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HARMONIC CONTINUOUS-TIME BRANCHING MOMENTS

BY DIDIER PIAU

Université Lyon 1 and Université Grenoble 1

We show that the mean inverse populations of nondecreasing, square
integrable, continuous-time branching processes decrease to zero like the
inverse of their mean population if and only if the initial population k is
greater than a first threshold m1 ≥ 1. If, furthermore, k is greater than a sec-
ond threshold m2 ≥ m1, the normalized mean inverse population is at most
1/(k −m2). We express m1 and m2 as explicit functionals of the reproducing
distribution, we discuss some analogues for discrete time branching processes
and link these results to the behavior of random products involving i.i.d. non-
negative sums.

Introduction. We consider nondecreasing continuous-time branching pro-
cesses (zt )t≥0 with initial population z0 := k ≥ 1, split intensity s(t) and offspring
distribution p(t) ∗ δ1 at time t ≥ 0, where

p(t) = ∑
i≥0

p(i, t) δi .

In other words, zt is the size at time t of a population which evolves as follows.
During the interval [t, t +dt), each individual living at time t survives with proba-
bility 1−s(t) dt +o(dt). For every i ≥ 0, the individual dies and is instantaneously
replaced by i + 1 individuals, independently of the behavior of the other individ-
uals living at time t , with probability p(i, t)s(t) dt + o(dt). The process (zt )t is
pathwise nondecreasing, hence zt ≥ k with full probability and the harmonic mo-
ments Ek{1/zt } are well defined.

Harmonic moments of branching processes are needed to build unbiased esti-
mators of the offspring distributions from samples of Markov branching processes
in noncanonical situations, for instance when the state of an individual depends
on the number of its siblings. Examples of this situation in a discrete-time setting
arise in the context of applications to molecular biology; see [8] for a presentation
and [5–7] for a mathematical study. Also, harmonic moments reflect mainly lower
deviations of the branching process and may be viewed as an integrated way to
quantify these deviations; see [3, 4] and the thorough exposition in [2].

In this paper, we provide sharp bounds for Ek{1/zt } if and when Ek{1/zt } de-
creases to zero roughly like 1/Ek{zt } when t → ∞. The emphasis is on explicit
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and computable upper bounds and the setting is restricted to square integrable off-
spring distributions.

1. Main results. This section is composed as follows. We first introduce some
definitions (Section 1.1) and explain a canonical reduction of the model (Sec-
tion 1.2). Then we explain our main results the continuous-time case (Section 1.3)
and the discrete-time case (Section 1.4). Finally, we sketch some relations of our
results to previous work (Section 1.5) and describe the overall plan of the rest of
the paper (Section 1.6).

1.1. Notation.

DEFINITION 1.1. For every t ≥ 0, L(t) ≥ 0 denotes a random variable of
distribution p(t) and

E{L(t)} = ∑
i≥0

ip(i, t), M(t) :=
∫ t

0
E{L(u)}s(u) du.

The function hk and the quantity h(k) are defined by

hk(t) := eM(t)
Ek{1/zt }, h(k) := sup

t≥0
hk(t).

From elementary computations,

Ek{zt } = keM(t).

Since the function z �→ 1/z is convex, hk(·) is nondecreasing, h(k) is the limit
of hk(·) at infinity, h(k) ≥ 1/k = hk(0) and, for every t ≥ 0,

e−M(t)/k ≤ Ek{1/zt } ≤ h(k)e−M(t).

Hereafter, our aim is to provide sharp upper and lower bounds of h(k).

1.2. Reduction. In this section, we show that one can assume s(t) = 1 and
L(t) ≥ 1 for every t ≥ 0.

DEFINITION 1.2. For every random variable L such that P(L = 0) �= 1, L′ de-
notes a random variable distributed like L and conditioned by {L �= 0}.

DEFINITION 1.3. Let (∗) denote the condition that the function σ(·) is un-
bounded, where, for every t ≥ 0,

σ(t) :=
∫ t

0

(
1 − p(0, u)

)
s(u) du.

The individuals who survive and those who die and are replaced by exactly one
individual have the same net effect on the overall count zt of the population. This
proves Proposition 1.4.
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PROPOSITION 1.4 (Canonical reduction). Let (z′
t )t denote the branching

process of parameters p′(·) and s′(·) ≡ 1, where p′(t) denotes the distribution
of L′(σ−1(t)). Then the distributions of (zt )t and (z′

σ(t))t coincide. As a conse-
quence, provided the condition (∗) is met, the quantities h(k) for (zt )t and for
(z′

t )t coincide.

Hence, under condition (∗), one can assume without loss of generality (and we
do assume this from now on) that L(t) ≥ 1 for every t , almost surely, and that
s(·) ≡ 1.

1.3. Results in continuous time. The case when the random tree associated to
the branching process is regular is, in a sense, extremal. We first deal with this
case.

THEOREM 1 (Degenerate case). Assume that p(t) = δi for every t ≥ 0, with
i ≥ 1. Then, for every k ≤ i, h(k) is infinite and for every k ≥ i + 1,

h(k) = 1/(k − i).

In the general case, the parameters m1 and m2 defined below play a crucial role.

DEFINITION 1.5. For every integer-valued, not identically zero, square inte-
grable L ≥ 0, let

m1{L} := E{L |L �= 0}, m2{L} := E{L2}/E{L}.

For every L, m1{L} = m1{L′} and m2{L} = m2{L′} (see Definition 1.2), and

1 ≤ m1{L} ≤ m2{L}.
If L assumes more than one nonzero value, these inequalities are strict. Our next
result deals with the case when p(t) does not depend on t :

THEOREM 2 (Homogeneous case). Assume that L(t) is distributed as L ≥ 0,
for every positive t , and that L is square integrable and not identically zero.

(a) For every k ≤ m1{L}, h(k) is infinite. In particular, h(1) is infinite.
(b) For every k > m1{L}, h(k) is finite and

h(k) > 1/(k − m1{L}).
(c) For every k > m2{L},

1/(k − m1{L}) < h(k) ≤ 1/(k − m2{L}).

Finally, we state our result in the general case:
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THEOREM 3 (General case). Assume that there exist finite positive con-
stants m

±
1 and m

+
2 such that, for every t ,

m
−
1 ≤ m1{L(t)} ≤ m

+
1 , m2{L(t)} ≤ m

+
2 .

Then the following hold:

(a) For every k ≤ m
−
1 , h(k) is infinite.

(b) For every k > m
+
1 , h(k) is finite.

(c) For every k > m
+
2 , 1/(k − m

−
1 ) ≤ h(k) ≤ 1/(k − m

+
2 ).

We explain below how to deduce from Theorems 2 and 3 upper bounds of h(k)

in the ranges m1{L} < k ≤ m2{L} and m
+
1 < k ≤ m

+
2 , respectively. Finally, note

that in Theorem 3, m1{L(t)} and m2{L(t)} can be independent on t , even when
the distribution of L(t) depends on t .

1.4. Results in discrete time. This section refines results in [7] which we recall
in Section 2.1, and uses notation from Definition 2.4 in Section 2.1.

THEOREM 4. In the setting of Theorem 2, for every k > m2{L},
H(k) ≤ 1/(k − m2{L}).

In the setting of Theorem 3, for every k > m
+
2 ,

H(k) ≤ 1/(k − m
+
2 ).

Overall, the situation is less clear in discrete time than in continuous time; note
in particular that Theorem 4 does not yield the exact set of populations k such
that H(k) is finite.

1.5. Relation to previous work. In the discrete-time setting, this paper deals
with offspring distributions δ1 ∗p such that p(0) �= 0, which belong to the so-called
Schröder’s case; see [2], for instance. With the notation of our paper, Schröder’s
exponent α is defined by the relation

p(0)(1 + E{L})α = 1.

When the distribution p is L log L integrable and when Z(0) = 1, the martingale
Z(n)/(1 + E{L})n converges almost surely to a random variable W , which is al-
most surely positive and finite. Introducing i.i.d. copies (Wi)i≥1 of W and using
the fact that (1 + E{L})n/Z(n) is a positive submartingale, one gets

H(k) = E
(
1/(W1 + · · · + Wk)

)
.

Likewise, in our continuous-time setting, when z0 = 1, zt/e
M(t) converges almost

surely to w, say, and using i.i.d. copies (wi)i≥1 of w, one gets

h(k) = E
(
1/(w1 + · · · + wk)

)
.
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Returning to the discrete-time setting, W has distribution ω(x)dx, the func-
tion ω(·) is continuous (see [1]), and there exist positive and finite constants
c1 and c2 such that, when x → 0,

c1x
1−α ≤ ω(x) ≤ c2x

1−α.

Using this, one can check that E1(1/Wβ) is finite if and only if

α > β.

Likewise, starting from Z0 = k, W is distributed like the sum of k i.i.d. copies
of W starting from one individual. Hence, H(k) is finite if and only if

kα > 1.

One sees that, in a loose sense, the initial population k plays the rôle of 1/β . For
instance, by convexity, it is a quite general and easily-demonstrated fact that if
E1(1/W 1/k) is finite, then H(k) = Ek(1/W) is also finite. For more remarks on
this, see Section 1.5 of [7].

1.6. Plan. The rest of the paper is organized as follows. In Section 2, we re-
call some results from [7] about the harmonic moments of branching processes
in discrete time. We then refine these results and show how to apply them to the
continuous-time setting. This section culminates with the statement of Theorem 5,
which we prove later. In Section 3, we prove Theorem 1 and state some additional
remarks. Section 4 presents a stochastic recursion, basic for our study. This allows
the exact determination of the initial populations k such that h(k) is finite. In Sec-
tion 5, we prove part (b) of Theorem 2. In Section 6, we prove Theorem 5, stated in
Section 2. In Section 7, we use the upper bounds for initial populations above m2 to
deduce upper bounds for smaller initial populations, namely between m1 and m2.
Finally, we explain in Section 8 how our results on branching processes yield the
limits of specific random products, which involve some sums of nonnegative i.i.d.
random variables.

2. Continuous-time and discrete-time harmonic moments.

2.1. Discrete-time harmonic moments. We consider branching processes in
discrete time (Z(n))n≥0 with reproducing distribution p ∗ δ1. Hence, introducing
i.i.d. random variables L(n, i) ≥ 1 with distribution p ∗ δ1, we set

Z(n + 1) :=
Z(n)∑
i=1

L(n, i).

As is well known, continuous-time branching processes are limits of discrete-time
ones. To see this, for every distribution p, we introduce a family (Zu)u of branch-
ing processes in discrete time, based on p and defined as follows:
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DEFINITION 2.1. For each u in (0,1], Lu ≥ 0 denotes a random variable of
distribution pu given by

pu := (1 − u)δ0 + up.(1)

Let (Zu(n))n≥0 denote a nondecreasing, integrable Galton–Watson process, in-
dexed by the nonnegative integers, starting from Zu(0) := k and with reproducing
distribution δ1 ∗ pu. Then, when u → 0, Zu converges to (zt )t in distribution,
at least in the sense that, for each fixed t , Zu(
t/u�) converges to zt in distri-
bution. Thus, results about the harmonic moments of the discrete-time branching
processes Zu, when suitably uniform over the parameter u, yield information about
the harmonic moments of the continuous-time branching process (zt )t . To develop
this strategy, we borrow some definitions and results from [7], with some modifi-
cations.

DEFINITION 2.2 ([7]). For every nonnegative m, g0,m(s) := sm. For every
nonnegative m and every positive c,

gc,m(s) := (
1 + m(1 − sc)

)−1/c
.

For every nonnegative c, Gc denotes the space of nonnegative random variables L

such that, for every s in [0,1], E{sL} ≤ gc,m(s) with m := E{L}.

We recall the following facts and remarks from [7]. First,

gc,m(s) =: E{sLc,m}
is the generating function of a nonnegative random variable Lc,m, every moment
of which is finite, such that E{Lc,m} = m, and whose distribution is either δm if
c = 0, or is supported by the set of nonnegative multiples of c if c is positive
(viz., the distribution of Lc,m/c is negative binomial). We stress that one compares
the generating functions of L and of Lc,m, two random variables whose means are
equal, but that, the case when c is an integer being excluded, Lc,m is not an integer-
valued random variable. Hence there does not exist, in general, any branching
process based on the distribution of Lc,m.

Second, every L in Gc is square integrable and its variance σ 2{L} is at most
σ 2{Lc,m} = cm(m+ 1). Finally, the family (Gc)c≥0 is increasing and every square
integrable L belongs to Gc if c is sufficiently large. Using Definition 2.3 below, we
rephrase this as Proposition 2.6.

DEFINITION 2.3. For every integer-valued random variable L ≥ 0, let

C{L} := inf{c ≥ 0 ; L ∈ Gc}.
When the context is clear, we use C for C{L}.
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Our next definition is the analogue in discrete time of Definition 1.1:

DEFINITION 2.4. For every integer-valued random variable L ≥ 0, let

Hn(k) := (1 + E{L})nEk{1/Z(n)}, H(k) := lim
n→∞Hn(k) = sup

n
Hn(k).

PROPOSITION 2.5 ([7]). For every integer k > C{L},
H(k) ≤ 1/(k − C{L}).

Proposition 2.6 below shows that the result of Proposition 2.5 is not empty
since C{L} is finite, at least for (in fact, exactly for) square integrable random
variables L.

PROPOSITION 2.6 ([7]). For every non-square-integrable L, C{L} is infinite.
For every square integrable L, C{L} is finite and

C{L} ≥ σ 2{L}
E{L}(E{L} + 1)

.

2.2. From discrete time to continuous time. We apply the results of the preced-
ing section to continuous-time branching processes. We recall that Definition 2.1
in Section 2.1 introduces random variables Lu such that E{Lu} = 1 + uE{L}.

DEFINITION 2.7. Let

Hu
n (k) := (1 + uE{L})n Ek{1/Zu(n)}, Hu(k) := lim

n→∞Hu
n (k) = sup

n≥0
Hu

n (k).

As a direct application of results in discrete time to our setting, assume that pu

belongs to Gc(u) for every sufficiently small u. Then, for every n, every sufficiently
small u and every k > c(u), Proposition 2.5 in Section 2.1 yields

Hu
n (k) ≤ (1 + uE{L})nEk

{
1/

(
Zu(n) − c(u)

)} ≤ 1/
(
k − c(u)

)
.

Hence, Hu
t/u�(k) ≤ 1/(k − c(u)) and

hk(t) ≤ lim inf
u

1/
(
k − c(u)

)
.

This motivates Definition 2.8 and proves Proposition 2.9 below.

DEFINITION 2.8. For every integer-valued random variable L ≥ 0, let

C0{L} := sup
0<u≤1

C{Lu}.

When the context is clear, we use C0 for C0{L}.
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PROPOSITION 2.9. For every integer k > C0{L},
h(k) ≤ 1/(k − C0{L}).

Hence, for every nonnegative t ,

Ek{1/zt } ≤ Ek

{
1/(zt − C0{L})} ≤ e−mt/(k − C0{L}).

2.3. Identification of C0. The main drawback of the results in Sections
2.1 and 2.2 is that the parameters C{Lu} (and hence, presumably, the value of
C0{L}) are virtually unknown. In fact, while the exact value of C{L}, for a given
random variable L, may indeed be difficult to obtain, it transpires that the value
of C0{L}, which is the only one relevant in the continuous-time setting, is quite
simple.

Approaching this result, we first note that C{Lu} is a monotone function of the
parameter u in (0,1].

PROPOSITION 2.10. For every c, u and L, if Lu belongs to Gc, then L belongs
to Gc. In other words, the function u �→ C{Lu} is nonincreasing for u in (0,1]. As
a consequence, the parameter C0{L}, defined as a supremum, is also given by

C0{L} = lim
u→0

C{Lu}.

Hence C{L} describes p and C0{L} describes the limit of pu when u → 0.
Our next result is anecdotal and stated for the sake of completeness. It includes

a generalization of Definition 2.4.

PROPOSITION 2.11. For any positive integer k and any real number b < k,
let

hk(t, b) := emt
Ek{1/(zt − b)}, h(k, b) := sup

t≥0
hk(t, b).

The sequences (h(k))k≥1 and (h(k, b))k>b are then convex.

Our main result in this section provides some tight bounds for C{L} and the
exact value of C0{L}, for every square integrable L.

THEOREM 5. For every integer-valued, nonnegative, square integrable L,

m2{L} − E{L}
1 + E{L} ≤ C{L} ≤ m2{L}.

As a consequence,

C0{L} = m2{L}.
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The upper and the lower bounds that the first part of Theorem 5 yields for C{Lu}
both converge to m2{L} when u → 0, hence the second part is a direct conse-
quence of the first part. Finally, Theorem 5 and Proposition 2.9 imply part (c) of
Theorems 2 and 3. Together with Proposition 2.10, they also yield Theorem 4. We
prove Theorem 5 in Section 6.

2.4. Proofs.

PROOF OF PROPOSITION 2.10. Since E{sLu} = 1−u+uE{sL}, it is enough
to show that gc,um ≤ 1 −u+ugc,m. In turn, this follows from the convexity of the
function m �→ gc,m(s) for every fixed s. �

PROOF OF PROPOSITION 2.11. This is elementary. For every positive
i.i.d. ζ and ζi and every k ≥ 1, let σk := ζ1 + · · · + ζk and ηk := E{1/σk}. Then
the sequence (ηk)k is convex. To see this, note that the convexity is equivalent to
(ηk − ηk+1)k being nonincreasing and that this holds true because

ηk − ηk+1 = E
{
ζ/

(
(ζ + σk)σk

)}
and because (σk)k is nondecreasing. Applying this convexity to Zu(n) and con-
sidering the limit when n → ∞ shows that Hu is a convex sequence for every u.
Taking the limit when u → 0 shows that the sequence h is convex.

The proof for h(k, b) is similar and hence omitted. �

3. Regular trees. The simplest case is when the trees are regular, that is, when
the branching process is ruled by a distribution p := δi with i ≥ 1. We already
mentioned that the case (1 − λ)δ0 + λδi with λ in (0,1] is equivalent, since this
corresponds to a change of time of the branching mechanism. The associated ran-
dom tree is regular with degree i + 1 and the length of every edge is exponential of
mean 1/λ. The distribution pu is Bernoulli 0 or i with pu(i) = uλ. Such Bernoulli
distributions belong to Gi . In fact (see [7]),

C0 = m1 = m2 = i.

Hence, for every k ≥ i + 1,

h(k) ≤ 1/(k − i)

and this method cannot yield a finite upper bound in the k = i case. This is for
good reason since, as we show below, h(i) is in fact infinite.

The distribution of zt when z0 = 1 is an affine transform of the negative bino-
mial distribution of index i and mean eλt . More precisely, for every |v| ≤ 1,

E1{vzt } = v

(eλt − (eλt − 1)vi)1/i
.
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Hence, for every positive t ,

hi(t) = λteλt

i(eλt − 1)

and hi increases from hi(0) = 1/i to h(i) = ∞. This shows that hk is unbounded
when k ≤ i. On the other hand, for every k ≥ i + 1, the result above is sharp since
(see below) the function hk increases from hk(0) = 1/k to

h(k) = 1/(k − i).

For branching processes in discrete time (see [7]), the true value of C{L} is

C{L} = − log(1 + λi)

log(1 − λ)
,

while Proposition 2.6 yields the a priori bound

i
1 − λ

1 + iλ
≤ C{L} ≤ i.

The function λ �→ C decreases from C = C0 = i− at λ = 0+ to C = 0+ at λ = 1−.
Hence, this function is discontinuous at λ = 0 since λ = 0 yields linear trees such
that C = 0.

4. A stochastic recursion. To deal with the finiteness of h in the general con-
tinuous case, we return to the recursion in discrete time. Recall that L′ denotes a
random variable distributed like L, conditioned by {L �= 0}, and that

m1{L} := E{L |L �= 0}, m2{L} := E{L2}/E{L}.
Hence, for every u in (0,1],

m1{L} = m1{L′} = m1{Lu}, m2{L} = m2{L′} = m2{Lu}.

4.1. Results. Our first aim in this section is to prove Proposition 4.1.

PROPOSITION 4.1. Assume that L is such that C0{L} is finite. Then h(k) is
finite if and only if k > m1{L}.

Corollary 4.2 follows directly and is anecdotal.

COROLLARY 4.2. For any L such that C0 is finite, h(k, b) is finite if and only
if k > max{m1, b}.

Our second aim is to characterize the sequence (h(k))k as solution of a stochas-
tic recursion.
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PROPOSITION 4.3. For every L such that C0{L} is finite and every k > m1{L},
(k − E{L})h(k) = kE{h(k + L)}.(2)

This is equivalent to the fact that, for every k > m1{L},
(k − m1{L})h(k) = kE{h(k + L′)} = kE{h(k + L)|L �= 0}.

4.2. Remark. As was expected, the distributions p and pu yield the same func-
tional h. To check this a posteriori, assume that h solves the recursion in Proposi-
tion 4.3 for L of distribution p and that hu solves the recursion in Proposition 4.3
for Lu. (Caution: hu corresponds to the continuous-time process with offspring
distribution pu and Hu to the discrete-time process Zu.) Then E{Lu} = uE{L} =
um and Proposition 4.3 for hu becomes

(k − um)hu(k) = kE{hu(k + Lu)}.
By definition of Lu,

E{hu(k + Lu)} = (1 − u)hu(k) + uE{hu(k + L)}.
Rearranging and dividing both sides by u, one gets

(k − m)hu(k) = kE{hu(k + L)}.
Since h and hu satisfy the same relation, h = hu for every u in (0,1]. Finally, since
the distributions of Lu and (L′)u (1−p(0)) coincide, L and L′ also yield the same
function h.

4.3. Proofs.

PROOF OF PROPOSITION 4.1. Assume without loss of generality that L ≥ 1
almost surely and let m := m1{L} = E{L}. Every Hu

n (k) is finite, Hu
0 (k) = 1/k,

every sequence (Hu
n (k))n is nondecreasing and, for every n ≥ 1,

Hu
n (k) = (1 + um)Ek{Hu

n−1(Zu(1))}.(3)

First, since Zu(1) = k with probability (1 − u)k on {Zu(0) = k},
Hu

n (k) ≥ (1 + um)(1 − u)kHu
n−1(k).

If k < m, then (1 + um) (1 − u)k > 1 for every u sufficiently small. This implies
that Hu(k) is infinite for every u sufficiently small, hence h(k) is infinite.

Herefar, we assume that k > m. Since Hu
n−1 is nonincreasing, one has

Hu
n−1(Zu(1)) ≤ Hu

n−1(k + 1) on the event {Zu(1) ≥ k + 1}. The probability of
{Zu(1) ≥ k + 1} when Zu(0) = k is 1 − (1 − u)k , hence (3) implies that

Hu
n (k) ≤ (1 + um)

(
(1 − u)kHu

n−1(k) + (
1 − (1 − u)k

)
Hu

n−1(k + 1)
)
.
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Since 1 − (1 − u)k ≤ ku and Hu
n−1 ≤ Hu

n , we have

Hu
n (k) ≤ (1 + um)

(
(1 − u)kHu

n (k) + kuHu
n (k + 1)

)
.

Since k > m, for every positive and sufficiently small u, (1 + um)(1 − u)k < 1.
Hence, for u sufficiently small,

Hu
n (k) ≤ Hu

n (k + 1)
ku(1 + um)

1 − (1 + um)(1 − u)k
.

Letting n → ∞, the same inequality holds true for Hu(k) and Hu(k + 1). When
u → 0, for every fixed k > m, the fraction on the right-hand side converges to the
finite limit k/(k − m), hence if h(k + 1) is finite, then h(k) is finite too, and

h(k) ≤ h(k + 1)k/(k − m).

Finally, if h(k) is finite for k sufficiently large, and indeed h(k) is finite for k >

C0{L}, then h(k) is finite for every k > m.
The case k = m is similar to the case k < m. For every k,

Hu
n (k) ≥ (1 + um)

(
(1 − u)kHu

n (k) + ku(1 − u)k−1Hu
n (k + 1)

)
.

One concludes by writing this as Hu
n (k) ≥ au

m(k)Hu
n (k + 1) for an explicit au

m(k)

and by checking that au
m(m) → ∞ when u → 0. �

PROOF OF PROPOSITION 4.3. The sequence (Hu(k))k solves the recursion

Hu(k) = (1 + um)Ek{Hu(Zu(1))}.
When Zu(0) = k and u → 0, either (i) every individual survives, this happens
with probability 1 − ku + o(u) and then Zu(1) = k, or (ii) exactly one individual
dies and is replaced by 1 + L individuals, this happens with probability ku + o(u)

and then Zu(1) = k + L. The probability that at least two individuals die is o(u).
Hence,

Hu(k) = (1 + um)
(
(1 − ku)Hu(k) + kuE{Hu(k + L)}) + o(u).

It follows that h(k) = limu→0 Hu(k), if finite, solves the recursion stated in the
proposition. The finiteness of h(k) is crucial in this argument since one must can-
cel h(k) on both sides of the equation, and this finiteness is guaranteed by Propo-
sition 4.1. �

In relation to the last sentence of the proof of Proposition 4.3, note that if
E{L} < k ≤ m1, equation (2) in Proposition 4.3 is still valid in the sense that both
sides are infinite.
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5. The first threshold. Proposition 4.3 in Section 4.1 shows that h(k) cannot
be finite if k ≤ m1. Hereafter, we assume that L ≥ 1 almost surely and that k >

m1 = m := E{L}. In the special case p = δi , L = i almost surely and iterating
Proposition 4.3 yields

(k − i)h(k) = (k + ji)h
(
k + (j + 1)i

) ≥ k + ji

k + (j + 1)i

for every integer j ≥ 0, hence h(k) ≥ 1/(k − i). Since the reversed inequality was
established above, the proof of Theorem 1 is complete.

Returning to the general case, we now prove part (b) of Theorem 2, which can
be viewed as an extremality property of the deterministic branching mechanisms
since it asserts that, for every other branching mechanism, for every k > m1{L},

h(k) > 1/(k − m1{L}).
PROOF OF PART (b) OF THEOREM 2. One can assume without loss of gen-

erality that L ≥ 1 almost surely. Let m := E{L}. Since h(k + L) ≥ 1/(k + L), we
have

(k − m)h(k) ≥ kE{1/(k + L)} ≥ k/(k + m).

Thus, the a priori lower bound h(k) ≥ 1/k can be improved to the lower bound

h(k) ≥ k

(k − m)(k + m)
.

One can iterate this reasoning as follows. Assume that h(k) ≥ R(k), where R(y)

denotes a rational fraction, convex on y > m. Then

E{h(k + L)} ≥ E{R(k + L)} ≥ R(k + m),

and hence h(k) ≥ T (R)(k) for a new rational fraction T (R), convex on y > m and
defined as

T (R)(y) := R(y + m)y

y − m
.

Starting from R(y) := 1/y and iterating this, one gets h(k) ≥ T n(R)(k) with

T n(R)(y) = 1

n + 1

(
1

y + nm
+ n

y − m

)
.

Letting n → ∞, this yields h(k) ≥ 1/(k − m). Finally, h(k) > 1/(k − m) as soon
as some strict convexity is involved, that is, for every distribution p �= δm. For
instance, one can write (k − m)h(k) as

kE{h(k + L)} ≥ kE{1/(k + L − m)} > k/(k + E{L} − m) = 1. �

6. The second threshold. Our aim in this section is to prove Theorem 5 stated
in Section 2.3.
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6.1. Results. It seems that the parameter m2 introduced in Definition 1.5 en-
ters the picture mainly because of the technical result in Lemma 6.2 below.

DEFINITION 6.1. For every positive c and every s in [0,1], let

ϕc(s) := c(1 − E{sL}) − E{L}(1 − sc).(4)

LEMMA 6.2. Let c > 0. Then c ≥ m2 if and only if ϕc(s) ≥ 0 for every s in
the interval [0,1].

LEMMA 6.3. For any given L, C0{L} ≥ m2{L}.

LEMMA 6.4. For every L, C{L} ≤ m2{L}. Since m2{L′} = m2{L} and, for
every u in (0,1], m2{Lu} = m2{L}, this implies that C{L′} ≤ m2{L} and C{Lu} ≤
m2{L}.

This implies the upper bounds in Theorem 5.
Finally, we note that for every L and every u in (0,1],

C{L′} ≤ C{L} ≤ C{Lu} ≤ C0{L} = m2{M},
where M may be any of the random variables L′, L or Lu.

6.2. Proofs.

PROOF OF LEMMA 6.2. First, ϕc(s) = ψc(s
c) with

ψc(s) := c(1 − E{sL/c}) − E{L}(1 − s).

Then ψc(1) = ψ ′
c(1) = 0 and ψ ′′

c (1) = E{L}(1 − m2/c). Hence, for any positive
c < m2, some values of ϕc(s) are negative.

Conversely, assume that c ≥ m2. If ψc is convex, then ϕc ≥ 0 on [0,1]. To
show that ψc is indeed convex, we first note that ψ ′′

c (s1/c) has the same sign as
E{L(c−L)sL}, which increases as c increases. Thus, it is enough to show that this
last expectation is nonnegative when c = m2. In turn, this condition is equivalent
to χ ≥ 0 on [0,1], where

χ(s) := E{L2}E{LsL} − E{L}E{L2sL}.
One sees that χ(s) = E{K(s)}/2, where

K(s) := L1L2(L1 − L2)(s
L2 − sL1)

and L1 and L2 are two independent copies of L. Since the function L �→ sL is
nonincreasing, K(s) ≥ 0 almost surely and hence χ(s) ≥ 0. This concludes the
proof of Lemma 6.2. �
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FIRST PROOF OF LEMMA 6.3. For every positive c ≥ C0, Lu belongs to Gc

for every u, in particular when u → 0 [we recall that the family (Gc)c is increas-
ing]. Rearranging both sides of the inequality which characterizes the property
that Lu belongs to Gc in Definition 2.2 and taking logarithms, one sees that this
inequality is equivalent to the fact that ωL(s,u, c) ≤ 0 for every s in [0,1] where

ωL(s,u, c) := log
(
1 + uE{L}(1 − sc)

) + c log
(
1 − u(1 − E{sL})).(5)

Since ωL(s,u, c) = −ϕc(s)u + o(u) when u → 0, one gets ϕc(s) ≥ 0 for every s

in [0,1], that is, c ≥ m2; see Lemma 6.2. Finally, every c ≥ C0 is such that c ≥ m2,
hence Lemma 6.3 holds. �

SECOND PROOF OF LEMMA 6.3. Theorem C in [7] states that for any L in Gc,

σ 2{L} ≤ cE{L}(E{L} + 1).

We apply this to Lu. Since E{Lu} = uE{L} and E{L2
u} = uE{L2}, this inequality

is equivalent to C{Lu} ≥ m2{L}(1 + o(1)) when u → 0, hence C0{L} ≥ m2{L}.
�

PROOF OF LEMMA 6.4. Using the notation from the proof of Lemma 6.3, we
must show that ωL(s, u,m2) ≤ 0.

Since log(1 + v) ≤ v for every v, ωL(s,u, c) ≤ ςL(s, u, c) for any c with

ςL(s, u, c) := uE{L}(1 − sc) + c log
(
1 − u(1 − E{sL})).

The first term in ςL(s, ·, c) is linear with respect to u. The second term has the form
β log(1 − αu) with positive α and β , hence it is concave with respect to u. Thus,
ςL(s, ·, c) is concave. Since ςL(s,0, c) = 0, we have ςL(s, u, c) ≤ 0 for every u

in [0,1] if and only if the first derivative of ςL(s, ·, c) at 0 is nonpositive. Since
this derivative is −ϕc(s), Lemma 6.2 above shows that ςL(·, ·, c) ≤ 0 if and only
if c ≥ m2. �

7. Between the two thresholds. Theorem 2 describes h(k) when k ≤ m1 and
when k > m2. In this section, we study the regime m1 < k ≤ m2. We start from the
observation, drawn from Proposition 4.3, that for any k > m1,

(k − m1)h(k) ≤ kh(k + 1).

For instance, if m2 − 1 < k ≤ m2, then k + 1 > m2 and

h(k + 1) ≤ 1/(k + 1 − m2).

Thus, for every k > m1 such that k + 1 > m2,

h(k) ≤ k/
(
(k − m1)(k + 1 − m2)

)
.

One can iterate this trick to deal with values of k > m1 such that k + 2 > m2, and
so on. This yields Proposition 7.1.
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PROPOSITION 7.1. Let k > m1 and let 
 denote any nonnegative integer such
that k + 
 > m2. Then

h(k) ≤ 1

k + 
 − m2


−1∏
i=0

{
1 + m1

k + i − m1

}
.

Every denominator in the upper bound for h(k) is positive. A strange feature
of this result is that the best upper bound for h(k) does not always correspond to
the smallest value of 
 such that k + 
 > m2. Simple computations show that the
optimal choice is the smallest value of 
 such that

k + 
 > m1
m2 − 1

m1 − 1
= m2 + m2 − m1

m1 − 1
≥ m2.

8. Branching processes and i.i.d. sums.

8.1. Random products. Our starting point in this section is the recursion of
Proposition 4.3 which motivates the following definition:

DEFINITION 8.1. Let X and Xi denote i.i.d. nonnegative integrable random
variables. Let S0 := 0 and Sn := X1 + · · · + Xn for every n ≥ 1. For every posi-
tive x, let

Rn(x,X) :=
n∏

i=0

{
1 + E{X}

x + Si

}
, �(x,X) := lim sup

n→∞
E{Rn(x,X)/n}.

We first deal with the finiteness of the functional �, then we relate it to the
harmonic setting. Lemma 8.2 lists some elementary facts, the proofs of which are
omitted.

LEMMA 8.2. Let X denote a nonnegative, nonzero random variable.

(i) The function x �→ �(x,X) is nonincreasing.
(ii) For every nonnegative n, E{Rn(x,X)} ≥ 1 + (n + 1)E{X}/x.

(iii) Hence, �(x,X) ≥ E{X}/x. In particular, �(x,X) is always positive.
(iv) For every positive λ, �(λx,λX) = �(x,X).

8.2. Results.

DEFINITION 8.3. For every nonnegative, not identically zero, integrable X,
let

m0{X} := P{X = 0}m1{X} = m1{X} − E{X}.
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Note that m0{X} satisfies

(1 + E{X}/m0{X})P{X = 0} = 1.

PROPOSITION 8.4. For every nonnegative integrable X, �(x,X) is infinite for
every x ≤ m0{X}.

Proposition 8.5 implies a dichotomy result, stated as Corollary 8.6.

PROPOSITION 8.5. There exist finite positive functions v(·,X) and w(·,X)

such that, for every positive x > m0{X} and every positive y,

�(x + y,X) ≤ �(x,X) ≤ �(x + y,X)v(x,X)w(x,X)y.

COROLLARY 8.6. Either �(x,X) is infinite for every x > m0{X}, or �(x,X)

is positive and finite for every x > m0{X}.
Theorem 6 links some functions � to the harmonic moments of branching

processes:

THEOREM 6. For every square integrable L with nonnegative integer values
and for every integer k > m1{L}, the normalized limiting harmonic moment h(k)

which corresponds to the branching mechanism based on L satisfies the relation

h(k) = �(k − E{L},L)

E{L} = �(k − m1{L},L′)
m1{L} .

Corollary 8.7 below is a direct consequence and complements Corollary 8.6.

COROLLARY 8.7. Let X denote a nonnegative, integer, square integrable
random variable. Then �(x,X) is finite if and only if x > m0{X}. Furthermore,
x�(x,X) → E{X} when x → ∞. More precisely, for every integer x > m0{X},

E{X}/x ≤ �(x − E{X},X) ≤ E{X}/(x − m2{X}).
From assertion (iv) in Lemma 8.2, the same conclusion holds if X is a multiple

of a nonnegative, integer, square integrable random variable. The hypothesis that X

is lattice and that x belongs to this lattice might be unnecessary.
Note that one uses the square integrability of X only to ensure the condition that

lim supk→∞ kh(k) ≤ 1 [which is equivalent to limk→∞ kh(k) = 1].
For every positive x and every nonnegative random variable X, the function

ϕ := �(·,X) solves the recursion

xϕ(x) = E{ϕ(x + X)}(x + E{X}).(6)

Recall that �(x,X) ≥ E{X}/x in full generality. A consequence of (6) is that

x�(x,X) ≥ E{X}E{x + X}E{1/(x + X)},
hence �(x,X) > E{X}/x in full generality.
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8.3. Proofs.

PROOF OF PROPOSITION 8.4. Let r := P{X = 0}. Since X1 is 0 with proba-
bility r or distributed like X′ with probability 1 − r , we have

E{Rn+1(x,X)}
(7)

= (1 + E{X}/x)
(
rE{Rn(x,X)} + (1 − r)E{Rn(x + X′,X)}).

The second part of Lemma 8.2 yields

E{Rn(x + X′,X)} ≥ 1 + (n + 1)E{X}E{1/(x + X′)}.
If (1 + E{X}/x)r ≥ 1, this implies that there exists a positive constant c such that

E{Rn+1(x,X)} ≥ E{Rn(x,X)} + c(n + 1).

Hence, E{Rn(x,X)} ≥ cn2/2 and �(x,X) is infinite. Finally, the condition (1 +
E{X}/x)r ≥ 1 can be rewritten as

x ≤ E{X}r/(1 − r) = m0{X}.
This proves Proposition 8.4. �

PROOF OF PROPOSITION 8.5. Let T denote the hitting time of the level y by
the nondecreasing process (Si)i≥0, that is,

T = inf{i ≥ 0;Si ≥ y}.
Since Si < y if i ≤ T − 1 and Si ≥ y if i ≥ T ,

E{Rn(x,X)|T } ≤ RT +n(x,X) ≤ RT −1(x,X)R′
n(x + ST ,X)

and hence

E{Rn(x,X)|T } ≤ (1 + E{X}/x)T R′
n(x + y,X),

where R′
n(·,X) denotes a copy of Rn(·,X), independent of T . Hence,

�(x,X) ≤ �(x + y,X)E{sT }, s := 1 + E{X}/x.

To bound the last term, we use the fact that {T > n} = {Sn < y} and hence an
exponential inequality yields

P{T > n} ≤ u−y
E{uX}n

for every positive u ≤ 1. When u → 0, E{uX} → P{X = 0}, hence the assumption
on x implies that there exists u such that sE{uX} < 1. Hence,

E{sT } ≤ ∑
n≥1

sn
P{T > n − 1} ≤ u−b

∑
n≥0

(sE{uX})n

and the last series converges. This proves the proposition. �
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PROOF OF THEOREM 6. The choice X = L′ gives E{X} = m1{L}. Hence,
Proposition 4.3 yields that, for every k > m1{L} and every n ≥ 0,

h(k) = E{Rn(x,L′)h(k + Sn+1)}, x := k − m1{L}.
Since Rn(x,L′) and h(k + Sn+1) are nonincreasing functionals of the sequence
(Xi)i , a coupling inequality reads

h(k) ≥ E{Rn(x,L′)/n}nE{h(k + Sn+1)}.
Now, by convexity,

E{h(k + Sn+1)} ≥ E{1/(k + Sn+1)} ≥ 1/
(
k + m1{L}(n + 1)

)
.

When n → ∞, we obtain h(k) ≥ �(x,L′)/m1{L}.
On the other hand, for every nonnegative integer i,

h(k) ≤ E{Rn(x,L′)}h(k + i) + E{Rn(x,L′);Sn ≤ i}.
First, when L′ is square integrable, h(k + i) ∼ 1/i when i → ∞. Second, we use
the following special case of Cramér large deviations bounds:

LEMMA 8.8. Let X and Xi denote i.i.d. nonnegative random variables. For
every y < E{X}, there exists r < 1 such that for every n,

P{X1 + · · · + Xn ≤ ny} ≤ rn.

We apply this lemma to X = L′. This yields P{Sn ≤ ny} ≤ rn with r < 1 for
every y < m1{L}. Third, since L′ ≥ 1, Rn(x,L′) is at most the product of 1 +
m1{L}/(x + j) from j = 0 to n, which is O(nm1{L}). Thus, for every y < m1{L},
using the above for i := 
ny�, one gets

h(k) ≤ �(x,L′)
(
n/
ny� + o(1)

) + O
(
nm1{L})rn.

This suffices to prove Theorem 6. �

FIRST PROOF OF LEMMA 8.8. Let Xt
i := inf{Xi, t}. For any t ,

Xt
1 + · · · + Xt

n ≤ X1 + · · · + Xn

and, if t is sufficiently large, y < E{Xt
1}. Since Xt

1 is almost surely bounded and
the sequence (Xt

n)n≥1 is i.i.d., standard large deviations bounds apply and hence
there exists r < 1 with

P{X1 + · · · + Xn ≤ ny} ≤ P{Xt
1 + · · · + Xt

n ≤ ny} ≤ rn. �

A second proof of Lemma 8.8 uses the fact that for any nonnegative integrable
random variable X, E{e−tX} = 1 − tE{X} + o(t) when t is positive and t → 0.
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SECOND PROOF OF LEMMA 8.8. Assume first that X is integrable. By
Chebyshev’s inequality, the result of the lemma holds with

r := ety
E{e−tX}

for every positive t . Since X is integrable and positive, its Laplace transform
E{e−tX} is differentiable at t = 0+, that is, E{e−tX} = 1 − tE{X} + o(t) when t is
positive and t → 0. Since ety = 1 + ty + o(t) and y < E{X}, one obtains a value
r < 1 for any t positive and sufficiently small.

If X is not integrable, truncating X and every Xn as in our first proof yields the
result. �
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