
The Annals of Applied Probability
2006, Vol. 16, No. 2, 516–561
DOI: 10.1214/105051605000000809
© Institute of Mathematical Statistics, 2006

ACCURACY OF STATE SPACE COLLAPSE FOR
EARLIEST-DEADLINE-FIRST QUEUES
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This paper presents a second-order heavy traffic analysis of a single
server queue that processes customers having deadlines using the earliest-
deadline-first scheduling policy. For such systems, referred to as real-time
queueing systems, performance is measured by the fraction of customers who
meet their deadline, rather than more traditional performance measures, such
as customer delay, queue length or server utilization. To model such systems,
one must keep track of customer lead times (the time remaining until a cus-
tomer deadline elapses) or equivalent information. This paper reviews the
earlier heavy traffic analysis of such systems that provided approximations
to the system’s behavior. The main result of this paper is the development
of a second-order analysis that gives the accuracy of the approximations and
the rate of convergence of the sequence of real-time queueing systems to its
heavy traffic limit.

1. Introduction.

1.1. Background. Real-time queueing systems are queueing systems whose
customers have specific timing requirements. These systems arise in voice and
video communication systems, control systems including avionics and automo-
tive, and many aspects of modern manufacturing systems. The performance mea-
sures associated with such systems relate to the ability of the system to meet the
customers’ timing requirements as a function of the workload and the queue dis-
cipline. This is quite different from the more common queueing system perfor-
mance measures, such as customer delay, queue length or server utilization. In
real-time queues, a queue discipline such as earliest deadline first (EDF) should
be used rather than a more standard queue discipline like first-in-first-out (FIFO),
which ignores the customer deadlines. EDF is a well studied queue discipline,
especially in computer systems; see, for example, the monograph by Stankovic,
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Spuri, Ramamritham and Buttazzo [15]. In certain situations, EDF is optimal. For
example, Panwar and Towsley [12] showed that, for a G/M/c queue with preemp-
tion, serving customers with general deadlines, EDF maximizes the fraction of
customers that meet their deadlines within the class of work-conserving policies.
In this paper we also treat the case of EDF with preemption.

In real-time queues, the state space is high dimensional in that the individual
task deadlines, the task lead times (time until the deadline elapses) or some equiv-
alent information must be kept to determine whether a customer deadline was
met when it completes its service. This high-dimensional state space makes exact
analysis intractable; however, a heavy traffic analysis can be carried out. This was
done by Doytchinov, Lehoczky and Shreve (DLS) [4] for the single node, single
traffic flow case, Kruk, Lehoczky, Shreve and Yeung [10] for the multi-class single
station case, Yeung and Lehoczky [17] for feed-forward networks, and by Kruk,
Lehoczky, Shreve and Yeung [11] for multi-flow acyclic networks. Both EDF and
FIFO queue disciplines were considered.

In the rest of this section we summarize some of the existing results of the
heavy traffic analysis and introduce the second-order analysis that is the subject
of this paper. The model, assumptions and analysis are reviewed and made precise
in Section 2 of this paper. The main results are stated in Section 3, and the proofs
are developed in Sections 4–6. Simulations demonstrating the main results are
presented in Section 7.

1.2. Previous analytic results. The heavy traffic analysis of real-time queues
begins with a sequence of queueing systems, the nth system having indepen-
dent strictly positive interarrival times with arrival rate λ(n), and the customers
having independent service times with mean 1

µ(n) . Assume the traffic intensity

ρ(n) = λ(n)

µ(n) = 1 − γ (n)√
n

for some sequence γ (n) having a limit γ . It follows that
the scaled workload process

Ŵ (n)(t) � W(nt)√
n

⇒ W ∗(t),(1.1)

where W ∗ is a reflected Brownian motion process with drift −γ [see (2.17)].
To study the lead times of the customers in the queue, we introduce measure-

valued processes Q(n)(t)(B) and W (n)(t)(B), where Q(n)(t)(B) gives the number
of customers in the queue at time t having lead times in the Borel set B , while
W (n)(t)(B) is the work at time t associated with customers in the queue having
lead times in B . By considering B = (−∞, y],−∞ < y < ∞, one can construct
the cumulative lead-time distribution of work in the queue. The interval (−∞,0)

is of special importance because it is associated with work that is late.
To characterize the limiting behavior of these measure-valued processes, it is

convenient to define the frontier, F (n)(t), roughly the largest lead time of all the
customers ever having received any service. Any customer with lead time larger
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than F (n)(t) has never received any service. The frontier allows us to divide the
workload (or customers) into two parts: those customers with lead times not larger
than F (n)(t), that is, W (n)(t)(−∞,F (n)(t)], and those with lead times greater than
F (n)(t), that is, W (n)(t)(F (n)(t),∞). DLS [4] prove that the scaled version of
W (n)(−∞,F (n)(t)], namely, 1√

n
W (n)(nt)(−∞,F (n)(nt)], has limit zero; hence,

we focus on the behavior of W (n)(t)(y ∨F (n)(t),∞). (We use the notation a∨b �
max{a, b} and a ∧ b � min{a, b}.)

Under the heavy traffic scaling implicit in the discussion so far, in order to obtain
nontrivial limits as n → ∞, time is accelerated by the factor n and the workload
and number of customers in queue is scaled by 1√

n
. Because the unscaled work-

load is of order
√

n, the time each customer spends in queue is also of order
√

n.
In order to have a nontrivial limiting lead-time distribution, the lead times of ar-
riving customers in the nth system must be of order

√
n. We assume therefore that

arriving customers in the nth sytem have lead times equal to
√

n times random
variables drawn independently from a cumulative distribution function G. We as-
sume that G satisfies y∗ � min{y|G(y) = 1} < ∞, so that these random variables
are bounded from above. It is natural to assume that G(0−) = 0, so that all lead
times are nonnegative, but we do not need this for our analysis and, hence, do not
assume it.

We set

H(y) �
∫ ∞
y

(
1 − G(η)

)
dη =


∫ y∗

y

(
1 − G(η)

)
dη, if y ≤ y∗,

0, if y > y∗.
(1.2)

The function H maps (−∞, y∗] onto [0,∞) and is strictly decreasing and Lip-
schitz continuous with Lipschitz constant 1 on (−∞, y∗]. Therefore, there exists
a continuous inverse function H−1 that maps [0,∞) onto (−∞, y∗]. In [4] it is
shown that, as n → ∞, the scaled frontier process

F̂ (n)(t) � 1√
n
F (n)(nt),(1.3)

the scaled workload measure process

Ŵ (n)(t)(B) � 1√
n
W (n)(nt)

(√
nB

)
,(1.4)

and the scaled queue length measure process

Q̂(n)(t)(B) � 1√
n
Q(n)(nt)

(√
nB

)
(1.5)

converge weakly to the limiting scaled frontier process

F ∗(t) � H−1(W ∗(t)), t ≥ 0,(1.6)
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the limiting scaled workload measure process

Ŵ∗(t)(B) �
∫
B∩[F ∗(t),∞)

(
1 − G(y)

)
dy,(1.7)

and the limiting scaled queue-length measure process

Q̂∗(t)(B) � µ

∫
B∩[F ∗(t),∞)

(
1 − G(y)

)
dy,(1.8)

where λ = limn→∞ λ(n) and µ = limn→∞ µ(n). Since limn→∞ ρ(n) = 1, we have
λ = µ, but shall use both of these symbols to keep track of whether a term appears
as the limit of λ(n) or the limit of µ(n). This is useful to help conjecture the correct
formulas if there were multiple input streams, in which case the limit of the sum
of the arrival rates for the streams would equal µ, rather than the limit for any
particular arrival stream. It also aids in simulation (see Section 7), in which we are
not yet at the limit and, thus, must replace λ and µ in certain formulas by λ(n) and
µ(n), and these two are generally different.

In summary, DLS [4] prove that, as n → ∞,

F̂ (n) ⇒ F ∗, Ŵ (n) ⇒ Ŵ∗ and Q̂(n) ⇒ Q̂∗.(1.9)

These convergence results allow us to approximate Ŵ (n)(y,∞) for −∞ < y < ∞
and F̂ (n) in terms of the scaled workload process Ŵ (n). We present those approxi-
mations and discuss their accuracy below.

1.3. Second-order analysis. Our goal is to approximate the scaled fron-
tier F̂ (n) and the scaled workload measure Ŵ (n) using the scaled workload
scalar Ŵ (n), and to determine the accuracy of these approximations. The work-
load process is most useful as an approximation quantity as it is the most easily
measured. Recall Ŵ (n)(t) ⇒ W ∗(t), F̂ (n)(t) ⇒ H−1(W ∗(t)), and

Ŵ (n)(t)(y,∞) ⇒ Ŵ∗(t)(y,∞) = H
(
y ∨ F ∗(t)

)= H
(
y ∨ H−1(W ∗(t))

)
.

These suggest the following approximations for Ŵ (n)(t)(y,∞) and F̂ (n):

Ŵ (n)(t)(y,∞) ≈ H
(
y ∨ F̂ (n)(t)

)
,(1.10)

Ŵ (n)(t)(y,∞) ≈ H
(
y ∨ H−1(Ŵ (n)(t)

))
,(1.11)

F̂ (n)(t) ≈ H−1(Ŵ (n)(t)
)
.(1.12)

In this paper we study the accuracy of these approximations by showing that
the difference between the desired quantity and its proposed approximation when
scaled by n1/4 converges to a limiting process. As n → ∞, the approximations
in (1.10)–(1.12) become exact, and so some dilation of the difference of the two
sides is necessary in order to obtain a nontrivial limit. In these approximations, t is
held fixed and the process parameter y has been scaled by

√
n [the

√
nB term in
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(1.4)–(1.5)]. This is actually a scaling of lead times, and when time is scaled by√
n, space must be scaled by 1

n1/4 in order to obtain a central limit result. However,

space has already been scaled by 1√
n

[the 1√
n

term in (1.4) and (1.5)]. We must

therefore multiply by n1/4 to partially cancel this and obtain a scaling of 1
n1/4 .

Specifically, using [1] and [14], we prove the following results:

n1/4[Ŵ (n)(t)(y,∞) − H
(
y ∨ F̂ (n)(t)

)]⇒ J ∗(y ∨ F ∗(t)
)
,(1.13)

n1/4[Ŵ (n)(t)(y,∞) − H
(
y ∨ H−1(Ŵ (n)(t)

))]⇒ J ∗(y)I{F ∗(t)≤y},(1.14)

n1/4[H−1(Ŵ (n)(t)
)− F̂ (n)(t)

]⇒ J ∗(F ∗(t))
1 − G(F ∗(t))

,(1.15)

where J ∗ is a mean-zero Gaussian process with continuous paths and a covari-
ance function defined in Theorem 3.3 below. In (1.13) and (1.14), both the left-
and right-hand sides are processes in the parameter y ≤ y∗ with t > 0 fixed; the
convergence is weak convergence in D(−∞, y∗]. In (1.15), t > 0 is again fixed
and we have weak convergence of random variables.

2. The model, assumptions and notation.

2.1. The basic model. We now specify the model and its assumptions pre-
cisely. We have a sequence of single-station queueing systems, each serving one
class of customers. The queueing systems are indexed by superscript (n). The
interarrival times for the customer arrival process are {u(n)

j }∞j=1, a sequence of
strictly positive, independent, identically distributed random variables with com-
mon mean 1

λ(n) and standard deviation α(n). The service times are {v(n)
j }∞j=1, an-

other sequence of positive, independent, identically distributed random variables
with common mean 1

µ(n) and standard deviation β(n). We assume that each queue
is empty at time zero.

We define the customer arrival times

S
(n)
0 � 0, S

(n)
k �

k∑
i=1

u
(n)
i , k ≥ 1,(2.1)

the customer arrival process

A(n)(t) � max
{
k;S(n)

k ≤ t
}
, t ≥ 0,(2.2)

and the work arrival process

V (n)(t) �
�t∑
j=1

v
(n)
j , t ≥ 0.(2.3)

The work that has arrived to the queue by time t is then V (n)(A(n)(t)).
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Each customer arrives with an initial lead time L
(n)
j , the time between the arrival

time and the deadline for completion of service for that customer. These initial lead
times are independent and identically distributed with distribution given by

P
{
L

(n)
j ≤ √

ny
}= G(y),(2.4)

where G is a right-continuous cumulative distribution function. We define

y∗ � min{y ∈ R;G(y) = 1},(2.5)

and assume that y∗ is finite. We assume that, for every n, the sequences {u(n)
j }∞j=1,

{v(n)
j }∞j=1 and {L(n)

j }∞j=1 are mutually independent.
We assume that customers are served using the earliest-deadline-first (EDF)

queue discipline, that is, the server always serves the customer with the shortest
lead time. Preemption occurs when a customer more urgent than the customer in
service arrives (we assume preempt-resume). There is no set up, switch-over or
other type of overhead. Late customers (customers with negative lead times) stay
in queue until served to completion.

The netput process

N(n)(t) � V (n)(A(n)(t)
)− t(2.6)

measures the amount of work in queue at time t , provided that the server is never
idle up to time t . The cumulative idleness process

I (n)(t) � − inf
0≤s≤t

N(n)(s)(2.7)

gives the amount of time the server is idle, and adding this to the netput process,
we obtain the workload process

W(n)(t) = N(n)(t) + I (n)(t),(2.8)

which records the amount of work in the queue, taking server idleness into account.
All the above processes are independent of the queue service discipline, provided
that the server is never idle when there are customers in the queue. However, the
queue length process Q(n)(t), which is the number of customers in the queue at
time t , depends on the queue discipline. All these processes are right-continuous
with left-hand limits (RCLL).

2.2. Heavy traffic assumptions. We assume that the following limits exist and
are all positive:

lim
n→∞λ(n) = λ, lim

n→∞µ(n) = µ,

(2.9)
lim

n→∞α(n) = α, lim
n→∞β(n) = β.
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Define the traffic intensity ρ(n) � λ(n)

µ(n) . We make the heavy traffic assumption

lim
n→∞

√
n
(
1 − ρ(n))= γ(2.10)

for some γ ∈ R. This implies that λ = µ, although, for reasons explained in Sec-
tion 1.3, we shall use both symbols. We use the notation ρ = λ/µ in certain for-
mulas, even though ρ = 1. We also impose the modified Lindeberg condition on
the interarrival and service times: for every c > 0,

lim
n→∞ E

[(
u

(n)
j − (

λ(n))−1)2
I{|u(n)

j −(λ(n))−1|>cn1/4}
]

(2.11)
= lim

n→∞ E
[(

v
(n)
j − (

µ(n))−1)2
I{|v(n)

j −(µ(n))−1|>cn1/4}
]= 0.

This condition is satisfied, for example, if supn∈N E(u
(n)
j )2+δ < ∞ and

supn∈N E(v
(n)
j )2+δ < ∞ for some δ > 0. Clearly, (2.11) implies the usual

Lindeberg condition on the interarrival and service times:

lim
n→∞ E

[(
u

(n)
j − (

λ(n))−1)2
I{|u(n)

j −(λ(n))−1|>c
√

n}
]

(2.12)
= lim

n→∞ E
[(

v
(n)
j − (

µ(n))−1)2
I{|v(n)

j −(µ(n))−1|>c
√

n }
]= 0

for every c > 0. It can be shown that (2.12) does not, in general, imply (2.11).
We introduce the heavy traffic scaling for the idleness, workload and queue

length processes

Î (n)(t) = 1√
n
I (n)(nt),

Ŵ (n)(t) = 1√
n
W(n)(nt),(2.13)

Q̂(n)(t) = 1√
n
Q(n)(nt),

and the centered heavy traffic scaling for the arrival processes

Ŝ(n)(t) = 1√
n

�nt∑
j=1

(
u

(n)
j − 1

λ(n)

)
,

V̂ (n)(t) = 1√
n

�nt∑
j=1

(
v

(n)
j − 1

µ(n)

)
,

Â(n)(t) = 1√
n

[
A(n)(nt) − λ(n)nt

]
.
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We define also

N̂ (n)(t) = 1√
n

[
V (n)(A(n)(nt)

)− nt
]
.(2.14)

Note that Ŵ (n)(t) = N̂ (n)(t) + Î (n)(t).
Theorem 3.1 in [13] and Theorem 7.3.2 in [16] imply that(

Ŝ(n), Â(n))⇒ (S∗,A∗),(2.15)

where A∗ is a Brownian motion with zero drift and variance α2λ3 per unit time
and

S∗(λt) = −1

λ
A∗(t), t ≥ 0.(2.16)

It is a standard result [6] that(
N̂ (n), Î (n), Ŵ (n))⇒ (N∗, I ∗,W ∗),(2.17)

where N∗ is a Brownian motion with variance (α2ρ2 + β2)λ per unit time and
drift −γ , I ∗(t) � −min0≤s≤t N

∗(s), and W ∗(t) = N∗(t) + I ∗(t). In other words,
W ∗ is a reflected Brownian motion with drift −γ , and I ∗ causes the reflection.

Here and elsewhere, the symbol ⇒ denotes weak convergence of measures on
the space D(T ,S) of functions from a set T (which is either a closed interval in R

or a closed rectangle in R
2, both possibly unbounded) to a Polish space S that are

right-continuous with left limits. If S = R, we shall write simply D(T ). Through-
out this paper, we shall use two topologies on D(T ,S). In almost all places, the
Skorohod J1 topology will be employed. This topology is convenient for dealing
with weak convergence to continuous processes. The definition of the J1 topology
can be found, for example, in [3, 5, 16] for T ⊆ R and in [1] for the case of a rec-
tangle T in R

2. In the sequel, whenever we consider weak convergence in D(T ,S),
we always assume that this space is endowed with the J1 topology unless explicitly
stated otherwise. In particular, (2.15) and (2.17) hold in the J1 topology. However,
in Theorem 3.4, the (weaker) M1 topology on a half-line T will be used. We need
to use the latter topology to establish stochastic-process limits with unmatched
jumps in the limit process, for example, in the case of functions with asymptoti-
cally vanishing maximal jumps converging to an indicator function. See [16] for a
definition of the M1 topology and more details. We usually take T = [0,∞) and
S = R

d , with appropriate dimension d [e.g., d = 2 in (2.15) and d = 3 in (2.17)],
unless explicitly stated otherwise. For stochastic processes A and B with sample

paths in D(T ,S), we shall write A
d= B if A and B have the same distribution on

D(T ,S).
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2.3. Measure-valued processes and frontiers. To study whether tasks or cus-
tomers meet their timing requirements, one must keep track of customer lead times,
where the lead time is the time remaining until the deadline elapses, that is,

lead time = deadline − current time.

In this section we define a collection of measure-valued processes that will be
useful in the analysis of the instantaneous lead-time profile of the customers.
Queue length measure:

Q(n)(t)(B) �
{

Number of customers in the queue at time
t having lead times at time t in B ⊆ R

}
.

Workload measure:

W (n)(t)(B) �
{

Work in the queue at time t associated with
customers having lead times at time t in B ⊆ R

}
.

Customer arrival measure:

A(n)(t)(B) �


Number of arrivals by time t , whether

or not still in the system at time t ,
having lead times at time t in B ⊆ R

 .

Workload arrival measure:

V(n)(t)(B) �


Work associated with all arrivals by time t ,
whether or not still in the system at time t ,

having lead times at time t in B ⊆ R

 .

The following relationships easily follow:

Q(n)(t) = Q(n)(t)(R), W(n)(t) = W (n)(t)(R),(2.18)

A(n)(t) = A(n)(t)(R), V (n)(A(n)(t)
)= V(n)(t)(R),(2.19)

A(n)(t)(B) =
A(n)(t)∑
j=1

I{L(n)
j −(t−S

(n)
j )∈B}

(2.20)

=
∞∑

j=1

I{S(n)
j ∈B+t−L

(n)
j ,S

(n)
j ≤t},

V(n)(t)(B) =
A(n)(t)∑
j=1

v
(n)
j I{L(n)

j −(t−S
(n)
j )∈B}

(2.21)

=
∞∑

j=1

v
(n)
j I{S(n)

j ∈B+t−L(n),S(n)≤t}.

To study the behavior of the EDF queue discipline, it is useful to keep track of
the lead time of the customer currently in service and the largest lead time of all
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customers, whether present or departed, who have ever been in service. We define
the frontier

F (n)(t) �


Largest current lead time of all customers who have ever
been in service, whether still present or not, or

√
ny∗ − t,

if this quantity is larger than the former one

 ,

and the current lead time

C(n)(t) �
{

Lead time of the customer in service,
or F (n)(t) if the queue is empty

}
.

Prior to arrival of the first customer, F (n)(t) = √
ny∗ − t . Under the EDF queue

discipline, there is no customer with lead time smaller than C(n)(t), and there
has never been a customer in service whose lead time, if the customer were still
present, would exceed F (n)(t). Furthermore, C(n)(t) ≤ F (n)(t) for all t ≥ 0. Both
F (n) and C(n) are RCLL.

We define the scaled versions (1.3), (1.4), (1.5) and Ĉ(n)(t) � 1√
n
C(n)(nt) of

the processes defined above under the EDF queue discpline. We define also

Â(n)(t)(B) � 1√
n
A(n)(nt)

(√
nB

)

= 1√
n

A(n)(nt)∑
j=1

I{L(n)
j −(nt−S

(n)
j )∈√

nB}(2.22)

= 1√
n

∞∑
j=1

I{S(n)
j ∈√

nB+nt−L
(n)
j ,S

(n)
j ≤nt},

V̂(n)(t)(B) � 1√
n

V(n)(nt)
(√

nB
)

= 1√
n

A(n)(nt)∑
j=1

v
(n)
j I{L(n)

j −(nt−S
(n)
j )∈√

nB}(2.23)

= 1√
n

∞∑
j=1

v
(n)
j I{S(n)

j ∈√
nB+nt−L

(n)
j ,S

(n)
j ≤nt}.

3. Main results. Denote by M the set of all finite, nonnegative measures
on B(R), the Borel subsets of R. Under the weak topology, M is metrizable as
a complete, separable topological space. We recall Proposition 3.10 and Theo-
rem 3.1 of [4], which characterize the limiting distributions of the workload mea-
sure and the queue length measure under the EDF service discipline.

PROPOSITION 3.1 (Proposition 3.10 of [4]). We have F̂ (n) ⇒ F ∗ as n → ∞.
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THEOREM 3.2 (Theorem 3.1 of [4]). Let Ŵ∗ and Q̂∗ be the measure-valued
processes defined by

Ŵ∗(t)(B) �
∫
B∩[F ∗(t),∞)

(
1 − G(y)

)
dy, Q̂∗(t)(B) � µŴ∗(t)(B),(3.1)

for all Borel sets B ⊆ R. The processes Ŵ (n) and Q̂(n) converge weakly in
D([0,∞),M) to Ŵ∗ and Q̂∗, respectively.

By Theorem 3.2, for every t ≥ 0 and y ∈ R,

Ŵ (n)(t)(y,∞) ⇒ Ŵ∗(t)(y,∞) = H
(
y ∨ F ∗(t)

)= H
(
y ∨ H−1(W ∗(t))

)
.

In particular,

Ŵ (n)(t)(y,∞)
d≈ H

(
y ∨ F̂ (n)(t)

)
.(3.2)

In some cases, the frontier F (n) (and, thus, its rescaled counterpart) may be difficult
to evaluate. By Proposition 3.1, (1.6) and Theorem 3.2, we can replace F̂ (n)(t) in
(3.2) by the approximate rescaled frontier H−1(Ŵ (n)(t)), getting

Ŵ (n)(t)(y,∞) ≈ H
(
y ∨ H−1(Ŵ (n)(t)

))
.(3.3)

The aim of this paper is to investigate the rate of convergence of Ŵ (n)(t)

to Ŵ∗(t) in Theorem 3.2. More precisely, we find the empirical processes corre-
sponding to the workload measure. In what follows, we fix t > 0. Our main results
are the following:

THEOREM 3.3. As a process in y ≤ y∗, we have the convergence

n1/4[Ŵ (n)(t)(y,∞) − H
(
y ∨ F̂ (n)(t)

)]⇒ J ∗(y ∨ F ∗(t)
)

(3.4)

in D(−∞, y∗], where J ∗ is a mean-zero Gaussian process with continuous paths
and covariance

E[J ∗(y1)J
∗(y2)] = α2λρ2

∫ y∗

y1

∫ y∗

y2

(� − y1) ∧ (k − y2) dG(�) dG(k)

+ λ

∫ y∗−(y1∨y2)

0

(
1

µ2 G
(
(y1 ∧ y2) + x

)+ β2
)

(3.5)

× (
1 − G

(
(y1 ∨ y2) + x

))
dx,

independent of F ∗(t).

THEOREM 3.4. As a process in y ≤ y∗, we have the convergence

n1/4[Ŵ (n)(t)(y,∞) − H
(
y ∨ H−1(Ŵ (n)(t)

))]⇒ J ∗(y)I{F ∗(t)≤y}(3.6)

in D(−∞, y∗] endowed with the M1 topology, where J ∗ is as in Theorem 3.3.
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Let us note that Theorems 3.3 and 3.4 characterize the accuracy of the approx-
imations (3.2) and (3.3), respectively. One might also ask about the accuracy of
approximating F̂ (n)(t) by H−1(Ŵ (n)(t)). The answer to this question is given by
the following proposition:

PROPOSITION 3.5. For a fixed t > 0, we have the convergence

n1/4[H−1(Ŵ (n)(t)
)− F̂ (n)(t)

]⇒ J ∗(F ∗(t))
1 − G(F ∗(t))

,(3.7)

where J ∗ is as in Theorem 3.3.

Let us observe that, by (1.6), P{F ∗(t) < y∗} = P{W ∗(t) > 0} = 1, so the limit
in (3.7) is well defined.

4. Customers behind the frontiers. In this section we prove that the work
in the nth system at time nt associated with customers in this system having lead
times smaller than the current frontier F (n)(nt) becomes negligible after division
by n1/4. The following lemma is a refinement of the second part of Proposition 3.6
in [4].

LEMMA 4.1. Under the earliest-deadline-first queue discipline, we have

n1/4Ŵ (n)(t)
[
Ĉ(n)(t), F̂ (n)(t)

)⇒ 0.(4.1)

PROOF. We define

τ (n)(t) � sup
{
s ∈ [0, t]; Ĉ(n)(s) = F̂ (n)(s)

}
.(4.2)

Because the system is initially empty, Ĉ(n)(0) = F̂ (n)(0) = 0 and the above supre-
mum is not over the empty set. In the proof of Proposition 3.6 in [4], it is shown
that

√
n
(
t − τ (n)(t)

)⇒ 0.(4.3)

Let us observe that, by the definition (4.2) and the fact that the interarrival times
are strictly positive, we have

Ŵ (n)(τ (n)(t)
)[

Ĉ(n)(τ (n)(t)
)
, F̂ (n)(τ (n)(t)

)]≤ 1√
n
v

(n)

A(n)(nτ (n)(t))
,(4.4)

with strict inequality only when τ (n)(t) = t and Ĉ(n)(t) = F̂ (n)(t), in which case
the left-hand side is zero. We want to show that

1

n1/4 v
(n)

A(n)(nτ (n)(t))
⇒ 0.(4.5)
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To this end, let us choose a sequence εn ↓ 0 so slowly that P(An) → 1 as n → ∞,
where An = [τ (n)(t) ≥ t − εn/

√
n ] [such a choice is possible by (4.3)]. By (2.15)

and the differencing theorem (see, e.g., Appendix A of [4]),

1√
n

[
A(n)(nt) − A(n)(nt − √

nεn

)− λ(n)
√

nεn

]= Â(n)(t) − Â(n)

(
t − εn√

n

)
⇒ 0.

Therefore, it is possible to find a sequence an ↓ 0 so slowly that P(Bn) → 1
as n → ∞, where Bn = [A(n)(nt) − A(n)(nt − √

nεn) ≤ bn

√
n ], and

bn = λ(n)εn + an. For any δ > 0, we have

lim
n→∞P

[{
1

n1/4 v
(n)

A(n)(nτ (n)(t))
≥ δ

}
∩ An ∩ Bn

]
≤ lim

n→∞ P

[{
1

n1/4 max
A(n)(nt)−bn

√
n≤j≤A(n)(nt)

v
(n)
j ≥ δ

}
∩ An ∩ Bn

]

≤ lim
n→∞ P

[
1

n1/4 max
A(n)(nt)−bn

√
n≤j≤A(n)(nt)

v
(n)
j ≥ δ

]

≤ lim
n→∞ P

[
1

n1/4 max
1≤j≤bn

√
n+1

v
(n)
j ≥ δ

]
(4.6)

= 1 − lim
n→∞ P

[�bn
√

n +1⋂
j=1

{
v

(n)
j < δn1/4}]

= 1 − lim
n→∞ P

[
v

(n)
1 < δn1/4]�bn

√
n +1

≤ 1 − lim
n→∞

(
1 − E(v

(n)
1 )2

δ2
√

n

)�bn
√

n +1

= 0,

where the fourth line follows from the independence of the service times and the ar-
rivals, the sixth one from the fact that {v(n)

j }∞j=1 is a sequence of i.i.d. random vari-
ables, and the last one from (2.9) and the fact that bn → 0. But P(An ∩ Bn) → 1,
so (4.6) implies (4.5).

An upper bound on the work with lead times in [C(n)(nt),F (n)(nt)) at time nt

is the work arrived to the system during the time interval [nτ (n)(t), nt] minus the
work served, which is nt − nτ (n)(t). From this and (4.4), we obtain the bound

0 ≤ n1/4Ŵ (n)(t)
[
Ĉ(n)(t), F̂ (n)(t)

)
≤ 1

n1/4 v
(n)

A(n)(nτ (n)(t))
+ 1

n1/4

A(n)(nt)∑
j=A(n)(nτ (n)(t))+1

v
(n)
j − n3/4(t − τ (n)(t)

)

= 1

n1/4 v
(n)

A(n)(nτ (n)(t))
(4.7)
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+ n1/4
[
V̂ (n)

(
1

n
A(n)(nt)

)
− V̂ (n)

(
1

n
A(n)(nτ (n)(t)

))]
+ 1

n1/4µ(n)

[
A(n)(nt) − A(n)(nτ (n)(t)

)]− n3/4(t − τ (n)(t)
)

= 1

n1/4 v
(n)

A(n)(nτ (n)(t))
+ n1/4

[
V̂ (n)

(
1√
n
Â(n)(t) + λ(n)t

)

− V̂ (n)

(
1√
n
Â(n)(τ (n)(t)

)+ λ(n)τ (n)(t)

)]

+ n1/4

µ(n)

[
Â(n)(t) − Â(n)(τ (n)(t)

)]− (
1 − ρ(n))n3/4(t − τ (n)(t)

)
.

By (4.5), the first term on the right-hand side of (4.7) converges to zero in distrib-
ution. Also, by (2.10) and (4.3),(

1 − ρ(n))n3/4(t − τ (n)(t)
) = n−1/4(√n

(
1 − ρ(n)))(√n

(
t − τ (n)(t)

))
(4.8)

⇒ 0.

Fix ε > 0. We have

n1/4[Â(n)(t) − Â(n)(τ (n)(t)
)]

= n1/4
[
Â(n)(t) − Â(n)

((
t − ε√

n

)
∨ τ (n)(t)

)]
(4.9)

+ n1/4
[
Â(n)

((
t − ε√

n

)
∨ τ (n)(t)

)
− Â(n)(τ (n)(t)

)]
.

The second term on the right-hand side of (4.9) converges weakly to zero by (4.3).
The first term is bounded above by

n1/4 max
t−ε/

√
n≤s≤t

∣∣Â(n)(t) − Â(n)(s)
∣∣

(4.10)

= max
0≤s≤ε

n1/4
∣∣∣∣Â(n)(t) − Â(n)

(
t − s√

n

)∣∣∣∣.
One can check that ordinary and renewal functional central limit theorems for
triangular arrays (see, e.g., [5, 7, 13] and Theorem 14.6 in [3]) imply that

Ã(n)(s) � n1/4
(
Â(n)(t) − Â(n)

(
t − s√

n

))
⇒ B(s),(4.11)

where B is a Brownian motion (with zero drift and variance α2λ3 per unit time).
Therefore, (4.10) converges weakly to max0≤s≤ε |B(s)|, which, in turn, converges
to zero when ε ↓ 0. We conclude that

n1/4[Â(n)(t) − Â(n)(τ (n)(t)
)]⇒ 0.(4.12)
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The analysis of the second term on the right-hand side of (4.7) is similar to that
given above. For a fixed ε > 0, we have

n1/4
[
V̂ (n)

(
1√
n
Â(n)(t) + λ(n)t

)
− V̂ (n)

(
1√
n
Â(n)(τ (n)(t)

)+ λ(n)τ (n)(t)

)]

= n1/4
[
V̂ (n)

(
1√
n
Â(n)(t) + λ(n)t

)

− V̂ (n)

(
1√
n
Â(n)

((
t − ε√

n

)
∨ τ (n)(t)

)

+ λ(n)

((
t − ε√

n

)
∨ τ (n)(t)

))]
(4.13)

+ n1/4
[
V̂ (n)

(
1√
n
Â(n)

((
t − ε√

n

)
∨ τ (n)(t)

)

+ λ(n)

((
t − ε√

n

)
∨ τ (n)(t)

))

− V̂ (n)

(
1√
n
Â(n)(τ (n)(t)

)+ λ(n)τ (n)(t)

)]
.

As before, the second of the two terms on the right-hand side of (4.13) converges
weakly to zero by (4.3). To analyze the first one, we define a sequence of processes
(depending on the parameters t ≥ 0 and ε > 0) by

Ṽ
(n)
t,ε (s) � n−1/4

[
V (n)

(√
ns + λ(n)n

(
t − ε√

n

)+)

− V (n)

(
λ(n)n

(
t − ε√

n

)+)
− �√ns

µ(n)

]
.

By the above-mentioned functional central limit theorems for triangular arrays,

Ṽ
(n)
t,ε (s) ⇒ B̃(s),(4.14)

where B̃ is a Brownian motion (with drift zero and variance β2 per unit time).
Moreover,

n1/4
[
V̂ (n)

(
1√
n
Â(n)(t) + λ(n)t

)

− V̂ (n)

(
1√
n
Â(n)

((
t − ε√

n

)
∨ τ (n)(t)

)

+ λ(n)

((
t − ε√

n

)
∨ τ (n)(t)

))]
= Ṽ

(n)
t,ε

(
Â(n)(t) + λ(n)(

√
nt − (√

nt − ε
)+))(4.15)
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− Ṽ
(n)
t,ε

(
Â(n)

((
t − ε√

n

)
∨ τ (n)(t)

)

+ λ(n)(√nτ (n)(t) − (√
nt − ε

)+)+)
+ O

(
n−1/4).

The right-hand side of (4.15) converges weakly to 0 by (2.15), (4.3), (4.14) and
the differencing theorem. This, together with (4.7), (4.5), (4.8), (4.12) and (4.13),
gives (4.1). �

5. Approximation for the workload arrival measure. By Proposition 3.4
of [4], for every y0 < y∗,

sup
y0≤y≤y∗

∣∣V̂(n)(t)(y,∞) − H(y)
∣∣ P−→ 0.(5.1)

In this section we want to find the joint limiting distribution for the the rescaled
workload Ŵ (n)(t) and the empirical process

Ĵ (n)(y) � n1/4(V̂(n)(t)(y,∞) − H(y)
)
, y ≤ y∗,(5.2)

corresponding to (5.1). For y ≤ y∗, let

M
(n)
j (y) � v

(n)
j I{L(n)

j ≤√
ny} − 1

µ(n)
G(y).

We have

V̂(n)(t)(y,∞) = 1√
n

∞∑
j=1

v
(n)
j I{nt+√

ny−L
(n)
j <S

(n)
j ≤nt}

(5.3)
= I

(n)
1 (y) + I

(n)
2 (y),

where

I
(n)
1 (y) =

∫ y∗

y

1√
n

∞∑
j=1

I{nt+√
ny−√

n�<S
(n)
j ≤nt} dM

(n)
j (�),(5.4)

I
(n)
2 (y) =

∫ y∗

y

1√
n

∞∑
j=1

1

µ(n)
I{nt+√

ny−√
n�<S

(n)
j ≤nt} dG(�).(5.5)

In Sections 5.1 and 5.2 we study the limiting behavior of I
(n)
1 and I

(n)
2 , respectively.

We shall see that in the limit n1/4I
(n)
1 depends only on the service times and lead

times, not on the interarrival times, whereas I
(n)
2 obviously depends only on the

interarrival times. Hence, the limits of n1/4I
(n)
1 and n1/4(I

(n)
2 − H), both of which

exist, are independent. In Section 5.3 we use these obervations to characterize the
limiting distribution of (Ĵ (n), Ŵ (n)(t)).
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5.1. Asymptotic analysis for I
(n)
1 . For � ≥ y, we have

A(n)(nt) − A(n)(nt − √
n(� − y)

)
= λ(n)

√
n(� − y) + √

n

(
Â(n)(t) − Â(n)

(
t − 1√

n
(� − y)

))
(5.6)

= λ(n)
√

n(� − y) + n1/4Ã(n)(� − y).

From (5.4) and (5.6), by the fact that customer arrival times are independent of
their service times and lead times, we get

n1/4I
(n)
1 (y) = 1

n1/4

∫ y∗

y

A(n)(nt)∑
j=A(n)(nt−√

n(�−y))+1

dM
(n)
j (�)

d= 1

n1/4

∫ y∗

y

A(n)(nt)−A(n)(nt−√
n(�−y))∑

j=1

dM
(n)
j (�)(5.7)

= 1

n1/4

∫ y∗

y

λ(n)
√

n(�−y)+n1/4Ã(n)(�−y)∑
j=1

dM
(n)
j (�).

For s ≥ 0 and y ≤ y∗, let us define a random field

Y (n)(s, y) � 1

n1/4

�λ(n)s
√

n ∑
j=1

(
M

(n)
j (y∗) − M

(n)
j

(
j

λ(n)
√

n
+ y

))
.(5.8)

Then

1

n1/4

∫ y∗

y

�λ(n)
√

n(�−y)∑
j=1

dM
(n)
j (�)

= 1

n1/4

∫ y∗

y

�λ(n)
√

n(y∗−y)∑
j=1

I{�≥j/(λ(n)
√

n)+y} dM
(n)
j (�)

(5.9)

= 1

n1/4

�λ(n)
√

n(y∗−y)∑
j=1

(
M

(n)
j (y∗) − M

(n)
j

((
j

λ(n)
√

n
+ y

)
−
))

= Y (n)(y∗ − y, y−).

Let

R(n)(y) � 1

n1/4

∫ y∗

y

(A(n)(nt)−A(n)(nt−√
n(�−y))∑

j=1

−
�λ(n)

√
n(�−y)∑

j=1

)
dM

(n)
j (�).(5.10)
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Then, by the second inequality in (5.7) and (5.8)–(5.10),

n1/4I
(n)
1 (y)

d= Y (n)(y∗ − y, y−) + R(n)(y).(5.11)

In the remainder of this subsection we find the limiting distribution for Y (n) and
show that the process R(n) converges weakly to zero.

PROPOSITION 5.1. For every s0 > 0 and y0 < y∗, Y (n) ⇒ Y in D([0, s0] ×
[y0, y

∗]), where Y is a mean-zero Gaussian random field with continuous paths
and covariance

E[Y(s1, y1)Y (s2, y2)]
= λ

∫ s1∧s2

0

(
1

µ2 G
(
(y1 ∧ y2) + x

)+ β2
)(

1 − G
(
(y1 ∨ y2) + x

))
dx.

PROOF. We will first show that the sequence {Y (n)} is tight. For y ≤ y∗ and
j = 1,2, . . . , let

Gj(y) � G

(
j

λ(n)
√

n
+ y

)
.

Also, for 0 ≤ s1 ≤ s2 ≤ s3 ≤ s0, y0 ≤ y1 ≤ y2 ≤ y3 ≤ y∗, let

Y (n)((si, si+1] × (yk, yk+1])
� Y (n)(si+1, yk+1) − Y (n)(si, yk+1) − Y (n)(si+1, yk) + Y (n)(si, yk)

= 1

n1/4

�λ(n)si+1
√

n ∑
j=�λ(n)si

√
n +1

�M
(n)
j (yk, yk+1),

where

�M
(n)
j (yk, yk+1) � M

(n)
j

(
j

λ(n)
√

n
+ yk

)
− M

(n)
j

(
j

λ(n)
√

n
+ yk+1

)
.

We define B1 = (s1, s2]× (y1, y2] and we will take B2 to be a block “neighboring”
B1, considering both the case that

B2 = (s2, s3] × (y1, y2](5.12)

is to the right of B1 and also the case that

B2 = (s1, s2] × (y2, y3](5.13)

is above B1. Our goal in both cases is to obtain the bound (5.23).
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We continue with B2 given by (5.12). The independence of the random variables
�M

(n)
j (yk, yk+1) for different values of j implies

E
(
Y (n)(Bi)

)2 = 1√
n

�λ(n)si+1
√

n ∑
j=�λ(n)si

√
n +1

E
(
�M

(n)
j (y1, y2)

)2
,(5.14)

E
[(

Y (n)(B1)
)2(

Y (n)(B2)
)2]= E

(
Y (n)(B1)

)2
E
(
Y (n)(B2)

)2
,(5.15)

for i = 1,2. Let us note that

E
(
�M

(n)
j (y1, y2)

)2
= E

[
v

(n)
j I{j/λ(n)+√

ny1<L
(n)
j ≤j/λ(n)+√

ny2} − 1

µ(n)

(
Gj(y2) − Gj(y1)

)]2

(5.16)

= E
(
v

(n)
j

)2(
Gj(y2) − Gj(y1)

)− 1

(µ(n))2

(
Gj(y2) − Gj(y1)

)2
≤ C

(
Gj(y2) − Gj(y1)

)
,

where

C = sup
n

E
(
v

(n)
j

)2 = sup
n

{(
β(n))2 + 1

(µ(n))2

}
< ∞

is a constant independent of j and n because of (2.9). Let U(n) be a random vari-
able such that

P

[
U(n) = j

λ(n)
√

n

]
= 1

�λ(n)
√

ns0 , j = 1, . . . ,
⌊
λ(n)

√
ns0

⌋
.(5.17)

Let X be a random variable with cumulative distribution function G, independent
of U(n). For 0 ≤ s1 ≤ s2 ≤ s0, y0 ≤ y1 ≤ y2 ≤ y∗, let us define

m
(n)
1

(
(s1, s2] × (y1, y2])
� P

[(
U(n),X − U(n)) ∈ (s1, s2] × (y1, y2]](5.18)

= 1

�λ(n)
√

ns0
�s2λ

(n)
√

n∑
j=�s1λ

(n)
√

n+1

(
Gj(y2) − Gj(y1)

)
.

We have, by (5.14)–(5.18),

E
[(

Y (n)(B1)
)2(

Y (n)(B2)
)2]≤ C2

(�λ(n)
√

ns0√
n

)2

m
(n)
1 (B1)m

(n)
1 (B2)

(5.19)
≤ C2(λ(n)s0

)2
m

(n)
1 (B1)m

(n)
1 (B2).

We have obtained (5.23) with m(n) � λ(n)s0Cm
(n)
1 .
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Now let B2 be given by (5.13). Using the fact that E�M
(n)
j (yk+1, yk) = 0 and

the �M
(n)
j (yk, yk+1) are independent for different values of j , we have

E
[(

Y (n)(B1)
)2(

Y (n)(B2)
)2]

= 1

n
E

[( �λ(n)s2
√

n ∑
j=�λ(n)s1

√
n +1

�M
(n)
j (y1, y2)

)2( �λ(n)s2
√

n ∑
j=�λ(n)s1

√
n +1

�M
(n)
j (y2, y3)

)2]

= 1

n

�λ(n)s2
√

n ∑
j=�λ(n)s1

√
n +1

E
[(

�M
(n)
j (y1, y2)

)2(
�M

(n)
j (y2, y3)

)2]
(5.20)

+ 1

n

�λ(n)s2
√

n ∑
j,k=�λ(n)s1

√
n +1

j �=k

[
E
(
�M

(n)
j (y1, y2)

)2
E
(
�M

(n)
k (y2, y3)

)2]

+ 1

n

�λ(n)s2
√

n ∑
j,k=�λ(n)s1

√
n +1

j �=k

E
[
�M

(n)
j (y1, y2)�M

(n)
j (y2, y3)

]

× E
[
�M

(n)
k (y1, y2)�M

(n)
k (y2, y3)

]
.

Using (5.20) and proceeding as in (5.16), we can check that there exists a constant
C1 independent of j and n such that

E
[(

Y (n)(B1)
)2(

Y (n)(B2)
)2]

≤ C1

n

{ �λ(n)s2
√

n ∑
j=�λ(n)s1

√
n +1

(
Gj(y2) − Gj(y1)

)(
Gj(y3) − Gj(y2)

)
(5.21)

+ 2
�λ(n)s2

√
n ∑

j,k=�λ(n)s1
√

n +1
j �=k

(
Gj(y2) − Gj(y1)

)(
Gk(y3) − Gk(y2)

)}
.

Thus,

E
[(

Y (n)(B1)
)2(

Y (n)(B2)
)2]≤ 2

(
s0λ

(n))2C1m
(n)
1 (B1)m

(n)
1 (B2).(5.22)

By (5.18), (5.19) and (5.22), for all “neighboring blocks” B1 and B2 in [0, s0] ×
[y0, y

∗], we have

E
[(

Y (n)(B1)
)2(

Y (n)(B2)
)2]≤ m(n)(B1)m

(n)(B2),(5.23)

where m(n) � λ(n)s0(C + √
2C1 )m

(n)
1 .
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It is clear that m
(n)
1 ⇒ m1, and thus,

m(n) ⇒ m,(5.24)

where

m1
(
(s1, s2] × (y1, y2])� P

[
(U,X − U) ∈ (s1, s2] × (y1, y2]],

(5.25)
m � λs0

(
C +√

2C1
)
m1,

with independent random variables U and X having distributions uniform on
[0, s0] and G, respectively. In particular, m has continuous marginals. Then, by
(5.23), (5.24) and Theorem 3 from [1] (strictly speaking, by its extension described
on pages 1665–1666 of that paper), the sequence {Y (n)} is tight in D([0, s0] ×
[y0, y

∗]). (Note that Y (n) vanishes along ({0}× [y0, y
∗])∪ ([0, s0]× {y∗}), instead

of the “lower boundary” ({0} × [y0, y
∗]) ∪ ([0, s0] × {y0}), as required by the as-

sumptions of (the extension of ) Theorem 3 from [1], but the proof of the latter
result clearly goes through also in our case.)

Now we will show that the finite-dimensional distributions of Y (n) converge to
the corresponding distributions of Y . Let 0 ≤ s1 ≤ s2 ≤ s0 and y0 ≤ y1, y2 ≤ y∗ be
given. We claim that

lim
n→∞ E

[
Y (n)(s1, y1)Y

(n)(s2, y2)
]= E[Y(s1, y1)Y (s2, y2)].(5.26)

Let us observe that

E
[
Y (n)(s1, y1)Y

(n)(s2, y2)
]= E

[
Y (n)(s1, y1)Y

(n)(s1, y2)
]

+ E
[
Y (n)(s1, y1)

(
Y (n)(s2, y2) − Y (n)(s1, y2)

)]
= E

[
Y (n)(s1, y1)Y

(n)(s1, y2)
]
,

and E[Y(s1, y1)Y (s2, y2)] = E[Y(s1, y1)Y (s1, y2)] by the definition of Y , so it suf-
fices to check (5.26) for s1 = s2 � s. Assume that y1 ≤ y2. Then

E
[
Y (n)(s, y1)Y

(n)(s, y2)
]

= 1√
n

�λ(n)s
√

n ∑
j=1

E

[(
M

(n)
j (y∗) − M

(n)
j

(
j

λ(n)
√

n
+ y1

))

×
(
M

(n)
j (y∗) − M

(n)
j

(
j

λ(n)
√

n
+ y2

))]

= 1√
n

�λ(n)s
√

n ∑
j=1

E

[(
v

(n)
j I{j/(λ(n)

√
n)+y1<L

(n)
j /

√
n} − 1

µ(n)

(
1 − Gj(y1)

))

×
(
v

(n)
j I{j/(λ(n)

√
n)+y2<L

(n)
j /

√
n} − 1

µ(n)

(
1 − Gj(y2)

))]
(5.27)
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= 1√
n

�λ(n)s
√

n ∑
j=1

[
E
(
v

(n)
j

)2(1 − Gj(y2)
)

− 1

(µ(n))2

(
1 − Gj(y1)

)(
1 − Gj(y2)

)]

= 1√
n

�λ(n)s
√

n ∑
j=1

[(
1

(µ(n))2 + (
β(n))2)− 1

(µ(n))2

(
1 − Gj(y1)

)](
1 − Gj(y2)

)

= 1√
n

�λ(n)s
√

n ∑
j=1

[
1

(µ(n))2 Gj(y1) + (
β(n))2](1 − Gj(y2)

)
.

To obtain (5.26), we observe that the last term in (5.27) converges to

λ

∫ s

0

(
1

µ2 G(y1 + x) + β2
)(

1 − G(y2 + x)
)
dx = E[Y(s, y1)Y (s, y2)].

To show convergence of the finite-dimensional distributions of Y (n), we will
use the Cramér–Wold device (see, e.g., [2]). Fix m, 0 ≤ s1 ≤ · · · ≤ sm ≤ s0, y0 ≤
y1, . . . , ym ≤ y∗ and t1, . . . , tm ∈ R. Then

m∑
i=1

tiY
(n)(si, yi)

= 1

n1/4

m∑
i=1

ti

�λ(n)si
√

n ∑
j=1

(
M

(n)
j (y∗) − M

(n)
j

(
j

λ(n)
√

n
+ yi

))
(5.28)

=
�λ(n)sm

√
n ∑

j=1

X̃
(n)
j ,

where

X̃
(n)
j � 1

n1/4

∑
{i : j≤λ(n)

√
nsi}

ti

(
M

(n)
j (y∗) − M

(n)
j

(
j

λ(n)
√

n
+ yi

))

are independent, mean-zero random variables. By (5.28), we have

s2
n � Var

(�λ(n)sm
√

n ∑
j=1

X̃
(n)
j

)
= Var

(
m∑

i=1

tiY
(n)(si, yi)

)
(5.29)

=
m∑

i,k=1

ti tkE
[
Y (n)(si, yi)Y

(n)(sk, yk)
]
,
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so, by (5.26),

s2 � lim
n→∞ s2

n =
m∑

i,k=1

ti tkE[Y(si, yi)Y (sk, yk)]
(5.30)

= Var

(
m∑

i=1

tiY (si, yi)

)
.

If s = 0, then
∑m

i=1 tiY
(n)(si, yi) ⇒ ∑m

i=1 tiY (si, yi) by (5.29), (5.30) and the
Chebyshev inequality. Assume s > 0. We shall check that the random variables
X̃

(n)
j satisfy the Lindeberg condition. Let X

(n)
j � n1/4X̃

(n)
j . It is easy to see that

there exist constants C1,C2 > 0 such that |X(n)
j | ≤ C1v

(n)
j + C2 for every j , n. Let

ε > 0 be arbitrary. Then

1

s2
n

�λ(n)sm
√

n ∑
j=1

∫
{|X̃(n)

j |≥εsn}
(
X̃

(n)
j

)2
dP

= 1

s2
n

√
n

�λ(n)sm
√

n ∑
j=1

∫
{|X(n)

j |≥εsnn1/4}
(
X

(n)
j

)2
dP

≤ 2

s2
n

√
n

�λ(n)sm
√

n ∑
j=1

∫
{v(n)

j ≥(1/C1)(εsnn1/4−C2)}
(
C2

1
(
v

(n)
j

)2 + C2
2
)
dP(5.31)

= O(1)

∫
{v(n)

1 ≥(1/C1)(εsnn1/4−C2)}
(
v

(n)
1

)2
dP

+ O(1)P

[
v

(n)
1 ≥ εsnn

1/4 − C2

C1

]
.

As n → ∞,

P

[
v

(n)
1 ≥ εsnn

1/4 − C2

C1

]
≤ C1

εsnn1/4 − C2
Ev

(n)
1

(5.32)

= C1

(εsnn1/4 − C2)µ(n)
→ 0

and ∫
{v(n)

1 ≥(1/C1)(εsnn1/4−C2)}
(
v

(n)
1

)2
dP → 0(5.33)

by (2.11) and (5.32). Thus, by (5.31)–(5.33), the random variables X̃
(n)
j sat-

isfy the Lindeberg condition. Therefore, by the Lindeberg central limit theo-
rem, the sum

∑m
i=1 tiY

(n)(si, yi) converges weakly to N(0, s), the distribution of
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i=1 tiY (si, yi). We have proved convergence of the finite-dimensional distribu-

tions of Y (n) to the corresponding distributions of Y .
Finally, we show that the limiting random field Y has continuous sample paths.

By the Kolmogorov–C̆entsov theorem (see, e.g., [8]), it suffices to show that there
exists a constant C such that, for any 0 ≤ s1 ≤ s2, y1, y2 ≤ y∗,

E|Y(s1, y1) − Y(s2, y2)|6 ≤ C‖(s1, y1) − (s2, y2)‖3,(5.34)

where ‖ · ‖ denotes the Euclidean norm in R
2. It is well known that, for every n,

there exists a constant Cn such that, for every normal random variable Z̃ with mean
zero, EZ̃2n ≤ Cn(EZ̃2)n. In particular, because Y is Gaussian, to prove (5.34), it
suffices to find a constant C̃ such that

E|Y(s1, y1) − Y(s2, y2)|2 ≤ C̃‖(s1, y1) − (s2, y2)‖.(5.35)

We have

E|Y(s1, y1) − Y(s2, y2)|2
(5.36)

= EY(s1, y1)
2 − 2E[Y(s1, y1)Y (s2, y2)] + EY(s2, y2)

2.

But

|EY(s2, y2)
2 − E[Y(s1, y1)Y (s2, y2)]|

= λ

∣∣∣∣ ∫ s2

0

(
1

µ2 G(y2 + x) + β2
)(

1 − G(y2 + x)
)
dx

(5.37)

−
∫ s1

0

(
1

µ2 G
(
(y1 ∧ y2) + x

)+ β2
)

× (
1 − G

(
(y1 ∨ y2) + x

))
dx

∣∣∣∣.
If y1 ≤ y2, then the right-hand side of (5.37) equals

λ

µ2

∫ s1

0

(
G(y2 + x) − G(y1 + x)

)(
1 − G(y2 + x)

)
dx

+ λ

∫ s2

s1

(
1

µ2 G(y2 + x) + β2
)(

1 − G(y2 + x)
)
dx

≤ λ

µ2

∫ s1

0

(
G(y2 + x) − G(y1 + x)

)
dx +

(
λ

µ2 + λβ2
)
(s2 − s1)

= λ

µ2

(∫ y2+s1

y2

−
∫ y1+s1

y1

)
G(x)dx +

(
λ

µ2 + λβ2
)
(s2 − s1)

≤ λ

µ2 |y2 − y1| +
(

λ

µ2 + λβ2
)
(s2 − s1).
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Similarly, if y1 > y2, then the right-hand side of (5.37) is equal to

λ

∫ s1

0

(
1

µ2 G(y2 + x) + β2
)(

G(y1 + x) − G(y2 + x)
)
dx

+ λ

∫ s2

s1

(
1

µ2 G(y2 + x) + β2
)(

1 − G(y2 + x)
)
dx

≤ λ

(
1

µ2 + β2
)∫ s1

0

(
G(y1 + x) − G(y2 + x)

)
dx + λ

(
1

µ2 + β2
)
(s2 − s1)

≤ λ

(
1

µ2 + β2
)(|y2 − y1| + (s2 − s1)

)
.

Thus,

|EY(s2, y2)
2 − E[Y(s1, y1)Y (s2, y2)]| ≤ C1‖(s1, y1) − (s2, y2)‖,(5.38)

where C1 = √
2λ( 1

µ2 + β2). By a similar (in fact, simpler) argument, we get

|EY(s1, y1)
2 − E[Y(s1, y1)Y (s2, y2)]| ≤ C1‖(s1, y1) − (s2, y2)‖.(5.39)

Relations (5.36), (5.38) and (5.39) give (5.35) with C̃ = 2C1. �

LEMMA 5.2. Let Fn � σ(u
(n)
j , j = 1, . . . .) and let K(n) be Fn-measurable

stochastic processes such that K(n) ⇒ 0 in D[0,∞). For s ≥ 0 and y ≤ y∗, let

Z(n)(s, y) � 1

n1/4

�λ(n)s
√

n ∑
j=1

(
M

(n)
j (y∗) − M

(n)
j

(
y + j

λ(n)
√

n
− K(n)

(
j

λ(n)
√

n

)))
.

Then, for every s0 > 0 and y0 < y∗, Z(n) − Y (n) ⇒ 0 in D([0, s0] × [y0, y
∗]).

PROOF. Because K(n) ⇒ 0, there exists a sequence εn of positive numbers
converging to zero so slowly that P(An) → 1, where An = [sup0≤s≤s0

|K(n)(s)| ≤
εn]. It suffices to prove that (

Z(n) − Y (n))
IAn ⇒ 0(5.40)

in D([0, s0] × [y0, y
∗]). Relation (5.40) is a statement about weak convergence

of stochastic processes, so the underlying probability spaces are irrelevant. Thus,
without loss of generality, we can assume that all the random variables (and, thus,
all the prelimit processes) under consideration are defined on the same proba-
bility space (,A,P) and, moreover, all the arrival times {u(n)

j }∞j,n=1 are inde-

pendent of all the service times {v(n)
j }∞j,n=1 and all the lead times {L(n)

j }∞j,n=1.
This is not a limiting assumption, because if, for different n, the probability
spaces ((n),A(n),P

(n)) on which the sequences {u(n)
j }∞j=1, {v(n)

j }∞j=1, {L(n)
j }∞j=1



ACCURACY OF STATE SPACE COLLAPSE 541

are defined are different, we can take (,A,P) = ∏∞
n=1(

(n),A(n),P
(n)). Let

F � σ(u
(n)
j , j, n = 1, . . .). Note that, for any (deterministic) function f ,

E
[
f
(
Y (n),Z(n))|F ]= E

[
f
(
Y (n),Z(n))|K(n)(·)],(5.41)

that is, we can evaluate the left-hand side of (5.41) by conditioning on a sample
path of K(n)(·). As in the proof of Proposition 5.1, let U(n), n = 1, . . . , be a se-
quence of random variables with distribution (5.17), let X be a random variable
independent of this sequence and having cumulative distribution function G, and
let (X,U(1),U(2), . . .) be independent of F . Let m

(n)
2 be a random measure, de-

pending on the sample path of K(n)(·), defined by

m
(n)
2

(
(s1, s2] × (y1, y2])
� P

[(
U(n),X − U(n) + K(n)(U(n))) ∈ (s1, s2] × (y1, y2]|K(n)(·)]

= 1

�λ(n)
√

ns0 
�s2λ

(n)
√

n∑
j=�s1λ

(n)
√

n +1

(
G

(n)
j (y2) − G

(n)
j (y1)

)
,

where 0 ≤ s1 < s2 ≤ s0, y0 ≤ y1 < y2 ≤ y∗ and

G
(n)
j (y) � G

(
y + j

λ(n)
√

n
− K(n)

(
j

λ(n)
√

n

))
.

Let us also define random measures m
(n)
2 � m

(n)
2 IAn + m1IAc

n
, where m1 is the

measure defined by (5.25). Observe that, for every ω ∈ ,

m
(n)
2 (ω) ⇒ m1.(5.42)

Proceeding as in the proof of Proposition 5.1, we get

E
[(

Z(n)(B1)
)2(

Z(n)(B2)
)2

IAn |K(n)(·)]
≤ C2

1m
(n)
2 (B1)m

(n)
2 (B2)IAn(5.43)

≤ C2
1m

(n)
2 (B1)m

(n)
2 (B2)

for some deterministic constant C1 and any “neighboring blocks” B1,B2 ⊆
[0, s0] × [y0, y

∗]. As in the proof of Proposition 5.1, (5.42)–(5.43) imply that
the random fields Z(n)

IAn are conditionally tight with respect to K(n)(·). By
Proposition 5.1 and the fact that Y (n) is independent of F , the random fields
(Z(n) − Y (n))IAn are also conditionally tight with respect to K(n)(·). For any
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0 ≤ s ≤ s0 and y0 ≤ y ≤ y∗, we have

E
[(

Z(n) − Y (n))2(s, y)IAn |K(n)(·)]
≤ E(v

(n)
1 )2

√
n

�λ(n)s
√

n∑
j=1

(
G

(
y + j

λ(n)
√

n
+ εn

)
(5.44)

− G

(
y + j

λ(n)
√

n
− εn

))
≤ C̃m

(n)
1

(
(0, s] × (y − εn, y + εn])→ 0,

where C̃ is a constant independent of n, because, as we have seen in the proof of
Proposition 5.1, the measures m

(n)
1 converge weakly to a continuous measure m1.

In particular, the finite-dimensional conditional distributions of (Z(n) − Y (n))IAn

with respect to K(n)(·) converge to zero. Thus, the conditional distributions of the
random fields (Z(n) − Y (n))IAn on D([0, s0] × [y0, y

∗]) with respect to K(n)(·)
converge weakly to 0, so for any continuous and bounded function f :D([0, s0] ×
[y0, y

∗]) → R,

E
[
f
((

Z(n) − Y (n))
IAn

)|F ]= E
[
f
((

Z(n) − Y (n))
IAn

)|K(n)(·)]→ f (0),

where the equality follows from (5.41). This implies (5.40), because, by the
bounded convergence theorem,

Ef
((

Z(n) − Y (n))
IAn

)= E
{
E
[
f
((

Z(n) − Y (n))
IAn

)|F ]}→ f (0). �

PROPOSITION 5.3. R(n) ⇒ 0 in D(−∞, y∗].

PROOF. Let y ≤ y∗ be given. For any 1 ≤ j ≤ A(n)(nt) − A(n)(nt − √
n ×

(y∗ − y)) and y ≤ � ≤ y∗, A(n)(nt) − A(n)(nt − √
n(� − y)) ≥ j if and only if

nt − √
n(� − y) < S

(n)

A(n)(nt)−j+1
which, in turn, is equivalent to � > y + 1√

n
(nt −

S
(n)

A(n)(nt)−j+1
). Thus,

∫ y∗

y

A(n)(nt)−A(n)(nt−√
n(�−y))∑

j=1

dM
(n)
j (�)

=
A(n)(nt)−A(n)(nt−√

n(y∗−y))∑
j=1

(
M

(n)
j (y∗)(5.45)

− M
(n)
j

(
y + 1√

n

(
nt − S

(n)

A(n)(nt)−j+1

)))
.
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For s ≥ 0 and y ≤ y∗, let

X(n)(s, y) � 1

n1/4

�λ(n)s
√

n ∑
j=1

(
M

(n)
j (y∗) − M

(n)
j

(
y + 1√

n

(
nt − S

(n)

(A(n)(nt)−j+1)+
)))

= 1

n1/4

�λ(n)s
√

n ∑
j=1

(
M

(n)
j (y∗) − M

(n)
j

(
y + j

λ(n)
√

n
− H(n)

(
j

λ(n)
√

n

)))
,

where, for u ≥ 0,

H(n)(u) � 1√
n

[
S

(n)

�A(n)(nt)+1−λ(n)
√

nu∨0
− (

nt − √
nu
)]

= Ŝ
(n)

((1/n)A(n)(nt)+(1/n)−λ(n)u/
√

n )+ + 1

λ(n)
√

n

⌊
A(n)(nt) + 1 − λ(n)

√
nu
⌋+

− √
nt + u.

Observe that, by (2.15), (2.16) and the differencing theorem, with probability ap-
proaching 1,

H(n)(u) = Ŝ
(n)

λ(n)t+o(1)
+ 1

λ(n)
Â(n)(t) + O

(
1√
n

)
⇒ 0.

By Lemma 5.2, for every s0 > 0 and y0 < y∗,

X(n) − Y (n) ⇒ 0(5.46)

in D([0, s0] × [y0, y
∗]) and, thus, by Proposition 5.1,

X(n) ⇒ Y(5.47)

in D([0, s0]×[y0, y
∗],R). By (5.10), (5.45), the definition of X(n), (5.6) and (5.9),

R(n)(y) = X(n)

(
y∗ − y + 1

λ(n)n1/4 Ã(n)(y∗ − y), y

)
− Y (n)(y∗ − y, y−)

=
(
X(n)

(
y∗ − y + 1

λ(n)n1/4 Ã(n)(y∗ − y), y

)
− X(n)(y∗ − y, y)

)
+ (

X(n)(y∗ − y, y) − Y (n)(y∗ − y, y)
)

+ (
Y (n)(y∗ − y, y) − Y (n)(y∗ − y, y−)

)
,

which converges to 0 in D[y0, y
∗] for every y0 < y∗ by (4.11), Proposition 5.1,

(5.46), (5.47), continuity of the sample paths of Y and the differencing theorem.
�
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5.2. Asymptotic analysis for I
(n)
2 . The analysis of the limiting behavior of

n1/4I
(n)
2 (y) is easier. We have the following:

LEMMA 5.4. We have n1/4(I
(n)
2 − H) ⇒ Z in D(−∞, y∗], where Z is a

mean-zero Gaussian process with continuous paths and covariance

E[Z(y1)Z(y2)] = λα2ρ2
∫ y∗

y1

∫ y∗

y2

(� − y1) ∧ (k − y2) dG(�)dG(k).

PROOF. For y ≤ y∗, let Z(y) � 1
µ

∫ y∗
y B(�−y)dG(�), where B is a zero-drift

Brownian motion with variance α2λ3 per unit time. It is easy to see that Z is a
mean-zero Gaussian process with continuous sample paths. Furthermore,

E[Z(y1)Z(y2)] = E

[
1

µ

∫ y∗

y1

B(� − y1) dG(�) · 1

µ

∫ y∗

y2

B(k − y2) dG(k)

]

= 1

µ2

∫ y∗

y1

∫ y∗

y2

E[B(� − y1)B(k − y2)]dG(�) dG(k)

= α2λρ2
∫ y∗

y1

∫ y∗

y2

(� − y1) ∧ (k − y2) dG(�)dG(k).

Finally, by (5.5),

I
(n)
2 (y) = 1

µ(n)
√

n

∫ y∗

y

(
A(n)(nt) − A(n)(nt − √

n(� − y)
))

dG(�)

= 1

µ(n)

∫ y∗

y

(
λ(n)(� − y) + Â(n)(t) − Â(n)

(
t − � − y√

n

))
dG(�)(5.48)

= ρ(n)
∫ y∗

y
(� − y)dG(�) +

∫ y∗

y

1

µ(n)n1/4 Ã(n)(� − y)dG(�),

and thus, by (2.9), (2.10), (4.11) and the fact that∫ y∗

y
(� − y)dG(�) = H(y),(5.49)

we have [with Ã defined by (4.11)]

n1/4(I (n)
2 (y) − H(y)

)
(5.50)

=
∫ y∗

y

1

µ(n)
Ã(n)(� − y)dG(�) + O

(
1

n1/4

)
⇒ Z(y). �
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5.3. Asymptotic analysis for (Ĵ (n), Ŵ (n)(t)).

COROLLARY 5.5. We have Ĵ (n) ⇒ J ∗ in D(−∞, y∗], where J ∗ is a mean-
zero Gaussian process with continuous paths and covariance (3.5).

PROOF. By (5.7), (5.9), (5.10), (5.50), Propositions 5.1, 5.3 and the indepen-
dence of the arrivals, the service times and the lead times,(

n1/4I
(n)
1 (y), n1/4(I (n)

2 (y) − H(y)
))

=
(

1

n1/4

∫ y∗

y

λ(n)
√

n(�−y)+n1/4Ã(n)(�−y)−1∑
j=0

dM
(n)

A(n)(nt)−j
(�),

∫ y∗

y

1

µ(n)
Ã(n)(� − y)dG(�)

)
+ o(1)

d=
(

1

n1/4

∫ y∗

y

λ(n)
√

n(�−y)+n1/4Ã(n)(�−y)∑
j=1

dM
(n)
j (�),(5.51)

∫ y∗

y

1

µ(n)
Ã(n)(� − y)dG(�)

)
+ o(1)

=
(
Y (n)(y∗ − y, y−) + R(n)(y),

∫ y∗

y

1

µ(n)
Ã(n)(� − y)dG(�)

)
+ o(1)

⇒ (
Y(y∗ − y, y),Z(y)

)
,

where Y and Z are as in Proposition 5.1 and Lemma 5.4, independent of each
other. Thus, by (5.2), (5.3) and (5.51), Ĵ (n) ⇒ J ∗, as claimed. �

PROPOSITION 5.6. We have (Ĵ (n), Ŵ (n)(t)) ⇒ (J ∗,W ∗(t)) in D(−∞, y∗]×
R, where J ∗ is as in Corollary 5.5 and W ∗ is a reflected Brownian motion with
variance (α2ρ2 + β2)λ per unit time and drift −γ , independent of J ∗.

PROOF. Fix an arbitrary y0 < y∗. By (2.17), Corollary 5.5 and its proof, it suf-
fices to show that Ŵ (n)(t) is asymptotically independent of the pair of processes
(n1/4I

(n)
1 (y), n1/4(I

(n)
2 (y) − H(y))), y0 ≤ y ≤ y∗. We assume throughout the

proof that n is sufficiently large so that nt − √
n(y∗ − y0) > 0. We note at the

outset that, by (2.17) and the differencing theorem,

Ŵ (n)

(
t − 1√

n
(y∗ − y0)

)
− Ŵ (n)(t) ⇒ 0.(5.52)

Denote T
(n)
1 � S

(n)

A(n)(nt−√
n(y∗−y0))

and T
(n)
2 � S

(n)

A(n)(nt−√
n(y∗−y0))+1

, so that

T
(n)
1 ≤ nt − √

n(y∗ − y0) < T
(n)
2 . Define θ(n) = T

(n)
2 − (nt − √

n(y∗ − y0)). The
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process A(n)(s), 0 ≤ s ≤ nt − √
n(y∗ − y0), and the process

A
(n)

(y) � A(n)(T (n)
2 + √

n(y − y0)
)− A(n)(T (n)

2

)
= A(n)(nt − √

n(y∗ − y) + θ(n))− A(n)(nt − √
n(y∗ − y0) + θ(n)),

y0 ≤ y ≤ y∗, are independent.
We show now that

1

n1/4 θ(n) ⇒ 0.(5.53)

Using the process Ŝ(n) that has the continuous limit S∗ in (2.15), we may write

max
0≤τ≤2λt

∣∣Ŝ(n)(τ ) − Ŝ(n)(τ−)
∣∣= 1√

n
max

1≤j≤�2λnt

∣∣∣∣u(n)
j − 1

λ(n)

∣∣∣∣
≥ max

1≤j≤�2λnt
1√
n
u

(n)
j − 1√

nλ(n)
.

Because the limit of Ŝ(n) is continuous, the term max1≤j≤�2λnt 1√
n
u

(n)
j converges

to zero in probability. Since Â(n) ⇒ A∗, we can choose a sequence of sets {Bn}∞n=1
with P(Bn) → 1 such that A(n)(nt) ≤ 2λnt − 1 on Bn. We set

s
(n)
1 = 1√

n

(
nt − T

(n)
1

)
, s

(n)
2 = 1√

n

(
nt − T

(n)
2

)
,

so
1√
n
uA(n)(nt−√

n(y∗−y0))+1 = 1√
n

(
T

(n)
2 − T

(n)
1

)= s
(n)
1 − s

(n)
2 ≥ 1√

n
θ(n).

In particular, (s
(n)
1 − s

(n)
2 )IBn converges to zero in probability, and hence, so does

s
(n)
1 −s

(n)
2 . We have s

(n)
2 = s

(n)
1 −(s

(n)
1 −s

(n)
2 ) ≥ y∗−y0 −(s

(n)
1 −s

(n)
2 ), so P(Cn) →

1, where Cn = [s(n)
2 ≥ 0]. On the set Cn, the differencing theorem now implies that

zero is the limit in probability of

Ã(n)(s(n)
1

)− Ã(n)(s(n)
2

)= 1

n1/4

(
A(n)(nt − s

(n)
2

√
n
)− A(n)(nt − s

(n)
1

√
n
)

− λ(n)
√

n
(
s
(n)
1 − s

(n)
2

))
= 1

n1/4

(
1 − λ(n)

√
n
(
s
(n)
1 − s

(n)
2

))
.

We conclude that n1/4(s
(n)
1 − s

(n)
2 ) ⇒ 0. This implies (5.53).

Recall that

n1/4I
(n)
1 (y) = 1

n1/4

∫ y∗

y

A(n)(nt)∑
j=A(n)(nt−√

n(�−y))+1

dM
(n)
j (�), y0 ≤ y ≤ y∗.
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We define the related process Ĩ
(n)
1 (y) by

n1/4Ĩ
(n)
1 (y) = 1

n1/4

∫ y∗

y

A(n)(nt+θ(n))∑
j=A(n)(nt−√

n(�−y)+θ(n))+1

dM
(n)
j (�)

= 1

n1/4

∫ (y+θ(n)/
√

n )∧y∗

y

A(n)(nt+θ(n))∑
j=A(n)(nt−√

n(�−y)+θ(n))+1

dM
(n)
j (�)

(5.54)

+ 1

n1/4

∫ y∗

(y+θ(n)/
√

n )∧y∗

A(n)(nt+θ(n))∑
j=A(n)(nt)+1

dM
(n)
j (�)

+ n1/4I
(n)
1

((
y + θ(n)

√
n

)
∧ y∗

)
.

Recall further that, by (5.48) and (5.49),

n1/4(I (n)
2 (y) − H(y)

)= n1/4

µ(n)

∫ y∗

y

[
Â(n)(t) − Â(n)

(
t − � − y√

n

)]
dG(�)

+ n1/4(ρ(n) − 1
)
H(y), y0 ≤ y ≤ y∗.

We define the related process Ĩ
(n)
2 (y) by

n1/4(Ĩ (n)
2 (y) − H(y)

)
= n1/4

µ(n)

∫ y∗

y

[
Â(n)

(
t + θ(n)

n

)
− Â(n)

(
t − � − y√

n
+ θ(n)

n

)]
dG(�)

= n1/4

µ(n)

∫ (y+θ(n)/
√

n )∧y∗

y

[
Â(n)

(
t + θ(n)

n

)

− Â(n)

(
t − � − y√

n
+ θ(n)

n

)]
dG(�)(5.55)

+ n1/4
(
I

(n)
2

((
y + θ(n)

√
n

)
∧ y∗

)
− H

(
y + θ(n)

√
n

))

− n1/4(ρ(n) − 1
)
H

(
y + θ(n)

√
n

)

+ n1/4

µ(n)

[
Â(n)

(
t + θ(n)

n

)
− Â(n)(t)

][
G(y∗) − G

(
y + θ(n)

√
n

)]
.

Note in (5.55) that G(y) = G(y∗) = 1 and H(y) = H(y∗) = 0 for y ≥ y∗, so
evaluating G and H at y + θ(n)√

n
gives the same result as evaluating these functions
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at (y + θ(n)√
n
)∧y∗. The pair of processes (Ĩ

(n)
1 (y), Ĩ

(n)
2 (y);y0 ≤ y ≤ y∗) is indepen-

dent of the random variable Ŵ (n)(t − 1√
n
(y∗ −y0)), as we now explain. In Ĩ

(n)
1 (y),

the sum j = A(n)(nt − √
n(� − y) + θ(n)) + 1 to A(n)(nt + θ(n)) has

A(n)(nt + θ(n))− A(n)(nt − √
n(� − y) + θ(n))= A

(n)
(y∗) − A

(n)(
y∗ − (l − y)

)
terms, and this is independent of Ŵ (n)(t − 1√

n
(y∗ − y0)). The M

(n)
j processes

appearing in this sum involve service times v
(n)
j , but these particular indices j do

not appear in the definition of Ŵ (n)(t − 1√
n
(y∗ − y0)). The integrand appearing

in Ĩ
(n)
2 (y),

Â(n)

(
t + θ(n)

n

)
− Â(n)

(
t − � − y√

n
+ θ(n)

n

)

= 1√
n

[
A(n)(nt + θ(n))− A(n)(nt − √

n(� − y) + θ(n))− λ(n)
√

n(l − y)
]

= 1√
n

[
A

(n)
(y∗) − A

(n)(
y∗ − (l − y)

)− λ(n)
√

n(l − y)
]
,

is also independent of Ŵ (n)(t − 1√
n
(y∗ − y0)).

It remains to show

n1/4(Ĩ (n)
1 (y) − I

(n)
1 (y)

)⇒ 0, n1/4(Ĩ (n)
2 (y) − I

(n)
2 (y)

)⇒ 0.(5.56)

This will imply that the limit of the pair (n1/4I
(n)
1 (y), n1/4(I

(n)
2 (y) − H(y)))

is independent of W ∗(t), the limit of Ŵ (n)(t − 1√
n
(y∗ − y0)). Since Ĵ (n)(y) =

n1/4I
(n)
1 (y) + n1/4(I

(n)
2 (y) − H(y)) ⇒ J ∗(y), we will have the desired result.

From (5.54), we have

n1/4(Ĩ (n)
1 (y) − I

(n)
1 (y)

)
= 1

n1/4

∫ (y+θ(n)/
√

n )∧y∗

y

A(n)(nt+θ(n))∑
j=A(n)(nt−√

n(�−y)+θ(n))+1

dM
(n)
j (�)

(5.57)

+ 1

n1/4

A(n)(nt+θ(n))∑
j=A(n)(nt)+1

[
M

(n)
j (y∗) − M

(n)
j

((
y + θ(n)

√
n

)
∧ y∗

)]

+ n1/4
[
I

(n)
1

((
y + θ(n)

√
n

)
∧ y∗

)
− I

(n)
1 (y)

]
.
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For every y ∈ [y0, y
∗], the absolute value of each of the first two terms on the

right-hand side of (5.57) is bounded above by

1

n1/4

A(n)(nt+θ(n))∑
j=A(n)(nt)+1

(
v

(n)
j + 1

µ(n)

)
.(5.58)

The ordinary and renewal functional central limit theorems for triangular arrays
(see, e.g., [5, 7, 13] and Theorem 14.6 in [3]) imply that

C̃(n)(s) � 1

n1/4

[
A(n)(nt + √

ns
)− A(n)(nt) − λ(n)

√
ns
]

(5.59)

= n1/4
[
Â(n)

(
t + s√

n

)
− Â(n)(t)

]
⇒ C∗(s),

where C∗ is a Brownian motion with zero drift and variance α2λ3 per unit time. In
particular, C̃(n)(sn−1/4) ⇒ 0 in D[0,∞) and, thus,

1

n1/4

[
A(n)(nt + sn1/4) − A(n)(nt)

]⇒ λs(5.60)

in D[0,∞). Let ε > 0 be given. The convergence (5.53) implies that P(Dn) → 1,
where Dn = [θ(n) ≤ εn1/4]. On Dn, the expression (5.58) is dominated by

1

n1/4

A(n)(nt+εn1/4)∑
j=A(n)(nt)+1

(
v

(n)
j + 1

µ(n)

)

= A(n)(nt + εn1/4) − A(n)(nt)

n1/4

× 1

A(n)(nt + εn1/4) − A(n)(nt)

A(n)(nt+εn1/4)∑
j=A(n)(nt)+1

(
v

(n)
j + 1

µ(n)

)
,

which converges weakly to λε · 2
λ

= 2ε by (5.60) and the law of large numbers
for triangular arrays, together with the independence of the arrival times and the
service times. Thus, the expression (5.58) converges to zero in probability. To see
that the third term on the right-hand side of (5.57) converges to zero, we use (5.53),
the fact that n1/4I

(n)
1 (y) ⇒ Y(y∗ − y, y) by (5.11) and Propositions 5.1, 5.3, the

joint continuity of Y and the differencing theorem. This concludes the proof of the
first convergence claimed in (5.56).

For the second convergence claimed in (5.56), we use (5.55) to write

n1/4(Ĩ (n)
2 (y) − I

(n)
2 (y)

)
= n1/4

µ(n)

∫ (y+θ(n)/
√

n)∧y∗

y

[
Â(n)

(
t + θ(n)

n

)
(5.61)
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− Â(n)

(
t − � − y√

n
+ θ(n)

n

)]
dG(�)

+ n1/4
[(

I
(n)
2

((
y + θ(n)

√
n

)
∧ y∗

)

− H

(
y + θ(n)

√
n

))
− (

I
(n)
2 (y) − H(y)

)]

− n1/4(ρ(n) − 1
)
H

(
y + θ(n)

√
n

)

+ n1/4

µ(n)

[
Â(n)

(
t + θ(n)

n

)
− Â(n)(t)

][
G(y∗) − G

(
y + θ(n)

√
n

)]
.

The absolute value of the first term on the right-hand side of (5.61) is bounded
uniformly in y0 ≤ y ≤ y∗ by 2

µ(n) sup0≤s≤θ(n)/
√

n |C̃(n)(s)|, which converges to zero
by (5.53) and (5.59). Convergence to zero of the second term on the right-hand
side of (5.61) follows from Lemma 5.4, (5.53) and the differencing theorem. The
absolute value of the third term in (5.61) is bounded uniformly in y0 ≤ y ≤ y∗ by
n1/4|ρ(n) − 1|H(y0), which converges to zero by (2.10). Finally, the last term on
the right-hand side of (5.61) converges weakly to zero by (5.53), (5.59) and the
differencing theorem. �

COROLLARY 5.7. We have (Ĵ (n), Ŵ (n)(t), F̂ (n)(t)) ⇒ (J ∗,W ∗(t),F ∗(t)) in
the space D(−∞, y∗] × R

2.

PROOF. By the definition of the frontier, customers with lead times at time nt

exceeding F (n)(nt) have not received any service by that time. Thus, by Corol-
lary 3.8 of [4] and the display above (3.32) in [4],

Ŵ (n)(t) = V̂(n)(t)
(
F̂ (n)(t),∞)+ Ŵ (n)(t)

[
Ĉ(n)(t), F̂ (n)(t)

]
= V̂(n)(t)

(
F̂ (n)(t),∞)+ o(1)(5.62)

= H
(
F̂ (n)(t)

)+ o(1).

The function H−1 is continuous, hence, uniformly continuous on each bounded
interval [0, c], c > 0, and the Lipschitz constant of H−1 on [c,∞) approaches 1 as
c → ∞. In particular, H−1 is uniformly continuous on [0,∞), so (5.62) implies
that H−1(Ŵ (n)(t)) − F̂ (n)(t) ⇒ 0. Thus, by Proposition 5.6,(

Ĵ (n), Ŵ (n)(t), F̂ (n)(t)
) = (

Ĵ (n), Ŵ (n)(t),H−1(Ŵ (n)(t)
))+ o(1)

⇒ (
J ∗,W ∗(t),F ∗(t)

)
. �
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6. Proofs of the main results. In this section we prove Theorems 3.3, 3.4
and Proposition 3.5. We need the following refinement of Lemma 4.1 to include
the right endpoint F̂ (n)(t).

LEMMA 6.1. We have n1/4Ŵ (n)(t)[Ĉ(n)(t), F̂ (n)(t)] ⇒ 0.

PROOF. By Proposition 3.1 and Lemma 4.1, it suffices to show that, for any
fixed y0 < y∗,

n1/4Ŵ (n)(t)
{
F̂ (n)(t)

}
I{F̂ (n)(t)≥y0} ⇒ 0.(6.1)

Take a sequence εn ↓ 0 such that εn = o(n−1/4). Then

n1/4Ŵ (n)(t)
{
F̂ (n)(t)

}
I{F̂ (n)(t)≥y0}

≤ n1/4V̂(n)(t)
{
F̂ (n)(t)

}
I{F̂ (n)(t)≥y0}

≤ n1/4[V̂(n)(t)
(
F̂ (n)(t) − εn,∞)− V̂(n)(t)

(
F̂ (n)(t),∞)]

I{F̂ (n)(t)≥y0}
(6.2)

≤ [
Ĵ (n)(F̂ (n)(t) − εn

)− Ĵ (n)(F̂ (n)(t)
)]

I{F̂ (n)(t)≥y0}
+ n1/4(H (

F̂ (n)(t) − εn

)− H
(
F̂ (n)(t)

))
≤ ω

(
Ĵ (n), εn

)+ n1/4εn,

where, for x ∈ D(−∞, y∗] and δ > 0,

ω(x, δ) � sup
y0−ε1≤s1≤s2≤y∗

s2−s1≤δ

|x(s2) − x(s1)|

[and we have used Lipschitz continuity of H in the last line of (6.2)]. The right-
hand side of the last inequality in (6.2) converges weakly to zero by Corollary 5.5
and the choice of εn. This shows (6.1). �

PROOF OF THEOREM 3.3. For every y ≤ y∗, we have

n1/4[Ŵ (n)(t)(y,∞) − H
(
y ∨ F̂ (n)(t)

)]
= n1/4[Ŵ (n)(t)

([
Ĉ(n)(t), F̂ (n)(t)

]∩ (y,∞)
)

(6.3)
+ V̂(n)(t)

(
y ∨ F̂ (n)(t),∞)− H

(
y ∨ F̂ (n))]

= Ĵ (n)(y ∨ F̂ (n)(t)
)+ o(1),

where the first equality follows from the definition of the frontier as in the
proof of Corollary 5.7 and the second one from Lemma 6.1. The mapping
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� :D(−∞, y∗] × (−∞, y∗] → D(−∞, y∗] defined by �(x,y)(·) � x(y ∨ ·) is
continuous on C(−∞, y∗] × (−∞, y∗]. Thus, by (6.3) and Corollary 5.7,

n1/4[Ŵ (n)(t)(y,∞) − H
(
y ∨ F̂ (n))] = �

(
Ĵ (n), F̂ (n)(t)

)
(y) + o(1)

⇒ �
(
J ∗,F ∗(t)

)
(y)

= J ∗(y ∨ F ∗(t)
)

in D(−∞, y∗]. �

PROOF OF THEOREM 3.4. Let � : [0,∞)2 × R → D(−∞, y∗] be the map-
ping defined by �(a, a, c)(y) � cI{y<H−1(a)}, �(a, b, c)(y) � c

a−b
(a ∧ H(y) −

b ∧H(y)) for a �= b. It is easy to check that � is a continuous map of [0,∞)2 ×R

into the space D(−∞, y∗] endowed with the M1 topology. As in (6.3), we have

n1/4[Ŵ (n)(t) − H
(
F̂ (n)(t)

)]= n1/4[Ŵ (n)(t)
[
Ĉ(n)(t), F̂ (n)(t)

]
+ V̂(n)(t)

(
F̂ (n)(t),∞)− H

(
F̂ (n)(t)

)]
= Ĵ (n)(F̂ (n)(t)

)+ o(1),

so, by Corollary 5.7, we get(
Ŵ (n)(t),H

(
F̂ (n)(t)

)
, n1/4[Ŵ (n)(t) − H

(
F̂ (n)(t)

)])
(6.4)

⇒ (
W ∗(t),W ∗(t), J ∗(F ∗(t))

)
,

because the mapping � :D(−∞, y∗]× (−∞, y∗] → R defined by �(x,y) � x(y)

is continuous on C(−∞, y∗] × (−∞, y∗]. By (1.6) and (6.4),

n1/4[H (
y ∨ H−1(Ŵ (n)(t)

))− H
(
y ∨ F̂ (n)(t)

)]
= n1/4[(H(y) ∧ Ŵ (n)(t)

)− (
H(y) ∧ H

(
F̂ (n)(t)

))]
= �

(
Ŵ (n)(t),H

(
F̂ (n)(t)

)
, n1/4[Ŵ (n)(t) − H

(
F̂ (n)(t)

)])
(y)(6.5)

⇒ �
(
W ∗(t),W ∗(t), J ∗(F ∗(t))

)
(y)

= J ∗(F ∗(t))I{y<F ∗(t)},
where weak convergence holds in the M1 topology. The J1 topology on D(−∞,

y∗] is stronger than the M1 topology, so, by Theorem 3.3, (3.4) holds in the M1
topology. It is clear from the above argument and the proof of Theorem 3.3 that the
convergence (3.4) and (6.5) is, in fact, joint [because both (3.4) and (6.5) follow
from Corollary 5.7 by the continuous mapping theorem]. Thus,

n1/4[Ŵ (n)(t)(y,∞) − H
(
y ∨ H−1(Ŵ (n)(t)

))]
= n1/4[Ŵ (n)(t)(y,∞) − H

(
y ∨ F̂ (n)(t)

)]
− n1/4[H (

y ∨ H−1(Ŵ (n)(t)
))− H

(
y ∨ F̂ (n)(t)

)]
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⇒ J ∗(y ∨ F ∗(t)
)− J ∗(F ∗(t))I{y<F ∗(t)}

= J ∗(y)I{F ∗(t)≤y}

in the M1 topology. �

PROOF OF PROPOSITION 3.5. Recall from (6.4) that

n1/4[Ŵ (n)(t) − H
(
F̂ (n)(t)

)]⇒ J ∗(F ∗(t)).(6.6)

We derive (3.7) from (6.6) using the delta method. Let us observe that H is a
convex, decreasing function on R. In particular, H−1 is convex on [0,∞) and
both H and H−1 have one-sided derivatives at each point of their domains. Clearly,
H ′(y+) = G(y) − 1, y ∈ R. Also,

(H−1)′(H(y)−)H ′(y+) = 1, y < y∗.(6.7)

Indeed, for every ε > 0 and y < y∗, we have

1 = 1

ε

(
H−1(H(y + ε)

)− H−1(H(y))
)

= H−1(H(y + ε)) − H−1(H(y))

H(y + ε) − H(y)
· H(y + ε) − H(y)

ε

→ (H−1)′(H(y)−)H ′(y+)

as ε ↓ 0, so (6.7) holds. For every n, there is an element D(n) (depending on the
elementary event ω) belonging to the subdifferential of H−1 at some intermediate
point z ∈ [Ŵ (n)(t) ∧ H(F̂ (n)(t)), Ŵ (n)(t) ∨ H(F̂ (n)(t))] such that

H−1(Ŵ (n)(t)
)− F̂ (n)(t) = D(n)[Ŵ (n)(t) − H

(
F̂ (n)(t)

)]
.(6.8)

By (6.7), for any z > 0,

(H−1)′(z−) = 1

H ′(H−1(z)+)
= 1

G(H−1(z)) − 1
.(6.9)

Applying (6.9) to a sequence zn ↓ z, we get

(H−1)′(z+) = 1

G(H−1(z)−) − 1
.(6.10)

Using (6.9), (6.10) and convexity of H−1, we get

1

G(H−1(Ŵ (n)(t) ∧ H(F̂ (n)(t)))) − 1
(6.11)

≤ D(n) ≤ 1

G(H−1(Ŵ (n)(t) ∨ H(F̂ (n)(t)))−) − 1
.
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Multiplying both sides of (6.8) by n1/4, using (6.4), (6.11), together with continuity
of the distribution of F ∗(t) and the fact that G has at most countably many jumps,
we obtain

n1/4[H−1(Ŵ (n)(t)
)− F̂ (n)(t)

]⇒ J ∗(F ∗(t))
G(F ∗(t)) − 1

.(6.12)

Finally, let us observe that J ∗ is a mean-zero Gaussian process, independent of
F ∗(t), so (J ∗,F ∗(t)) and (−J ∗,F ∗(t)) have the same distribution. Therefore,
(6.12) implies (3.7). �

7. First-in-first-out simulations. To illustrate our results, we consider the
special case of constant initial lead times, that is,

G(y) = I{y≥y∗} for some y∗ ∈ R.(7.1)

In this case, all customers in the nth system arrive with initial lead time
√

ny∗
and EDF reduces to the well-known first-in-first-out (FIFO) service discipline.
By (7.1), we have H(y) = (y∗ − y)+ and H−1(w) = y∗ − w for all w ≥ 0. Thus,
by (1.6), F ∗(t) = y∗ − W ∗(t). Evaluating the right-hand side of (3.5), we get
E[J ∗(y1)J

∗(y2)] = λ(α2ρ2 + β2)((y∗ − y1) ∧ (y∗ − y2)), so J ∗(y) = B(y∗ − y),
y ≤ y∗, where B is a Brownian motion with zero drift and variance λ(α2ρ2 + β2)

per unit time, independent of W ∗(t). By Theorem 3.3,

n1/4[Ŵ (n)(t)(y,∞) − (
y∗ − (

y ∨ F̂ (n)(t)
))]⇒ B

(
(y∗ − y) ∧ W ∗(t)

)
(7.2)

in D(−∞, y∗] [by definition, F̂ (n)(t) ≤ y∗]. Theorem 3.4 yields

n1/4[Ŵ (n)(t)(y,∞) − (
(y∗ − y) ∧ Ŵ (n)(t)

)]⇒ B(y∗ − y)I{W ∗(t)≥y∗−y}(7.3)

in D(−∞, y∗] endowed with the M1 topology. Finally, because W ∗(t) > 0 almost
surely, we have G(F ∗(t)) = 0 almost surely and by Proposition 3.5,

n1/4[(y∗ − Ŵ (n)(t)
)− F̂ (n)(t)

]⇒ B(W ∗(t))(7.4)

in D(−∞, y∗].
This case (with y∗ = 0 for convenience) was already considered in [9]. In par-

ticular, (7.2) and (7.3) are contained in Corollary 4.5 and Theorem 4.1 from [9],
respectively. Note that the convergence in Theorem 4.1 from [9] takes place in
D(−∞,0] endowed with the M1 topology, although this was not written explic-
itly in the statement of that theorem.

We conduct two types of simulations. For the first simulation, we observe that
an important use of the theory in [4] is to predict the amount of lateness that will
be incurred by the queueing system, and the result of this paper concerns the accu-
racy of that prediction. In particular, [4] provides the limiting lateness result (see
Theorem 3.2)

Ŵ∗(t)(−∞,0] = W ∗(t) − Ŵ∗(t)(0,∞) = (
W ∗(t) − y∗)+.(7.5)
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In particular, (
Ŵ (n)(t) − y∗)+ − Ŵ (n)(t)(−∞,0] ⇒ 0.(7.6)

The first term on the left-hand side of (7.6) is the lateness predicted by the theory
as a function of the scaled workload, and the second term is the actual lateness.
Setting y = 0 in (7.3), we obtain

n1/4[(Ŵ (n)(t) − y∗)+ − Ŵ (n)(t)(−∞,0]]⇒ B(y∗)I{W ∗(t)≥y∗}.(7.7)

With the change of variable s = nt , we conclude from (7.7) that(
W(n)(s) − √

ny∗)+ − W (n)(s)(−∞,0]
= √

n
(
Ŵ (n)(t) − y∗)+ − √

nŴ (n)(t)(−∞,0]
d≈ n1/4B(y∗)I{W ∗(t)≥y∗}(7.8)

d= B
(√

ny∗)
I{√nW ∗(t)≥√

ny∗}
= B

(√
ny∗)

I{W̃ (s)≥√
ny∗},

where W̃ (s) � √
nW ∗( s

n
) is a reflected Brownian motion with drift − γ√

n
and vari-

ance λ(α2ρ2 + β2) per unit time.
We assume in this section that γ is strictly positive. Under this assumption, the

stationary distribution of W̃ is exponential with mean 1
θ

, where θ = 2γ√
nλ(α2ρ2+β2)

.
When conducting simulations on a single system, as opposed to a sequence of

systems indexed by n, we know only the prelimit quantities γ (n)√
n

= 1 − ρ(n), λ(n),

α(n) and β(n) for a single value of n, and we do not know the value of n. We thus
define

θ(n) � 2(1 − ρ(n))

λ(n)[(α(n))2(ρ(n))2 + (β(n))2] ,

a quantity we use as a surrogate for θ . In particular, an approximate density for
W̃ (s) is

f (y) = θ(n) exp
(−θ(n)y

)
, y ≥ 0,(7.9)

and an approximate distribution for (W(n)(s) − √
ny∗)+ − W (n)(s)(−∞,0] is a

mixture of a normal distribution with mean zero and variance 2(1−ρ(n))
√

ny∗
θ(n) with

total mass exp(−θ(n)
√

ny∗) and a point mass of size 1 − exp(−θ(n)
√

ny∗) at 0.
We will shortly present simulations to assess the accuracy of this approximate
distribution.

While (7.2) and (7.3) are assertions about convergence of processes, (7.4) is an
assertion about convergence of random variables. It describes the accuracy of the
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prediction of the frontier as the function H−1 applied to the workload. From (7.4)
we have√

ny∗ − W(n)(s) − F (n)(s) = √
ny∗ − √

nŴ (n)(t) − √
n F̂ (n)(t)

d≈ n1/4B(W ∗(t))(7.10)

d= B
(√

nW ∗(t)
)= B(W̃(s)).

Because B(y) is normal with mean-zero and variance approximately equal to
2(1−ρ(n))y

θ(n) and B(y) is independent of W ∗(t), the density of B(W̃(s)) is approxi-
mately

g(x) =
√

θ(n)

4π(1 − ρ(n))

∫ ∞
−∞

1√
y

exp
(
− θ(n)x2

4(1 − ρ(n))y

)
f (y) dy.(7.11)

Using the Laplace transform formula∫ ∞
0

1√
y

e−(a/4y)−py dy =
√

π

p
e−√

ap, a ≥ 0,p > 0,

we can simplify (7.11) to obtain Laplace’s density

g(x) = θ(n)

2
√

1 − ρ(n)
exp

(
− |x|θ(n)√

1 − ρ(n)

)
, x ∈ R.(7.12)

To test the predictive value of (7.8) and (7.10) as approximations to the
empirical distributions of (Wn(s) − √

ny∗)+ − W (n)(s)(−∞,0] and
√

ny∗ −
W(n)(s) − F (n)(s), we simulated a single server queueing system with Poisson ar-
rivals (λ(n) = 0.96) and with three different service distributions: Exponential(1),
Gamma(2, 0.5) and Uniform[0.5, 1.5]. Each of these distributions has mean 1 but
different variances, so in all cases, ρ(n) = 0.96. All customers had a constant ini-
tial lead time of

√
ny∗ = 30. The queueing system began in an empty state and

was simulated for T = 4,000 time units to ensure that the equilibrium assump-
tion underlying the use of (7.9) as an approximate density for W̃ (s) was valid.
The simulation was independently repeated a total of 4,000 times to determine the
empirical distribution.

Figures 1, 2 and 3 present normal Q–Q plots of the values for (W(n)(s) −√
ny∗)+ − W (n)(s)(−∞,0] restricted to the situation in which W(n)(s) ≥ 30. In

this case, these values should be approximated by a normal distribution and the
normal plot should be close to linear. These three figures provide strong confirma-
tion of the accuracy of the continuous part of the proposed limiting distribution.
Table 1 compares the theoretical probability that W(n)(s) ≥ 30 with the empirical
probability derived from the simulation. The tabled probabilities are the total mass
associated with the continuous part of the distribution. Again, the table shows the
theory to be remarkably accurate.

The same simulations were used to assess the second limiting result. In particu-
lar, Figures 4, 5 and 6 address the accuracy of approximating

√
ny∗ − W(n)(s) −
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FIG. 1. Q–Q normal plot of continuous part of (7.8): exponential service.

FIG. 2. Q–Q normal plot of continuous part of (7.8): gamma service.
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FIG. 3. Q–Q normal plot of continuous part of (7.8): uniform service.

FIG. 4. Sorted values of (7.10) and Q–Q plot versus Laplace distribution (7.12): exponential ser-
vice.
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FIG. 5. Sorted values of (7.12) and Q–Q plot versus Laplace distribution (7.12): gamma service.

F (n)(s) by the Laplace distribution defined by (7.12). The figures differ only in
the particular choice of service distribution. The figures on the left present the
sorted values of

√
ny∗ − W(n)(s) − F (n)(s) from 4,000 independent simulations

of an M/G/1 queue stopped at time T = 4,000. To evaluate the appropriateness
of the proposed Laplace distribution approximation, the plots on the right present
a Q–Q plot with respect to the Laplace distribution. The more linear the plot, the
more appropriate is the Laplace distribution. The curves in each of these figures
are highly linear; hence, they offer strong evidence of the appropriateness of this
approximation.

FIG. 6. Sorted values of (7.12) and Q–Q plot versus Laplace disribution (7.12): uniform service.
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TABLE 1
Mass of the continuous part of (7.8)

Service distribution Variance Theory: exp(−30θ (n)) Simulation

Exponential 1.000 0.2865 0.2840
Gamma(2, 0.5) 0.500 0.1889 0.1880
Uniform 0.083 0.0995 0.0975
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