Our meth-
ods rely on the Skorohod representation theorem for martingales and asymptotic
analysis for moments of singularly perturbed Markov chains.

The rest of the paper is organized as follows. Section 2 gives the precise for-
mulation of the problem together with the assumptions used. Section 3 is the main
part of this paper, which presents the results and the proofs. Using the Skorohod
representation and asymptotic properties of two-time-scale Markov chains, we de-
velop the rates of convergence for sequences of scaled and centered functional
occupation measures. A queueing application example is discussed in Section 4.
We conclude the paper in Section 5 with additional remarks.

2. Formulation and preliminaries. Let (�,F ,P ) be a probability space.
By virtue of Lemma 4.4.4 in [8], without loss of generality, we may assume that
the probability space accommodates all the random variables and processes of our
interests. Throughout the paper, we use z′ (resp. A′) to denote the transpose of a
vector z (resp. a matrix A), and use 1 to denote an infinite-dimensional column
vector with all components being 1 [i.e., 1 = (1,1, . . .)′]. Henceforth, we write
zi and aij for the ith component of the vector z and the ij th entry of the matrix
A = (aij ), respectively, and use a subscript to index a sequence. In addition, we
often use K to denote a generic positive constant with the convention KK = K

and K + K = K used.
Let ε > 0 and αε(·) be a time-inhomogeneous Markov chain on (�,F ,P ) with

countable state space N. Suppose that the infinitesimal generator of the chain is
given by (1.1). We work with a finite time horizon t ∈ [0, T ].

Recall that an infinite-dimensional matrix-valued function G(t) = (gij (t)) de-
fined on [0, T ] is a generator of the Markov chain β(t) if:

• gij (·) is Borel measurable and bounded for each i, j ∈ N;
• gij (t) ≥ 0 for all i �= j ; and
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• ∑∞
j=1 gij (t) = 0 for each i ∈ N, and each bounded and Borel measurable func-

tion f (·) defined on N,

f (β(t)) −
∫ t

0
G(s)f (·)(β(s)) ds is a martingale,

where

G(t)f (·)(i) =
∞∑

j=1

gij (t)f (j) for each i ∈ N.

DEFINITION 2.1. A Markov chain β(t) or its generator G(t) is weakly irre-
ducible, if the system of equations

ν(t)1 = 1,
(2.1)

ν(t)G(t) = 0,

has a unique solution ν(t) = (νi(t) : i ∈ N) with νi(t) ≥ 0 for each i ∈ N, where
0 = (0,0, . . .) is an infinite-dimensional 0 vector. The unique nonnegative solution
is termed a quasi-stationary distribution.

REMARK 2.2. Note that an equivalent way to write (2.1) is

ν(t)Ga(t) = (1
...0),

where Ga(t) is an augmented matrix given by Ga(t) = (1
...G(t)). The definition

above is an extension of the weak irreducibility given in [18] in that it allows the
state space of the Markov chains to be countable. Compared with the usual notion
of irreducibility, it deals with time-varying generators and relaxes the usual condi-
tion by allowing some components of the quasi-stationary distribution to be equal
to zero. The motivation stems from a wide variety of applications in manufactur-
ing, production planning and queueing networks.

To proceed, let a probability row vector pε(t) be defined by

pε(t) = (
p1

ε (t),p
2
ε (t), . . . , p

k
ε (t), . . .

)
(2.2)

= (
P
(
αε(t) = 1

)
,P
(
αε(t) = 2

)
, . . . ,P

(
αε(t) = k

)
, . . .

)
.

Then pε(t) is the solution of the forward equation

ṗε(t) = pε(t)Gε(t),
(2.3)

pε(0) = p(0) satisfying pi(0) ≥ 0 and
∞∑
i=1

pi(0) = 1.
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For notational simplicity, we have assumed the initial probability vector p(0) to be
independent of ε.

For countable-state-space Markov chains, working with infinite-dimensional
vector spaces, it is natural to consider the following linear spaces:

�1 =
{
v :vi ∈ R for each i ∈ N and

∞∑
i=1

|vi | < ∞
}

and

�∞ =
{
v :vi ∈ R for each i ∈ N and sup

i

|vi | < ∞
}
,

equipped with the norms

‖v‖1 =
∞∑
i=1

|vi | and ‖v‖∞ = sup
i

|vi |,

respectively (see [14], page 11). For a linear operator A defined on �1 or �∞, we
use its induced norm ‖A‖ = sup‖x‖=1 ‖xA‖, where ‖ ·‖ denotes either the �1 norm
or the �∞ norm. We will use the following conditions.

(A1) For each t ∈ [0, T ], A(t) is weakly irreducible. Moreover, for some n ≥ 0,
A(·) ∈ Cn+2[0, T ] and B(·) ∈ Cn+1[0, T ], where Ck[0, T ] denotes the space
of functions defined on [0, T ] that are k-times continuously differentiable.

(A2) There is a κ > 0 such that for each real number t > 0,

‖ exp(A(0)t) − 1ν(0)‖∞ ≤ K exp(−κt),(2.4)

where ν(t) = (ν1(t), ν2(t), . . .) is the quasi-stationary distribution corre-
sponding to the generator A(t).

REMARK 2.3. (i) By assuming the generators to be sufficiently smooth, we
can derive (uniform in the time variable t) asymptotic expansions of the probability
vectors as well as those of the transition probability matrices.

(ii) Assumption (A2) is a Doeblin-type condition; see a similar condition in
[11], page 217. A condition in a slightly different form is used in [11], page 192,
in which Doob gave an illuminating discussion. Nevertheless, for our purpose of
study, the current condition (2.4) appears to be more convenient. Although time-
varying generators and time-inhomogeneous Markov chains are considered, (A2)
is a condition only concerned with a time-invariant generator (or a constant ma-
trix) A(0). Suppose that the Markov chain generated by A(0) is β(t) and that
the corresponding transition probability matrix is P(t) = (pij (t)). Since P(t) =
exp(A(0)t), (A2) can be rephrased as a condition on the probability distribution
of β(t). Relaxing this condition using a modified norm for singularly perturbed
Markov chains can be found in [1].
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(iii) Note that the discussion up to now is devoted to Markov chains with
a countable state space. If N is replaced by M, a finite state space, the weak
irreducibility of A(t) in (A1) implies that (A2) holds. That is, for finite-
state-space Markov chains, (A2) need not be assumed. Also, in this case, the
infinite-dimensional ν(t) and 1 are replaced by finite-dimensional vectors ν(t) =
(ν1(t), . . . , νm

0 (t)) ∈ R
1×m0 and 1 = (1, . . . ,1)′ ∈ R

m0×1, respectively.

Let

Pε(t0, t) = (
pij

ε (t0, t)
)
, t ≥ t0,(2.5)

be the transition matrix with

pij
ε (t0, t) = P

(
αε(t) = j |αε(t0) = i

)
for all i, j ∈ N.

Define

wi
ε(s) = I{αε(s)=i} − νi(s).

For {f (i)}∞i=1 ∈ �1, define a sequence of centered functional occupation measures
by

zε(t) =
∫ t

0

(
f (αε(s)) −

∞∑
i=1

f (i)νi(s)

)
ds

(2.6)

=
∞∑
i=1

f (i)

∫ t

0
wi

ε(s) ds,

and define a sequence of scaled occupation measures as

ξε(t) = zε(t)√
ε

.(2.7)

Before proceeding further, we present a result on asymptotic expansions of the
transition probability matrix of the process αε(·) and a weak invariance principle
of ξε(·), which will be used to prove our main results. Generalizations of the above
results can be found in [30], Theorems 3.7, 3.8 and 4.4.

PROPOSITION 2.4. Assume (A1) and (A2). Then the following results hold.

(i) The asymptotic expansions in (2.8) hold uniformly in (t0, t) with 0 ≤ t0 ≤
t ≤ T :

Pε(t0, t) =
n∑

k=0

εk	k(t) +
n∑

k=0

εk
k

(
t0,

t − t0

ε

)
+ O(εn+1),(2.8)
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where 	0(t) = 1ν(t) and 	k(t) and 
k(t0, τ ) [with τ = (t − t0)/ε] are the solu-
tions of

	k(t)A(t) = d	k−1(t)

dt
− 	k−1(t)B(t), k = 1, . . . , n, d
0(t0, τ )

dτ
= 
0(t0, τ )A(t0),


(t0, t0) = I − 	0(t0),
(2.9)  d
k(t0, τ )

dτ
= 
k(t0, τ )A(t0) + Rk(t0, τ ), k = 1, . . . , n,


k(t0, t0) = −	k(t0),

Rk(t0, τ ) =
k−1∑
i=0


k−i−1(t0, τ )

(
τ i+1

(i + 1)!
di+1A(t0)

dt i+1 + τ i

i!
diB(t0)

dt i

)
,

respectively, where I is the identity matrix. Moreover, for k = 0,1, . . . , n,
	k(·) ∈ Cn+2−k , and there exist K > 0 and κ0 > 0 satisfying ‖
k(t0, τ )‖∞ ≤
K exp(−κ0τ).

(ii) As ε → 0, ξε(·) converges weakly to a diffusion process ξ(·) such that

Eξ(t) = 0 and E[ξ(t)]2 =
∫ t

0
σ 2(s) ds with

σ 2(s) =
∞∑
i=1

∞∑
j=1

f (i)f (j)

[
νi(s)

∫ ∞
0

ψ
ij
0 (s, τ ) dτ(2.10)

+ νj (s)

∫ ∞
0

ψ
ji
0 (s, τ ) dτ

]
.

(iii) The following estimate holds:

sup
0≤t≤T

∣∣∣∣E[ξε(t)]2 −
∫ t

0
σ 2(s) ds

∣∣∣∣= O(ε).(2.11)

REMARK 2.5. Note that in deriving the weak convergence of ξε(·) to the dif-
fusion process, a crucial observation is that a mixing condition holds. This mixing
condition can be stated as follows: For � ≥ 0, denote F t+�

ε = σ {αε(s) : s ≥ t +�}
and use Fε,t = {αε(s) : s ≤ t}. For any Fε,t -measurable � and F t+�

ε -measurable
ς satisfying |� | ≤ 1 and |ς | ≤ 1, there are K > 0 and κ1 > 0 such that∣∣E{ς |Fε,t } − Eς

∣∣≤ K exp(−κ1�/ε) a.s.,
(2.12) ∣∣E[�ς ] − E[� ] · E[ς ]∣∣≤ K exp(−κ1�/ε).

Condition (2.12) is a consequence of the asymptotic expansions of the transition
matrices and the exponential decays of the initial layer correction terms 
k(·) for
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k = 0, . . . , n, owing to the Doeblin-type condition. This mixing property will be
used subsequently without specific mentioning.

When the Markov chain has a finite state space M, define the scaled occupation
measures ξ̃ε(t) similar to the countable state-space counterpart but with finite-
dimensional vectors used:

ξ̃ε(t) = 1√
ε

(∫ t

0
w̃ε(s) ds

)
F̃ ,(2.13)

where w̃ε(t) = (w̃i
ε(t)) = (I{αε(t)=i}−νi(t)) ∈ R

1×m0 and F̃ = (f (1), . . . , f (m0))
′

is an arbitrary vector in R
m0×1. In this case, statement (i) in Proposition 2.4 re-

mains the same, and statement (ii) is changed to: ξ̃ε(·) converges weakly to a
diffusion process ξ̃ (·) such that

Eξ̃(t) = 0 and E[̃ξ(t)]2 =
∫ t

0
σ̃ 2(s) ds,(2.14)

where

σ̃ 2(s) =
m0∑
i=1

m0∑
j=1

f (i)f (j)

[
νi(s)

∫ ∞
0

ψ
ij
0 (s, r) dr + νj (s)

∫ ∞
0

ψ
ji
0 (s, r) dr

]
;

see [31], Chapters 4 and 5 for a proof.
Part (iii) indicates that the second moments of ξε(·) and ξ(·) differ by a small

amount. To be more precise, the error bound is of the order O(ε), which is also a
consequence of the asymptotic expansions.

REMARK 2.6. This paper is devoted to the convergence rate of ξε(·) to ξ(·).
Why is such a study needed? Although ξε(·) [resp. ξ̃ε(·)] has been shown to con-
verge to a diffusion process, the rate of convergence is yet to be determined.
Roughly, the weak convergence of the sequence of functions of scaled occupa-
tion measures indicates that ξε(·) can be replaced by a diffusion process ξ(·) and
the fast variations in ξε(·) can be ignored. However, this result alone does not pro-
vide us with further information on to what extent we can ignore ξε(·). To obtain
such information and to ascertain the convergence rate are the main goals of this
paper. As alluded to in the Introduction, the result will be obtained by combining
singular perturbation techniques and strong invariance methods.

3. A sequence of functional occupation measures. In this section, by focus-
ing on ξε(·), the scaled sequence of estimation errors of the centered functional
occupation measures, we develop asymptotic analysis and ascertain the rate of
convergence of ξε(·) to ξ(·).

THEOREM 3.1. Assume that conditions (A1) and (A2) hold. Then there exist
a constant δ > 0 and a diffusion process ξ(·) with drift and variance satisfying
(2.10) such that

sup
0≤t≤T

|ξε(t) − ξ(t)| = a.s.o(εδ).(3.1)
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REMARK 3.2. The meaning of (3.1) is

lim
ε→0

ξε(t) − ξ(t)

εδ
= 0 almost surely,

and the limit holds uniformly for t ∈ [0, T ]. Henceforth, this notation will be used
throughout the rest of the paper.

Theorem 3.1 is stated for αε(t) having a countable state space. If the state space
is M in lieu of N, the statement of the theorem will be changed as follows [see
Remarks 2.3(iii) and 2.5].

THEOREM 3.3. Assume that the Markov chain has a finite state space M and
(A1) holds. Then there exist a constant δ > 0 and a diffusion process ξ̃ (·) with drift
and variance given by (2.14) such that

sup
0≤t≤T

|̃ξε(t) − ξ̃ (t)| = a.s.o(εδ).

REMARK 3.4. Theorem 3.1 should be compared with Proposition 2.4. In lieu
of a weak invariance theorem, a strong invariance principle is obtained and the
convergence rate is ascertained. It will be seen in the proof that we can select
any positive number δ from the interval (0,1/4). In what follows, we will prove
Theorem 3.1 only. The proof of Theorem 3.3 can be carried out in exactly the same
way.

PROOF OF THEOREM 3.1. To facilitate the presentation, the proof is divided
into three steps.

Step 1. Approximating ξε(t) by a martingale process denoted by M̃ε(t)/
√

ε [de-
fined in (3.5)]. The main result in this step is summarized later in Proposition 3.5.

To obtain an asymptotic martingale expression for ξε(t), let us define

ηε(t) = (
I{αε(t)=1}, I{αε(t)=2}, . . . , I{αε(t)=k}, . . .

)
,

Mε(t) = ηε(t) − ηε(0) −
∫ t

0
ηε(s)Gε(s) ds.

Then Mε(t) is an Fε,t -martingale with Fε,t = σ {αε(s) : s ≤ t}. Using the result
of [15], page 55, we can define a stochastic integral with respect to this martingale.
Furthermore, the solution of the stochastic differential equation

dηε(t) = ηε(t)Gε(t) dt + dMε(t)

is given by

ηε(t) = ηε(0)Pε(0, t) +
∫ t

0
dMε(s)Pε(s, t),
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where Pε(s, t) is the transition matrix given by (2.5). Noting 	0(t) = 1ν(t) from
Proposition 2.4(i), we have

ηε(s) − ν(s) = ηε(0)[Pε(0, s) − 	0(s)]
(3.2)

+
∫ s

0
dMε(r){[Pε(r, s) − 	0(s)] + 	0(s)}.

It is easily seen that

f (αε(t)) =
∞∑
i=1

I{αε(t)=i}f (i) = ηε(t)F,

(3.3)

Gε(t)f (·)(αε(t)) =
∞∑
i=1

I{αε(t)=i}Gε(t)f (·)(i) = ηε(t)Gε(t)F,

where

F = (
f (1), f (2), . . . , f (k), . . .

)′ satisfying ‖F‖1 < ∞.

Multiplying (3.2) from the right by F together with an integration over [0, t] leads
to ∫ t

0
[ηε(s) − ν(s)]F ds −

∫ t

0
ηε(0)[Pε(0, s) − 	0(s)]F ds = M̃ε(t),(3.4)

where

M̃ε(t) =
∫ t

0

(∫ s

0
dMε(r){[Pε(r, s) − 	0(s)] + 	0(s)}F

)
ds.(3.5)

Note that ∫ t

0

∫ s

0
dMε(r)	0(s)F ds =

∫ t

0
Mε(s)	0(s)F ds = 0.(3.6)

Equation (3.6) follows from the observations∑
i

I{αε(s)=i} = 1 and
∑
i

I{αε(0)=i} = 1.

Thus

[ηε(s) − ηε(0)]	0(s) = [ηε(s) − η0(0)]1ν(s) = 0.

Moreover, for u, s ≥ 0,

A(u)	0(s) = A(u)1ν(s) = 0,

B(u)	0(s) = B(u)1ν(s) = 0.
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As a result,

Mε(s)	0(s) =
[
ηε(s) − ηε(0) −

∫ s

0
ηε(u)Gε(u)du

]
	0(s)

= ηε(s)	0(s) − ηε(0)	0(s) −
∫ s

0
ηε(u)

[
A(u)

ε
+ B(u)

]
	0(s) du

= 0.

Consequently, (3.5) leads to

M̃ε(t) =
∫ t

0

∫ s

0
dMε(r)[Pε(r, s) − 	0(s)]F ds.(3.7)

Note that∫ t

0
[ηε(s) − ν(s)]F ds =

∫ t

0

[
f (αε(s)) −

∞∑
i=1

f (i)νi(s)

]
ds

(3.8)
= zε(t), t ∈ [0, T ].

Next, define

Xε(t) =
∫ t

0
ηε(0)[Pε(0, s) − 	0(s)]F ds.(3.9)

By virtue of the asymptotic expansions [see (2.8)], the almost sure boundedness of
ηε(0) and the boundedness of F , we have that for any t ,

|Xε(t)|√
ε

≤ 1√
ε

∫ t

0
‖ηε(0)[Pε(0, s) − 	0(s)]‖∞‖F‖1 ds

≤ K√
ε

∫ t

0
exp

(
−κ0s

ε

)
ds(3.10)

= O
(√

ε
)

a.s.

In view of (2.7), (3.4), (3.8) and (3.10), we have established the following result.

PROPOSITION 3.5. Under the conditions of Theorem 3.1,

sup
0≤t≤T

∣∣∣∣ξε(t) − 1√
ε
M̃ε(t)

∣∣∣∣= a.s.O
(√

ε
)
.(3.11)

In view of the definition of ξε(t) and owing to (3.4) and Proposition 3.5, to
prove (3.1), it suffices to show that there exists a standard Brownian motion W(t)

such that

sup
0≤t≤T

∣∣∣∣ 1√
ε
M̃ε(t) − W

(∫ t

0
σ 2(s) ds

)∣∣∣∣= o(εδ) a.s.(3.12)
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for any 0 < δ < 1/4. Note that

sup
0≤t≤T

∣∣∣∣ 1√
ε
M̃ε(t) − W

(∫ t

0
σ 2(s) ds

)∣∣∣∣
≤ max

1≤k≤
T/ε�

∣∣∣∣ 1√
ε
M̃ε(εk) − W

(∫ εk

0
σ 2(s) ds

)∣∣∣∣
(3.13)

+ max
1≤k≤
T/ε� max

(k−1)ε≤t≤kε

∣∣∣∣ 1√
ε
M̃ε(εk) − 1√

ε
M̃ε(t)

∣∣∣∣
+ max

1≤k≤
T/ε� max
(k−1)ε≤t≤kε

∣∣∣∣W(∫ εk

0
σ 2(s) ds

)
− W

(∫ t

0
σ 2(s) ds

)∣∣∣∣.
To proceed, the estimate of the terms in the second line of (3.13) is obtained in the
next step, whereas the last two terms in (3.13) are dealt with in Step 3.

Step 2. Estimates of | 1√
ε
M̃ε(εk) − W(

∫ εk
0 σ 2(s) ds)|. The result is stated in

Proposition 3.6. To prove this assertion, we need to establish Proposition 3.7 first.
The proof of Proposition 3.7, in turn, will be done by proving a sequence of lem-
mas.

PROPOSITION 3.6. For any 0 < δ < 1/4,

max
1≤k≤
T/ε�

∣∣∣∣ 1√
ε
M̃ε(εk) − W

(∫ εk

0
σ 2(s) ds

)∣∣∣∣= o(εδ) a.s.(3.14)

PROOF. Define

M̃ε,0 = M̃ε(0) = 0,

M̃ε,k = M̃ε(εk) for k = 1, . . . ,

⌊
T

ε

⌋
,(3.15)

Yε,k = M̃ε,k − M̃ε,k−1 for k = 1, . . . ,

⌊
T

ε

⌋
.

From the definition of Yε,k , we have that

Yε,1 =
∫ ε

0

∫ s

0
dMε(r)[Pε(r, s) − 	0(s)]F ds(3.16)

and

Yε,k =
∫ εk

ε(k−1)

∫ s

0
dMε(r)[Pε(r, s) − 	0(s)]F ds for 2 ≤ k ≤

⌊
T

ε

⌋
.(3.17)

Then {Yε,k,1 ≤ k ≤ 
T
ε
�} is a martingale difference sequence with respect to

the filtration {Fε,k,1 ≤ k ≤ 
T
ε
�}, where Fε,k denotes the σ -algebra generated by

{Yε,j : j ≤ k}. By virtue of the martingale version of the Skorohod representation
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theorem (see [29], Theorem 4.3; also [27]), there exist nonnegative variables τε,k

such that {
1√
ε
M̃ε,k : 1 ≤ k ≤

⌊
T

ε

⌋}
(3.18)

=D

{
W
(
ε(τε,1 + · · · + τε,k)

)
: 1 ≤ k ≤

⌊
T

ε

⌋}
,

where D denotes “equal in distribution” and W(·) is a standard Brownian motion.
Now let Gε,0 be the trivial σ -field and let Gε,k be the σ -field generated by Fε,k and
{W(t) : 0 ≤ t ≤ ε

∑k
i=1 τε,i} for k ≥ 1. Furthermore, from Theorem 4.3 of [29], we

have:

(i) each τε,k is Gε,k-measurable;
(ii) εE[τε,1] = ε−1E[Yε,1]2 and εE[τε,k] = ε−1E[Yε,k]2;

(iii) for each k with 2 ≤ k ≤ 
T
ε
�,

εE{τε,k|Gε,k−1} = ε−1E{[Yε,k]2|Fε,k−1} a.s.

Using [29], Theorem 4.3 again, there is a positive constant

Lr = 2(8/π2)r−1�(r + 1),

where �(·) is the familiar Gamma function such that

εrE[τε,1]r ≤ ε−rLrE[Yε,1]2r ,(3.19)

and for each k with 2 ≤ k ≤ 
T
ε
�,

εrE{[τε,k]r |Gε,k−1} ≤ ε−rLrE{[Yε,k]2r |Fε,k−1};(3.20)

see [13], page 269. We need to establish the following assertion.

PROPOSITION 3.7. For any θ ∈ (0, 1/2),

max
1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

τε,j −
∫ kε

0
σ 2(s) ds

∣∣∣∣∣=a.s. O(εθ ).(3.21)

Suppose momentarily that (3.21) holds. Then

sup
1≤k≤
T/ε�

∣∣∣∣W (
ε(τε,1 + · · · + τε,k)

)− W

(∫ kε

0
σ 2(s) ds

)∣∣∣∣
(3.22)

≤ sup
0≤s≤∫ T

0 σ 2(u)du

sup
0≤t≤εθ

|W(s + t) − W(s)|.

It follows from Theorem 1.1.1 of [8] that

sup
0≤s≤∫ T

0 σ 2(u)du

sup
0≤t≤εθ

|W(s + t) − W(s)| = a.s.o
(√

εθ
)
.(3.23)
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Noting (3.18), (3.14) directly follows from (3.23). Thus it remains to prove Propo-
sition 3.7, which is our task in the remainder of this step. �

PROOF OF PROPOSITION 3.7. Note that{
k∑

j=1

(τε,j − E{τε,j |Gε,j−1}),1 ≤ k ≤
⌊
T

ε

⌋}
is a martingale.

Using Burkholder’s inequality for martingales (see [3], Corollary 1, page 397), we
obtain that for any 0 < γ < 1,

P

(
max

1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

(τε,j − E{τε,j |Gε,j−1})
∣∣∣∣∣> εθ

)

≤ ε(1−θ)(1+γ )E

(
max

1≤k≤
T/ε�

∣∣∣∣∣
k∑

j=1

(τε,j − E{τε,j |Gε,j−1})
∣∣∣∣∣
)1+γ

(3.24)

≤ Aγ ε(1−θ)(1+γ )E

(
T/ε�∑
j=1

(τε,j − E{τε,j |Gε,j−1})2

)(1+γ )/2

,

where Aγ is a constant depending only on γ . Noting the elementary inequality

|a + b|r ≤ Cr(|a|r + |b|r ), r > 0,(3.25)

where Cr = 1 or 2r−1 according to r ≤ 1 or r ≥ 1, (3.24) and (3.25) with r < 1
yield that

P

(
max

1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

(τε,j − E{τε,j |Gε,j−1})
∣∣∣∣∣> εθ

)
(3.26)

≤ Aγ ε(1−θ)(1+γ )

T/ε�∑
j=1

E|τε,j − E{τε,j |Gε,j−1}|1+γ for all γ < 1.

Note that γ < 1 is crucial to keep the constant Aγ independent of 
T
ε
�. Using

Jensen’s inequality for conditional expectations, (3.19) and (3.25),

ε1+γ E|τε,j − E{τε,j |Gε,j−1}|1+γ

≤ 2γ ε1+γ [E(τε,j )
1+γ + E(E{τε,j |Gε,j−1})1+γ ]

(3.27)
≤ 21+γ ε1+γ E(τε,j )

1+γ

≤ 21+γ L1+γ ε−(1+γ )E[Yε,j ]2+2γ .

We divide the rest of the proof of Proposition 3.7 into four substeps; each of the
first three is presented as a lemma.
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LEMMA 3.8. (
1√
ε

)2+2γ 
T/ε�∑
k=1

E|Yε,k|2+2γ = O(εγ ).(3.28)

PROOF. Note that ηε(·) is bounded uniformly in t ∈ [0, T ], ε > 0, and the
underlying sample point ω ∈ � under the norm ‖ · ‖∞. That is,

sup
ω∈�

sup
ε>0

sup
0≤t≤T

‖ηε(t)‖∞ ≤ 1.(3.29)

Note also that by Proposition 2.4, in particular by (2.8),

‖Pε(0, s) − 	0(s)‖∞ = O

(
ε + exp

(
−κ0s

ε

))
.(3.30)

In view of (3.2), for any 1 ≤ k ≤ 
T/ε�,

|Yε,k| =
∣∣∣∣∫ εk

ε(k−1)

∫ s

0
dMε(r)[Pε(r, s) − 	0(s)]F ds

∣∣∣∣
=
∣∣∣∣∫ εk

ε(k−1)
{[(ηε(s) − ν(s)]F − ηε(0)[Pε(0, s) − 	0(s)]F }ds

∣∣∣∣
(3.31)

≤
∫ εk

ε(k−1)
‖ηε(s) − ν(s)‖∞ · ‖F‖1 ds

+
∫ εk

ε(k−1)
‖ηε(0)[Pε(0, s) − 	0(s)]‖∞ · ‖F‖1 ds

≤ Kε for some K > 0.

The constant K above can be chosen to be independent of k and ω ∈ � by virtue
of (3.29), (3.30) and the boundedness of ‖F‖1. This, in turn, implies that

E|Yε,k|2+2γ ≤ O(ε2+2γ ).

Substituting the above into the left-hand side of (3.28), we arrive at∣∣∣∣∣
(

1√
ε

)2+2γ 
T/ε�∑
k=1

E(Yε,k)
2+2γ

∣∣∣∣∣
≤ O

(
ε−(1+γ ))O(ε−1)O(ε2+2γ ) = O(εγ ).

The desired result (3.28) thus follows. �

LEMMA 3.9. For any θ ∈ (0, 1/2),

max
1≤k≤
T/ε�

∣∣∣∣∣
k∑

j=1

ε(τε,j − E{τε,j |Gε,j−1})
∣∣∣∣∣= a.s.O(εθ ).(3.32)



222 G. YIN AND H. ZHANG

PROOF. It follows from (3.24), (3.26)–(3.27) and Lemma 3.8 that

P

(
max

1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

(τε,j − E{τε,j |Gε,j−1})
∣∣∣∣∣> εθ

)
(3.33)

= O
(
ε−θ(1+γ ))O(εγ ) = O(εθ̃ ) with θ̃ = γ − θ(1 + γ ).

Note that for any θ ∈ (0,1/2), θ/(1 − θ) < 1. Thus, for any θ ∈ (0,1/2), we can
choose γ ∈ (0,1) such that γ > θ/(1 − θ). This implies that θ̃ > 0. Next, we pick
out εn = n−2/θ̃ . Then from (3.33),

∞∑
n=1

P

(
max

1≤k≤
T/εn�

∣∣∣∣∣εn

k∑
j=1

(
τεn,j − E

{
τεn,j |Gεn,j−1

})∣∣∣∣∣> εθ
n

)
< ∞.

The Borel–Cantelli lemma implies that

max
1≤k≤
T/εn�

∣∣∣∣∣εn

k∑
j=1

(
τεn,j − E

{
τεn,j |Gεn,j−1

})∣∣∣∣∣≤ a.s.O(εθ
n).

According to the choice of εn, we have (3.32). �

LEMMA 3.10. For any θ ∈ (0,1/2),

max
1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

E{τε,j |Gε,j−1} −
∫ kε

0
σ 2(s) ds

∣∣∣∣∣= a.s.O(εθ ).(3.34)

PROOF. Using (iii) in Step 2,

ε

k∑
j=1

E{τε,j |Gε,j−1} = 1

ε

k∑
j=1

E{[Yε,j ]2|Fε,j−1}.(3.35)

Note that {Yε,k} is an orthogonal sequence (martingale difference). Next we claim
that

max
1≤k≤
T/ε�

∣∣∣∣∣1ε
k∑

j=1

(E{[Yε,j ]2|Fε,j−1} − E[Yε,j ]2)

∣∣∣∣∣= O(εγ ).(3.36)

This can be done by using the same techniques as in the proof of Lemma 3.8. We
thus omit the details.

Similarly to M̃ε,k in (3.15), define

ξε,0 = ξε(0) = 0, ξε,k = ξε(εk), yε,k = ξε,k − ξε,k−1.

Using the asymptotic equivalence (3.11), we have

max
1≤k≤
T/ε�

∣∣∣∣∣ 1√
ε

k∑
j=1

Yε,k −
k∑

j=1

yε,k

∣∣∣∣∣= a.s.O
(√

ε
)
.(3.37)
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In view of E[∑k
j=1 Yε,j ]2 =∑k

j=1 E[Yε,j ]2, (3.37) implies that

max
1≤k≤
T/ε�

∣∣∣∣∣1ε
k∑

j=1

E[Yε,j ]2 − E

(
k∑

j=1

yε,j

)2∣∣∣∣∣= O
(√

ε
)
.

This together with (3.36) and (3.37) implies that

max
1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

E{τε,j |Gε,j−1} −
∫ kε

0
σ 2(s) ds

∣∣∣∣∣
(3.38)

= max
1≤k≤
T/ε�

∣∣∣∣∣E
(

k∑
j=1

yε,j

)2

−
∫ kε

0
σ 2(s) ds

∣∣∣∣∣+ a.s.O(εθ ),

where a.s.O(εθ ) indicates the order is in the sense of almost sure convergence. As
a result, to derive the desired result, we need only work with E(

∑k
j=1 Eyε,j )

2. By
telescoping and noting that ξε,0 = 0,

E

(
k∑

j=1

yε,j

)2

= E

(
k∑

j=1

(ξε,j − ξε,j−1)

)2

= E[ξε(εk)]2.(3.39)

Using (2.11), we arrive at

max
1≤k≤
T/ε�

∣∣∣∣E[ξε(εk)]2 −
∫ kε

0
σ 2(s) ds

∣∣∣∣= O(ε).(3.40)

Combining the estimates (3.38)–(3.40) obtained thus far, the desired result (3.34)
then follows. �

COMPLETION OF THE PROOF OF PROPOSITION 3.7. Combining Lemma 3.9
and Lemma 3.10 yields that for any θ ∈ (0,1/2),

max
1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

�=1

τε,� −
∫ kε

0
σ 2(s) ds

∣∣∣∣∣
≤ max

1≤k≤
T/ε�

∣∣∣∣∣
k∑

j=1

ε(τε,j − E{τε,j |Gε,j−1})
∣∣∣∣∣

(3.41)

+ max
1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

E{τε,j |Gε,j−1} −
∫ kε

0
σ 2(s) ds

∣∣∣∣∣
= a.s.O(εθ ).

Therefore, we have (3.21). �

Step 3. Estimates of the last two terms in (3.13). This is stated in the following
proposition.
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PROPOSITION 3.11. The following estimates hold:

max
1≤k≤
T/ε� max

(k−1)ε≤t≤kε

∣∣∣∣ 1√
ε
M̃ε(εk) − 1√

ε
M̃ε(t)

∣∣∣∣= a.s.O
(√

ε
)

(3.42)

and

max
1≤k≤
T/ε� max

(k−1)ε≤t≤kε

∣∣∣∣W(∫ εk

0
σ 2(s)

)
ds − W

(∫ t

0
σ 2(s) ds

)∣∣∣∣
(3.43)

= a.s.o
(√

ε
)
.

PROOF. Similarly to (3.31),

max
1≤k≤
T/ε� max

(k−1)ε≤t≤kε
|M̃ε(εk) − M̃ε(t)|

= max
1≤k≤
T/ε� max

(k−1)ε≤t≤kε

∣∣∣∣∫ εk

t

∫ s

0
dMε(r)[Pε(r, s) − 	0(s)]F ds

∣∣∣∣
= max

1≤k≤
T/ε� max
(k−1)ε≤t≤kε

∣∣∣∣∫ εk

t
{[ηε(s) − ν(s)]F

− ηε(0)[Pε(0, s) − 	0(s)]F }ds

∣∣∣∣(3.44)

≤ max
1≤k≤
T/ε�

∫ εk

ε(k−1)
‖ηε(s) − ν(s)‖∞ · ‖F‖1 ds

+ max
1≤k≤
T/ε�

∫ εk

ε(k−1)
‖ηε(0)[Pε(0, s) − 	0(s)]‖∞ · ‖F‖1 ds

≤ Kε for some K > 0.

Thus, (3.42) holds.
By the boundedness of σ 2(s), it is easily seen that

sup
0≤t≤T

∣∣∣∣∣

t/ε�∑
k=1

∫ εk

ε(k−1)
σ 2(u) du −

∫ t

0
σ 2(u) du

∣∣∣∣∣≤ Kε.

Using [8], Theorem 1.1.1 again yields (3.43). �

COMPLETION OF THE PROOF OF THEOREM 3.1. It follows from (3.13),
Proposition 3.6 and Proposition 3.11 that for any δ ∈ (0,1/4),

sup
0≤t≤T

∣∣∣∣M̃ε(t) − W

(∫ t

0
σ 2(s) ds

)∣∣∣∣= a.s.O(εδ),

which, in view of Step 1, implies the theorem. �
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REMARK 3.12. In view of (3.11), (3.13) and (3.42)–(3.43), the rate of con-
vergence of the sequence of functional occupation measures to the limit process in
(3.1) is dominated by the bound of

max
1≤k≤
T/ε�

∣∣∣∣ 1√
ε
M̃ε(εk) − W

(∫ εk

0
σ 2(s) ds

)∣∣∣∣.(3.45)

Since we cannot obtain that for any θ ≥ 1/2,

max
1≤k≤
T/ε�

∣∣∣∣∣ε
k∑

j=1

τε,j −
∫ kε

0
σ 2(s) ds

∣∣∣∣∣= a.s.O(εθ ),(3.46)

in view of (3.18) and Theorem 1.1.1 [8], the bound of (3.45) is εδ with δ ∈ (0,1/4).

REMARK 3.13. Equation (3.21) is the key to obtain our convergence rate.
This equation is based on inequality (3.20), which is given by (3.18). The relation-
ship (3.18) is an application of Strassen’s theorem. Note that due to the time-scale
separation, the small parameter ε > 0 is embedded in the processes, which is non-
standard. The new twist is on the use of the scaling specific to the Markov chains.

4. Applications to queueing processes. This section demonstrates how the
results obtained can be applied to queueing problems, illustrates how the asymp-
totic analysis can help us to gain insight, and provides guidelines for treating a
class of time-dependent queueing models. One of the main ideas is: If the rate
of change is slow enough, we can approximate the time-inhomogeneous behav-
ior by that of quasi-stationary characteristics leading to a substantial reduction of
complexity.

Consider an Mt/Mt/1/m0 queue with m0 waiting rooms and the first-in first-
out service discipline. Let α(t) represent the number of customers in the system at
time t . The arrival rates are λ(t)λi for 0 ≤ i ≤ m0, and the service rates are µ(t)µi

for 1 ≤ i ≤ m0, where λ(t), µ(t), λi and µi are all nonnegative. Then α(t) is a
Markov process with the generator G(t) given by

−λ(t)λ0 λ(t)λ0
µ(t)µ1 −[λ(t)λ1 + µ(t)µ1] λ(t)λ1

. . .
. . .

. . .

µ(t)µm0−1 − [λ(t)λm0−1 + µ(t)µm0−1] λ(t)λm0−1
µ(t)µm0 −µ(t)µm0

 .

For an initial time t0 ∈ [0, T ], let P(t0, t) with t > t0 be the transition matrix
(pij (t0, t)) with

pij (t0, t) = P
(
α(t) = j |α(t0) = i

)
for all 0 ≤ i, j ≤ m0.

Then we have the following system of birth–death equations:

d

dt
P (t0, t) = P(t0, t)G(t).(4.1)
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(In the above and henceforth, we add 0 to the state space to include the possibility
that the queue might be empty, so M = {0, . . . ,m0}. All the results obtained in the
previous sections carry over.)

Assume that the rate of change of the generator G(t) varies very slowly in time
so that the process P(t0, t) can achieve equilibrium before there is any significant
change in the rate. Following [24] and [25], we replace the arrival rate λ(t)λi

and service rate µ(t)µi by λ(t)λi/ε and µ(t)µi/ε, respectively, where ε > 0 is
a smaller parameter. Also index the queue length process by ε, and write α(t) =
αε(t). Then the corresponding Pε(t0, t) satisfies the following system of equations:

d

dt
Pε(t0, t) = 1

ε
Pε(t0, t)G(t).(4.2)

Suppose that λ(·) ∈ C2[0, T ] and µ(·) ∈ C2[0, T ]. Then the generator G(t) satis-
fies (A1). By Proposition 2.4, we can obtain the probability of αε(t) = i for any
time t , that is, Corollary 5.2 of [25]. Furthermore, we consider the occupation time
of αε(·) in a given state during a finite interval time [0, t], which is an important
performance measure for the system. To this end, let

	0(t) =
ν(t)

...

ν(t)

 , ν(t) = (
ν0(t), . . . , νm

0 (t)
)
,

with

νj (t) =
(

λ(t)

µ(t)

)j j−1∏
k=0

λk

µk+1

/ m0∑
i=0

(
λ(t)

µ(t)

)i i−1∏
k=0

λk

µk+1
, j = 0, . . . ,m0,

and


0(t0, t) = (
ψ

ij
0 (t0, t)

)
(m0+1)×(m0+1) = [I − 	0(t0)] exp

(
G(0)

t − t0

ε

)
.

Our previous result on weak invariance reveals that ξ̃ε(·) converges weakly to a
diffusion process ξ̃ (·), where ξ̃ε(·) and ξ̃ (·) are given in Remark 2.5. Thus, loosely,
ξ̃ε(·) can be replaced by the diffusion process. Nevertheless, the weak convergence
alone does not provide us with any information on how close the approximation
is. The needed information is provided in this paper. By virtue of Theorem 3.3, for
any i with 0 ≤ i ≤ m0, by choosing F̃ = ei the standard unit vector in R

(m0+1)×1,

we obtain∫ t

0
I{αε(s)=i} ds =a.s

∫ t

0
νi(s) ds + √

εW

(∫ t

0
σ̃ 2(s) ds

)
+ o(ε1/2+δ),

δ ∈ (0,1/4),

where W(·) is a standard Brownian motion, and

σ̃ 2(s) = 2νi(s)

∫ ∞
0

ψii
0 (s, r) dr.
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Thus when we approximate the occupation measure∫ t

0
I{αε(s)=i} ds by

∫ t

0
νi(s) ds,

the approximation error is a
√

ε perturbation of the standard Brownian motion.
Hence, the convergence rate result will allow us to further evaluate how good the
approximation is.

5. Concluding remarks. This work has been devoted to limit results of scaled
sequences of centered functional occupation measures. Under the framework of
two-time-scale formulation, using the Skorohod representation and asymptotic
properties of recently developed singularly perturbed Markov chains, we have ob-
tained convergence rate theorems, which provide almost sure invariance principles
leading to the weak convergence rates of sequences of the underlying occupation
measures.

The proofs of results use the Skorohod representation in an essential way; the
results are most suitable for the functional form of occupation measures. Several
problems are of interest from theoretical as well as practical considerations.

First, in lieu of one-dimensional functional occupation measures, we may con-
sider vector-valued occupation processes. Somewhat different techniques are re-
quired; see, for example, Kiefer [17] and Kuelbs [21] among others. Second, the
current problem setup is under the stipulation that the fast changing part of the
generator corresponds to a Markov chain having a single ergodic class. A gener-
alization of this requires the consideration that the fast varying generator consists
of multiple ergodic classes. Many applications lead to such Markovian models.
The corresponding weak convergence result to diffusions with regime switching
has been obtained in our recent work [30]; the associated convergence rate results
will be equally important. However, from one ergodic class to multiple ergodic
classes is not a straightforward extension. One of the difficulties is that the scaled
sequence ξε(t) for the multiple-ergodic-class case is no longer φ-mixing. The limit
process is no longer a diffusion process, but rather a switching diffusion. For each
fixed t , the limit distribution is not purely Gaussian, but rather a Gaussian mixture.
The technical details need to be thoroughly investigated, and the questions require
further thought and careful consideration.
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