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AVERAGE OPTIMALITY FOR CONTINUOUS-TIME MARKOV
DECISION PROCESSES IN POLISH SPACES1

BY XIANPING GUO AND ULRICH RIEDER

Zhongshan University and Universitaet Ulm

This paper is devoted to studying the average optimality in continuous-
time Markov decision processes with fairly general state and action spaces.
The criterion to be maximized is expected average rewards. The transition
rates of underlying continuous-time jump Markov processes are allowed to be
unbounded, and the reward rates may have neither upper nor lower bounds.
We first provide two optimality inequalities with opposed directions, and also
give suitable conditions under which the existence of solutions to the two
optimality inequalities is ensured. Then, from the two optimality inequalities
we prove the existence of optimal (deterministic) stationary policies by using
the Dynkin formula. Moreover, we present a “semimartingale characteriza-
tion” of an optimal stationary policy. Finally, we use a generalized Potlach
process with control to illustrate the difference between our conditions and
those in the previous literature, and then further apply our results to average
optimal control problems of generalized birth–death systems, upwardly skip-
free processes and two queueing systems. The approach developed in this
paper is slightly different from the “optimality inequality approach” widely
used in the previous literature.

1. Introduction. Continuous-time Markov decision processes (MDPs) have
received considerable attention because many optimization models such as those
in telecommunication and queueing systems are based on the processes involving
continuous time. One of the most common optimality criterion in continuous-time
MDPs is the expected average criterion, which has been studied by many authors.
In this paper we are also concerned with this expected average criterion. As is well
known, continuous-time MDPs can be specified by four primitive data: a state
space S; an action space A with subsets A(x) of admissible actions, which may
depend on the current state x ∈ S; transition rates q(·|x, a); and reward (or cost)
rates r(x, a). Using these terms, we now briefly describe some existing works on
the expected average criterion. When the state space is finite, a bounded solution
to the average optimality equation (AOE) and methods for computing optimal sta-
tionary policies have been investigated in [23, 26, 30]. Since then, most work has
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focused on the case of a denumerable state space; for instance, see [6, 24] for
bounded transition and reward rates, [18, 27, 31, 34, 39, 41] for bounded tran-
sition rates but unbounded reward rates, [16, 35] for unbounded transition rates
but bounded reward rates and [12, 13, 17] for unbounded transition and reward
rates. For the case of an arbitrary state space, to the best of our knowledge, only
Doshi [5] and Hernández-Lerma [19] have addressed this issue. They ensured the
existence of optimal stationary policies. However, the treatments in [5] and [19]
are restricted to uniformly bounded reward rates and nonnegative cost rates, re-
spectively, and the AOE plays a key role in the proof of the existence of average
optimal policies. Moreover, to establish the AOE, Doshi [5] needed the hypothesis
that all admissible action sets are finite and the relative difference of the optimal
discounted value function is equicontinuous, whereas in [19] the assumption about
the existence of a solution to the AOE is imposed. On the other hand, it is worth
mentioning that some of the conditions in [5, 19] are imposed on the family of
weak infinitesimal operators deduced from all admissible policies, instead of the
primitive data. In this paper we study the much more general case. That is, the
reward rates may have neither upper nor lower bounds, all of the state and ac-
tion spaces are fairly general and the transition rates are allowed to be unbounded.
We first provide two optimality inequalities rather than one for the “optimality
inequality approach” used in [16, 19], for instance. Under suitable assumptions
we not only prove the existence of solutions to the two optimality inequalities,
but also ensure the existence of optimal stationary policies by using the two in-
equalities and the Dynkin formula. Also, to verify our assumptions, we further
give sufficient conditions which are imposed on the primitive data. Moreover, we
present a semimartingale characterization of an optimal stationary policy. Finally,
we use controlled generalized Potlach processes [4, 22] to show that all conditions
in this paper are satisfied, whereas the earlier conditions fail to hold. Then we
further apply our results to average optimal control problems of generalized birth–
death systems and upwardly skip-free processes [1], a pair of controlled queues
in tandem [28], and M/M/N/0 queue systems [25, 40]. It should be noted that,
on the one hand, the optimality inequality approach used in the previous literature
(see, e.g., [16, 19] for continuous-time MDPs and [20, 21, 31, 34] for discrete-time
MDPs) is not applied to our case, because in our model the reward rates may have
neither upper nor lower bounds. On the other hand, we not only replace the AOE
with two optimality inequalities, but also relax the condition of the equicontinuity
of the relative difference of optimal discounted value functions [5]. Therefore, the
approach developed in this paper can be regarded as a modification of the optimal-
ity inequality approach widely used in the previous literature.

The rest of this paper is organized as follows. In Section 2 we introduce the op-
timal control problem. Our main results are given in Section 4 after some technical
preliminaries in Section 3. We illustrated with examples our conditions and results
in Section 5, and conclude in Section 6 with some general remarks.
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2. The optimal control problem.

NOTATION. If X is a Polish space (i.e., a complete and separable metric
space), we denote by B(X) the Borel σ -algebra.

The model of continuous-time MDPs with which we are concerned is of the
form {

S,
(
A(x) ⊂ A

)
, q(·|x, a), r(x, a)

}
(2.1)

with the following components.
• The variable S is the state space—a Polish space.
• The term A(x) is a Borel subset of A which denotes the set of admissible

actions at state x ∈ S, where A is the action space—a Polish space too. The set

K := {(x, a)|x ∈ S, a ∈ A(x)}(2.2)

of pairs of states and actions is assumed to be a Borel subset of S × A.
• The element q(·|x, a) in (2.1) denotes the transition rates, which satisfy the

following properties for each (x, a) ∈ K and D ∈ B(S):

P1 : The element q(·|x, a) is a signed measure on B(S), and q(D|·, ·) is Borel
measurable on K .

P2 : For all x /∈ D ∈ B(S), 0 ≤ q(D|x, a) < ∞,
P3 : There exists q(S|x, a) = 0,0 ≤ −q({x}|x, a) < ∞.

Furthermore, the model is assumed to be stable, that is,

q(x) := sup
a∈A(x)

(−q({x}|x, a)
)
< ∞ ∀x ∈ S.(2.3)

• The real-valued function r(x, a) denotes the reward rates and it is assumed
to be measurable on K . [Whereas r(x, a) is allowed to take positive and negative
values, it can be interpreted as a cost rate rather than a “reward” rate.]

We now define a randomized Markov policy.

DEFINITION 2.1 (Randomized Markov policies). Let � be the set of functions
πt(B|x) on [0,∞) × B(A) × S such that:

(1) For each t ≥ 0, πt(·|x) is a stochastic kernel on A given S such that
πt(A(x)|x) = 1 for all x ∈ S.

(2) For each B ∈ B(A) and x ∈ S, πt(B|x) is a Borel measurable function in
t ≥ 0.

A function πt(B|x) in � is called a randomized Markov policy. We will write
πt(B|x) simply as (πt ). The subscript “t” in πt indicates the possible dependence
on time. A randomized Markov policy π := (πt ) ∈ � is called (deterministic) sta-
tionary if there exists a Borel measurable function f on S such that

f (x) ∈ A(x) and πt

({f (x)}|x) = 1 ∀ t ≥ 0 and x ∈ S.
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For simplicity, we denote by f this stationary policy π . The set of all stationary
policies is denoted by F ; this means that F is the set of all measurable functions
f on S with f (x) ∈ A(x) for all x ∈ S. Obviously, F ⊂ �.

By (1) above, w.l.o.g. we also regard πt(·|x) as a probability measure on A(x).
Thus, for each fixed policy π = (πt ) ∈ �, the associated transition rates q(D|x,πt )

can be defined by

q(D|x,πt ) :=
∫
A(x)

q(D|x, a)πt (da|x)
(2.4)

for each x ∈ S,D ∈ B(S) and t ≥ 0.

In particular, when π is stationary (i.e., π =: f ∈ F ), we write the left-hand side
of (2.4) as q(D|x,f (x)). Then q(D|x,πt ) is called an infinitesimal generator [for
any fixed policy π = (πt ) ∈ �]; see [5, 24], for instance. Its equivalent form can be
found in [8]. As is well known, any (possibly substochastic and nonhomogeneous)
transition function p̃π (s, x, t,D) that depends on π such that

lim
ε→0+

p̃π (t, x, t + ε,D) − ID(x)

ε
= q(D|x,πt )

for all x ∈ S,D ∈ B(S) and t ≥ 0 is called a Q-process with transition rates
q(D|x,πt ), where ID(x) is the indication function of set D.

To guarantee the existence of such a Q-process, we need to introduce the class
of admissible policies.

DEFINITION 2.2 (An admissible policy). A policy (πt ) in � is said to be ad-
missible if for each x ∈ S the functions

∫
A(x) h(a)πt (da|x) are continuous in t ≥ 0

for all bounded measurable functions h on A(x). We denote by � the class of all
admissible policies. Observe that � is nonempty because it contains F . Moreover,
it is easy to provide an example for which � can be chosen to be strictly larger
than F .

By P1–P3, (2.3), (2.4) and Definition 2.2, we have the following facts.

LEMMA 2.1. For each π := (πt ) ∈ �, the following statements hold.

(a) For each x ∈ S, t ≥ 0 and D ∈ B(S):

(a1) q(D|x,πt ) is a signed measure in D ∈ B(S);
(a2) 0 ≤ q(D|x,πt ) < ∞ when x /∈ D;
(a3) q(S|x,πt ) = 0, 0 ≤ −q({x}|x,πt ) < ∞;
(a4) q(D|x,πt ) is continuous in t ≥ 0 and measurable in x ∈ S.

(b) There exists a Q-process p̃π (s, x, t,D) with transition rates q(D|x,πt ).
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PROOF. Parts (a1)–(a3) follow from (2.4) and the definition of model (2.1),
while part (a4) follows from (2.3) and Definition 2.2. By (a) and Theorem 2 in [8],
we see that (b) is also true. �

Lemma 2.1(b) guarantees the existence of a Q-process such as the mini-
mum Q-process pπ

min(s, x, t,D) [i.e., pπ
min(s, x, t,D) ≤ p̃π (s, x, t,D) for any

Q-process p̃π (s, x, t,D)], which can be directly constructed from the transition
rates q(D|x,πt ); see [8, 11], for instance. However, as is known [4, 8], such a
Q-process might not be regular; that is, we might have pπ

min(s, x, t, S) < 1 for
some x ∈ S and t ≥ s ≥ 0.

To ensure the regularity of a Q-process, we use the “drift” conditions below.

ASSUMPTION A. There exist a measurable function w ≥ 1 on S, constants
c > 0, b ≥ 0 and Mq > 0, such that:

(1) For all (x, a) ∈ K , and
∫
S w(y)q(dy|x, a) ≤ −cw(x) + b.

(2) For all x ∈ S, with q(x) as in (2.3), q(x) ≤ Mqw(x).

REMARK 2.1. (a) For the case of uniformly bounded transition rates [i.e.,
supx∈S q(x) < ∞], Assumption A(2) is not required because it is only used to
guarantee the regularity of a Q-process.

(b) Assumption A(1) is used not only for the regularity of a (possibly non-
homogeneous) Q-process, but also for the finiteness of the expected average cri-
terion (2.6) below. Moreover, Assumption A(1) is a variant of the “drift condi-
tion” (2.4) in [28] for homogeneous Q-processes.

Under Assumption A, by Theorem 3.2 in [11] we see that a Q-process with tran-
sition rates q(D|x,πt ) is regular, that is, pπ

min(s, x, t, S) = 1 for all x ∈ S and t ≥
s ≥ 0. Thus, under Assumption A we write the regular Q-process pπ

min(s, x, t,D)

simply as pπ(s, x, t,D).
We now state the optimality problem with which we are concerned.
For a given (initial) distribution µs on S at s ≥ 0 and each fixed policy π =

(πt ) ∈ �, let pπ(s, x, t,D) be the regular Q-process. Then, as in the proof in [15],
we can show the existence of a unique probability space (�,B(�), P̃

µs
π ) with � =

(S × A)[0,∞). Let ξ(t) and η(t) denote the state and action processes, respectively
(i.e., the coordinate processes defined on �), and let Ẽ

µs
π denote the expectation

operator associated with P̃
µs
π . We write P̃ s,x

π for P̃
µs
π and Ẽs,x

π for Ẽ
µs
π when µs is

the Dirac measure at x ∈ S. Moreover, let

r(x,πt ) :=
∫
A(x)

r(x, a)πt (da|x) for all x ∈ S and t ≥ 0.(2.5)

We will write r(x,πt ) as r(x, f (x)) when π = (πt ) =: f ∈ F . Then we have the
following lemma.
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LEMMA 2.2. Suppose that Assumption A holds. Then, for each x ∈ S and
π = (πt ) ∈ �:

(a) For all t ≥ s ≥ 0, Ẽs,x
π r(ξ(t), η(t)) = ∫

S r(y,πt )p
π(s, x, t, dy).

(b) The element Ẽs,x
π r(ξ(t), η(t)) is Borel measurable in t (t ≥ s ≥ 0).

PROOF. Part (a) follows from a similar proof in [15], while part (b) follows
from (a) and (2.5) because p(s, x, t,D,π) is continuous in t ≥ s ≥ 0; see [8]. �

For each x ∈ S and π ∈ �, the expected average criterion V (x,π) is defined as

V (x,π) := lim inf
T →∞

∫ T
0 [Ẽ0,x

π r(ξ(t), η(t))]dt

T
.(2.6)

DEFINITION 2.3. A policy π∗ in � is said to be (average) optimal if
V (x,π∗) ≥ V (x,π) for all π ∈ � and x ∈ S.

The main goal of this paper is to give conditions for the existence of an optimal
stationary policy.

For each x ∈ S, s ≥ 0 and π := (πt ) ∈ �, we denote by Eπ
s,x the expectation

operator associated with the probability measure P π
s,x which is completely deter-

mined by pπ(s, x, t,D). Then by pages 107–109 in [10] (or by Theorem 14.4,
page 121 in [38] and the homogenization technique in [5]) there exists a Borel
measurable Markov process x(t) (t ≥ 0) with values in S. Obviously, the so-called
state process x(t) is a continuous-time jump Markov process; its transition func-
tion is pπ(s, x, t,D) determined by the transition rates q(D|x,πt ).

Then by Lemma 2.2, (2.6) and (2.5) we have

V (x,π) = lim inf
T →∞

∫ T
0 [Eπ

0,xr(x(t),πt )]dt

T
.(2.7)

Here, we understand that x(t) is any sample path and these sample paths are dis-
tributed according to P π

s,x . Hence, these sample paths have a dependence on π, s

and x. However, such dependence will be dropped for simplicity when there is no
confusion.

By (2.7), w.l.o.g. we will limit ourselves to use x(t) and the corresponding P π
s,x

and Eπ
s,x throughout the following discussion. In particular, let P π

x := P π
0,x and

Eπ
x := Eπ

0,x .

3. Preliminaries. In this section, we give some preliminary lemmas that are
needed to prove our main results.

LEMMA 3.1. Suppose that Assumption A holds. Then, for each π ∈ �,

Eπ
x w(x(t)) ≤ e−ctw(x) + b

c
∀x ∈ S and t ≥ 0

with w(x), c and b as in Assumption A.
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For the proof, see Theorem 3.1 in [11].
To prove our main results, in addition to the previous result, we also need some

facts on the α-discounted criterion defined by (3.1) below. For each discount factor
α > 0, x ∈ S and π ∈ �, the α-discounted criterion Jα(x,π) and the correspond-
ing optimal discounted value function J ∗

α (x) are defined by

Jα(x,π) :=
∫ ∞

0
e−αt [Eπ

x r
(
x(t),πt

)]
dt and J ∗

α (x) := sup
π∈�

Jα(x,π),(3.1)

respectively.
A policy π∗ in � is said to be α-discounted optimal if Jα(x,π∗) = J ∗

α (x) for
all x ∈ S.

To ensure the finiteness of both V (x,π) and Jα(x,π), and the existence of
α-discounted optimal stationary policies, we give the following conditions.

ASSUMPTION B. (1) For each x ∈ S, A(x) is compact.
(2) For each fixed x ∈ S, r(x, a) is continuous in a ∈ A(x), and the functions∫

S u(y)q(dy|x, a) are continuous in a ∈ A(x) for all bounded measurable func-
tions u on S and also for u := w as in Assumption A.

(3) For all a ∈ A(x) and x ∈ S, |r(x, a)| ≤ Mw(x) with some constant M > 0.
(4) There exist a nonnegative measurable function w′ on S, and constants

c′ > 0, b′ ≥ 0 and M ′ > 0 such that [with q(x) as in (2.3)]

q(x)w(x) ≤ M ′w′(x) and
∫
S
w′(y)q(dy|x, a) ≤ c′w′(x) + b′ ∀ (x, a) ∈ K.

REMARK 3.1. Assumptions B(1) and B(2) are similar to the standard
continuity–compactness hypotheses for discrete-time MDPs; see, for instance,
[21, 31] and references therein. Under Assumptions A and B(3), by Lemma 3.1 we
see that the values V (x,π) and Jα(x,π) are both finite. Assumption B(4) allows
us to use the Dynkin formula. On the other hand, if q(x) or r(x, a) is bounded,
then Assumption B(4) is not required.

LEMMA 3.2. Under Assumptions A and B, the following statements hold,
with α > 0.

(a) For all x ∈ S and π ∈ �, |Jα(x,π)| ≤ M
c+α

w(x) + bM
cα

.
(b) The optimal discounted value function J ∗

α (x) satisfies the optimality equa-
tion

αJ ∗
α (x) = sup

a∈A(x)

{
r(x, a) +

∫
S
J ∗

α (y)q(dy|x, a)

}
∀x ∈ S.(3.2)

(c) There exists an α-discounted optimal stationary policy f ∗
α ∈ F .
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For the proof, see Theorem 3.3 in [11].
To state our final conditions, we need to introduce the concept of the weighted

norm used in [20, 21]. For any fixed measurable function h ≥ 1 on S, a function u

on S is called h-bounded if the weighted norm of u, ‖u‖h := supx∈S
|u(x)|
h(x)

, is finite.
Such a function h will be referred to as a weight function. We denote by Bh(S) the
Banach space of all h-bounded measurable functions u on S.

ASSUMPTION C. There exist two functions v1, v2 ∈ Bw(S) (with w as in As-
sumption A) and some state x0 ∈ S such that

v1(x) ≤ hα(x) ≤ v2(x) ∀x ∈ S and α > 0,

where hα(x) := J ∗
α (x) − J ∗

α (x0) is the so-called relative difference of the optimal
discounted value function J ∗

α (x).

REMARK 3.2. (a) Assumption C is a variant of the conditions for discrete-
time MDPs; see (SEN2) on page 132 in [34] and Assumption 5.4.1(b) in [20], for
instance.

(b) It should be noted that the function v1 in our Assumption C may not be
bounded below, and so the hα(x) may not be bounded below either. However, the
corresponding hα(x) in [20, 34] is assumed to be bounded below.

To verify Assumption C, we now provide some sufficient conditions.

LEMMA 3.3. Under Assumptions A and B, each one of the following condi-
tions (a) and (b) implies Assumption C.

(a) For each f ∈ F there exists a probability measure µf on B(S) such that∣∣∣∣Ef
x [u(x(t))] −

∫
S
u(y)µf (dy)

∣∣∣∣ ≤ Re−ρtw(x) ∀ |u| ≤ w and t ≥ 0,(3.3)

where R > 0 and ρ > 0 are constants independent of f .
(b) For some integer d ≥ 1, S := [0,∞)d and q(x) is locally bounded on S.

Moreover, the following conditions are satisfied:
(b1) Drift condition. The function w in Assumption A is nondecreasing in

each component and, moreover,∫
S
w(y)q(dy|x, a) ≤ −cw(x) + bI{0d }(x) ∀ (x, a) ∈ K,

where 0d := (0,0, . . . ,0) ∈ S.
(b2) Monotonicity condition. For each xk ∈ S, ak ∈ A(xk) (k = 1,2) and

monotone set D [i.e., ID(x) is increasing in x ∈ S], if x1 ≤ x2 and x2 /∈ D,
then q̃(D|x1, a1) ≤ q̃(D|x2, a2), and q̃(Dc|x1, a1) ≥ q̃(Dc|x2, a2) when x1 ≤ x2
and x1 ∈ D, where q̃(D|xk, ak) := q(D|xk, ak) − q({xk}|xk, ak)ID(xk) and Dc :=
S − D is the complement of set D.
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PROOF. (a) Whereas w(x) ≥ 1 and |r(x, a)| ≤ Mw(x) for all x ∈ S and a ∈
A(x), by Lemma 3.2(c) and (3.3) we have

|hα(x)| =
∣∣∣∣
∫ ∞

0
e−αt [Ef ∗

α
x r

(
x(t), f ∗

α (x(t))
) − E

f ∗
α

x0 r
(
x(t), f ∗

α (x(t))
)]

dt

∣∣∣∣
≤ MR

∫ ∞
0

e−(α+ρ)t [w(x) + w(x0)]dt

≤ MR

ρ
[1 + w(x0)]w(x) =: v2(x),

which verifies Assumption C with v1(x) := −v2(x).

(b) By Theorem 5.47 in [4], we see that for each f ∈ F the corresponding
Markov process x(t) is stochastically ordered. Moreover, for each x ∈ S,f ∈ F

and |u| ≤ w, from the proof of (7.1) in [28] and condition (b), we have∣∣∣∣Ef
x [u(x(t))] −

∫
S
u(x)µf (dx)

∣∣∣∣ ≤ 2e−ct

[
w(x) + c

b

]
≤ 2

(
1 + c

b

)
e−ctw(x),

which gives condition (a) and so Assumption C follows. �

Obviously, Lemma 3.3 is also true when S = [0,∞)d and I{0d }(x) in condition
(b1) are replaced with S = [β1,∞) × · · · × [βd,∞) and I{x0}(x), respectively,
where x0 := (β1, . . . , βd) ∈ S,βi ≥ 0 (i = 1, . . . , d).

The validity of conditions (a) and (b) in Lemma 3.3 can also be obtained
in several ways. For instance, [28] uses Assumption A and monotonicity con-
ditions. Other approaches that yield exponential ergodicity (3.3) can be seen in
[3, 7, 36, 40], for instance.

To prove our main results by using the Dynkin formula, we need the following
facts from Lemma 5.2 in [11].

LEMMA 3.4. Suppose that Assumptions A and B hold. Take arbitrarily π :=
(πt ) ∈ � and x ∈ S.

(a) For each u ∈ Bw+w′ (with w and w′ as in Assumptions A and B):

(a1) ‖Eπ
x |u(x(t))|‖w+w′ ≤ b+b′+c+c′

c+c′ ‖u‖w+w′e(c+c′)t ∀ t ≥ 0;

(a2) limt↘s e
∫ v
s q({x}|x,πδ)dδEπ

v,yu(x(t)) = limt↘s Eπ
y u(x(t)) = u(y) for all

y ∈ S and s ≥ 0.

(b) For each u ∈ Bw(S) and t ≥ s ≥ 0:

(b1) Lπu(s, x) := limt↓0 t−1[Eπ
s,xu(x(s+ t))−u(x)] = ∫

S u(y)q(dy|x,πs);

(b2) ‖Eπ
s,x |Lπu(t, x(t))|‖w+w′ ≤ ‖u‖w(c+c′+b+b′+2M ′)2

c+c′ e(c+c′)(t−s).
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Lemma 3.4 shows that Lπ in Lemma 3.4(b) is the extended generator of the
Q-process pπ(s, x, t,D) and that the domain of Lπ contains Bw(S).

Finally, for ease of reference, we state a “measurable selection theorem” from
[20, 33].

LEMMA 3.5 (A measurable selection theorem). Let C(A) be the collection of
all nonempty compact subsets of A, and let D be a multifunction from S to C(A)

such that K̄ := {(x, a)|x ∈ S, a ∈ D(x)} is a Borel subset of S × A. If v(x, a) is a
real-valued measurable function on K̄ such that v(x, a) is continuous in a ∈ D(x)

for each x ∈ S, then there exists a measurable function f :S → A such that f (x) ∈
D(x) for all x ∈ S and

v
(
x,f (x)

) = max
a∈D(x)

v(x, a) for each x ∈ S.

Moreover, the function v∗(x) := maxa∈D(x) v(x, a) is measurable in x ∈ S.

Lemma 3.5 will be used to prove the existence of an optimal stationary policy.

4. The main results and proof. In this section, we prove our main results.

THEOREM 4.1. Suppose that Assumptions A, B and C hold, and π = (πt ) is
in �.

(a) If there exist a constant g and a function u ∈ Bw(S) such that

g ≥ r(x,πt ) +
∫
S
u(y)q(dy|x,πt ) ∀x ∈ S and t ≥ 0,

then g ≥ V (x,π) for all x ∈ S.
(b) Similarly, if there exist a constant g and a function u ∈ Bw(S) such that

g ≤ r(x,πt ) +
∫
S
u(y)q(dy|x,πt ) ∀x ∈ S and t ≥ 0,

then g ≤ V (x,π) for all x ∈ S.

PROOF. (a) For each x ∈ S and T ≥ 0, under condition (a), by Lemma 3.4 and
the Dynkin formula (page 141 or 146 in [9]), we have

Eπ
x u(x(T )) − u(x) = Eπ

x

[∫ T

0
Lπu

(
t, x(t)

)
dt

]

≤ T g − Eπ
x

[∫ T

0
r
(
x(t),πt

)
dt

]

= T g −
∫ T

0
Eπ

x r
(
x(t),πt

)
dt.

(4.1)
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On the other hand, by Lemma 3.1 we have

Eπ
x |u(x(T ))| ≤ ‖u‖w

[
e−cT w(x) + b

c

]
,

which together with (4.1) and (2.7) gives (a).
(b) Similarly, we can prove (b). �

THEOREM 4.2. Suppose that Assumptions A, B and C hold.

(a) There exist a constant g∗, functions u∗
1, u

∗
2 ∈ Bw(S) and a stationary policy

f ∗ ∈ F that satisfy the two optimality inequalities

g∗ ≥ sup
a∈A(x)

{
r(x, a) +

∫
S
u∗

1(y)q(dy|x, a)

}
∀x ∈ S;(4.2)

g∗ ≤ sup
a∈A(x)

{
r(x, a) +

∫
S
u∗

2(y)q(dy|x, a)

}
∀x ∈ S,(4.3)

= r
(
x,f ∗(x)

) +
∫
S
u∗

2(y)q
(
dy|x,f ∗(x)

) ∀x ∈ S.(4.4)

(b) For all x ∈ S, g∗ = supπ∈� V (x,π) = V (x,f ∗).
(c) Any stationary policy f ∈ F that realizes the maximum of (4.3) is optimal,

and so f ∗ in (4.4) is an optimal stationary policy.

PROOF. (a) Let x0 ∈ S be as in Assumption C and let {αn} be any sequence
of discount factors such that αn → 0 as n → ∞. By Lemma 3.2(a), |αnJ

∗
αn

(x0)|
is bounded in n ≥ 1. Therefore, there exist a subsequence {αk} of {αn} and a con-
stant g∗ that satisfy

lim
k→∞αkJ

∗
αk

(x0) = g∗, u∗
1(x) := lim inf

k→∞ hαk
(x).(4.5)

Since |hα(x)| ≤ |v1(x)| + |v2(x)| for all x ∈ S and α > 0 (by Assumption C),
by (4.5) we have

u∗
1 ∈ Bw(S) and lim

k→∞αkhαk
(x) = 0 ∀x ∈ S.

On the other hand, take any real-valued measurable function m on S such that
m(x) > q(x) ≥ 0 for all x ∈ S. Then, for each x ∈ S and a ∈ A(x), by P1–P3, we
see that P(·|x, a) defined by

P(D|x, a) := q(D|x, a)

m(x)
+ ID(x) for all D ∈ B(S)(4.6)

is a probability measure on B(S). In fact, by P1 we see that P(D|x, a) :=
q(D|x,a)

m(x)
+ ID(x) is completely additive in D ∈ B(S). Moreover, by P3 we also
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see that P(S|x, a) = 1. Thus, it suffices to show that 0 ≤ P(D|x, a) ≤ 1 for all
D ∈ B(S). For x /∈ D, by P1,P2 and P3,

−q({x}|x, a) = q(S − {x}|x, a)

= q(D|x, a) + q(S − D − {x}|x, a)

≥ q(D|x, a) ≥ 0,

which together with (2.3) and m(x) > q(x) gives that P(D|x, a) = q(D|x,a)
m(x)

∈
[0,1) (since x /∈ D). When x ∈ D, it also follows from P1,P2 and P3 that

−q({x}|x, a) ≥ −q({x}|x, a) − q(D − {x}|x, a)

= −q(D|x, a) = q(S − D|x, a) ≥ 0,

which together with (2.3) and m(x) > q(x) yields that −1 <
q(D|x,a)

m(x)
≤ 0, and so

P(D|x, a) = q(D|x,a)
m(x)

+ 1 ∈ [0,1) (since x ∈ D).
Noting that hα(x) = J ∗

α (x) − J ∗
α (x0), by (4.6) and P3 we can rewrite (3.2) as

αJ ∗
α (x0)

m(x)
+ αhα(x)

m(x)
+ hα(x)

= sup
a∈A(x)

{
r(x, a)

m(x)
+

∫
S
hα(y)P (dy|x, a)

}
∀x ∈ S.

(4.7)

Thus, for each k ≥ 1 and x ∈ S, by (4.7) we have

αkJ
∗
αk

(x0)

m(x)
+ αkhαk

(x)

m(x)
+ hαk

(x)

≥ r(x, a)

m(x)
+

∫
S
hαk

(y)P (dy|x, a) ∀a ∈ A(x).

(4.8)

Applying the extension of Fatou’s lemma (8.3.7 in [21]), by (4.8) and (4.5) we get

g∗

m(x)
+ u∗

1(x) ≥ r(x, a)

m(x)
+

∫
S
u∗

1(y)P (dy|x, a) ∀x ∈ S and a ∈ A(x).

This together with (4.6), yields

g∗ ≥ r(x, a) +
∫
S
u∗

1(y)q(dy|x, a) ∀x ∈ S and a ∈ A(x),

which gives

g∗ ≥ sup
a∈A(x)

{
r(x, a) +

∫
S
u∗

1(y)q(dy|x, a)

}
∀x ∈ S,(4.9)

and so (4.2) follows.
To prove (4.3), for each x ∈ S and k ≥ 1, let

u∗
2(x) := lim sup

k→∞
hαk

(x), gαk
(x) := sup

{
hαm(x) :m ≥ k

}
.(4.10)
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Then we have

u∗
2 ∈ Bw(S), u∗

2(x) = lim
k→∞gαk

(x) and gαk
(x) ≥ hαk

(x),(4.11)

which together with (4.7) gives

αJ ∗
αk

(x0)

m(x)
+ αhαk

(x)

m(x)
+ hαk

(x)

= sup
a∈A(x)

{
r(x, a)

m(x)
+

∫
S
hαk

(y)P (dy|x, a)

}

≤ sup
a∈A(x)

{
r(x, a)

m(x)
+

∫
S
gαk

(y)P (dy|x, a)

}
.

(4.12)

Since gαk+1 ≤ gαk
for all k ≥ 1, limk→∞[supa∈A(x){ r(x,a)

m(x)
+ ∫

S gαk
(y)P (dy|x, a)}]

exists. Thus, by (4.5), (4.10) and (4.12) we have

g∗

m(x)
+ u∗

2(x)

≤ lim
k→∞

[
sup

a∈A(x)

{
r(x, a)

m(x)
+

∫
S
gαk

(y)P (dy|x, a)

}]
∀x ∈ S.

(4.13)

Also, for each fixed x ∈ S and k ≥ 1, by Assumption B, there exists ak(x) ∈ A(x)

such that

sup
a∈A(x)

{
r(x, a)

m(x)
+

∫
S
gαk

(y)P (dy|x, a)

}

= r(x, ak(x))

m(x)
+

∫
S
gαk

(y)P
(
dy|x, ak(x)

)
.

(4.14)

Since A(x) is compact, there exists a subsequence {aki(x)} of {ak(x)} such that
limi→∞ aki

(x) =: a′(x) ∈ A(x). Noting that ‖gαk
‖w ≤ ‖v1‖w + ‖v2‖w for all

k ≥ 1, by (4.13), (4.14) and the extension of Fatou’s lemma (8.3.7 in [21]) we
obtain

g∗

m(x)
+ u∗

2(x) ≤ lim
i→∞

[
sup

a∈A(x)

{
r(x, a)

m(x)
+

∫
S
gαki

(y)P (dy|x, a)

}]

= lim
i→∞

[
r(x, aki

(x))

m(x)
+

∫
S
gαki

(y)P
(
dy|x, aki

(x)
)]

= r(x, a′(x))

m(x)
+

∫
S
u∗

2(y)P
(
dy|x, a′(x)

)

≤ sup
a∈A(x)

{
r(x, a)

m(x)
+

∫
S
u∗

2(y)P (dy|x, a)

}
,

which yields (4.3).
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Moreover, by Assumption B and the extension of Fatou’s lemma (8.3.7 in [21]),
we see that v(x, a) := r(x, a) + ∫

S u∗
2(y)q(dy|x, a) is continuous in a ∈ A(x) for

each x ∈ S. Then, Lemma 3.5 with D(x) := A(x) together with (4.3) gives the
existence of f ∗ (∈ F), satisfying (4.4). Thus, the proof of (a) is complete.

(b) For each π = (πt ) ∈ �, from (4.2) we get

g∗ ≥ r(x, a) +
∫
S
u∗

1(y)q(dy|x, a) ∀a ∈ A(x) and x ∈ S,

which together with (2.4) and (2.5), gives

g∗ ≥ r(x,πt ) +
∫
S
u∗

1(y)q(dy|x,πt ) ∀ t ≥ 0 and x ∈ S.

Thus, by Theorem 4.1(a) with u := u∗
1, we have

g∗ ≥ V (x,π) ∀x ∈ S and π ∈ �,

and so

g∗ ≥ sup
π∈�

V (x,π) ∀x ∈ S.(4.15)

Similarly, by (4.4) and Theorem 4.1(b) with u = u∗
2, we have

g∗ ≤ V (x,f ∗) ∀x ∈ S.(4.16)

By (4.15) and (4.16) we have g∗ = V (x,f ∗) = supπ∈� V (x,π) for all x ∈ S, and
so (b) follows.

(c) Obviously, (c) follows from the proof of (a) and (b). �

REMARK 4.1. (a) From the proof of Theorem 4.2 we see that the approach
used to prove Theorem 4.2 is different from the optimality inequality approach
(e.g., [16, 19] for continuous-time MDPs and [20, 21, 31, 34] for discrete-time
MDPs). In fact, there are two key steps in the proof of the existence of an (average)
optimal stationary policy by using the optimality inequality approach. The first
step is to obtain an inequality as in (4.15) by the Abelian theorem (e.g., [19, 37]),
relating the average criterion V (x,π) to the discounted criterion Jα(x,π). The
other step is to get another inequality as in (4.16) from the optimality inequality as
in (4.4). However, to use the Abelian theorem, the reward (or cost) rates have to be
nonpositive (or nonnegative). Therefore, the optimality inequality approach in the
previous literature is not applied to our case because in our model the reward rates
may have neither upper nor lower bounds.

(b) From the proof of Theorem 4.2(a), we also see that properties P1–P3 about
the transition rates play a particular role. In fact, without these properties, we can
neither define the probability measure P(·|x, a) in (4.6) nor prove Theorem 4.2(a)
by applying the extension of Fatou’s lemma (8.3.7 in [21]) to the right-hand sides
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of (4.8) and (4.14). On the other hand, it does not seem to be possible to prove
the existence of (average) optimal feedback policies in controlled stochastic dif-
ferential equations (SDEs) (see [2, 19], for instance) by using the above approach
because in controlled SDEs such properties P1–P3 fail to hold.

Theorem 4.2 ensures the existence of an (average) optimal stationary policy. We
now gives an interesting semimartingale characterization of such a policy.

For each x ∈ S,f ∈ F,u ∈ Bw(S) and any constant g, let

(x;f,u, g) := r
(
x,f (x)

) +
∫
S
u(y)q

(
dy|x,f (x)

) − g,

Ft := σ {x(s) : 0 ≤ s ≤ t}
(4.17)

and define a continuous-time stochastic process

Mt(f,u, g) :=
∫ t

0
r
(
x(s), f (x(s))

)
ds + u(x(t)) − tg for each t ≥ 0.(4.18)

THEOREM 4.3. Suppose that Assumptions A, B and C hold.

(a) If f ∗ is the optimal stationary policy obtained in Theorem 4.2, and u∗
1, u

∗
2

and g∗ are from Theorem 4.2, then:

(a1) For all x ∈ S, and {Mt(f
∗, u∗

2, g
∗),Ft } is a P

f ∗
x -submartingale.

(a2) For all f ∈ F and x ∈ S, {Mt(f,u∗
1, g

∗),Ft } is P
f
x -supermartingale.

(b) Conversely, if there exist a policy f̂ ∈ F , functions u′
1, u

′
2 ∈ Bw(S) and

some constant g such that:

(b1) {Mt(f̂ , u′
2, g),Ft} is a P

f̂
x -submartingale for all x ∈ S and

(b2) {Mt(f,u′
1, g),Ft } is P

f
x -supermartingale for all f ∈ F and x ∈ S,

then the stationary policy f̂ is (average) optimal.

PROOF. For each f ∈ F,u ∈ Bw(S), x ∈ S and constant g, we have

Ef
x [Mt(f,u, g)|Fs]

= Ms(f,u, g) + Ef
x

[∫ t

s


(
x(y);f,u, g

)
dy|Fs

]
∀ t ≥ s ≥ 0.

(4.19)

In fact, from (4.17) and (4.18), we have

Ef
x

[∫ t

s


(
x(y);f,u, g

)
dy|Fs

]

= Ef
x

[∫ t

s
r
(
x(y), f (x(y))

)
dy|Fs

]

+ Ef
x

[∫ t

s
H

(
x(y);f,u

)
dy|Fs

]
− (t − s)g,

(4.20)
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where H(x;f,u) := ∫
S u(y)q(dy|x,f (x)). Using the Markov property, we obtain

Ef
x

[∫ t

s
H

(
x(y);f,u

)
dy|Fs

]
= E

f
x(s)

[∫ t

s
H

(
x(y);f,u

)
dy

]
,

which together with Lemma 3.4 and the Fubini’s theorem gives

Ef
x

[∫ t

s
H

(
x(y);f,u

)
dy|Fs

]
=

∫ t

s

[
E

f
x(s)H

(
x(y);f,u

)]
dy.(4.21)

Applying Lemma 3.4 and the Dynkin formula (e.g., page 141 or 146 in [9]),
from (4.21) we obtain

Ef
x

[∫ t

s
H

(
x(y);f,u

)
dy|Fs

]
= E

f
x(s)u(x(t)) − u(x(s)).(4.22)

Thus, replacing (4.22) into (4.20) we get

Ef
x

[∫ t

s


(
x(y);f,u, g

)
dy|Fs

]

= Ef
x

[∫ t

s
r
(
x(y), f (x(y))

)
dy|Fs

]

+ E
f
x(s)u(x(t)) − u(x(s)) − (t − s)g.

(4.23)

On the other hand, from (4.18) and the Markov property we have

Ef
x [Mt(f,u, g)|Fs]

= Ms(f,u, g) + Ef
x

[∫ t

s
r
(
x(y), f (x(y)

)
dy|Fs

]

− u(x(s)) + E
f
x(s)u(x(t)) − (t − s)g.

(4.24)

Finally, use (4.24) and (4.23) to obtain (4.19).

(a) For each f ∈ F and x ∈ S, from (4.2) and (4.17) we have

(x;f,u∗
1, g

∗) ≤ 0,

which together with (4.19) implies that {Mt(f,u∗
1, g

∗),Ft } is P
f
x -supermartingale.

Similarly, we see that {Mt(f
∗, u∗

2, g
∗),Ft } is a P

f ∗
x -submartingale and so (a) fol-

lows.
(b) For each x ∈ S,f ∈ F and u ∈ Bw(S), taking expectations in both sides

of (4.19) gives

Ef
x Mt(f,u, g) = Ef

x Ms(f,u, g) + Ef
x

[∫ t

s


(
x(y);f,u, g

)
dt

]
(4.25)

∀ t ≥ s ≥ 0.
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By Lemma 3.4 and (4.17), (·;f,u, g) belongs to Bw+w′(S). Thus, by condi-
tion (b1) we have

Ef̂
x [Mt(f̂ , u′

2, g)] ≥ Ef̂
x [Ms(f̂ , u′

2, g)] ∀ t ≥ s ≥ 0.

Then, by (4.25) and Fubini’s theorem, we get

Ef̂
x

[∫ t

s


(
x(y); f̂ , u′

2, g
)
dy

]
=

∫ t

s
Ef̂

x

[


(
x(y); f̂ , u′

2, g
)]

dy

≥ 0 ∀ t ≥ s ≥ 0

and so

Ef̂
x 

(
x(t); f̂ , u′

2, g
) ≥ 0 ∀ a.e. t ≥ 0.

Therefore, there exists a sequence tn ↓ 0 as n → ∞ such that

Ef̂
x 

(
x(tn); f̂ , u′

2, g
) ≥ 0 ∀n ≥ 0 and x ∈ S.(4.26)

Since (·; f̂ , u′
2, g) ∈ Bw+w′(S), letting n → ∞ in (4.26), from Lemma 3.4(a) we

get

(x; f̂ , u′
2, g) ≥ 0

and so

g ≤ r
(
x, f̂ (x)

) +
∫
S
u′

2(y)q
(
dy|x, f̂ (x)

) ∀x ∈ S.(4.27)

Then, by (4.27) and Theorem 4.1(b), we get

g ≤ V (x, f̂ ) ∀x ∈ S.(4.28)

Similarly, as in the proof of (4.27), by condition (b2) we have

g ≥ r
(
x,f (x)

) +
∫
S
u′

1(y)q
(
dy|x,f (x)

) ∀x ∈ S and f ∈ F

and so

g ≥ r(x, a) +
∫
S
u′

1(y)q(dy|x, a) ∀x ∈ S and a ∈ A(x).

Then, by (2.3), (2.5) and Theorem 4.1(a) we have

g ≥ sup
π∈�

V (x,π) ∀x ∈ S.(4.29)

Combining (4.28) with (4.29) gives

V (x, f̂ ) = sup
π∈�

V (x,π)

and so (b) follows. �

Theorem 4.3 gives a semimartingale characterization of an optimal stationary
policy.
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5. Examples. In this section we will use five examples to illustrate our con-
ditions and results.

EXAMPLE 5.1 (Optimal control of generalized Potlach processes in [4, 22]).
The generalized Potlach process [4, 22] is a Q-process generated by the infinites-
imal operator L defined by (5.1) below. Here we are interested in the following
optimal control problem.

Take S := [1,∞)d with an integer d ≥ 1. Then the generalized Potlach process
can be generated by the operator L defined by

Lu(x, a1) :=
d∑

i=1

∫ ∞
0

[
u

(
x − eixi + y

d∑
j=1

pijxiej

)
− u(x)

]
dFλ(y)

(5.1)
for x ∈ S,

where a1 := (pij ) is a Markov transition matrix on {1,2, . . . , d}, ei is the ith
unit vector in Rd and Fλ(y) is a real-valued distribution function with a para-
meter λ, which can be regarded as a fixed reward fee. When the process is at
state x = (x1, . . . , xd) ∈ S, the cost incurred at each component xi is presented by
qi ∈ [0, q∗

i ], where q∗
i > 0 for all i = 1, . . . , d . Let a2 := (q1, . . . , qd). Here we in-

terpret the parameters a1 and a2 as an action a := (a1, a2), which belongs to a set
A1 × A2 of available actions. Suppose that A1 is a finite set of Markov transition
matrices (pij ), A2 := [0, q∗

1 ] × · · · × [0, q∗
d ], Fλ(y) := (1 − e−λy)I[0,∞)(y) with

λ > 1 and, for each f ∈ F , x(1), x(2) ∈ S such that x(1) ≤ x(2) with the semiorder,
x

(1)
i

∑d
j=1 p1

ij ej ≤ x
(2)
i

∑d
j=1 p2

ij ej for all (p1
ij ), (p

2
ij ) ∈ A1 and i = 1, . . . , d . For

each D ∈ B(S), x ∈ S and a1 = (pij ) ∈ A1, let

q̃(D|x, a1) :=
d∑

i=1

∫ ∞
0

ID\{x}
(
x − eixi + y

d∑
j=1

pijxiej

)
λe−λy dy.(5.2)

Then, for each x ∈ S and a = (a1, a2) ∈ A := A1 × A2 with a1 := (pij ) and a2 :=
(q1, . . . , qd), the transition rates q(D|x, a) and the reward rates r(x, a), which may
depend on given parameter λ, are defined by

q(D|x, a) := q̃(D|x, a1) − ID(x)q̃(S|x, a1)(5.3)

and

r(x, a) :=
d∑

i=1

d∑
j=1

qipij xj − λ(x1 + · · · + xd),(5.4)

respectively.
For each x = (x1, . . . , xd) ∈ S, let w(x) := x1 + x2 + · · · + xd. Then, by (5.3)

we have

q(x) := sup
a∈A(x)

[−q({x}|x, a)] ≤ d.(5.5)
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Moreover, by (5.2) and (5.3) we have

∫
S
w(y)q(dy|x, a) ≤ (x1 + · · · + xd)

∫ ∞
0

λ(y − 1)e−λy dy

= −(λ − 1)

λ
w(x)

(5.6)

which together with (5.5) verifies Assumption A with c := (λ−1)
λ

and b = 0.
By (5.4) we have |r(x, a)| ≤ d(q∗

1 + · · ·+ q∗
d +λ)w(x) for all x ∈ S and a ∈ A,

which together with (5.5), Remark 3.1 and the finiteness of A1, implies Assump-
tion B.

Finally, we verify Assumption C. In fact, let D be any monotone set in S

[i.e., ID(x) is increasing in x]. For each f ∈ F , x(1), x(2) ∈ S such that x(1) ≤
x(2). Let f (x(1)) =: ((p1

ij ), a
(1)
2 ), f (x(2)) =: ((p2

ij ), a
(2)
2 ). Then x

(1)
i

∑d
j=1 p1

ij ej ≤
x

(2)
i

∑d
j=1 p2

ij ej . Thus, for each i ∈ {1,2, . . . , d} and y ≥ 0, we have

ξ1(
i, y, f

(
x(1))) := (

x(1) − x
(1)
i ei

) + yx
(1)
i

d∑
j=1

p1
ij ej

≤ (
x(2) − x

(2)
i ei

) + yx
(2)
i

d∑
j=1

p2
ij ej

=: ξ2(
i, y, f

(
x(2))),

which together with the monotonicity of set D, gives

ξ2(
i, y, f

(
x(2))) ∈ D if ξ1(

i, y, f
(
x(1))) ∈ D

and

ξ1(
i, y, f

(
x(1))) /∈ D if ξ2(

i, y, f
(
x(2))) /∈ D.

Thus, if x(1), x(2) /∈ D, by (5.2) we have

q̃
(
D|x(1), f

(
x(1))) =

d∑
j=1

∫ ∞
0

ID

(
ξ1(

i, y, f
(
x(1))))λe−λy dy

≤
d∑

j=1

∫ ∞
0

ID

(
ξ2(

i, y, f
(
x(2))))λe−λy dy

= q̃
(
D|x(2), f

(
x(2))),

(5.7)



CONTINUOUS-TIME MARKOV DECISION PROCESSES 749

and if x(1), x(2) ∈ D, we also have

q̃
(
Dc|x(1), f

(
x(1))) =

d∑
j=1

∫ ∞
0

IDc

(
ξ1(

i, y, f
(
x(1))))λe−λy dy

≥
d∑

j=1

∫ ∞
0

IDc

(
ξ2(

i, y, f
(
x(2))))λe−λy dy

= q̃
(
Dc|x(2), f

(
x(2))),

(5.8)

and so it follows from Lemma 3.3(b) that Assumption C holds.

By the discussions above, we see that for Example 5.1 all conditions in this
paper are satisfied. It should be noted that in Example 5.1 the state space is not
denumerable and the reward rates have neither upper nor lower bounds; see (5.4).
Therefore, the earlier conditions in [5, 6, 13, 16–19, 23, 24, 26, 27, 30, 31, 34,
35, 39, 41] fail to hold because, except in [5, 19], the state spaces in the previous
literature are all denumerable, while the reward rates in [5] and cost rates in [19]
are uniformly bounded and bounded below, respectively.

EXAMPLE 5.2 (Optimal control of birth–death systems in [1, 4]). Consider
a controlled birth–death system in which the state variable denotes a population
size at any time t ≥ 0. The birth rate is assumed to be a fixed constant λ > 0,
but the death rates µ are assumed to be controlled by a decision-maker. Here we
interpret any death rate µ as an action a (i.e., µ =: a). When the system’s state
is at x ∈ S := {0,1, . . .}, the decision-maker takes an action a from a given set
A(x) ≡ [µ1,µ2] with µ2 > µ1 > 0, which increases or decreases the death rates
given by (5.10) and (5.11) below. This action incurs a cost at rate rc(x, a). In
addition, suppose that the benefit caused by each population is presented by p > 0
for each unit of time, and then the decision-maker gets a reward at rate px for each
unit of time during which the system remains in state x.

We now formulate this system as a continuous-time Markov decision process.
The corresponding transition rates q(y|x, a) are given as

q(1|0, a) = −q(0|0, a) := λ ∀a ∈ [µ1,µ2],(5.9)

q(0|1, a) := a, q(1|1, a) = −a − λ,
(5.10)

q(2|1, a) := λ ∀a ∈ [µ1,µ2].
For each x ≥ 2 and a ∈ A(x) = [µ1,µ2],

q(y|x, a) :=




p1ax, if y = x − 2,

p2ax, if y = x − 1,

−(a + λ)x, if y = x,

λx, if y = x + 1,

0, otherwise,

(5.11)
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where p1 ≥ 0 and p2 ≥ 0 are fixed constants and p1 + p2 = 1.
By the model’s description we see that the reward rates r(x, a) are of the form

r(x, a) := px − rc(x, a) for (x, a) ∈ K := {(x, a) :x ∈ S, a ∈ A(x)}.(5.12)

We aim to find conditions that ensure the existence of an (average) optimal station-
ary policy. To do this, we consider the following assumptions:

E1 : There exists µ1 − λ > 0.
E2 : There exists p1 ≤ µ1

2µ2
with p1 as in (5.11). (This condition obviously holds

when p1 = 0.)
E3 : The function rc(x, a) is continuous in a ∈ A(x) = [µ1,µ2] for each fixed

x ∈ S, and c∗(x) := supa∈A(x) |rc(x, a)| < M̃(x + 1) for all x ∈ S and some

constant M̃ ≥ 0.

Under these conditions, we obtain the following.

PROPOSITION 5.1. Under E1, E2 and E3, the above controlled birth–death
system satisfies Assumptions A, B and C. Therefore (by Theorem 4.2), there exists
an optimal stationary policy.

PROOF. We shall first verify Assumption A. Let c := 1
2(µ1 − λ) > 0 (by E1)

and let w(x) := x + 1 for all x ∈ S. Then, from (5.9) and (5.10) we have∑
y∈S

q(y|0, a)w(y) = λ ≤ −cw(0) + µ1 + λ ∀a ∈ A(x),(5.13)

∑
y∈S

q(y|1, a)w(y) = −(a − λ) ≤ −cw(1) ∀a ∈ A(x).(5.14)

Moreover, for each x ≥ 2 and a ∈ [µ1,µ2], from (5.11) we have∑
y∈S

q(y|x, a)w(y) = −(a + ap1 − λ)x

≤ −2
3(a + ap1 − λ)w(x)

≤ −cw(x).

(5.15)

By (5.13)–(5.15) we have∑
y∈S

q(y|x, a)w(y)

≤ −cw(x) + (µ1 + λ)I{0}(x) ∀a ∈ A(x) and x ∈ S,

≤ −cw(x) + µ1 + λ ∀a ∈ A(x) and x ∈ S,

(5.16)
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which gives Assumption A(1). On the other hand, by (5.9)–(5.11), we have
q(x) ≤ (µ2 + λ)(x + 1) = (µ2 + λ)w(x) and so Assumption A(2) follows. Thus,
Assumption A is true.

To verify Assumption B, by (5.12) and E3 we have |r(x, a)| ≤ (p+M̃)w(x) for
all x ∈ S. Thus, by (5.9)–(5.11) as well as E3 we see that Assumptions B(1)–B(3)
hold. To verify Assumption B(4), we let

w′(x) := (x + 1)(x + 2) for each x ∈ S.

Then, by (5.9)–(5.11) we have

q(x)w(x) ≤ (µ2 + λ)w′(x) ∀x ∈ S,∑
y∈S

q(y|x, a)w′(x) ≤ 6λw′(x) ∀a ∈ [µ1,µ2] and x ∈ S,

which imply Assumption B(4) with M ′ := (µ2 + λ), c′ := 6λ,b′ := 0.
Finally, we verify Assumption C. Since 0 ≤ p1 ≤ µ1

2µ2
, by (5.9)–(5.11) we have

that, for each fixed f ∈ F ,∑
y≥k

q
(
y|x,f (x)

) ≤ ∑
y≥k

q
(
y|x + 1, f (x + 1)

) ∀x, k ∈ S such that k �= x + 1,

which together with Theorem 3.4 in [1], implies that the corresponding Markov
process x(t) is stochastically ordered. Thus, Assumption C follows from (5.16)
and Lemma 3.3(b). �

EXAMPLE 5.3 (Optimal control of upwardly skip-free processes in [1]). The
upwardly skip-free processes, also known as birth and death processes with
catastrophes, belong to the category of population processes [1], Chapter 9,
page 292, with the state space S := {0,1,2, . . .}. Here we are interested in the av-
erage optimal control problem for such processes with catastrophes of two sizes,
so the transition rates are of the form

q(y|x, a) :=




λx + a1, if y = x + 1,

−(
λx + µx + d(x, a2) + a1

)
, if y = x,

µx + d(x, a2)γ
1
x , if y = x − 1,

d(x, a2)γ
2
x , if y = x − 2,

0, others,

(5.17)

where x ∈ S, a := (a1, a2), the constants λ > 0,µ > 0, immigration rates a1 ≥ 0;
d(x, a2) are nonnegative numbers that represent the rates at which the “catastro-
phes” occur and which are assumed to be controlled by decisions a2 in some
compact set B(x), when the process is in state x ≥ 1; the numbers γ 1

x and γ 2
x are

nonnegative and such that γ 1
x +γ 2

x = 1 for all x ≥ 1 and γ 2
1 = 0; and γ k

x is the prob-
ability that the process makes a transition to x − k (k = 1,2), given that a catastro-
phe occurs when the process is in state x ≥ 2. For state x = 0, it is natural to let
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d(0, a2) ≡ 0 and γ 1
0 = γ 2

0 = 0. On the other hand, we suppose that the immigration
rates a1 can also be controlled and so we interpret a := (a1, a2) as an action. Thus,
we may let the admissible action sets A(0) := [0, b] and A(x) := [0, b]×B(x) for
x ≥ 1, with some constant b > 0. In addition, suppose that the damage caused by
a catastrophe is represented by p > 0 for each unit of time and that it incurs a cost
at rate c(x, a2) to take decision a2 ∈ B(x) at state x ≥ 1. Let c(0, ·) :≡ 0. Also,
we assume that the benefits obtained by the transitions to x − 1 and x − 2 from x

(≥ 2) are represented by positive constants q1 and q2, respectively, and the benefit
caused by each a1 ∈ [0, b] is represented by a real number r̃(a1). Then the reward
rates are of the form

r(x, a) := r̃(a1) − c(x, a2) − pd(x, a2) + q1γ
1
x d(x, a2) + q2γ

2
x d(x, a2)

for all a = (a1, a2) ∈ A(x). As in the verifications of Assumptions A, B and C
in Example 5.2, under the following conditions F1–F3, the above controlled up-
wardly skip-free processes satisfy Assumptions A, B and C, and, therefore (by
Theorem 4.2), there exists an optimal stationary policy:

F1 : For all x ≥ 1, µ − λ > 0; γ 2
x+1 ≤ inf{a2∈B(x)} d(x,a2)+µx

d(x+1,a2)
.

F2 : There exists b ≤ λ − µ + inf{x≥1,a2∈B(x)}{d(x, a2) + γ 2
x d(x, a2)}.

F3 : For each x ∈ S, the functions r̃(a1) and c(x, a2) are continuous in (a1, a2) ∈
A(x), and supa2∈B(x) |d(x, a2)| ≤ L1(x + 1), supa2∈B(x) |c(x, a2)| <

L2(x + 1) for some constants L1 > 0 and L2 > 0.

In particular, all of F1–F3 hold when λ < µ ≤ b + λ, r̃(a1) := τa1, d(x, a2) :=
2a2x, γ 2

x ≤ 1
2 + µ

4β
and B(x) := [b,β] for all x ≥ 1, with some constants τ > 0

and β > b.

EXAMPLE 5.4 (Optimal control of a pair of M/M/1 queues in tandem in [28]).
Suppose that customers arrive as a Poisson stream with unit rate to the first queue,
where they are serviced with mean service time a−1

1 . After service is completed at
the first queue, each customer immediately departs and joins the second queue,
where the mean service time is a−1

2 . After service is completed at the second
queue, the customers leave the system with state space S := {0,1,2, . . .}2. Here,
we interpret any given pair of mean service times (a1, a2) =: a as an action and let
corresponding action sets A(x1, x2) ≡ [µ1,µ

∗
1] × [µ2,µ

∗
2] with positive constants

µ∗
1 > µ1,µ

∗
2 > µ2. As in [28], let

w(x1, x2) := σ
x1−1
1 + σ

x1+x2−1
2 + γ σ

−β1(x1−1)
1 σ

−β2(x1+x2−1)
2 ,

where σ1 = 1.06, σ2 = 1.03, γ = 0.4, β1 = 1.5 and β2 = 0.3. Suppose that µ1 ≥ 3
and µ2 ≥ 2. Then, when r(x1, x2, a) is bounded in all (x1, x2, a) and continu-
ous in a ∈ A(x1, x2) for each fixed (x1, x2) ∈ S, from the argument in [28] and
Lemma 3.3(b), we see that Assumptions A, B and C are all satisfied. In fact, under
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these parameter values, using the argument in [28] and a straightforward calcula-
tion, we can verify Assumption B and also Assumption A as well as the conditions
(b) in Lemma 3.3 with c := 0.002 and b := 0. Therefore, there exists an average
optimal stationary policy for this example with the above parameter values.

EXAMPLE 5.5 (Optimal control of M/M/N/0 queue systems in [25, 40]).
Here the state space is S := {0,1,2, . . . ,N} with some integer N ≥ 1. Suppose that
the arrival rate λ is fixed but the service rates µ can be controlled. Therefore, we in-
terpret service rates µ as actions, which may depend on the current states x ∈ S. We
denote by A(x) the action sets at state x ∈ S. Since there is no service in the queue
at state 0, we may suppose that A(0) := {0} for simplicity. Also, for each x ≥ 1
we let A(x) := [µ1,µ2] with constants µ2 > µ1 > 0. Then, the transition rates are
given as q(0|0,0) = −λ = −q(1|0,0) and q(N |N,µ) = −Nµ = −q(N −1|N,µ)

for all µ ∈ A(N). Moreover, for each 1 ≤ x ≤ N − 1 and µ ∈ A(x),

q(y|x,µ) :=




λ, if y = x + 1,

−(λ + µx), if y = x,

µx, if y = x − 1,

0, others.

Thus, when µ1 > λ and a reward rate function r(x,µ) is continuous in µ ∈ A(x)

for all x ∈ S, as in the verification of Example 5.2, we see that this controlled
M/M/N/0 queue system satisfies Assumptions A, B and C.

REMARK 5.1. In the verifications of Assumptions A, B and C for the five ex-
amples, a key step is the verification of Assumption C by using Lemma 3.3(b). This
is due to the advantage that the drift and monotonicity conditions of Lemma 3.3(b)
are imposed on the primitive data of the model. Here, we should note that these
conditions have to be uniform with respect to the actions. In fact, such uniformity
is used to show that the exponential convergence rate ρ and the constant R in (3.3)
are independent of all stationary policies. On the other hand, other examples and
approaches that yield exponential ergodicity (3.3) can be seen in [3, 7, 28, 36, 40],
for instance. Finally, be warned that all of the underlying processes in this paper
are continuous-time jump Markov processes, which can be determined by given
transition rates (2.4) with the properties P1–P3.

6. Concluding remarks. In the previous sections we have studied the aver-
age optimality problem for continuous-time Markov decision processes in Polish
spaces. Under suitable assumptions we have shown the existence of an optimal
stationary policy. The approach developed to prove the existence of optimal sta-
tionary policies is different from the optimality inequality approach widely used
in the previous literature. In addition, we have presented a semimartingale char-
acterization for an optimal stationary policy. On the other hand, we believe that
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our formulation and approach are sufficiently general and, thus, provide a way to
analyze other important problems, such as the problems of bias optimality, Black-
well optimality and stochastic games with average payoffs, which as far as we can
tell have not been previously studied for continuous-time jump Markov processes
with Polish spaces and unbounded transition rates. Research on these topics is in
progress.

To conclude, it is worth noting that under our present conditions we cannot es-
tablish the average optimality equation by using the usual diagonal argument, be-
cause the state space may not be denumerable. We will give additional conditions
under which the average optimality equation also holds in an upcoming paper.

Acknowledgments. We are very grateful to an Associate Editor and the
anonymous referees for many fine comments and suggestions that have improved
this paper.
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