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SOME STRONG LIMIT THEOREMS FOR THE LARGEST
ENTRIES OF SAMPLE CORRELATION MATRICES

BY DELI LI1 AND ANDREW ROSALSKY

Lakehead University and University of Florida

Let {Xk,i ; i ≥ 1, k ≥ 1} be an array of i.i.d. random variables and
let {pn;n ≥ 1} be a sequence of positive integers such that n/pn is
bounded away from 0 and ∞. For Wn = max1≤i<j≤pn

|∑n
k=1 Xk,iXk,j |

and Ln = max1≤i<j≤pn
|ρ̂(n)

i,j | where ρ̂
(n)
i,j denotes the Pearson correlation

coefficient between (X1,i , . . . ,Xn,i )
′ and (X1,j , . . . ,Xn,j )′, the limit laws

(i) limn→∞ Wn
nα = 0 a.s. (α > 1/2), (ii) limn→∞ n1−αLn = 0 a.s. (1/2 <

α ≤ 1), (iii) limn→∞ Wn√
n logn

= 2 a.s. and (iv) limn→∞( n
logn

)1/2Ln = 2

a.s. are shown to hold under optimal sets of conditions. These results follow
from some general theorems proved for arrays of i.i.d. two-dimensional ran-
dom vectors. The converses of the limit laws (i) and (iii) are also established.
The current work was inspired by Jiang’s study of the asymptotic behavior of
the largest entries of sample correlation matrices.

1. Introduction. At the origin of the current investigation is the statistical
hypothesis testing problem studied by Jiang [7] using the asymptotic distribu-
tion of the largest entry of a sample correlation matrix. Jiang’s [7] work will
now be discussed. Consider a p-variate population (p ≥ 2) represented by a
random vector X = (X1, . . . ,Xp) with unknown mean µ = (µ1, . . . ,µp), un-
known covariance matrix � and unknown correlation coefficient matrix R. Let
Mn,p = (Xk,i)1≤k≤n,1≤i≤p be an n × p matrix whose rows are an observed ran-
dom sample of size n from the X population; that is, the rows of Mn,p are indepen-
dent copies of X. Jiang [7] assumed that both n and p are large; more precisely,
Jiang [7] assumed that, for some 0 < γ < ∞, p = pn ∼ γ n as n → ∞. In con-
tradistinction to classical multivariate data analysis wherein the dimension p is
fixed (see, e.g., Anderson [2]), in contemporary multivariate data analysis the di-
mension p can be very large and can vary with n and be comparable with n (see,
e.g., Donoho [5] and Johnstone [8] who fittingly illustrate this point with many
examples comprising a diversity of applications).

When both n and p are large, Jiang [7] considered the statistical test with
null hypothesis H0 : R = I, where I is the p × p identity matrix. In general, this
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null hypothesis asserts that the components of X = (X1, . . . ,Xp) are uncorrelated
whereas when X has a p-variate normal distribution, this null hypothesis asserts
that these components are independent.

Jiang’s [7] test statistic is extremely intuitive and will now be described. Let
n ≥ 2. Set X̄

(n)
i = ∑n

k=1 Xk,i/n,1 ≤ i ≤ p. Let X(n)
i denote the ith column

of Mn,p,1 ≤ i ≤ p, let e = (1, . . . ,1)′ ∈ Rn and let ‖ · ‖ be the Euclidean norm
in Rn. Jiang’s [7] test is based on the test statistic

Ln = max
1≤i<j≤p

∣∣ρ̂(n)
i,j

∣∣,(1.1)

where

ρ̂
(n)
i,j =

∑n
k=1(Xk,i − X̄

(n)
i )(Xk,j − X̄

(n)
j )

(
∑n

k=1(Xk,i − X̄
(n)
i )2)1/2(

∑n
k=1(Xk,j − X̄

(n)
j )2)1/2

(1.2)

= (X(n)
i − X̄

(n)
i e)′(X(n)

j − X̄
(n)
j e)

‖X(n)
i − X̄

(n)
i e‖ · ‖X(n)

j − X̄
(n)
j e‖

is the Pearson correlation coefficient between the ith and j th columns of Mn,p .
Jiang [7] proved the following two limit theorems concerning the test statis-

tic Ln when p = pn and M = {Xk,i; i ≥ 1, k ≥ 1} is an array of independent and
identically distributed (i.i.d.) random variables. Theorem 1.1 provides a law of the
logarithm (LL) for Ln and Theorem 1.2 establishes the asymptotic distribution
of Ln. The limiting distribution in Theorem 1.2 is a type-I extreme value distribu-
tion.

THEOREM 1.1 ([7]). Suppose that E|X1,1|r < ∞ for all 0 < r < 30. If
limn→∞ n

pn
= γ ∈ (0,∞), then

lim
n→∞

(
n

logn

)1/2

Ln = 2 almost surely (a.s.).

THEOREM 1.2 ([7]). Suppose that E|X1,1|r < ∞ for some r > 30. If
limn→∞ n

pn
= γ ∈ (0,∞), then

lim
n→∞P(nL2

n − 4 logn + log logn ≤ t) = exp
{
− 1

γ 2
√

8π
e−t/2

}
,

−∞ < t < ∞.

Let Rn = (ρ̂
(n)
i,j )1≤i,j≤pn be the pn×pn sample correlation matrix obtained from

Mn,pn = (X(n)
1 , . . . ,X(n)

pn ). As was discussed by Jiang [7], by shifting and scaling

each column X(n)
i of Mn,pn , the new data matrix and Mn,pn have the same sample
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correlation matrix Rn. Thus if the population is pn-variate normal, under the null
hypothesis that the pn components of X are independent, the distribution of Rn

is the same as that generated by a data matrix composed of i.i.d. N(0,1) random
variables. Jiang [7] thus obtained the following corollary of Theorems 1.1 and 1.2.

COROLLARY 1.1 ([7]). Let M = {Xk,i; i ≥ 1, k ≥ 1} be an array of indepen-
dent random variables where Xk,i ∼ N(µi, σ

2
i ), i ≥ 1, k ≥ 1 where σ 2

i > 0, i ≥ 1.
Let the sample correlation matrix Rn be obtained from Mn,pn = {Xk,i;1 ≤ i ≤
pn,1 ≤ k ≤ n}, n ≥ 1 where {pn;n ≥ 1} is a sequence of positive integers satis-
fying limn→∞ n

pn
= γ ∈ (0,∞). Then the conclusions of Theorems 1.1 and 1.2

prevail.

In the current work, the main results are Kolmogorov–Marcinkiewicz–
Zygmund-type strong laws of large numbers (SLLNs) (Theorems 2.1 and 2.2)
as well as LLs (Theorems 2.3 and 2.4) for both {Wn;n ≥ 1} and {Ln;n ≥ 1} where

Wn = max
1≤i<j≤pn

∣∣∣∣∣
n∑

k=1

Xk,iXk,j

∣∣∣∣∣, n ≥ 1.(1.3)

Note that
∑n

k=1 Xk,iXk,j is the (i, j)th entry of M′
n,pn

Mn,pn , 1 ≤ i, j ≤ n,n ≥ 1.
In Theorems 2.1 and 2.3 the conditions are also shown to be necessary. (As in The-
orems 1.1 and 1.2, the array M = {Xk,i; i ≥ 1, k ≥ 1} is composed of i.i.d. random
variables.) We prove in Theorem 2.4 that Theorem 1.1 holds under substantially
weaker moment conditions and the condition limn→∞ n

pn
= γ ∈ (0,∞) is weak-

ened as well. More specifically, the hypotheses of Theorem 2.4 will be satisfied
if E|X1,1|6 < ∞ and n/pn is bounded away from 0 and ∞; limn→∞ n

pn
does not

need to exist.
The main tools employed by Jiang [7] in proving Theorem 1.1 are (i) a result

of Amosova [1] on probabilities of moderate deviations which sharpens a result
of Rubin and Sethuraman [12], and (ii) a special case of Theorem 1 of [3] which
is, in turn, a special case of the Chen–Stein Poisson approximation method. In the
current work, we use quite a few results from classical probability theory and a
recent generalization of the Hoffmann–Jørgensen [6] inequalities due to Li and
Rosalsky [10].

The plan of the paper is as follows. Theorems 2.1–2.4 will be stated in Sec-
tion 2 but their proofs will be deferred until Section 4. In Section 3, three very
general results (Theorems 3.1–3.3) will be established concerning arrays of i.i.d.
two-dimensional random vectors. These results are of interest in their own right
but the last two of them will be used in Section 4 to prove Theorems 2.1–2.4.

2. The main results. Throughout, let M = {Xk,i; i ≥ 1, k ≥ 1} be an array
of i.i.d. random variables, let {pn;n ≥ 1} be a sequence of positive integers, and
for n ≥ 1, consider the n × pn matrix Mn,pn as defined in Section 1. Let ρ̂

(n)
i,j be
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defined as in (1.2), 1 ≤ i, j ≤ n,n ≥ 1. Let {Ln;n ≥ 1} be as in (1.1) with p = pn

and let {Wn;n ≥ 1} be as in (1.3).
The first theorem is a Kolmogorov–Marcinkiewicz–Zygmund-type SLLN for

{Wn;n ≥ 1}.

THEOREM 2.1. Suppose that n/pn is bounded away from 0 and ∞. Let
α > 1/2. Then

lim
n→∞

Wn

nα
= 0 a.s.(2.1)

if and only if

∞∑
n=1

P

(
max

1≤i<j≤n
|XiXj | ≥ nα

)
< ∞(2.2)

and

EX1 = 0 whenever α ≤ 1.

Here and below Xi = X1,i , i ≥ 1.

REMARK 2.1. Note that

P

(
max

1≤i<j≤n
|XiXj | ≥ nα

)
≤ n2P(|X1X2| ≥ nα), n ≥ 1

and so (2.2) holds if

∞∑
n=1

n2P(|X1X2| ≥ nα) < ∞

which is equivalent to E|X1X2|3/α < ∞. Thus, (2.2) holds if E|X1|3/α < ∞. Also
note that

P

(
max

1≤i<j≤n
|XiXj | ≥ nα

)
∧ n

2
P(|X1X2| ≥ nα)

≥ P

(
max

1≤i≤n/2

∣∣XiX[n/2]+i

∣∣ ≥ nα

)

≥ 1 − exp
{
−n

2
P(|X1X2| ≥ nα)

}
, n ≥ 2

and hence since 1 − e−x ∼ x as x → 0,

∞∑
n=2

P

(
max

1≤i≤n/2

∣∣XiX[n/2]+i

∣∣ ≥ nα

)
< ∞
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if and only if
∞∑

n=1

nP (|X1X2| ≥ nα) < ∞

which is equivalent to E|X1X2|2/α < ∞. Thus E|X1|2/α < ∞ if (2.2) holds.

The second theorem is a Kolmogorov–Marcinkiewicz–Zygmund-type SLLN
for {Ln;n ≥ 1}.

THEOREM 2.2. Suppose that n/pn is bounded away from 0 and ∞. Let 1/2 <

α ≤ 1. If X1,1 is nondegenerate and (2.2) holds, then

lim
n→∞n1−αLn = 0 a.s.(2.3)

The third theorem establishes a LL for {Wn;n ≥ 1}.
THEOREM 2.3. Suppose that n/pn is bounded away from 0 and ∞. Then

lim
n→∞

Wn√
n logn

= 2 a.s.(2.4)

if and only if

EX1 = 0,EX2
1 = 1 and

∞∑
n=1

P

(
max

1≤i<j≤n
|XiXj | ≥

√
n logn

)
< ∞.(2.5)

REMARK 2.2. By an argument similar to that in Remark 2.1, the condition
∞∑

n=1

P

(
max

1≤i<j≤n
|XiXj | ≥

√
n logn

)
< ∞(2.6)

is weaker than the condition

E

(
(X1X2)

6

(log(e + |X1X2|))3

)
< ∞(2.7)

but stronger than the condition

E

(
(X1X2)

4

(log(e + |X1X2|))2

)
< ∞.(2.8)

Let h1(t) = E(X6
1I (|X1| ≤ t)) and h2(t) = E(X4

1I (|X1| ≤ t)), t ≥ 0. Then, by
using Fubini’s theorem, we can see that (2.7) and (2.8) are, respectively, equivalent
to

E

(
X6

1h1(|X1|)
(log(e + |X1|))3

)
< ∞
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and

E

(
X4

1h2(|X1|)
(log(e + |X1|))2

)
< ∞.

REMARK 2.3. Note that

P

(
max

1≤i<j≤n
|XiXj | ≥

√
n logn

)
= P

(
Zn : 1Zn : 2 ≥

√
n logn

)
,

where Zn : 1 and Zn : 2 are, respectively, the largest and the second largest of the
random variables |X1|, |X2|, . . . , |Xn|. Thus (2.6) is equivalent to

∞∑
n=1

P
(
Zn : 1Zn : 2 ≥

√
n logn

)
< ∞.(2.9)

Clearly,

P
(
Zn : 1Zn : 2 ≥

√
n logn

) ≥ P
(
Z2

n : 2 ≥
√

n logn
)

= P
(
Zn : 2 ≥ (n logn)1/4)

, n ≥ 1.

Let tn = P(|X1| ≥ (n logn)1/4), n ≥ 1. Then (2.6) implies that

∞∑
n=1

P
(
Zn : 2 ≥ (n logn)1/4)

=
∞∑

n=1

(
1 − (1 − tn)

n − ntn(1 − tn)
n−1)

< ∞
and hence (2.6) implies that ntn = o(1). These two consequences of (2.6) entail

∞∑
n=1

n2t2
n =

∞∑
n=1

n2(
P

(|X1| ≥ (n logn)1/4))2
< ∞.(2.10)

It follows from the Cauchy–Schwarz inequality and (2.10) that

∞∑
n=1

n1/2

log(n + 1)
P (X4

1 > n logn)

≤
( ∞∑

n=1

1

n log2(n + 1)

)1/2( ∞∑
n=1

n2(
P

(|X1| ≥ (n logn)1/4))2
)1/2

< ∞

and hence (2.6) ensures that

E|X1|β < ∞ for all 0 < β < 6.
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The fourth theorem establishes a LL for {Ln;n ≥ 1}.
THEOREM 2.4. Suppose that n/pn is bounded away from 0 and ∞. If X1 is

nondegenerate and (2.6) holds, then

lim
n→∞

(
n

logn

)1/2
Ln = 2 a.s.(2.11)

3. Three general results. In this section three very general results will be
established. Theorems 3.2 and 3.3 will be used in Section 4 to prove the four
theorems in Section 2.

Let {(Uk,i, Vk,i); i ≥ 1, k ≥ 1} be an array of i.i.d. two-dimensional random vec-
tors. Let {pn;n ≥ 1} be a sequence of positive integers and consider the n × pn

matrices

An ≡ (Uk,i)1≤k≤n,1≤i≤pn, Bn ≡ (Vk,i)1≤k≤n,1≤i≤pn, n ≥ 1.

Then A′
nBn is a pn × pn matrix whose (i, j)th entry is

∑n
k=1 Uk,iVk,j , n ≥ 1. Let

Tn = max
1≤i �=j≤pn

∣∣∣∣∣
n∑

k=1

Uk,iVk,j

∣∣∣∣∣, n ≥ 1.

Let {Yn;n ≥ 1} be a sequence of i.i.d. random variables where Y1 has the same
distribution as U1,1V1,2 and set Sn = ∑n

k=1 Yk,n ≥ 1.
Theorem 3.1 may now be presented. It is a very general result wherein the as-

ymptotic fluctuation behavior of Tn is governed by a Baum–Katz–Lai-type com-
plete convergence result. It is not assumed that n/pn is bounded away from
0 and ∞.

THEOREM 3.1. Let {an;n ≥ 1} be a sequence of positive constants such that
an ↑ ∞ and

lim
c↓1

lim sup
n→∞

a[cn]
an

= 1.(3.1)

Suppose that the sequence {pn;n ≥ 1} is nondecreasing. If

Sn

an

P−→ 0(3.2)

and
∞∑

n=1

p2
n

n
P

( |Sn|
an

> λ

)
< ∞ for some 0 < λ < ∞,(3.3)

then

lim sup
n→∞

Tn

an

≤ λ a.s.(3.4)
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PROOF. Let δ > 0 be arbitrary. By (3.1), we can choose c > 1 such that

a[cn] ≤ (1 + δ)an for all large n.(3.5)

Note that for all large n

max
cn−1<m≤cn

Tm = max
cn−1<m≤cn

max
1≤i �=j≤pm

∣∣∣∣∣
m∑

k=1

Uk,iVk,j

∣∣∣∣∣
≤ max

1≤i �=j≤p[cn]
max

cn−1<m≤cn

∣∣∣∣∣
m∑

k=1

Uk,iVk,j

∣∣∣∣∣
≡ Hn (say)

and hence for all large n

P

(
max

cn−1<m≤cn

Tm

am

> (1 + 3δ)2λ

)

≤ P

(
Hn

a[cn]
> (1 + 3δ)λ

)
[by (3.5)]

≤ (
p[cn]

)2
P

(
max

cn−1<m≤cn

|Sm|
a[cn]

> (1 + 3δ)λ

)
.

Note that (3.2) ensures that

lim
n→∞ min

1≤k≤n
P (Sn − Sk > −δλan) = 1

and

lim
n→∞ min

1≤k≤n
P (Sn − Sk < δλan) = 1.

It then follows from Theorem 2.3 of [11] that for all large n

P

(
max

cn−1<m≤cn

Tm

am

> (1 + 3δ)2λ

)
(3.6)

≤ 2
(
p[cn]

)2
P

( |S[cn]|
a[cn]

> (1 + 2δ)λ

)
.

Again recalling (3.2), for all large n and m ∈ [[cn], [cn+1]−1], another application
of Theorem 2.3 of [11] yields

P

( |S[cn]|
a[cn]

> (1 + 2δ)λ

)

≤ P

(
max[cn]≤j≤m

|Sj |
a[cn]

> (1 + 2δ)λ

)
(3.7)
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≤ 2P

( |Sm|
a[cn]

> (1 + δ)λ

)

≤ 2P

(
(1 + δ)|Sm|

a[cn+1]
> (1 + δ)λ

)
[by (3.5)]

≤ 2P

( |Sm|
am

> λ

)
.

Since [cn+1] − [cn] ∼ c−1
c

([cn+1] − 1), it follows from (3.6) and (3.7) that for all
large n

P

(
max

cn−1<m≤cn

Tm

am

> (1 + 3δ)2λ

)

≤ 4
(
p[cn]

)2
∑[cn+1]−1

m=[cn] P(|Sm|/am > λ)

[cn+1] − [cn]

≤ 8c

c − 1

(
p[cn]

)2
∑[cn+1]−1

m=[cn] P(|Sm|/am > λ)

[cn+1] − 1

≤ 8c

c − 1

[cn+1]−1∑
m=[cn]

p2
m

m
P

( |Sm|
am

> λ

)
.

Then by (3.3) and the Borel–Cantelli lemma,

P

(
max

cn−1<m≤cn

Tm

am

> (1 + 3δ)2λ i.o. (n)

)
= 0

whence

lim sup
n→∞

Tn

an

≤ (1 + 3δ)2λ a.s.

Since δ > 0 is arbitrary, the conclusion (3.4) is established. �

Consider the sequence of partial sums {Sn;n ≥ 1} defined prior to the statement
of Theorem 3.1. Let β > 0 and α > 1/2, and assume that EY1 = 0 if α ≤ 1. Ac-
cording to the celebrated theorem of Baum and Katz [4], the following are equiv-
alent:

∞∑
n=1

n2β−1P

( |Sn|
nα

> ε

)
< ∞ for all ε > 0,

∞∑
n=1

n2β−1P

(
sup
m≥n

|Sm|
mα

> ε

)
< ∞ for all ε > 0,

E|Y1|(2β+1)/α < ∞.(3.8)
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Note that (3.8) is equivalent to

E|U1,1|(2β+1)/α < ∞ and E|V1,1|(2β+1)/α < ∞(3.9)

and that EY1 = 0 is equivalent to

(EU1,1)(EV1,1) = 0.(3.10)

Combining Theorem 3.1 and the Baum–Katz [4] theorem yields the following.

COROLLARY 3.1. Let α > 1/2 and β > 0. Suppose that (3.9) holds and if
α ≤ 1 that (3.10) holds. Then

lim
n→∞

max1≤i �=j≤nβ |∑n
k=1 Uk,iVk,j |

nα
= 0 a.s.

PROOF. Let an = nα and pn = [nβ], n ≥ 1. Then (3.1) is immediate and
(3.3) holds for all λ > 0 by the Baum–Katz [4] theorem. It follows from (3.8)
that E|Y1|1/α < ∞ whence by the Kolmogorov–Marcinkiewicz–Zygmund SLLN,
(3.2) holds. Thus (3.4) holds for all λ > 0 by Theorem 3.1. Since λ > 0 is arbitrary,
the corollary is proved. �

Again consider the sequence of partial sums {Sn;n ≥ 1} defined prior to the
statement of Theorem 3.1 and let β > 0. By a theorem of Lai [9],

∞∑
n=2

n2β−1P

( |Sn|√
n logn

> λ

)
< ∞ for all λ > 2

√
β

if

EY1 = 0, EY 2
1 = 1 and E

( |Y1|4β+2

(log(e + |Y1|))2β+1

)
< ∞.(3.11)

Combining Theorem 3.1 and Lai’s [9] theorem yields the following.

COROLLARY 3.2. Let β > 0 and suppose that

(EU1,1)(EV1,1) = 0, (EU2
1,1)(EV 2

1,1) = 1

and

E

( |U1,1V1,2|4β+2

(log(e + |U1,1V1,2|))2β+1

)
< ∞.(3.12)

Then

lim sup
n→∞

max1≤i �=j≤nβ |∑n
k=1 Uk,iVk,j |√

n logn
≤ 2

√
β a.s.
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PROOF. Set a1 = 1, an = √
n logn,n ≥ 2 and pn = [nβ], n ≥ 1. Then (3.1)

is immediate. Note that (3.12) and (3.11) are equivalent. The first two conditions
of (3.11) and Chebyshev’s inequality ensure that (3.2) holds. Now (3.3) holds for
all λ > 2

√
β by Lai’s [9] theorem. Thus by Theorem 3.1,

lim sup
n→∞

Tn√
n logn

≤ λ a.s. for all λ > 2
√

β.

The conclusion follows by letting λ ↓ 2
√

β . �

Throughout the rest of this section, it is not being assumed that {pn;n ≥ 1} is
monotone.

THEOREM 3.2. Suppose that n/pn is bounded away from 0 and ∞. Let
α > 1/2. Then

lim
n→∞

Tn

nα
= 0 a.s.(3.13)

if and only if
∞∑

n=1

P

(
max

1≤i �=j≤n
|U1,iV1,j | ≥ nα

)
< ∞(3.14)

and

(EU1,1)(EV1,1) = 0 whenever α ≤ 1.

THEOREM 3.3. Suppose that n/pn is bounded away from 0 and ∞. If

(EU1,1)(EV1,1) = 0, (EU2
1,1)(EV 2

1,1) = 1

and
∞∑

n=1

P

(
max

1≤i �=j≤n
|U1,iV1,j | ≥

√
n logn

)
< ∞,(3.15)

then

lim sup
n→∞

Tn√
n logn

≤ 2 a.s.(3.16)

Conversely, if

lim sup
n→∞

Tn√
n logn

< ∞ a.s.,(3.17)

then (EU1,1)(EV1,1) = 0, (EU2
1,1)(EV 2

1,1) < ∞ and (3.15) holds.

For the proofs of Theorems 3.2 and 3.3 we need the following two lemmas.
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LEMMA 3.1. Let {an;n ≥ 1} be a nondecreasing sequence of positive con-
stants such that

lim
n→∞an+1/an = 1 and lim inf

n→∞ a2n/an = b ∈ (1,∞].
Then, for every c > 0 and q > 1, the following statements are equivalent:

∞∑
n=1

P

(
max

1≤i �=j≤n
|U1,iV1,j | ≥ an

)
< ∞,(3.18)

∞∑
n=1

P

(
max

1≤i �=j≤cn
|U1,iV1,j | ≥ εan

)
< ∞ for all ε > 0,(3.19)

∞∑
n=1

P

(
max

1≤m≤qn
max

1≤i �=j≤cm
|Um,iVm,j | ≥ εa[qn]

)
< ∞ for all ε > 0.(3.20)

PROOF. We only give the proof of the equivalence of (3.18) and (3.19) since
the proof of the equivalence of (3.18) and (3.20) is similar. To show that (3.19)
implies (3.18), note that

P

(
max

1≤i �=j≤2cn
|U1,iV1,j | ≥ εan

)
≤

4∑
l=1

4∑
k=1

P

(
max

i �=j,i∈Ik,j∈Il

|U1,iV1,j | ≥ εan

)

≤
4∑

l=1

4∑
k=1

P

(
max

1≤i �=j≤cn
|U1,iV1,j | ≥ εan

)

= 16P

(
max

1≤i �=j≤cn
|U1,iV1,j | ≥ εan

)
,

where Ik = {m; ((k − 1)/2)cn < m ≤ (k/2)cn}, k = 1,2,3,4. Thus (3.19) implies
that

∞∑
n=1

P

(
max

1≤i �=j≤2cn
|U1,iV1,j | ≥ εan

)
< ∞ for all ε > 0.(3.21)

Let v be a positive integer such that 2vc ≥ 1. By repeating v − 1 times the above
procedure for arriving at (3.21), we get

∞∑
n=1

P

(
max

1≤i �=j≤2vcn
|U1,iV1,j | ≥ εan

)
< ∞ for all ε > 0.(3.22)

Thus the proof that (3.19) implies (3.18) is complete.
We now prove that (3.18) implies (3.19). Under (3.18), we can use the same

idea for arriving at (3.21) to get
∞∑

n=1

P

(
max

1≤i �=j≤2n
|U1,iV1,j | ≥ an

)
< ∞.(3.23)
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Let b1 ∈ (1, b). Then since an ≤ a2n−1/b1 ≤ a2n/b1 for all large n, it is easy to see
that (3.23) implies

∞∑
n=1

P

(
max

1≤i �=j≤n
|U1,iV1,j | ≥ (1/b1)an

)
< ∞.

By iterating this technique we get

∞∑
n=1

P

(
max

1≤i �=j≤n
|U1,iV1,j | ≥ (1/b1)

van

)
< ∞ for v = 1,2,3, . . . .(3.24)

Since limv→∞(1/b1)
v = 0, (3.19) with c = 1 follows from (3.24). Thus (3.22)

with c = 1 and arbitrary v ≥ 1 holds, and from this we get that (3.19) holds for
every c > 0. �

LEMMA 3.2. Suppose that n/pn is bounded away from 0 and ∞. Let
{an;n ≥ 1} be as in Lemma 3.1. If

lim sup
n→∞

Tn

an

< ∞ a.s.,(3.25)

then (3.18) holds and (EU1,1)(EV1,1) = 0 whenever limn→∞ an/n = 0.

PROOF. Since n/pn is bounded away from 0 and ∞, there exists a constant
c ≥ 1 such that c−1n ≤ pn ≤ cn,n ≥ 1. Then it follows from (3.25) that

lim sup
n→∞

max1≤i �=j≤c−1n |∑n
k=1 Uk,iVk,j |

an

< ∞ a.s.

Since limn→∞ an+1/an = 1,

lim sup
n→∞

max1≤i �=j≤c−1n |∑n+1
k=1 Uk,iVk,j |

an

< ∞ a.s.

Note that

max
1≤i �=j≤c−1n

|Un+1,iVn+1,j | ≤ max
1≤i �=j≤c−1n

∣∣∣∣∣
n∑

k=1

Uk,iVk,j

∣∣∣∣∣
+ max

1≤i �=j≤c−1n

∣∣∣∣∣
n+1∑
k=1

Uk,iVk,j

∣∣∣∣∣, n ≥ 1.

We then have

lim sup
n→∞

max1≤i �=j≤c−1n |Un+1,iVn+1,j |
an

< ∞ a.s.
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Then since the random vectors in the array {Uk,i, Vk,i; i ≥ 1, k ≥ 1} are i.i.d., it
follows from the Borel–Cantelli lemma that

∞∑
n=1

P

(
max

1≤i �=j≤c−1n
|U1,iV1,j | ≥ λan

)
< ∞ for some λ > 0.

Using the same argument as in the proof of Lemma 3.1, we have
∞∑

n=1

P

(
max

1≤i �=j≤n
|U1,iV1,j | ≥ ãn

)
< ∞,

where ãn = λan, n ≥ 1. In view of Lemma 3.1, (3.18) follows. If
limn→∞ an/n = 0, then (3.25) implies that

lim
n→∞

∑n
k=1 Uk,1Vk,2

n
= 0 a.s.

and hence by the Kolmogorov SLLN, (EU1,1)(EV1,1) = (EU1,1)(EV1,2) = 0; the
proof of Lemma 3.2 is therefore complete. �

PROOF OF THEOREM 3.2. In view of Lemma 3.2, we only need to give the
proof of the “if” part. Note that (3.14) implies that

∞∑
n=1

P

(
max

1≤i≤n/2

∣∣U1,iV1,[n/2]+i

∣∣ ≥ nα

)
< ∞

which is equivalent to
∞∑

n=1

nP (|U1,1V1,2| ≥ nα) < ∞.

So it follows that E|U1,1V1,2|2/α < ∞. Setting Sn = ∑n
k=1 Uk,1Vk,2, n ≥ 1 and

applying the Baum–Katz [4] theorem, we have
∞∑

n=1

P

(
sup
m≥n

|Sm|
mα

> ε

)
< ∞ for all ε > 0

which implies that

P

( |Sn|
nα

> ε

)
= o(n−1) for all ε > 0

and hence by Ottaviani’s inequality, it follows that

max
1≤j≤n

P

( |Sj |
nα

> ε

)
= o(n−1) for all ε > 0.(3.26)

Since n/pn is bounded away from 0 and ∞, there exists a constant c ≥ 1 such that
c−1n ≤ pn ≤ cn,n ≥ 1. Thus (3.13) follows if we can show that

lim
n→∞

max1≤i �=j≤cn |∑n
k=1 Uk,iVk,j |

nα
= 0 a.s.(3.27)
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For fixed ε > 0, set for 1 ≤ k ≤ 2n, 1 ≤ i, j ≤ c2n, n ≥ 1,

Y
(1)
k,n,i,j = Uk,iVk,j I

(|Uk,iVk,j | > (ε/2α)2nα)
,

Y
(2)
k,n,i,j = Uk,iVk,j I

(|Uk,iVk,j | ≤ (ε/2α)2nα)
.

Then, for 2n−1 < m ≤ 2n, n ≥ 1,

max1≤i �=j≤cm |∑m
k=1 Uk,iVk,j |

mα
≤ max1≤i �=j≤cm |∑m

k=1 Y
(1)
k,n,i,j |

mα

(3.28)

+ max1≤i �=j≤cm |∑m
k=1 Y

(2)
k,n,i,j |

mα
.

In view of (3.14), by applying Lemma 3.1, we have

P

(
max

1≤m≤2n
max

1≤i �=j≤cm

∣∣∣∣∣
m∑

k=1

Y
(1)
k,n,i,j

∣∣∣∣∣ = 0 eventually

)
= 1.(3.29)

Clearly, recalling E|U1,1V1,2|2/α < ∞, for all δ > 0,

max
2n−1<m≤2n

max
1≤j≤m

P

( |∑j
k=1 Y

(1)
k,n,1,2|

mα
> δ

)

≤ 2nP
(|U1,1V1,2| > (ε/2α)2nα)

= o(2−n)

and this, together with (3.26), ensures that, for all δ > 0,

max
2n−1<m≤2n

max
1≤j≤m

P

( |∑j
k=1 Y

(2)
k,n,1,2|

mα
> δ

)
= o(2−n).(3.30)

Write µm,n = max1≤j≤m κj,m,n where κj,m,n is a median of the random variable

|∑j
k=1 Y

(2)
k,n,1,2|/mα,1 ≤ j ≤ m,2n−1 < m ≤ 2n, n ≥ 1. Note that (3.30) implies

that

lim
n→∞ max

2n−1<m≤2n
µm,n = 0.

Applying Lemma 3.2 of [10] which is a generalization of the Hoffmann–
Jørgensen [6] inequalities, it follows from (3.30) that for sufficiently large n and
every m ∈ [2n−1 + 1,2n],

P

( |∑m
k=1 Y

(2)
k,n,1,2|

mα
> 10ε

)

≤ P

(
max

1≤k≤m

∣∣Y (2)
k,n,1,2

∣∣ > εmα

)
+ 4

(
P

( |∑m
k=1 Y

(2)
k,n,1,2|

mα
>

9

2
ε − µm,n

))2
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≤ 4
(
P

( |∑m
k=1 Y

(2)
k,n,1,2|

mα
> 4ε

))2

≤ 64
(
P

( |∑m
k=1 Y

(2)
k,n,1,2|

mα
> ε

))4

= o(2−4n).

Hence

∞∑
n=1

∑
2n−1<m≤2n

P

(max1≤i �=j≤cm |∑m
k=1 Y

(2)
k,n,i,j |

mα
> 10ε

)

≤
∞∑

n=1

∑
2n−1<m≤2n

c2m2P

( |∑m
k=1 Y

(2)
k,n,1,2|

mα
> 10ε

)
(3.31)

≤
∞∑

n=1

o(2−n)

< ∞.

Taking into account (3.29) and (3.31), we conclude from (3.28) and the Borel–
Cantelli lemma that

lim sup
n→∞

max1≤i �=j≤cn |∑n
k=1 Uk,iVk,j |

nα
≤ 10ε a.s.

Letting ε ↓ 0, (3.27) follows. �

PROOF OF THEOREM 3.3. In view of Lemma 3.2, we only need to give the
proof of the first part. Note that (3.15) implies that

∞∑
n=1

P

(
max

1≤i≤n/2

∣∣U1,iV1,[n/2]+i

∣∣ ≥
√

n logn

)
< ∞

which is equivalent to
∞∑

n=1

nP
(|U1,1V1,2| ≥

√
n logn

)
< ∞.

So it follows that

E

(
U4

1,1V
4
1,2

(log(e + |U1,1V1,2|))2

)
< ∞.(3.32)

Let δ > 0 be fixed. We choose 1 < q < 2 such that√
[qn] log[qn] ≤ (1 + δ)

√
n logn for all sufficiently large n.(3.33)
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For 1 ≤ k ≤ qn,n ≥ 1, set

Z
(1)
k,n,i,j = Uk,iVk,j I

(|Uk,iVk,j | > (δ/2)
√

qn logqn
)
,

Z
(2)
k,n,i,j = Uk,iVk,j I

(
qn/3 < |Uk,iVk,j | ≤ (δ/2)

√
qn logqn

)
,

Z
(3)
k,n,i,j = Uk,iVk,j I (|Uk,iVk,j | ≤ qn/3).

Then, for qn−1 < m ≤ qn,n ≥ 1,

max1≤i �=j≤cm |∑m
k=1 Uk,iVk,j |√

m logm

≤ max1≤i �=j≤cm |∑m
k=1(Z

(1)
k,n,i,j − EZ

(1)
k,n,1,2)|√

m logm

+ max1≤i �=j≤cm |∑m
k=1(Z

(2)
k,n,i,j − EZ

(2)
k,n,1,2)|√

m logm

+ max1≤i �=j≤cm |∑m
k=1(Z

(3)
k,n,i,j − EZ

(3)
k,n,1,2)|√

m logm
,

where c ≥ 1 is a constant such that c−1n ≤ pn ≤ cn,n ≥ 1. Note that (3.32) en-
sures that

max
qn−1<m≤qn

∣∣∣∣∣
m∑

k=1

EZ
(1)
k,n,1,2

∣∣∣∣∣ ≤ 4E|U1,1V1,2|3
δ2 logqn

−→ 0 as n → ∞.

So, in view of Lemma 3.1, condition (3.15) implies via the Borel–Cantelli lemma
that

P

(
max

qn−1<m≤qn

max1≤i �=j≤cm |∑m
k=1(Z

(1)
k,n,i,j − EZ

(1)
k,n,1,2)|√

m logm
≤ δ eventually

)
(3.34)

= 1.

Using the Chebyshev inequality, it follows from (3.32) that for qn−1 < m ≤
qn,n ≥ 1 and ε > 0,

P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> ε

)
≤ mE(Z

(2)
1,n,1,2)

2

ε2m logm

≤ E|U1,1V1,2|3
ε2qn/3 logm

(3.35)

= o(q−n/3).
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Thus, applying Lemma 3.2 of [10] and using the same argument as in the proof of
Theorem 3.2, we have that for sufficiently large n and every m ∈ [[qn−1]+1, [qn]],

P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> 46δ

)

≤ P

(
max

1≤k≤m

∣∣Z(2)
k,n,1,2 − EZ

(2)
k,n,1,2

∣∣ > δ
√

m logm

)

+ 4
(
P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> 22δ

))2

= 4
(
P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> 22δ

))2

≤ 43
(
P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> 10δ

))4

≤ 47
(
P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> 4δ

))8

≤ 415
(
P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> δ

))16

= o
(
q−(16/3)n)

[by (3.35)].

Hence

∞∑
n=1

∑
qn−1<m≤qn

P

(max1≤i �=j≤cm |∑m
k=1(Z

(2)
k,n,i,j − EZ

(2)
k,n,1,2)|√

m logm
> 46δ

)

≤
∞∑

n=1

∑
qn−1<m≤qn

c2m2P

( |∑m
k=1(Z

(2)
k,n,1,2 − EZ

(2)
k,n,1,2)|√

m logm
> 46δ

)

(3.36)

≤
∞∑

n=1

o
(
q−(7/3)n)

< ∞.

Taking into account (3.34) and (3.36), we conclude by the Borel–Cantelli lemma
that

lim sup
n→∞

max
qn−1<m≤qn

max1≤i �=j≤cm |∑m
k=1 Hk,n,i,j |√

m logm
≤ 47δ a.s.,(3.37)
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where Hk,n,i,j = (Z
(1)
k,n,i,j − EZ

(1)
k,n,1,2) + (Z

(2)
k,n,i,j − EZ

(2)
k,n,1,2). It is easy to see

that (EU2
1,1)(EV 2

1,1) = 1 implies that for all ε > 0,

max
qn−1<m≤qn

P

( |∑m
k=1(Z

(3)
k,n,1,2 − EZ

(3)
k,n,1,2)|√

m logm
> ε

)

≤ 1

ε2 logqn−1 −→ 0 as n → ∞.

Using the same argument as that used to obtain (3.6) in the proof of Theorem 3.1,
for all large n

P

(
max

qn−1<m≤qn

max1≤i �=j≤cm |∑m
k=1(Z

(3)
k,n,i,j − EZ

(3)
k,n,1,2)|√

m logm
> 2(1 + 3δ)2

)

≤ 2c2q2nP

( |∑[qn]
k=1(Z

(3)
k,n,1,2 − EZ

(3)
k,n,1,2)|√[qn] log[qn] > 2(1 + 2δ)

)
.

Note that
[qn]∑
k=1

E
(
Z

(3)
k,n,1,2 − EZ

(3)
k,n,1,2

)2 = [qn]E(
Z

(3)
1,n,1,2 − EZ

(3)
1,n,1,2

)2

∼ qn as n → ∞,

max
1≤k≤qn

∣∣Z(3)
k,n,1,2 − EZ

(3)
k,n,1,2

∣∣ ≤ 2qn/3, n ≥ 1,

and

lim
n→∞

2(1 + 2δ)
√

qn logqn(2qn/3)

2qn
= 0.

Then, applying Lemma 7.1 of [11] which is the classical Kolmogorov exponential
inequalities, we have that for all large n,

P

(∣∣∣∣∣
[qn]∑
k=1

(
Z

(3)
k,n,1,2 − EZ

(3)
k,n,1,2

)∣∣∣∣∣ > 2(1 + 2δ)
√

[qn] log[qn]
)

≤ 2 exp{−2(1 + δ) logqn} = 2q−2(1+δ)n.

Hence

∞∑
n=1

P

(
max

qn−1<m≤qn

max1≤i �=j≤cm |∑m
k=1(Z

(3)
k,n,i,j − EZ

(3)
k,n,1,2)|√

m logm
> 2(1 + 3δ)2

)

≤
∞∑

n=1

O(q−2δn) < ∞
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and another application of the Borel–Cantelli lemma gives

lim sup
n→∞

max
qn−1<m≤qn

max1≤i �=j≤cm |∑m
k=1(Z

(3)
k,n,i,j − EZ

(3)
k,n,1,2)|√

m logm
(3.38)

≤ 2(1 + 3δ)2 a.s.

Combining (3.37) and (3.38) and letting δ ↓ 0, we get

lim sup
n→∞

max1≤i �=j≤cn |∑n
k=1 Uk,iVk,j |√

n logn
≤ 2 a.s.

The proof of Theorem 3.3 is therefore complete. �

COROLLARY 3.3. Let {Xk,i;k ≥ 1, i ≥ 1} be an array of i.i.d. random vari-
ables. Suppose that n/pn is bounded away from 0 and ∞.

(i) Let α > 1/2. Then

lim
n→∞

max1≤i≤pn |∑n
k=1 Xk,i |

nα
= 0 a.s.

if and only if E|X1,1|2/α < ∞ and EX1,1 = 0 whenever α ≤ 1.
(ii) If

EX1,1 = 0, EX2
1,1 = 1 and E

(
X4

1,1

(log(e + |X1,1|))2

)
< ∞,(3.39)

then

lim sup
n→∞

max1≤i≤pn |∑n
k=1 Xk,i |√

n logn
≤ 2 a.s.(3.40)

Conversely, if

lim sup
n→∞

max1≤i≤pn |∑n
k=1 Xk,i |√

n logn
< ∞ a.s.,

then

EX1,1 = 0, EX2
1,1 < ∞ and E

(
X4

1,1

(log(e + |X1,1|))2

)
< ∞.

PROOF. Set Uk,i = Xk,i,Vk,i ≡ 1, k ≥ 1, i ≥ 1. Then parts (i) and (ii) follow,
respectively, from Theorems 3.2 and 3.3. �
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4. Proofs of the main results. We now give the proofs of the main results.

PROOF OF THEOREM 2.1. Theorem 2.1 follows directly from Theorem 3.2.
�

PROOF OF THEOREM 2.2. If 1/2 < α ≤ 1, then, in view of Remark 2.1,
(2.2) implies that EX2

1,1 < ∞. Let µ = EX1,1. Then 0 < σ 2 = E(X1,1 −µ)2 < ∞
since X1,1 is nondegenerate. Note that for 1 ≤ i ≤ pn

n∑
k=1

(
Xk,i − X̄

(n)
i

)2 =
n∑

k=1

(Xk,i − µ)2 − n
(
X̄

(n)
i − µ

)2

and for 1 ≤ i, j ≤ pn

n∑
k=1

(
Xk,i − X̄

(n)
i

)(
Xk,j − X̄

(n)
j

)

=
n∑

k=1

(Xk,i − µ)(Xk,j − µ) − n
(
X̄

(n)
i − µ

)(
X̄

(n)
j − µ

)
.

By Corollary 3.3, it is easy to see that

lim
n→∞n1−α max

1≤i≤pn

∣∣X̄(n)
i − µ

∣∣ = 0 a.s.,

lim
n→∞n1−α max

1≤i<j≤pn

∣∣X̄(n)
i − µ

∣∣∣∣X̄(n)
j − µ

∣∣ = 0 a.s.,

and

lim inf
n→∞ min

1≤i≤pn

∑n
k=1(Xk,i − X̄

(n)
i )2

n

= lim inf
n→∞ min

1≤i≤pn

(∑n
k=1(Xk,i − µ)2

n
− (

X̄
(n)
i − µ

)2
)

= lim inf
n→∞ min

1≤i≤pn

∑n
k=1(Xk,i − µ)2

n

≥ lim inf
n→∞ min

1≤i≤pn

∑n
k=1 Y 2

k,i(b)

n

≥ EY 2
1,1(b) − lim sup

n→∞
max1≤i≤pn |∑n

k=1(Y
2
k,i(b) − EY 2

1,1(b))|
n

= EY 2
1,1(b) a.s.,
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where Yk,i(b) = (Xk,i − µ)I (|Xk,i − µ| ≤ b), k ≥ 1, i ≥ 1, b > 0. Letting b ↑ ∞,
we get

lim inf
n→∞ min

1≤i≤pn

∑n
k=1(Xk,i − X̄

(n)
i )2

n
≥ σ 2 a.s.

We now show that
∞∑

n=1

P

(
max

1≤i<j≤n
|(Xi − µ)(Xj − µ)| ≥ nα

)
< ∞.(4.1)

Note that
∞∑

n=1

P

(
max

1≤i<j≤n
|(Xi − µ)(Xj − µ)| ≥ nα

)

≤
∞∑

n=1

P

(
max

1≤i<j≤n
|XiXj | ≥ 1

4nα

)

+ 2
∞∑

n=1

P

(
max

1≤i≤n
|µXi | ≥ 1

4nα

)

+
∞∑

n=1

P
(
µ2 ≥ 1

4nα)
.

Clearly,
∞∑

n=1

P
(
µ2 ≥ 1

4nα)
< ∞.

By (2.2) and Lemma 3.1,
∞∑

n=1

P

(
max

1≤i<j≤n
|XiXj | ≥ 1

4nα

)
< ∞.

Also
∞∑

n=1

P

(
max

1≤i≤n
|µXi | ≥ 1

4nα

)
≤

∞∑
n=1

nP
(|µX1| ≥ 1

4nα)
< ∞

since, by Remark 2.1, E|X1|2/α < ∞. Thus (4.1) holds. Hence, applying Theo-
rem 2.1, we have

lim sup
n→∞

n1−αLn ≤ 1

σ 2 lim sup
n→∞

max1≤i<j≤pn |∑n
k=1(Xk,i − µ)(Xk,j − µ)|

nα

= 0 a.s.

This completes the proof of Theorem 2.2. �
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PROOF OF THEOREM 2.3. We first prove that (2.5) implies (2.4). Clearly,
(2.4) follows from Theorem 3.3 if we can show that

lim inf
n→∞

Wn√
n logn

≥ 2 a.s.(4.2)

To show this, for arbitrary b > 0 and k ≥ 1, i ≥ 1, set

Uk,i(b) = Xk,iI (|Xk,i | ≤ b) − EX1,1I (|X1,1| ≤ b),

Vk,i(b) = Xk,iI (|Xk,i | > b) − EX1,1I (|X1,1| > b).

Note that

Wn ≥ max
1≤i �=j≤n/c

∣∣∣∣∣
n∑

k=1

Uk,i(b)Uk,j (b)

∣∣∣∣∣ − 2 max
1≤i �=j≤n/c

∣∣∣∣∣
n∑

k=1

Uk,i(b)Vk,j (b)

∣∣∣∣∣
− max

1≤i �=j≤n/c

∣∣∣∣∣
n∑

k=1

Vk,i(b)Vk,j (b)

∣∣∣∣∣,
where c ≥ 1 is a constant such that n/c ≤ pn ≤ cn,n ≥ 1. Applying Lemma 3.1
of [7] (since n/[n/c] → c ∈ (0,∞)) and our Theorem 3.3, we have

lim inf
n→∞

Wn√
n logn

≥ lim inf
n→∞

max1≤i �=j≤n/c |∑n
k=1 Uk,i(b)Uk,j (b)|√

n logn

− 2 lim sup
n→∞

max1≤i �=j≤n/c |∑n
k=1 Uk,i(b)Vk,j (b)|√

n logn

− lim sup
n→∞

max1≤i �=j≤n/c |∑n
k=1 Vk,i(b)Vk,j (b)|√

n logn

≥ 2EU2
1,1(b) − 4

√
EU2

1,1(b)
√

EV 2
1,1(b) − 2EV 2

1,1(b) a.s.

Letting b ↑ ∞, (4.2) follows since

lim
b→∞EU2

1,1(b) = 1 and lim
b→∞EV 2

1,1(b) = 0.

We now show that (2.4) implies (2.5). In view of Lemma 3.2, Theorem 2.1 and
Remark 2.1, (2.4) implies that EX1 = 0, EX2

1 = σ 2 < ∞ and (2.6) (with
√

n logn

replaced by σ 2√n logn ) holds. Hence

lim
n→∞

Wn√
n logn

= 2σ 2 a.s.

It follows that 2σ 2 = 2 and so EX2
1 = 1. Thus (2.5) holds. �

PROOF OF THEOREM 2.4. In view of Remark 2.3, condition (2.6) implies
that EX4

1,1 < ∞. Let µ = EX1,1. Then 0 < σ 2 = E(X1,1 − µ)2 < ∞ since X1,1
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is nondegenerate. Applying Corollary 3.3, one can see that

lim
n→∞ max

1≤i≤pn

∣∣X̄(n)
i − µ

∣∣ = 0 a.s.,

lim
n→∞ max

1≤i≤pn

∣∣∣∣
∑n

k=1((Xk,i − µ)2 − σ 2)

n

∣∣∣∣ = 0 a.s.

and

lim sup
n→∞

(
n

logn

)1/2

max
1≤i≤pn

∣∣X̄(n)
i − µ

∣∣ ≤ 2 a.s.

By an argument similar to that in the proof of (4.1), (2.6) and Lemma 3.1 ensure
that

∞∑
n=1

P

(
max

1≤i<j≤n
|(Xi − µ)(Xj − µ)| ≥ σ 2

√
n logn

)
< ∞.

Since, for every i ≥ 1 and j ≥ 1,∣∣∣∣∣
n∑

k=1

(
Xk,i − X̄

(n)
i

)(
Xk,j − X̄

(n)
j

) −
n∑

k=1

(Xk,i − µ)(Xk,j − µ)

∣∣∣∣∣
≤ n

∣∣X̄(n)
i − µ

∣∣∣∣X̄(n)
j − µ

∣∣,
we get

lim
n→∞ max

1≤i≤pn

∣∣∣∣
∑n

k=1(Xk,i − X̄
(n)
i )2

n
− σ 2

∣∣∣∣ = 0 a.s.,

lim sup
n→∞

nmax1≤i≤pn,1≤j≤pn |X̄(n)
i − µ||X̄(n)

j − µ|√
n logn

= lim
n→∞ max

1≤i≤pn

∣∣X̄(n)
i − µ

∣∣ × lim sup
n→∞

((
n

logn

)1/2

max
1≤i≤pn

∣∣X̄(n)
i − µ

∣∣)

= 0 a.s.,

and it follows by Theorem 2.3 that

lim
n→∞

(
n

logn

)1/2

Ln

= 1

σ 2 lim
n→∞

max1≤i<j≤pn |∑n
k=1(Xk,i − X̄

(n)
i )(Xk,j − X̄

(n)
j )|√

n logn

= 1

σ 2 lim
n→∞

max1≤i<j≤pn |∑n
k=1(Xk,i − µ)(Xk,j − µ)|√

n logn

= 2 a.s.
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Thus (2.11) has been established. �
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