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CENTRAL LIMIT THEOREMS FOR POISSON
HYPERPLANE TESSELLATIONS1

BY LOTHAR HEINRICH, HENDRIK SCHMIDT AND VOLKER SCHMIDT

University of Augsburg, University of Ulm and University of Ulm

We derive a central limit theorem for the number of vertices of convex
polytopes induced by stationary Poisson hyperplane processes in R

d . This
result generalizes an earlier one proved by Paroux [Adv. in Appl. Probab.
30 (1998) 640–656] for intersection points of motion-invariant Poisson
line processes in R

2. Our proof is based on Hoeffding’s decomposition of
U -statistics which seems to be more efficient and adequate to tackle the
higher-dimensional case than the “method of moments” used in [Adv. in Appl.
Probab. 30 (1998) 640–656] to treat the case d = 2. Moreover, we extend our
central limit theorem in several directions. First we consider k-flat processes
induced by Poisson hyperplane processes in R

d for 0 ≤ k ≤ d − 1. Sec-
ond we derive (asymptotic) confidence intervals for the intensities of these
k-flat processes and, third, we prove multivariate central limit theorems for
the d-dimensional joint vectors of numbers of k-flats and their k-volumes,
respectively, in an increasing spherical region.

1. Introduction. Central limit theorems (briefly CLTs) for models of stochas-
tic geometry have been considered in various papers. For example, [1] and [24] in-
vestigate CLTs for Poisson–Voronoi and Poisson line tessellations in the Euclidean
plane, respectively. More general CLTs for Poisson–Voronoi tessellations in the
d-dimensional Euclidean space R

d have been established in [12] and [25]. In [9],
normal approximations are given for some mean-value estimates of absolutely reg-
ular (β-mixing) tessellations. A CLT for stationary tessellations with random inner
cell structures has been derived in [13]. Furthermore, CLTs and related asymptotic
properties for the empirical volume fraction of stationary random sets in R

d are ex-
amined in [2, 5, 16]. A CLT for estimators of surface area densities in the Boolean
model has been proved in [18], while in [11] CLTs for a more general class of ran-
dom measures associated with absolutely regular germ–grain models have been
proved. In [19] (and references therein), the reader can find a lot of further CLTs
for empirical characteristics of Boolean models. Consistency properties and as-
ymptotic normality of joint estimators for the whole vector of specific intrinsic
volumes of stationary random sets in R

d have been derived in [23] and [28], while
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uniformly best unbiased estimators for the intensity of stationary flat processes
have been considered in [27].

In the present paper we prove CLTs for the number of vertices and the number,
as well as the volume, of k-flats (k = 1, . . . , d − 1) induced by intersections of d

(resp. d − k) hyperplanes of stationary, not necessarily isotropic Poisson hyper-
plane processes in R

d ; see Sections 3 and 4. More precisely, we count the number
of vertices lying in the d-dimensional ball Bd

r with radius r > 0 and centered at the
origin o ∈ R

d . In addition, we both count the induced k-flats hitting Bd
r and mea-

sure their total k-dimensional Lebesgue volume in Bd
r for any k = 0, . . . , d − 1

and we study their joint behavior when the radius r tends to infinity.
Noting that the number of vertices contained in Bd

r can be expressed in the form
of a multiple random sum running over all d-tuples of distinct hyperplanes which
have a common point in Bd

r (see Chapter 6 in [17]), we use Hoeffding’s decom-
position of U -statistics with a Poisson distributed number of random variables.
Hence, asymptotic normality of the number of vertices is obtained by proving a
CLT for a Poisson distributed number of independent and identically distributed
(i.i.d.) random variables; see Theorem 3.1. Using a similar representation as mul-
tiple random sum for the number of k-flats hitting Bd

r and for the total k-volume
of the k-flats in Bd

r , we generalize the latter CLT in Section 4; see Theorem 4.1.
Based on these CLTs, we obtain asymptotic confidence intervals for the intensities
of the induced k-flat processes and, quite naturally, are able to consider the case of
multidimensional CLTs.

We should mention that the normalization in our CLTs is, up to certain con-
stants, with respect to the d-dimensional volume of Bd

r raised to the power
1 − 1/(2d). We may interpret this as an expression of long-range dependences
generated by the hyperplanes themselves. Furthermore, the choice of spherical
sampling regions simplifies the proofs considerably, however, most of the results
remain valid for more general families of increasing convex sampling windows. If,
additionally, isotropy is assumed and no restriction is imposed on the orientation
vectors of the intersecting hyperplanes, this allows to determine centering and nor-
malizing constants in the CLTs (i.e., intensities and asymptotic variances) explic-
itly. Moreover, the results of the present paper, together with Lemma 4.1 in [13],
which states that the influence of cells hitting the boundary of Bd

r is asymptotically
negligible as r → ∞, it is possible to derive CLTs for k-facets (k = 1, . . . , d) of
Poisson hyperplane tessellations.

In Section 5 we reformulate Theorem 3.1 in the particular case d = 2 and com-
pare this CLT with a related result obtained by Paroux [24] for planar Poisson line
processes. Applying again Hoeffding’s CLT for U -statistics (with random normal-
ization), we obtain a considerably simple proof of the CLT derived in [24] by the
“method of moments.”

Applications for our results arise in stochastic–geometric network modeling,
both in macroscopic settings like in telecommunication (see, e.g., [8]) and in mi-
croscopic settings like in cell biology (see, e.g., [4]). In particular, in Section 4.2 we



CLTS FOR POISSON HYPERPLANE TESSELLATIONS 921

FIG. 1. Realization of the stochastic subscriber line model.

show how our central limit theorems and especially our (asymptotic) confidence
intervals can be applied in the framework of the so-called stochastic subscriber
line model (SSLM) for telecommunication networks in urban environments. The
SSLM is used in the context of strategic network planning and network analysis
as a flexible model depending only on a limited number of parameters; see [7].
Figure 1 shows a realization of the SSLM in the case where a Poisson line process
is used to model the underlying road system and where two types of network com-
ponents are placed onto the lines. Besides tessellations induced by Poisson line
processes, the class of Voronoi type tesselations is also used in the SSLM, for ex-
ample, in order to model serving zones; see Figure 1. Therefore, we briefly discuss
CLTs for Poisson–Voronoi tessellations in Section 6 which recently have been ob-
tained in [12]; see also [25].

2. Preliminaries. In this section the basic notation used in the present paper
is introduced and a brief account of some relevant notions of stochastic geometry
is given. For a detailed discussion of the subject, the reader is referred to the liter-
ature, for example, [30] and [32]. Further background about random tessellations,
flat and hyperplane processes can be found, for example, in [20] and [22].

Throughout, let [�,σ(�),P] be a common probability space on which all ran-
dom objects are defined in the present paper. Let 〈x, y〉 = ∑d

k=1 xkyk denote the
scalar product of the coordinate vectors x = (x1, . . . , xd)� and y = (y1, . . . , yd)�
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in R
d . By means of the Euclidean norm ‖ · ‖ = √〈·, ·〉, we may define the

ball Bd
r = {x ∈ R

d :‖x‖ ≤ r} centered at the origin and the unit sphere Sd−1 =
{x ∈ R

d :‖x‖ = 1} in R
d , respectively. Furthermore, let Sd−1+ = {(x1, . . . , xd)� ∈

Sd−1 :xd ≥ 0} be the upper unit hemisphere and let νk(·) denote the Lebesgue
measure in R

k ; k = 0, . . . , d . This measure will also be used instead of the
k-dimensional Hausdorff measure in R

d for k = 0, . . . , d − 1. As usual, ν0(·) co-
incides with the counting measure, that is, ν0(B) = #B . For brevity, put

κd = νd(Bd
1 ) = πd/2

�(d/2 + 1)
,

where �(s) = ∫ ∞
0 e−yys−1 dy for s > 0.

2.1. Stationary flat processes. For each k ∈ {0, . . . , d − 1}, let Ad
k denote the

space of all affine k-dimensional subspaces in R
d and Ld

k = {L ∈ Ad
k :o ∈ L}.

A (translation-invariant, resp. rotation-invariant) point process �k : � → N(F ′) is
said to be a (stationary, resp. isotropic) k-flat process in R

d if the intensity measure
	k(·) = E�k(·) of �k satisfies

	k(F
′ \ Ad

k ) = 0,

where F ′ denotes the space of nonempty closed sets in R
d and N(F ′) is the

family of all locally finite counting measures on the Borel σ -algebra B(F ′).
A (d − 1)-flat process is called a hyperplane process.

Provided that the intensity measure 	k(·) of a stationary k-flat process �k is lo-
cally finite and different from the zero measure, there exists a finite number λk > 0
(called the intensity of �k) and a probability measure �̃k on B(Ld

k ) (the so-called
orientation distribution of �k) such that the following disintegration formula

	k(B) = λk

∫
Ld

k

∫
L⊥

1B(L + x)νd−k(dx)�̃k(dL)(2.1)

holds for any B ∈ B(Ad
k ). Here, L⊥ ∈ Ld

d−k denotes the orthogonal complement
of L ∈ Ld

k and 1B(·) stands for the indicator function of the set B . Formula (2.1)
yields a simple interpretation of the intensity λk as ratio

λk = E�k({L ∈ Ad
k :L ∩ Bd

r �= ∅})
κd−krd−k

for all r > 0.(2.2)

In other words, λkκd−k is the expected number of k-flats hitting the unit ball in R
d .

On the other hand, if we use (2.1) and apply Campbell’s theorem to the stationary
random measure

ζ�k
(·) = ∑

L∈supp(�k)

νk

(
(·) ∩ L

)
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on B(Rd), where supp(�k) = {L ∈ Ad
k :�k(L) ≥ 1}, we get

Eζ�k
(B) = λkνd(B) for bounded B ∈ B(Rd).(2.3)

Hence, λk can be regarded as mean total k-volume of all k-flats in the unit cube
[0,1)d .

In the particular case of a stationary hyperplane process � with intensity λ,
formula (2.1) simplifies since each hyperplane H(p,v) = {x : 〈x, v〉 = p} can
be parameterized by its signed perpendicular distance p ∈ R from the origin
and its orientation vector v ∈ Sd−1+ . Using the (spherical) orientation distribution
� :B(Sd−1+ ) → [0,1] defined by

�d−1(B) = �̃
({H(0, v) ∈ Ld

d−1 :v ∈ B}) for B ∈ B(Sd−1+ ),(2.4)

formula (2.1) can be rewritten as

	d−1(B) = λ

∫
Sd−1+

∫
R

1B(H(p, v)) dp �(dv) for B ∈ B(Ad
d−1).

Alternatively, a (spherical) orientation distribution can be introduced as an even
(symmetric) probability measure �∗ on B(Sd−1) which is connected with � by
�∗(B) = 1

2(�(B∩Sd−1+ )+�(−B∩Sd−1+ )) for B ∈ B(Sd−1). The symmetry con-
dition �∗(B) = �∗(−B) expresses the identification of hyperplanes with antipo-
dal orientation vectors. A stationary hyperplane process � is said to be isotropic
(or motion-invariant) if � is the uniform distribution on Sd−1+ or, equivalently,
�∗ is the uniform distribution on Sd−1.

2.2. Poisson hyperplane processes. The above parameterization of hyper-
planes admits the representation of the (stationary) Poisson hyperplane process �

(with intensity λ and spherical orientation distribution �) as a stationary and inde-
pendently marked Poisson point process 
 = ∑

i≥1 δ(Pi,Vi) on R
1 with intensity λ

and mark distribution � (on the mark space Sd−1+ ).
Now, let k ∈ {0, . . . , d − 1} be fixed. The intersections of d − k (distinct) hy-

perplanes H1, . . . ,Hd−k belonging to the support of � induce a stationary k-flat
process �k which can be represented as multiple sum, that is,

�k(B) = 1

(d − k)!
∑

H1,...,Hd−k∈supp(�)

1B(H1 ∩ · · · ∩ Hd−k)(2.5)

for B ∈ B(Ad
k ). If the indicator function in the latter expression is replaced by

νk(H1 ∩ · · · ∩ Hd−k ∩ (·)), we get a stationary random measure ζk(·) on B(Rd).
Intensity λk and orientation distribution �̃k of �k are given by

λk�̃k(B)

= λd−k

(d − k)!
∫
Sd−1+

· · ·
∫
Sd−1+

1B

(
H(0, v1) ∩ · · · ∩ H(0, vd−k)

)
(2.6)

× νd−k(v1, . . . , vd−k)�(dv1) · · ·�(dvd−k),
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for B ∈ B(Ld
k ); see, for example, Chapter 4 in [30], where νd−k(v1, . . . , vd−k) de-

notes the (d − k)-dimensional volume of the parallelotope spanned by the vectors
v1, . . . , vd−k ∈ Sd−1+ .

The intensity λk of �k can be expressed in terms of the (d − k)th intrinsic
volume of the Steiner convex set (or zonoid) associated with �; see, for example,
page 161 in [17]. In the isotropic case (i.e., � is the uniform distribution), these
formulae reduce to

λk =
(

d

k

)
κd

κk

(
κd−1

dκd

)d−k

λd−k for k = 0,1, . . . , d − 1.(2.7)

2.3. Hoeffding’s decomposition of U -statistics. The proofs of the central limit
theorems we are going to present in Sections 3 and 4 are based on Hoeffding’s de-
composition of U -statistics which we briefly sketch subsequently. A more detailed
discussion can be found in [15] and [31].

Let X1,X2, . . . be a sequence of i.i.d. random vectors in R
d and, for any fixed

m ≥ 2, let f : Rmd → R be a Borel-measurable symmetric function such that
E|f (X1, . . . ,Xm)| < ∞. A U -statistic U

(m)
n (f ) of order m with kernel function

f is then defined by

U(m)
n (f ) = 1(n

m

) ∑
1≤i1<···<im≤n

f
(
Xi1, . . . ,Xim

)
for n ≥ m.(2.8)

Note that U
(m)
n (f ) is an unbiased estimator for µ = Ef (X1, . . . ,Xm). By elemen-

tary rearrangements, we may write U
(m)
n (f ) in the following form (Hoeffding’s

decomposition):

U(m)
n (f ) − µ = m

n

n∑
i=1

(
g(Xi) − µ

) + R(m)
n (f ),(2.9)

where

g(x) = E
(
f (X1,X2, . . . ,Xm)|X1 = x

) = Ef (x,X2, . . . ,Xm)

and

R(m)
n (f ) =

m∑
k=2

(
m

k

)(
n

k

)−1 ∑
1≤i1<···<ik≤n

Gk

(
Xi1, . . . ,Xik

)
,

with functions Gk : Rkd → R, 2 ≤ k ≤ m, defined by

Gk(x1, . . . , xk)

=
k∑

j=1

(−1)k−j
∑

1≤i1<···<ij≤k

(
Ef

(
xi1, . . . , xij ,Xj+1, . . . ,Xm

) − µ
)
.
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The crucial outcome of Hoeffding’s decomposition (2.9) can be summarized in
the estimate

E
(
R(m)

n (f )
)2 ≤ cm

n2 Ef 2(X1, . . . ,Xm) for n ≥ m(2.10)

and for some constant cm < ∞ only depending on m. The latter result, pro-
vided that Ef 2(X1, . . . ,Xm) < ∞, immediately leads to Hoeffding’s CLT for
U -statistics (see Chapter 5.2 in [31]), that is,

√
n
(
U(m)

n (f ) − µ
) d−→

n→∞ N
(
0,m2(

Eg2(X1) − µ2))
,(2.11)

where
d−→ denotes convergence in distribution and where N (0,m2(Eg2(X1) −

µ2)) is a Gaussian mean 0 random variable with variance m2(Eg2(X1) − µ2).

3. Point process of intersection points. Let 
 = ∑
i≥1 δ(Pi,Vi) be the

marked-point-process representation of a stationary (not necessarily isotropic)
Poisson hyperplane process � with intensity λ > 0 and a nondegenerate spher-
ical orientation distribution �, that is, �(L ∩ Sd−1+ ) < 1 for any L ∈ Ld

d−1. This
assumption on � ensures that each of the stationary k-flat processes �k generated
by � has positive intensity λk for k = 0, . . . , d − 1 and the Poisson hyperplane
tessellation induced by � consists of bounded cells; see Chapter 6 in [30].

In this and the next section we derive CLTs for the number �k({L ∈ Ad
k :L ∩

Bd
r �= ∅}) of k-flats (k = 0, . . . , d − 1) hitting the ball Bd

r , as well as for their to-
tal k-volume contained in Bd

r when the radius r tends to infinity. In the particular
case k = 0, the atoms of the point process �0 will be labeled by the d orien-
tation vectors of the intersecting hyperplanes generating the intersection points.
More precisely, for any r > 0 and B ∈ B((Sd−1+ )d), we consider the number

0(B

d
r × B) of those intersection points H(Pi1,Vi1) ∩ · · · ∩ H(Pid ,Vid ) in Bd

r

for which the corresponding orientation vectors Vi1, . . . , Vid satisfy the condition
(V(i1), . . . , V(id)) ∈ B . Here, (V(i1), . . . , V(id)) is the reordered vector (Vi1, . . . , Vid )

such that V(n1) � · · · � V(nd), according to an appropriate linear ordering �
in Sd−1+ .

The proof that 
0(B
d
r × B) is asymptotically normal as r → ∞ relies on

the following basic property of the Poisson process 
 . Given the number Nr =

([−r, r] × Sd−1+ ) of hyperplanes hitting Bd

r , say, Nr = n, the random vectors
Xi = (Pi,Vi), i = 1, . . . , n, are i.i.d. (and also independent of Nr ) with indepen-
dent components, where Pi is uniformly distributed on [−r, r] and Vi has the distri-
bution �. Notice that Nr is Poisson distributed with mean 2λr , which corresponds
to (2.2) for k = d − 1.

In this way, we get that


0(B
d
r × B)

d= 1

d!
∑ ∗

1≤i1,...,id≤Nr

fB

(
Xi1, . . . ,Xid

)
,(3.1)
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where d= means equality in distribution, the sum
∑∗ runs over pairwise distinct

indices, and

fB

(
(p1, v1), . . . , (pd, vd)

)
(3.2)

= χ
(
H(p1, v1) ∩ · · · ∩ H(pd, vd) ∩ Bd

r

)
1B

(
v(1), . . . , v(d)

)
,

where χ(K) = 1 for K �= ∅ and χ(∅) = 0. Since the function fB : (R×Sd−1+ )d →
{0,1} is symmetric and measurable, the right-hand side of (3.1) divided by

(Nr

d

)
and

conditioned on Nr = n is a U -statistic of order d with kernel function f = fB as
defined in (2.8).

3.1. Moment formulae. Since the first components Pi of the i.i.d. random vec-
tors Xi = (Pi,Vi), i ≥ 1, are uniformly distributed on [−r, r], the expectations
EfB(X1, . . . ,Xd) do not depend on r > 0. To simplify notation, we put

σ
(j,d)
B = E

(
fB(X1, . . . ,Xd)fB(Xd−j+1, . . . ,X2d−j )

)
(3.3)

= Eg2
B(Xd−j+1, . . . ,Xd),

where gB((p1, v1), . . . , (pj , vj )) = EfB((p1, v1), . . . , (pj , vj ),Xj+1, . . . ,Xd)

for j = 1, . . . , d . Notice that also the second moments σ
(j,d)
B do not depend on

r > 0. Now we formulate a first auxiliary result.

LEMMA 3.1. For any B ∈ B((Sd−1+ )d),

E
0(B
d
r × B) = (2λr)d

d! EfB(X1, . . . ,Xd)(3.4)

and

Var
0(B
d
r × B) =

d∑
j=1

(2λr)2d−j

j !((d − j)!)2 σ
(j,d)
B .(3.5)

PROOF. By the symmetry of the function fB defined in (3.2) combined with
the independence between Nr and the i.i.d. sequence Xi = (Pi,Vi), i ≥ 1, it is
easily seen from (3.1) that

E
0(B
d
r × B) = 1

d!E
(
Nr(Nr − 1) · · · (Nr − d + 1)

)
EfB(X1, . . . ,Xd).

Note that the dth factorial moment of a Poisson distributed random variable is
equal to the dth power of its mean. Thus,

E
(
Nr(Nr − 1) · · · (Nr − d + 1)

) = (ENr)
d = (2λr)d(3.6)
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which proves (3.4). To derive a formula for the variance Var
0(B
d
r × B), we

again utilize the symmetry of fB and employ some simple combinatorial argu-
ments which lead to

E
(

0(B

d
r × B)

)2

= 1

(d!)2 E

( ∑ ∗
1≤i1,...,id≤Nr

fB

(
Xi1, . . . ,Xid

))2

=
d∑

j=0

j !
(d!)2

(
d

j

)(
d

j

)

× E

( ∑ ∗
1≤i1,...,i2d−j≤Nr

fB

(
Xi1, . . . ,Xid

)
fB

(
Xid−j+1, . . . ,Xi2d−j

))

=
d∑

j=0

E(Nr(Nr − 1) · · · (Nr − 2d + j + 1))

j !((d − j)!)2

× E
(
fB(X1, . . . ,Xd)fB(Xd−j+1, . . . ,X2d−j )

)
.

Finally, applying (3.6) with d replaced by 2d − j for j = 0,1, . . . , d , and noting
that the summand for j = 0 in the last line coincides with (E
0(B

d
r × B))2, we

obtain (3.5), which completes the proof of Lemma 3.1. �

Notice that, as an immediate consequence of (3.5), we obtain the limiting rela-
tion

lim
r→∞

Var
0(B
d
r × B)

r2d−1 = (2λ)2d−1

((d − 1)!)2 σ
(1,d)
B .(3.7)

3.2. Central limit theorem for the number of intersection points. We now are
in a position to formulate and prove a CLT for the number 
0(B

d
r × B) of marked

intersection points as r → ∞, where the centering and normalizing constants have
been derived in Lemma 3.1 and in (3.7), respectively.

THEOREM 3.1. Let B ∈ B((Sd−1+ )d) be chosen such that σ
(1,d)
B > 0. Then,

(d − 1)!
(2λr)d−1/2

(

0(B

d
r × B) − (2λr)d

d! EfB(X1, . . . ,Xd)

)
d−→

r→∞ N
(
0, σ

(1,d)
B

)
.

PROOF. Note that (3.1) is equivalent to the equality 
0(B
d
r × B)

d=(Nr

d

)
U

(d)
Nr

(fB). For any fixed Nr = n ≥ d , the random multiple sum U
(d)
Nr

(fB) is
a U -statistic as defined in (2.8) of order d with kernel function fB defined in (3.2).
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Let nr denote the expected value ENr = 2λr and let µB = EfB(X1, . . . ,Xd).
Then, Hoeffding’s decomposition (2.9) yields


0(B
d
r × B) − (2λr)d

d! EfB(X1, . . . ,Xd)

d=
((

Nr

d

)
− nd

r

d!
)
µB +

(
Nr

d

)
d

Nr

Nr∑
i=1

(
gB(Xi) − µB

) +
(

Nr

d

)
R

(d)
Nr

(fB)

=
((

Nr

d

)
− Nr

(
Nr − 1
d − 1

)
+ nr

(
Nr − 1
d − 1

)
− nd

r

d!
)
µB +

(
Nr

d

)
R

(d)
Nr

(fB)

+
(

Nr − 1
d − 1

)(
Nr∑
i=1

gB(Xi) − nrµB

)
,

where gB(x) = EfB(x,X2, . . . ,Xd) for x ∈ [−r, r] × Sd−1+ . Since Nr is indepen-
dent of X1,X2, . . . , the estimate (2.10) implies

E
((

R
(d)
Nr

)2|Nr = n
) ≤ cd

n2 Ef 2
B(X1, . . . ,Xd) for n ≥ d.

Hence, we conclude that

E

((
Nr

d

)
R

(d)
Nr

(fB)

)2

= ∑
n≥d

(
n

d

)2
E

((
R

(d)
Nr

)2|Nr = n
)
P(Nr = n)

≤ cdEf 2
B(X1, . . . ,Xd)

d2 E

((
Nr − 1
d − 1

))2

.

To determine the second moment of the binomial coefficient
(Nr−1

d−1

)
, we use the

expansions

x(x − 1) · · · (x − k + 1) =
k∑

j=1

s
(1)
j,kx

j

and

xk =
k∑

j=1

s
(2)
j,kx(x − 1) · · · (x − j + 1),

where s
(1)
j,k and s

(2)
j,k denote the Stirling numbers of the first and second kind, re-

spectively; see, for example, [26]. From (3.6), it is seen that ENk
r is a polynomial

of degree k in nr . Furthermore, E((Nr − 1)(Nr − 2) · · · (Nr − d + 1))2 can be
expressed as a polynomial of degree 2d − 2 in nr such that

1

r2d−1 E

((
Nr − 1
d − 1

))2

−→
r→∞ 0.



CLTS FOR POISSON HYPERPLANE TESSELLATIONS 929

Hence,

1

rd−1/2

(
Nr

d

)
R

(d)
Nr

(fB)
P−→

r→∞ 0,(3.8)

where
P−→ denotes convergence in probability. Next we show that

1

rd−1/2

((
Nr

d

)
− Nr

(
Nr − 1
d − 1

)
+ nr

(
Nr − 1
d − 1

)
− nd

r

d!
)

P−→
r→∞ 0.(3.9)

By virtue of Nr
r

P−→
r→∞ 2λ = nr

r
and since the difference

(Nr

d

) − Nd
r

d! can be written

as a polynomial of degree d − 1 in Nr with coefficients not depending on r , it is
easily seen that both

1

rd−1/2

((
Nr

d

)
− Nd

r

d!
)

P−→
r→∞ 0

and

Nr − nr

rd−1/2

((
Nr − 1
d − 1

)
− Nd−1

r

(d − 1)!
)

P−→
r→∞ 0.

Similarly, after some elementary manipulations, we find that

1

rd−1/2

(
Nd

r − nd
r − d(Nr − nr)N

d−1
r

)
= Nr − nr

rd−1/2

(
d−1∑
k=0

nk
rN

d−1−k
r − dNd−1

r

)

= −
(

Nr − nr

r3/4

)2 1

rd−2

(
d−2∑
k=0

(d − k − 1)nk
rN

d−k−2
r

)
P−→

r→∞ 0,

which in combination with the previous relation proves (3.9). Combining (3.8),
(3.9) and

1

rd−1

(
Nr − 1
d − 1

)
P−→

r→∞
(2λ)d−1

(d − 1)! ,(3.10)

and applying Slutsky’s lemma (see, e.g., [14]), we see that the subsequent
Lemma 3.2 completes the proof. �

LEMMA 3.2. Under the conditions of Theorem 3.1,

1√
2λr

(
Nr∑
i=1

gB(Xi) − 2λrEfB(X1, . . . ,Xd)

)
d−→

r→∞ N
(
0, σ

(1,d)
B

)
.
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PROOF. Let again nr = ENr = 2λr and let, furthermore, µB = EgB(X1) =
EfB(X1, . . . ,Xd). The characteristic function of

ξr = n−1/2
r

(
Nr∑
i=1

gB(Xi) − nrµB

)

is then given by

Eeitξr = exp
(−it

√
nrµB

)
E exp

(
it√
nr

Nr∑
i=1

gB(Xi)

)
.

The characteristic function on the right-hand side can be simplified by the fact that
Nr is independent of the sequence X1,X2, . . . and that the probability generating
function EzNr takes the form exp(nr(z − 1)) for any complex z. Thus,

Eeitξr = exp
(
nrE

(
e(it/

√
nr )gB(X1) − 1 − it√

nr

gB(X1)

))
or, equivalently, log Eeitξr is given by

nrE

(
exp

(
it√
nr

gB(X1)

)
− 1 − it√

nr

gB(X1) − (it)2

2nr

g2
B(X1)

)
− t2σ

(1,d)
B

2
.

The well-known inequality |eix − 1 − ix − (ix)2

2 | ≤ |x|3
6 for any x ∈ R combined

with n
−1/2
r E|g3

B(X1)| −→
r→∞ 0 gives

log Eeitξr −→
r→∞− t2σ

(1,d)
B

2
for t ∈ R,

which is equivalent to the assertion of Lemma 3.2. �

4. Extensions and applications of Theorem 3.1. The results of Section 3
can be generalized as follows. Let again 
 = ∑

i≥1 δ(Pi,Vi) be the marked-point-
process representation of a stationary Poisson hyperplane process � in R

d with
intensity λ > 0 and with spherical orientation distribution � such that �(L ∩
Sd−1+ ) < 1 for any L ∈ Ld

d−1. Notice that the expositions in this section are, for

notational ease, presented for the particular case B = (Sd−1+ )d only.
Instead of the intersection of d hyperplanes, we consider, in Section 4.1, a gen-

eralized version of Theorem 3.1. In particular, for any fixed k ∈ {0, . . . , d − 1}, we
define families of statistics 
k(B

d
r ) and ζk(B

d
r ) for k = 0, . . . , d − 1, denoting the

number of k-flats hitting Bd
r and their total k-volume in Bd

r , respectively. These
statistics, closely related to the k-flat intersection process �k defined in (2.5), have
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the form of U -statistics of order d − k without normalizing factor
( Nr

d−k

)
, that is,


k(B
d
r ) = �k

({L ∈ Ad
k :L ∩ Bd

r �= ∅})
(4.1)

d= 1

(d − k)!
∑ ∗

1≤i1,...,id−k≤Nr

χ

(
d−k⋂
j=1

H
(
Xij

) ∩ Bd
r

)

and

ζk(B
d
r ) = ∑

L∈supp(�k)

νk(B
d
r ∩ L)

(4.2)
d= 1

(d − k)!
∑ ∗

1≤i1,...,id−k≤Nr

νk

(
d−k⋂
j=1

H
(
Xij

) ∩ Bd
r

)
.

In Section 4.3 we prove a multivariate CLT for d-dimensional vectors consisting
of these, suitably normalized, random variables.

4.1. CLTs for point processes of k-flats. In analogy to Section 3.1, we first
note that the expectations Eχ(H(X1)∩· · ·∩H(Xd−k)∩Bd

r ) and r−k
Eνk(H(X1)∩

· · · ∩ H(Xd−k) ∩ Bd
r ) do not depend on r > 0 since the first components Pi of the

i.i.d. random vectors Xi = (Pi,Vi), i ≥ 1, are uniformly distributed on [−r, r].
As an extension of Lemma 3.1, for B = (Sd−1+ )d , we now determine the first-

order and second-order moments of the random variables 
k(B
d
r ) and ζk(B

d
r ) for

k = 0, . . . , d − 1. For this reason, let

σ
(1,d−k)
χ,k = E

(
χ

(
d−k⋂
i=1

H(Xi) ∩ Bd
r

)
χ

(2d−2k−1⋂
i=d−k

H(Xi) ∩ Bd
r

))
= Eg2

χ,k(Xd−k)

and

σ
(1,d−k)
ν,k = r−2k

E

(
νk

(
d−k⋂
i=1

H(Xi) ∩ Bd
r

)
νk

(2d−2k−1⋂
i=d−k

H(Xi) ∩ Bd
r

))

= Eg2
ν,k(Xd−k),

where

gχ,k((p, v)) = Eχ
(
H(X1) ∩ · · · ∩ H(Xd−k−1) ∩ H(p,v) ∩ Bd

r

)
(4.3)

and

gν,k((p, v)) = r−k
Eνk

(
H(X1) ∩ · · · ∩ H(Xd−k−1) ∩ H(p,v) ∩ Bd

r

)
(4.4)

for (p, v) ∈ [−r, r]×Sd−1+ . Notice that the second moments σ
(1,d−k)
χ,k and σ

(1,d−k)
ν,k

do also not depend on r > 0. Using this notation, we can state the following mo-
ment formulae.
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LEMMA 4.1. For each k = 0, . . . , d − 1,

E
k(B
d
r ) = (2λr)d−k

(d − k)! P
(
H(X1) ∩ · · · ∩ H(Xd−k) ∩ Bd

r �= ∅
)
,(4.5)

Eζk(B
d
r ) = (2λr)d−k

(d − k)! Eνk

(
H(X1) ∩ · · · ∩ H(Xd−k) ∩ Bd

r

)
,(4.6)

and

lim
r→∞

Var
k(B
d
r )

r2d−2k−1 = (2λ)2d−2k−1

((d − k − 1)!)2 σ
(1,d−k)
χ,k ,(4.7)

lim
r→∞

Var ζk(B
d
r )

r2d−1 = (2λ)2d−2k−1

((d − k − 1)!)2 σ
(1,d−k)
ν,k .(4.8)

PROOF. In analogy to the proof of Lemma 3.1, we get for k ∈ {0, . . . , d − 1}
that

E
k(B
d
r ) = E

(
Nr

d − k

)
Eχ

(
H(X1) ∩ · · · ∩ H(Xd−k) ∩ Bd

r

)
and

Eζk(B
d
r ) = E

(
Nr

d − k

)
Eνk

(
H(X1) ∩ · · · ∩ H(Xd−k) ∩ Bd

r

)
.

Applying (3.6), we obtain that

E

(
Nr

d − k

)
= (2λr)d−k

(d − k)! ,

which gives both (4.5) and (4.6). Furthermore, again arguing along the lines of the
proof of Lemma 3.1, we obtain

Var
k(B
d
r ) =

d−k∑
j=1

(2λr)2d−2k−j

j !((d − k − j)!)2

× E

(
χ

(
d−k⋂
p=1

H(Xp) ∩ Bd
r

)
χ

( 2(d−k)−j⋂
q=d−k−j+1

H(Xq) ∩ Bd
r

))

and

Var ζk(B
d
r ) =

d−k∑
j=1

(2λr)2d−2k−j

j !((d − k − j)!)2

× E

(
νk

(
d−k⋂
p=1

H(Xp) ∩ Bd
r

)
νk

( 2(d−k)−j⋂
q=d−k−j+1

H(Xq) ∩ Bd
r

))
.
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Hence, after dividing by r2d−2k−1 and r2d−1, respectively, and letting r → ∞, we
get the desired relationships (4.7) and (4.8). �

Recall now that the random variables 
k(B
d
r ) and ζk(B

d
r ) given in (4.1) and

(4.2), respectively, can be expressed as U -statistics, allowing for Hoeffding’s de-
composition (2.9) to be applied. Hence, we can state the following CLTs, the
proofs of which are in complete analogy to the proof of Theorem 3.1 and are
therefore omitted.

THEOREM 4.1. Let � be a Poisson hyperplane process with intensity
λ > 0 and nondegenerate spherical orientation distribution �. Then, for k =
0,1, . . . , d − 1,

Z
(d)
k,r (χ) = (d − k − 1)!

(2λr)d−k−1/2

(

k(B

d
r ) − E
k(B

d
r )

) d−→
r→∞ N

(
0, σ

(1,d−k)
χ,k

)
(4.9)

and

Z
(d)
k,r (ν) = (d − k − 1)!r−k

(2λr)d−k−1/2

(
ζk(B

d
r ) − Eζk(B

d
r )

) d−→
r→∞ N

(
0, σ

(1,d−k)
ν,k

)
.(4.10)

If the stationary Poisson hyperplane process � is also isotropic, that is, � is
the uniform distribution on Sd−1+ , the intensity λk of the k-flat intersection process
�k induced by � is given by (2.7) for k = 0, . . . , d − 1. Using this in the fol-
lowing Lemma 4.2, we establish explicit expressions for the asymptotic variances
occurring in the CLTs (4.9) and (4.10).

LEMMA 4.2. Let � be the uniform distribution on Sd−1+ and let k ∈
{0,1, . . . , d − 1}. Then,

E
k(B
d
r ) = λkκd−kr

d−k and Eζk(B
d
r ) = λkκdrd,(4.11)

with λk given in (2.7). Moreover,

σ
(1,d−k)
χ,k = (κd−k−1(d − k − 1)!)2

(2d − 2k − 1)!
(

d!κd

k!κk

)2(
κd−1

dκd

)2(d−k)

(4.12)

and

σ
(1,d−k)
ν,k = (2kκd−1(d − 1)!)2

(2d − 1)!
(

d!κd

k!κk

)2(
κd−1

dκd

)2(d−k)

.(4.13)

PROOF. Both mean values in (4.11) are an immediate consequence of (2.2)
and (2.3), respectively, where only the stationarity of the Poisson hyperplane
process � is necessary. However, in case � is additionally isotropic, the inten-
sities λk can be explicitely determind by (2.7). To show (4.12), we use the relation
σ

(1,d−k)
χ,k = Eg2

χ,k(Xd−k), where the function gχ,k((p, v)) is defined in (4.3). Since
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the random vectors Xi = (Pi,Vi), i = 1, . . . , d − k, are i.i.d. with independent
components, where Pi is uniformly distributed on [−r, r] and Vi has the uniform
distribution � on Sd−1+ , the function gχ,k((p, v)) may be written in the form

gχ,k((p, v)) = 1

(2r)d−k−1

×
∫
Sd−1+

∫
R

· · ·
∫
Sd−1+

∫
R

χ

(
d−k−1⋂
j=1

H(pj , vj )

∩ H(p,v) ∩ Bd
r

)
dp1 �(dv1)

· · ·dpd−k−1 �(dvd−k−1).

A closed expression for gχ,k((p, v)) is obtained by an iterated application of
Crofton’s formula∫

Sd−1+

∫
R

Vj

(
K ∩ H(p,v)

)
dp �(dv) = κd−1

dκd

(j + 1)κj+1

κj

Vj+1(K),(4.14)

which holds for j = 0,1, . . . , d − 1 and any convex compact set K ⊂ R
d ; see,

for example, Corollary 3.3.2 in [29]. Here, Vi(·) denotes the ith intrinsic volume
for i = 0,1, . . . , d , where V0(K) = χ(K) and Vd(K) = νd(K) for any convex
compact K ⊂ R

d . Applying (4.14) successively for j = 0, . . . , d − k − 1, we get

gχ,k((p, v)) = (d − k − 1)!κd−k−1

(2r)d−k−1

(
κd−1

dκd

)d−k−1

Vd−k−1
(
H(p,v) ∩ Bd

r

)
.

Since H(p,v) ∩ Bd
r is a (d − 1)-dimensional ball with radius

√
r2 − p2, the in-

variance and homogeneity properties of Vd−k−1(·) yield

Vd−k−1
(
H(p,v) ∩ Bd

r

) = (r2 − p2)(d−k−1)/2Vd−k−1(B
d−1
1 )

= (r2 − p2)(d−k−1)/2
(

d − 1
k

)
κd−1

κk

;
see [29], page 79. Summarizing the above steps, we arrive at

gχ,k((p, v)) = κd−k−1

2d−k−1

d!κd

k!κk

(
κd−1

dκd

)d−k(
1 − p2

r2

)(d−k−1)/2

(4.15)

for (p, v) ∈ [−r, r] × Sd−1+ and

σ
(1,d−k)
χ,k = 1

2r

∫ r

−r

∫
Sd−1+

g2
χ,k((p, v))�(dv) dp

=
(

d!κdκd−k−1

k!κk2d−k−1

)2(
κd−1

dκd

)2(d−k) ∫ 1

0
(1 − p2)d−k−1 dp.
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Finally, we get (4.12) by observing that∫ 1

0
(1 − p2)s dp = (s!2s)2

(2s + 1)! , s = 0,1, . . . .(4.16)

To verify (4.13), we make use of a formula for the second moment of ζk(B
d
r )

obtained in [17], page 164:

Eζ 2
k (Bd

r ) =
d−k∑
j=0

d!(d − j)!r2d−j

j !(k!(d − k − j)!)2

κ2d−j κdκ3
d−j

κ2(d−j)κ
2
k

(
λ
κd−1

dκd

)2(d−k)−j

(4.17)

for k = 0, . . . , d −1. From the second formula in (4.11) and (2.7), it is seen that the
summand for j = 0 equals (Eζk(B

d
r ))2 and, therefore, in accordance with (4.8),

σ
(1,d−k)
ν,k = ((d − k − 1)!)2

(2λ)2d−2k−1 lim
r→∞

Var ζk(B
d
r )

r2d−1

= d!(d − 1)!
(k!)2

κ2d−1κdκ3
d−1

κ2d−2κ
2
k

(
κd−1

2dκd

)2d−2k−1

.

Finally, we obtain (4.13) by taking into account the relation

κ2d−1

κ2d−2
= �(d)

√
π

�(d + 1/2)
= 22d−1((d − 1)!)2

(2d − 1)! ,

which follows from Legendre’s duplication formula

22s−1�
(
s + 1

2

)
�(s) = √

π�(2s)(4.18)

applied to the integer s = d . This completes the proof of Lemma 4.2. �

Notice that (4.5), (4.6) and (4.11) yield simple relationships between P(H(X1)∩
· · · ∩ H(Xd−k) ∩ Bd

r �= ∅), Eνk(H(X1) ∩ · · · ∩ H(Xd−k) ∩ Bd
r ), and λk for

k = 0,1, . . . , d − 1. Furthermore, in case � is additionally isotropic, one can
use (2.7) to get

P
(
H(X1) ∩ · · · ∩ H(Xd−k) ∩ Bd

r �= ∅
) = 2k−dd!

k!
κdκd−k

κk

(
κd−1

dκd

)d−k

,

Eνk

(
H(X1) ∩ · · · ∩ H(Xd−k) ∩ Bd

r

) = 2k−dd!
k!

κ2
d

κk

(
κd−1

dκd

)d−k

rk.

Notice that these formulae comply with results in [17], pages 160 and 161. Also,
if we replace in the proof of (4.12) the function gχ,k(·) by gν,k(·) defined in (4.4)
(with Vk = νk instead of V0 = χ ), it easily seen that

gν,k((p, v)) = κd−1

2d−k−1

d!κd

k!κk

(
κd−1

dκd

)d−k(
1 − p2

r2

)(d−1)/2

(4.19)
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for (p, v) ∈ [−r, r] × Sd−1+ , which confirms once more (4.13) without using
Matheron’s formula (4.17). On the other hand, regarding (4.17) for k = 0 as
a sum of power functions in λr , we are able to determine the pair correlation
function g0(r) of the stationary and isotropic point process 
0 as a polyno-
mial of degree d − 1 in (λr)−1; see also [12]. More precisely, putting g0(r) =
1 + ∑d−1

j=1 cdj (λr)−j and utilizing the relationship

Var
0(B
d
r ) = dκdλ2

0

∫ 2r

0
νd

(
Bd

r ∩ (
Bd

r + (u,0, . . . ,0)
))(

g0(u) − 1
)
ud−1 du

+ λ0κdrd

(see [32], page 131 for details), we get cdj = (d−1
j

)
(
κd−j

κd
)2( dκd

κd−1
)j by comparison

of coefficients. Here, we used (2.7) for k = 0 together with∫ 2

0
νd

(
Bd

1 ∩ (
Bd

1 + (u,0, . . . ,0)
))

ud−j−1 du = 1

dκd

∫
Bd

1

∫
Bd

1

dx dy

‖x − y‖j

= 2d−j+1κ2d−j

(d − j)(d − j + 1)κd−j

for j = 1, . . . , d − 1; see [29], page 177.

4.2. Asymptotic confidence intervals for the k-flat intensities. Let � be a
stationary Poisson hyperplane process with intensity λ > 0 and nondegener-
ate orientation distribution �. From the view point of spatial statistics, λ̂k,r =

k(B

d
r )/νd−k(B

d−k
r ), as well as λ̃k,r = ζk(B

d
r )/νd(Bd

r ), are unbiased estimators
for the intensity λk of the stationary k-flat intersection process generated by �;
see Section 2.1. We mention that both estimators are strongly consistent since �

is ergodic and even mixing; see [30], Chapter 6.4.
If � is additionally isotropic, then we know from (2.7) that λk = ad,kλ

d−k .
Together with (4.7) and (4.12), as well as (4.8) and (4.13), we obtain

lim
r→∞

r Var λ̂k,r

4(d − k)2 = λ2d−2k−1a2
d,kb

2
d−k and lim

r→∞
r Var λ̃k,r

4(d − k)2 = λ2d−2k−1a2
d,kb

2
d

for k = 0, . . . , d − 1, where

ad,k =
(

d

k

)
κd

κk

(
κd−1

dκd

)d−k

and bj = 2j−1(j − 1)!κj−1√
2(2j − 1)!κj

for j = 1,2, . . . .

By means of (4.18), one can verify the inequality bj < bj+1 for j = 1,2, . . . ,

which in turn implies that

lim
r→∞ r Var λ̂k,r < lim

r→∞ r Var λ̃k,r for k = 1, . . . , d − 1.

Therefore, we prefer the estimators λ̂k,r to construct confidence intervals for λk .
Notice that efficiency and other optimality properties of intensity estimators for
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stationary k-flat processes observed in fixed convex sampling windows have been
studied in [27].

By Theorem 4.1, the estimators λ̂k,r and λ̃k,r are asymptotically normally dis-
tributed. For example, together with the above abbreviations, (4.9) can be formu-
lated as follows:

√
r(̂λk,r − λk)

d−→
r→∞ N

(
0,4(d − k)2λ

2−1/(d−k)
k a

1/(d−k)
d,k b2

d−k

)
.

Next, we apply a variance-stabilizing transformation f (x) for x ≥ 0 to the lat-
ter CLT such that

√
r(f (̂λk,r ) − f (λk)) has a Gaussian limit with mean 0 and

variance 1; see, for example, [3] for details. It is easily checked that f (x) =
(x/ad,k)

1/2(d−k)/bd−k is a suitable choice for such transformation, which gives
rise to a 100(1 − α)% (asymptotically exact) confidence interval I

(d)
k,r (α) for λk .

COROLLARY 4.2. Under the above assumptions,
√

r

bd−k

a
−1/(2(d−k))
d,k

(
λ̂

1/(2(d−k))
k,r − λ

1/(2(d−k))
k

) d−→
r→∞ N (0,1),

which is equivalent to P(λk ∈ I
(d)
k,r (α)) −→

r→∞ 1 − α for any α ∈ (0,1) and k =
0, . . . , d − 1, where the interval I

(d)
k,r (α) is given by

[(
(̂λk,r )

1/(2(d−k)) − a
1/(2(d−k))
d,k bd−k√

r
z1−α/2

)2(d−k)

,

(
(̂λk,r )

1/(2(d−k)) + a
1/(2(d−k))
d,k bd−k√

r
z1−α/2

)2(d−k)]
and z1−α/2 denotes the (1 − α/2)-quantile of the standard normal distribution.

Moreover, relation λ = (λk/ad,k)
1/(d−k) permits to transform the interval I

(d)
k,r (α)

into the interval

J
(d)
k,r (α) =

[((
λ̂k,r

ad,k

)1/(2(d−k))

− bd−k√
r

z1−α/2

)2

,

((
λ̂k,r

ad,k

)1/(2(d−k))

+ bd−k√
r

z1−α/2

)2]
,

which covers the intensity λ of the hyperplane process � with probability 1 −α as
r → ∞.

The results of Corollary 4.2 can be applied, for example, in the following con-
text of telecommunication network modeling.
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FIG. 2. The road system of Paris: (a) city of Paris; (b) extracted data.

Figure 2 shows the road system of Paris, where the real data, given by
(x, y)-coordinates describing the location of points which are interpreted as in-
tersections of roads, have been connected in order to form (nonconvex) cells. Be-
yond, each data point is equipped with a mark displaying the type of road to which
it belongs, for example, main roads and side streets. The main road system is of
prior interest in the civil engineering part of strategic network planning since these
roads gather extensions of cables from different side streets. Therefore, expensive
network components and technical devices are placed along main roads and ca-
pacity planning and cost analysis for the cables running along these types of roads
is an important task.

The SSLM introduced in Section 1 allows us to model telecommunication net-
works. An important part of the SSLM is the geometry model, that is, the model
that represents the infrastructure or road system of a certain (urban) environ-
ment. In [8], a fitting procedure, based on minimization of distance measures and
Monte Carlo test techniques, is introduced, where tessellation models are fitted to
real infrastructure data. It turns out that urban main road systems are often best
represented by a Poisson line tessellation (Poisson line process).

From the civil engineering point of view, it is desirable to get information about
the network’s structure without having to apply too sophisticated models or meth-
ods. Furthermore, it is preferable for telecommunication engineers to get such in-
formation in the form of worst case and best case scenario values or to test their
predictions. Our (asymptotic) confidence intervals, and, based upon them, our (as-
ymptotic) tests, contribute to such a risk analysis of structural parameters of the
network.

To take an example based on the observation of pointwise real data in a suffi-
ciently large (spherical) sampling window B2

r and after application of the fitting
procedure, it is possible to provide lower and upper bounds—b−

r (α) and b+
r (α),
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respectively—for the mean total length λ of roads per unit area. To this end, con-
sider the confidence interval J

(2)
0,r (α) = [b−

r (α), b+
r (α)] (from Corollary 4.2 for

d = 2 and k = 0), where

b±
r (α) = 1

r

(
(
0(B

2
r ))1/4 ± 2z1−α/2

π
√

3

)2

.

This means that, based only on the knowledge of the number of road crossings
within a large (spherical) region, b−

r (α)ν2(W) and b+
r (α)ν2(W) provide lower and

upper bounds for the mean total length of the main road system intersecting a
certain subregion W . These bounds can then be used to estimate lengths of cables
and, in subsequent steps, to determine costs, as well as capacities of connection.

Moreover, based on the above confidence interval, one is able to test the null
hypothesis H0 :λ = λ�, where λ� denotes some specified value of the mean total
length of lines per unit area, versus the alternative hypothesis H1 :λ �= λ�. In the
context of telecommunication, λ� can be interpreted as the ratio of the total length
of cables and the area (of an urban district) in which the cables are laid. This value
for the cable length is often determined by practitioners according to their own
rules of thumb. Based on the confidence interval J

(2)
0,r (α) (r large enough), where

α is a suitable significance level, H0 would be rejected if

λ̂0,r <
1

π

(√
λ� − z1−α/2

2

π
√

3r

)4

or λ̂0,r >
1

π

(√
λ� + z1−α/2

2

π
√

3r

)4

.

4.3. Multivariate CLTs. In this section we extend the results of Section 4.1
by establishing multivariate CLTs which describe the joint asymptotic behavior
(as r → ∞) of the closely correlated random variables Z

(d)
0,r (χ), . . . ,Z

(d)
d−1,r (χ),

as well as of Z
(d)
0,r (ν), . . . ,Z

(d)
d−1,r (ν), defined in (4.9) and (4.10), respectively. To

begin with, we define the mixed second moments

σ
(1,d−k,d−l)
χ,k,l = E

(
χ

(
d−k⋂
i=1

H(Xi) ∩ Bd
r

)
χ

(2d−k−l−1⋂
i=d−k

H(Xi) ∩ Bd
r

))

= E
(
gχ,k(Xd−k)gχ,l(Xd−k)

)
and

σ
(1,d−k,d−l)
ν,k,l = r−(k+l)

E

(
νk

(
d−k⋂
i=1

H(Xi) ∩ Bd
r

)
νl

(2d−k−l−1⋂
i=d−k

H(Xi) ∩ Bd
r

))

= E
(
gν,k(Xd−k)gν,l(Xd−k)

)
for k, l = 0, . . . , d − 1, where the functions gχ,k(·) and gν,l(·) are defined by (4.3)
and (4.4), respectively. The following result generalizes Lemma 4.1.
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LEMMA 4.3. For any k, l = 0, . . . , d − 1,

lim
r→∞ E

(
Z

(d)
k,r (χ)Z

(d)
l,r (χ)

) = σ
(1,d−k,d−l)
χ,k,l(4.20)

and

lim
r→∞E

(
Z

(d)
k,r (ν)Z

(d)
l,r (ν)

) = σ
(1,d−k,d−l)
ν,k,l .(4.21)

PROOF. Both relations (4.20) and (4.21) can be shown by similar combinato-
rial arguments as employed in the proof of Lemma 3.1 to verify (3.5). Using the
definition of Z

(d)
k,r (χ) as given in (4.9), we easily get that

E
(
Z

(d)
k,r (χ)Z

(d)
l,r (χ)

) = (d − k − 1)!(d − l − 1)!
(2λr)2d−k−l−1

× (
E

(

k(B

d
r )
l(B

d
r )

) − E
k(B
d
r )E
l(B

d
r )

)
.

According to (4.1), we may write for 0 ≤ k ≤ l ≤ d − 1 that

E
(

k(B

d
r )
l(B

d
r )

)
=

d−l∑
j=0

E(Nr(Nr − 1) · · · (Nr − (2d − k − l − j) + 1))

j !(d − k − j)!(d − l − j)!

× E

(
χ

(
d−k⋂
p=1

H(Xp) ∩ Bd
r

)
χ

( 2d−k−l−j⋂
q=d−k−j+1

H(Xq) ∩ Bd
r

))
.

Using (3.6) and the fact that the summand for j = 0 equals E
k(B
d
r )E
l(B

d
r ), we

arrive at

E
(
Z

(d)
k,r (χ)Z

(d)
l,r (χ)

)
= (d − k − 1)!(d − l − 1)!

(2λr)2d−k−l−1

×
d−l∑
j=1

(2λr)2d−k−l−j

j !(d − k − j)!(d − l − j)!

× E

(
χ

(
d−k⋂
p=1

H(Xp) ∩ Bd
r

)
χ

( 2d−k−l−j⋂
q=d−k−j+1

H(Xq) ∩ Bd
r

))
.

Hence, dividing by r2d−k−l−1 and letting r → ∞ immediately yields (4.20). The
proof of (4.21) is completely analogous. �

THEOREM 4.3. Let the assumptions of Theorem 4.1 be satisfied. Then,(
Z

(d)
k,r (χ)

)d−1
k=0

d−→
r→∞ N

(
o,�(χ)

)
(4.22)
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and (
Z

(d)
k,r (ν)

)d−1
k=0

d−→
r→∞ N

(
o,�(ν)

)
,(4.23)

where N (o,�(χ)) and N (o,�(ν)) are d-dimensional Gaussian mean o =
(0, . . . ,0)� random vectors with covariance matrices �(χ) = (σ

(1,d−k,d−l)
χ,k,l )d−1

k,l=0

and �(ν) = (σ
(1,d−k,d−l)
ν,k,l )d−1

k,l=0 with entries given by the limits (4.20) and (4.21),
respectively.

PROOF. Recall that due to the well-known Cramér–Wold device, the multi-
variate CLT (4.22) is equivalent to the one-dimensional CLT

d−1∑
k=0

tkZ
(d)
k,r (χ)

d−→
r→∞ N

(
0, t��(χ)t

)
,(4.24)

for any t = (t0, . . . , td−1)
� ∈ R

d \ {o}. This means that the proof of (4.22) can
be put down to the case of the (one-dimensional) CLTs considered in Theorems
3.1 and 4.1. First, using (2.8), (4.1) and (4.9), we may rewrite the linear combina-
tion

∑d−1
k=0 tkZ

(d)
k,r (χ) as follows:

d−1∑
k=0

tkZ
(d)
k,r (χ)

d=
d−1∑
k=0

tk
(d − k − 1)!
(2λr)d−k−1/2

×
(
U

(d−k)
Nr

(χ)

(
Nr

d − k

)
− (2λr)d−k

(d − k)! Egχ,k(X1)

)
.

Next, we apply Hoeffding’s decomposition (2.9) to the random U -statistic
U

(d−k)
Nr

(χ) with kernel function χ(
⋂d−k

j=1 H(Xj) ∩ Bd
r ) and proceed in the same

manner as in the proof of Theorem 3.1. In view of the limiting relations
(3.8) and (3.9) with d replaced by d − k for k = 0,1, . . . , d − 1 and combined
with Slutsky’s lemma, we recognize that the weak limit of

∑d−1
k=0 tkZ

(d)
k,r (χ) coin-

cides with that of
d−1∑
k=0

tk
(d − k − 1)!
(2λr)d−k−1/2

(
Nr − 1

d − k − 1

)(
Nr∑
i=1

gχ,k(Xi) − 2λrEgχ,k(X1)

)
as r → ∞. Finally, by means of (3.10) with d again replaced by d − k for k =
0,1, . . . , d − 1, it remains to show that

1√
2λr

d−1∑
k=0

tk

(
Nr∑
i=1

gχ,k(Xi) − 2λrEgχ,k(X1)

)

d−→
r→∞ N

(
0,

d−1∑
k,l=0

tktlE
(
gχ,k(X1)gχ,l(X1)

))
.
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However, the latter CLT is obtained by proving Lemma 3.2 once more for the func-
tion

∑d−1
k=0 tkgχ,k(·) instead of gB(·). To show the second assertion (4.23), we only

need to repeat the just finished proof with the kernel function r−kνk(
⋂d−k

j=1 H(Xj)∩
Bd

r ) and gν,l(·) instead of gχ,l(·). This completes the proof of Theorem 4.3. �

As in Lemma 4.2, the additional assumption of isotropy allows to compute ex-
plicit formulae for the mixed second-order moments σ

(1,d−k,d−l)
χ,k,l and σ

(1,d−k,d−l)
ν,k,l .

LEMMA 4.4. Let � be the uniform distribution on Sd−1+ and let k, l ∈
{0, . . . , d − 1}. Then,

σ
(1,d−k,d−l)
χ,k,l = (d!κd)2κd−k−1κd−l−1

k!l!κkκl22d−k−l−1

κ2d−k−l−1

κ2d−k−l−2

(
κd−1

dκd

)2d−k−l

(4.25)

=
√

σ
(1,d−k)
χ,k σ

(1,d−l)
χ,l

B((2d − k − l)/2, (2d − k − l)/2)√
B(d − k, d − k)B(d − l, d − l)

,

where B(s, t) = ∫ 1
0 xs−1(1 − x)t−1 dx = �(s)�(t)/�(s + t) denotes Euler’s Beta

function, and

σ
(1,d−k,d−l)
ν,k,l = (κdκd−1d!(d − 1)!)22k+l

k!l!κkκl(2d − 1)!
(

κd−1

dκd

)2d−k−l

(4.26)

=
√

σ
(1,d−k)
ν,k σ

(1,d−l)
ν,l .

PROOF. Both (4.25) and (4.26) can be obtained using the shape of the func-
tions gχ,k(·) and gν,k(·) derived in the proof of Lemma 4.2. By (4.15) and the

above definition of σ
(1,d−k,d−l)
χ,k,l , we get that

σ
(1,d−k,d−l)
χ,k,l = 1

2r

∫ r

−r

∫
Sd−1+

gχ,k((p, v))gχ,l((p, v))�(dv) dp

= d!κdκd−k−1

k!κk2d−k−1

d!κdκd−l−1

l!κl2d−l−1

(
κd−1

dκd

)2d−k−l

×
∫ 1

0
(1 − p2)(2d−k−l−2)/2 dp.

Thus, by noting that∫ 1

0
(1 − p2)(2d−k−l−2)/2 dp = κ2d−k−l−1

2κ2d−k−l−2

= 22d−k−l−2B
(

2d − k − l

2
,

2d − k − l

2

)



CLTS FOR POISSON HYPERPLANE TESSELLATIONS 943

(see, e.g., [29], page 80), we obtain the first part of (4.25), where the second
identity in the previous line turns out to be a simple consequence of (4.18) for
s = (2d − k − l)/2 and the very definition of the Beta function. The second part
of (4.25) is seen by inserting the variances σ

(1,d−k)
χ,k given by (4.12) combined with

B(d −k, d −k) = ((d −k −1)!)2/(2d −2k −1)! for k = 0,1, . . . , d −1. Likewise,
using (4.19), we get that

σ
(1,d−k,d−l)
ν,k,l = 1

2r

∫ r

−r

∫
Sd−1+

gν,k((p, v))gν,l((p, v))�(dv) dp

= d!κdκd−1

k!κk2d−k−1

d!κdκd−1

l!κl2d−l−1

(
κd−1

dκd

)2d−k−l ∫ 1

0
(1 − p2)d−1 dp.

Hence, taking (4.16) for s = d − 1, the first part of (4.26) is shown and the second
equality is immediately seen from Lemma 4.2. �

COROLLARY 4.4. The covariance matrix �(χ) possesses always full rank d ,
whereas the rank of the covariance matrix �(ν) equals 1 for any dimension d ≥ 1.
Moreover,

Z
(d)
l,r (ν)√

σ
(1,d−l)
ν,l

− Z
(d)
k,r (ν)√

σ
(1,d−k)
ν,k

P−→
r→∞ 0 for 0 ≤ k < l ≤ d − 1.(4.27)

PROOF. Notice that �(χ) possesses full rank if this matrix is strictly positive.
This, however, can be seen since

d−1∑
k,l=0

tktlB
(

2d − k − l

2
,

2d − k − l

2

)

=
∫ 1

0

(
d−1∑
k=0

tk
(
x(1 − x)

)(d−k−1)/2
)2

dx > 0

for any (t0, . . . , td−1)
� ∈ R

d \ {o}, which means that the symmetric matrix with
entries B((2d − k − l)/2, (2d − k − l)/2) for k, l = 0, . . . , d −1 is strictly positive.
In order to show that the rank of �(ν) is 1 for any d ≥ 1, we only need to observe
that the second equality in (4.26) implies that each entry of the asymptotic covari-

ance matrix of the normalized random vector (Z
(d)
k,r (ν)/

√
σ

(1,d−k)
ν,k )d−1

k=0 equals 1.
Then, (4.27) is a consequence of the structure of �(ν). �

The somewhat surprising result (4.27) states that the variance of the difference

of any two components of (Z
(d)
k,r (ν)/

√
σ

(1,d−k)
ν,k )d−1

k=0 tends to zero as r → ∞. To-
gether with Slutsky’s lemma this allows for the conclusion that the normal conver-
gence in (4.10) for a single component, Z

(d)
0,r (ν), say, implies asymptotic normality
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of the other components. Thus, relation (4.27) can be interpreted as a kind of as-
ymptotic second-order relationship for k-flat processes induced by stationary and
isotropic Poisson hyperplane process. It would be of interest to see whether there
is a pure geometric reasoning for (4.27).

5. A special review of the planar case. Throughout this section we assume
that d = 2. Assuming isotropy of the underlying stationary Poisson line process,
we first present a short review of Theorem 3.1 for the case where the ordered
angles of the orientation vectors of intersecting pairs of lines are situated within a
certain rectangle. In a second part of the present section we look at another type of
a CLT for Poisson line processes, proven by Paroux [24], where the normalization
is random. Applying directly Hoeffding’s CLT (2.11) for U -statistics, we provide
a new proof of Paroux’s CLT with random normalization, which has been derived
in [24] by the “method of moments.”

5.1. Planar moment formulae. We consider the marked-point-process rep-
resentation 
 = ∑

i≥1 δ(Pi,Vi) of a planar stationary and isotropic Poisson line
process � with intensity λ. In this special case each orientation vector Vi ∈ S1+ is
completely determined by the angle �i between the unit vector Vi and the x-axis
measured in anti-clockwise direction. Owing to isotropy, the angles �1,�2, . . . are
independent and uniformly distributed on [0, π]. Therefore, supp(�) consists of
parameterized lines �(Pi,�i) in R

2 defined by �(Pi,�i) = {(x, y) ∈ R
2 :x cos�i +

y sin�i = Pi}.
For r > 0 fixed, 
0(B

2
r × B(a, b)) is the random number of those intersec-

tion points �(Pn1 ,�n1 ) ∩ �(Pn2 ,�n2 ) in B2
r for which (�(n1),�(n2)) ∈ B(a, b), where

B(a, b) = [0, a] × [0, b], a ≤ b, is a rectangular subset of [0, π]2. Recall that

0(B

2
r × B(a, b)) has the same distribution as the random double sum∑

1≤i<j≤Nr

fB(a,b)

(
(Pi,�i), (Pj ,�j )

)
,(5.1)

where, as in Section 3, the random vectors (P1,�1), (P2,�2), . . . :� → [−r, r] ×
[0, π] are independent and uniformly distributed on [−r, r] × [0, π] and where
Nr :� → {0,1, . . .} is a Poisson distributed random variable with expectation 2λr

independent of the (Pi,�i)’s. The function fB(a,b) given by

fB(a,b)

(
(p1, γ1), (p2, γ2)

) = χ
(
�(p1,γ1) ∩ �(p2,γ2) ∩ B2

r

)
1B(a,b)

(
γ(1), γ(2)

)
is symmetric since (γ(1), γ(2)) are lexicographically ordered, that is, (γ(1), γ(2)) =
(γ1 ∧ γ2, γ1 ∨ γ2). With the abbreviations

µB(a,b) = EfB(a,b)

(
(P1,�1), (P2,�2)

)
(5.2)

= P
(
�(P1,�1) ∩ �(P2,�2) ∩ B2

1 �= ∅,0 ≤ �1 ∧ �2 ≤ a,�1 ∨ �2 ≤ b
)
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and σ
(1,2)
B(a,b) defined by (3.3), Theorem 3.1 claims that

1

(2λr)3/2

(

0

(
B2

r × B(a, b)
) − (2rλ)2

2
µB(a,b)

)
d−→

r→∞ N
(
0, σ

(1,2)
B(a,b)

)
,(5.3)

where

µB(a,b) = 1

4π

∫ a

0

∫ b

0
| sin(u − v)|dudv

(5.4)

= 1

4π

(
2a − sina − sinb + sin(b − a)

)
and

σ
(1,2)
B(a,b) = 2

3π3

(
5a + 7

(
sin(b − a) − sinb

)
+ (b + sinb) cosb(5.5)

− (
b − a + sin(b − a)

)
cos(b − a)

)
.

To verify (5.4), one can apply the general mean value formula (2.6) together
with (2.7) for d = 2 and k = 0. However, we use (3.4) and a more direct approach
to calculate the probability µB(a,b). By definition (5.2), we obtain

µB(a,b) = 1

4π2

∫ π

0

∫ π

0

∫ 1

−1

∫ 1

−1
1{x2+y2≤1}(p1, γ1,p2, γ2)

× 1[0,a](γ1 ∧ γ2)

× 1[0,b](γ1 ∨ γ2) dp1 dp2 dγ1 dγ2,

where (x, y) denotes the intersection point of the lines �(p1,γ1) and �(p2,γ2), that is,

x = −−p1 sinγ2 + p2 sinγ1

sin(γ2 − γ1)
,

y = −p1 cosγ2 + p2 cosγ1

sin(γ2 − γ1)
.

Thus, by some elementary manipulations with trigonometric functions, we ar-
rive at

µB(a,b) = 1

2π2

∫ a

0

∫ b

0

∫ 1

−1

√
1 − p2

2| sin(γ2 − γ1)|dp2 dγ1 dγ2,
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which combined with
∫ 1
−1

√
1 − p2 dp = π

2 confirms (5.4). To determine the as-

ymptotic variance σ
(1,2)
B(a,b) appearing in (5.3), we argue similarly. By (3.3),

σ
(1,2)
B(a,b) = E

(
fB(a,b)

(
(P1,�1), (P2,�2)

)
fB(a,b)

(
(P2,�2), (P3,�3)

))
= 1

8π3

∫ π

0

∫ π

0

∫ π

0

∫ 1

−1

∫ 1

−1

∫ 1

−1
1{x2+y2≤1}(p1, γ1,p2, γ2)

×1{x2+y2≤1}(p2, γ2,p3, γ3)

×1[0,a](γ1 ∧ γ2 ∧ γ3)

×1[0,b](γ1 ∨ γ2 ∨ γ3) dp1 dp2 dp3 dγ1 dγ2 dγ3

= 4

8π3

∫ b

0

∫ b

0

∫ b

0

∫ 1

−1
(1 − p2

2)| sin(γ2 − γ1)|| sin(γ2 − γ3)|dp2

×1[0,a](γ1 ∧ γ2 ∧ γ3) dγ1 dγ2 dγ3.

Using that
∫ 1
−1(1 − p2) dp = 4

3 , a somewhat lengthy computation of the threefold
integrals with respect to γ1, γ2, γ3 in the latter line leads to formula (5.5).

5.2. A CLT with random normalization. The two-dimensional version (5.3)
of our CLT for intersection points of Poisson line processes in R

2 has close con-
nections to a CLT with random normalization; see Theorem 3.1.3 in [24]. The
proof given in [24] is based on the well-known “method of moments.” The fol-
lowing Theorem 5.1 states the assertion of this CLT. However, using Hoeffding’s
CLT (2.11) for U -statistics, we obtain a much shorter proof.

THEOREM 5.1. For arbitrary fixed a, b ∈ [0, π] with a < b, let

Z
(r)
B(a,b) = 1

(Nr(Nr − 1))3/4

∑
1≤i<j≤Nr

(
fB(a,b)(Xi,Xj ) − µB(a,b)

)
.(5.6)

Then,

Z
(r)
B(a,b)

d−→
r→∞ N

(
0, σ

(1,2)
B(a,b) − µ2

B(a,b)

)
,

where µB(a,b) and σ
(1,2)
B(a,b) are given by (5.4) and (5.5).

PROOF. To begin with, we rewrite Z
(r)
B(a,b) as

Z
(r)
B(a,b) = N

1/2
r

2

(
1− 1

Nr

)1/4
(

2

Nr(Nr − 1)

∑
1≤i<j≤Nr

(
fB(a,b)(Xi,Xj )−µB(a,b)

))
,
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where fB(a,b)(x1, x2) is a measurable, symmetric function in x1, x2 ∈ [−r, r] ×
S1+ satisfying EfB(a,b)(X1,X2) = µB(a,b). Applying Hoeffding’s CLT (2.11) for
U -statistics yields

[nr ]1/2

2
U

(2)
[nr ]

(
fB(a,b)

) d−→
r→∞ N

(
0,VargB(a,b)(X1)

)
,(5.7)

where the U -statistic U
(2)
[nr ](fB(a,b)) is given by

U
(2)
[nr ]

(
fB(a,b)

) = 2

[nr ]([nr ] − 1)

∑
1≤i<j≤[nr ]

(
fB(a,b)(Xi,Xj ) − µB(a,b)

)
,

with gB(a,b)(x) = EfB(a,b)(x,X2), where [nr ] stands for the integer part of nr =
ENr = 2λr . Taking into account (3.3) for d = 2, j = 1 and (2.9), we get

VargB(a,b)(X1) = σ
(1,2)
B(a,b) − µ2

B(a,b).

Since Nr
P−→

r→∞ ∞ such that Nr/[nr ] P−→
r→∞ 1, Theorem VIII.7.1 in [26] tells us that

in (5.7) the deterministic integer [nr ] can be replaced by the random number Nr

without changing the limit N (0,VargB(a,b)(X1)). Finally, a straightforward appli-
cation of Slutsky’s lemma completes the proof of Theorem 5.1. �

Notice that the asymptotic variance σ
(1,2)
B(a,b) −µ2

B(a,b) of the number of intersec-
tion points under random centering in (5.6) is always smaller than the asymptotic
variance σ

(1,2)
B(a,b) obtained in (5.3) under deterministic centering.

Furthermore, instead of imposing conditions on the angles of the orientation
vectors of the intersecting lines �(pi,γi ) and �(pj ,γj ), in [24] the two angles at the
intersecting points xi and xj of �(pi,γi ) and �(pj ,γj ), respectively, with the x-axis
are considered. More precisely, the ordered pair of angles (α,β) is considered,
where α denotes the angle at xi ∧ xj between the x-axis and the half-line from
�(pi,γi ) ∩ �(pj ,γj ) to the intersection point with the x-axis and, in analogy, β is the
angle at xi ∨ xj .

6. CLTs for Poisson–Voronoi tessellations. In this section we give a brief
overview of CLTs for Poisson–Voronoi tessellations (PVTs for short) in R

d , that
is, we consider a stationary PVT �, generated by a stationary Poisson point process

 in R

d with intensity λ. Notice that each cell of the Poisson–Voronoi tessellation
� is defined as the closure of the set of all points in R

d which are closest to the
nucleus of this cell, being a point of 
 . Moreover, it can be shown that each cell is
a convex (d-dimensional) polytope.

Let 
0 denote the stationary (and isotropic) point process of vertices of the cells
induced by � and let λ0 denote its intensity, that is, λ0 = E
0([0,1]d). It is well
known (see, e.g., [21]) that

λ0 = cdλ with cd = 2dπd−1

d + 1

κd2

κd2−1

(
κd−1

κd

)d

.(6.1)
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Consider a convex averaging sequence Wn of sets in R
d , that is, the sets Wn are

compact convex, increasing and contain a ball with unboundedly growing radius;
see, for example, [6]. Since the β-mixing coefficient of a stationary PVT is expo-
nentially decaying (see [9]), a CLT for the random number of vertices 
0(Wn) of
a stationary PVT � within Wn can be derived as n → ∞. More precisely, in [12]
it is shown that

νd(Wn)
−1/2(


0(Wn) − λ0νd(Wn)
) d−→

n→∞ N
(
0, λ0(1 + cdσ 2

d )
)
,(6.2)

where σ 2
d is a constant only depending on the dimension d which is expressible

in terms of multiple integrals. A detailed discussion including numerical computa-
tions for the cases of d = 2 and d = 3 can be found in [10] and [12], respectively.
The rounded values obtained there are σ 2

2 = 0.5 and σ 2
3 = 5.084, together with

c2 = 2 and c3 = 6.768 from (6.1).
Notice that λ̂0,n = 
0(Wn)/νd(Wn) is an unbiased estimator for the intensity λ0

and, by (6.2), λ̂0,n is asymptotically normally distributed with mean λ0 and asymp-

totic variance λ0(1 + cdσ 2
d ). A simple transformation using (6.2) and λ̂0,n

P−→
n→∞ λ0

yields

2

√
νd(Wn)

1 + cdσ 2
d

(√
λ̂0,n − √

cdλ
) d−→

n→∞ N (0,1).(6.3)

Similar to the confidence intervals derived in Corollary 4.2 for Poisson hyperplane
processes, the CLT in (6.3) enables us to construct a 100(1 − α)% (asymptotically
exact) confidence interval for λ. Indeed, for any α ∈ (0,1), we have (for large
enough Wn) that λ ∈ In(α) with probability 1 − α, where In(α)cdνd(Wn) is given
by [(√


0(Wn) − z1−α/2

2

√
1 + cdσ 2

d

)2

,

(√

0(Wn) + z1−α/2

2

√
1 + cdσ 2

d

)2]
.

Notice that an alternative and general approach to CLTs in the Poisson–Voronoi
case is given in [25]. Among other results, a CLT for a quite large class of func-
tionals related to Poisson–Voronoi tessellations is obtained there.
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