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SMALL TIME PATH BEHAVIOR OF DOUBLE STOCHASTIC
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We study the small time path behavior of double stochastic integrals of
the form

∫ t
0 (

∫ r
0 b(u)dW(u))T dW(r), where W is a d-dimensional Brownian

motion and b is an integrable progressively measurable stochastic process
taking values in the set of d × d-matrices. We prove a law of the iterated
logarithm that holds for all bounded progressively measurable b and give
additional results under continuity assumptions on b. As an application, we
discuss a stochastic control problem that arises in the study of the super-
replication of a contingent claim under gamma constraints.

1. Introduction. In this paper we study the small time path behavior of dou-
ble stochastic integrals of the form V b(t) = ∫ t

0 (
∫ r

0 b(u)dW(u))T dW(r), where W

is a d-dimensional Brownian motion and b is an integrable progressively measur-
able stochastic process taking values in the set of d × d-matrices. We first proove
a law of the iterated logarithm under general assumptions. Then, we prove addi-
tional results under continuity assumptions on b. The results for V b can easily be
generalized to double stochastic integrals of the form

∫ t
0 (

∫ r
0 b(u)dM(u))T dM(r),

for d-dimensional martingales M(t) = ∫ t
0 m(r) dW(r) corresponding to regular

enough matrix-valued processes m.
Results on the small time path behavior of stochastic integrals can be applied to

characterize the set of all starting points from which a given controlled continuous-
time stochastic process can be driven into a target set at a prespecified future time.
It is shown in [7] and [8] that under suitable conditions, the set of initial data
from which a controlled state process can be steered into a target set, satisfies
a dynamic programming principle (DPP), from which a dynamic programming
equation (DPE) can be derived. Since in [7] and [8] the control process is con-
strained to take values in a subset of R

d , the essential step in the derivation of the
DPE from the DPP is an analysis of the small time behavior of single stochastic
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integrals. In [6], the problem of super-replicating a contingent claim under gamma
constraints is studied. This problem naturally leads to an analysis of the small time
behavior of double stochastic integrals. The results in [6] are obtained under the
assumptions that the contingent claim depends on only one underlying asset and
that the gamma constraint is an upper bound. In this paper we provide a more ex-
tensive study of the small time path behavior of double stochastic integrals than
in [6] and discuss the super-replication problem under upper and lower gamma
constraints.

In Section 2 we establish the notation and discuss basic examples of double sto-
chastic integrals. The main results of the paper are stated and proved in Section 3,
and in Section 4 it is shown how they can be used to find the super-replication price
of a contingent claim in the presence of gamma constraints that are more general
than in [6]. We keep the presentation in Section 4 simple by making strong as-
sumptions. For a general treatment of the super-replication problem under gamma
constraints in a multidimensional framework, we refer the reader to the accompa-
nying paper [2].

2. Problem formulation and notation. Let (�,F ,P ) be a complete prob-
ability space endowed with a filtration F := {F (t), t ≥ 0} that satisfies the usual
conditions. We are interested in the small time behavior of double stochastic inte-
grals of the form

V b(t) :=
∫ t

0

(∫ r

0
b(u)dW(u)

)T

dW(r), t ≥ 0,(2.1)

where {W(t), t ≥ 0} is a d-dimensional Brownian motion on the filtered probabil-
ity space (�,F ,F,P ), {b(t), t ≥ 0} is an integrable F-progressively measurable
stochastic process with values in Md , the set of d × d-matrices with real compo-
nents, and T denotes the transposition of matrices.

In the easy case where {W(t), t ≥ 0} is a one-dimensional Brownian motion and
b(t) = β , t ≥ 0, for some β ∈ R, we have

V b(t) = β

2

(
W 2(t) − t

)
, t ≥ 0.

It follows from the law of the iterated logarithm for Brownian motion that

lim sup
t↘0

2V β(t)

h(t)
= β for every β ≥ 0,(2.2)

where

h(t) := 2t log log
1

t
, t > 0,

and the equality in (2.2) is, as all other equalities and inequalities between random
variables in this paper, understood in the almost sure sense. On the other hand, it
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can be deduced from the fact that almost all paths of a one-dimensional Brownian
motion cross zero on all time intervals (0, ε], ε > 0, that

lim sup
t↘0

2V β(t)

t
= −β for every β < 0.(2.3)

The purpose of this paper is to derive formulae similar to (2.2) and (2.3) when
W = {W(t), t ≥ 0} is a d-dimensional Brownian motion and b = {b(t), t ≥ 0} is a
progressively measurable matrix-valued stochastic process. Note that if b(t) = β ,
t ≥ 0, for some fixed symmetric matrix β , then

2V b(t) = W(t)T βW(t) − Tr[β]t, t ≥ 0,

where Tr denotes the trace of a matrix. It is already not completely obvious if the
formulae (2.2) and (2.3) have analogs in this case and how they look. In Section 3
we will prove extensions of (2.2) and (2.3) for processes of the form (2.1).

By Id we denote the d ×d identity matrix. For y ∈ R
n, we set |y| := (y2

1 +· · ·+
y2
n)1/2, and for β ∈ Md ,

|β| := sup
y∈Rd ,|y|=1

|βy|.

By Sd we denote the collection of all symmetric matrices of Md , and for all
β ∈ Sd , we set

λ∗(β) := min{yT βy :y ∈ R
d, |y| = 1},

λ∗(β) := max{yT βy :y ∈ R
d, |y| = 1}.

Note that λ∗ and λ∗ are continuous, and therefore, measurable functions from Sd

to R. We endow the set Sd with the usual partial order

β ≥ α if and only if λ∗(β − α) ≥ 0,

and we set Sd+ := {β ∈ Sd :β ≥ 0}.

3. Small time path behavior of double stochastic integrals. The main re-
sults of this section are Theorems 3.1 and 3.3. Corollaries 3.7 and 3.8 are con-
sequences of Theorems 3.1 and 3.3, respectively. Proposition 3.9, whose proof is
straightforward, is given because, along with Corollaries 3.7 and 3.8, it is needed
in Section 4 of this paper and in the accompanying paper [2].

THEOREM 3.1. (a) Let {b(t), t ≥ 0} be an Md -valued, F-progressively mea-
surable process such that |b(t)| ≤ 1 for all t ≥ 0. Then

lim sup
t↘0

|2V b(t)|
h(t)

≤ 1.
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(b) Let β ∈ Sd with largest eigenvalue λ∗(β) ≥ 0. If {b(t), t ≥ 0} is a bounded,
Sd -valued, F-progressively measurable process such that b(t) ≥ β for all t ≥ 0,
then

lim sup
t↘0

2V b(t)

h(t)
≥ λ∗(β).

For the proof of Theorem 3.1(a) we need the following exponential estimate:

LEMMA 3.2. Let λ and T be two positive parameters with 2λT < 1
and {b(t), t ≥ 0} an Md -valued, F-progressively measurable process such that
|b(t)| ≤ 1, for all t ≥ 0. Then

E
[
exp

(
2λV b(T )

)] ≤ E
[
exp

(
2λV Id (T )

)]
.

PROOF. We prove this lemma with a standard argument from the theory of
stochastic control. We define the processes

Yb(r) := Y(0) +
∫ r

0
b(u)dW(u)

and

Zb(t) := Z(0) +
∫ t

0

(
Yb(r)

)T
dW(r), t ≥ 0,

where Y(0) ∈ R
d and Z(0) ∈ R are some given initial data. Observe that V b(t) =

Zb(t) when Y(0) = 0 and Z(0) = 0. We split the argument into three steps.

Step 1. It can easily be checked that

E
[
exp

(
2λZId (T )

)|F (t)
] = f

(
t, Y Id (t),ZId (t)

)
,(3.1)

where, for t ∈ [0, T ], y ∈ R
d and z ∈ R, the function f is given by

f (t, y, z) := E
[
exp

(
2λ

{
z +

∫ T

t

(
y + W(r) − W(t)

)T
dW(r)

})]

= exp(2λz)E
[
exp

(
λ{2yT W(T − t) + |W(T − t)|2 − d(T − t)})]

= µd/2 exp [2λz − dλ(T − t) + 2µλ2(T − t)|y|2],
and µ := [1 − 2λ(T − t)]−1. Observe that the function f is strictly convex in y

and

D2
yzf (t, y, z) := ∂2f

∂y ∂z
(t, y, z) = g2(t, y, z)y,(3.2)

where g2 := 8µλ3(T − t)f is a positive function of (t, y, z).
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Step 2. For a matrix β ∈ Md , we denote by Lβ the Dynkin operator associated
to the process (Y β,Zβ), that is,

Lβ := Dt + 1
2 Tr[ββT D2

yy] + 1
2 |y|2D2

zz + (βy)T D2
yz,

where D· and D2·· denote the gradient and the Hessian operators with respect to the
indexed variables. In this step, we intend to prove that for all t ∈ [0, T ], y ∈ R

d

and z ∈ R,

max
β∈Md ,|β|≤1

Lβf (t, y, z) = LId f (t, y, z) = 0.(3.3)

The second equality can be derived from the fact that the process

f
(
t, Y Id (t),ZId (t)

)
, t ∈ [0, T ],

is a martingale, which can easily be seen from (3.1). The first equality follows from
the following two observations: First, note that for each β ∈ Md such that |β| ≤ 1,
the matrix Id − ββT is in Sd+. Therefore, there exists a γ ∈ Sd+ such that

Id − ββT = γ 2.

Since f is convex in y, the Hessian matrix D2
yyf is also in Sd+. It follows that

γD2
yyf (t, x, y)γ ∈ Sd+, and therefore,

Tr[D2
yyf (t, x, y)] − Tr[ββT D2

yyf (t, x, y)]
= Tr[(Id − ββT )D2

yyf (t, x, y)](3.4)

= Tr[γD2
yyf (t, x, y)γ ] ≥ 0.

Second, it follows from (3.2) and the Cauchy–Schwarz inequality that, for all
β ∈ Md such that |β| ≤ 1,

(βy)T D2
yzf (t, y, z) = g2(t, y, z)(βy)T y

≤ g2(t, y, z)|y|2(3.5)

= yT D2
yzf (t, y, z).

Together, (3.4) and (3.5) imply the first equality in (3.3).

Step 3. Let {b(t), t ≥ 0} be an Md -valued, F-progressively measurable
process such that |b(t)| ≤ 1 for all t ≥ 0. We define the sequence of stopping
times

τk := T ∧ inf{t ≥ 0 : |Yb(t)| + |Zb(t)| ≥ k}, k ∈ N.
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It follows from Itô’s lemma and (3.3) that

f
(
0, Y (0),Z(0)

) = f
(
τk, Y

b(τk),Z
b(τk)

) −
∫ τk

0
Lb(t)f

(
t, Y b(t),Zb(t)

)
dt

−
∫ τk

0
[(Dyf )T b + (Dzf )yT ](t, Y b(t),Zb(t)

)
dW(t)

≥ f
(
τk, Y

b(τk),Z
b(τk)

)
−

∫ τk

0
[(Dyf )T b + (Dzf )yT ](t, Y b(t),Zb(t)

)
dW(t).

Taking expected values and sending k to infinity, we get by Fatou’s lemma,

E
[
exp

(
2λZId (T )

)] = f
(
0, Y (0),Z(0)

)
≥ lim inf

k→∞ E
[
f

(
τk, Y

b(τk),Z
b(τk)

)]
≥ E

[
f

(
T ,Y b(T ),Zb(T )

)]
= E

[
exp

(
2λZb(T )

)]
,

which proves the lemma. �

PROOF OF THEOREM 3.1. (a) Let T > 0 and λ > 0 be such that 2λT < 1. It
follows from Doob’s maximal inequality for submartingales and Lemma 3.2 that
for all α ≥ 0,

P

[
sup

0≤t≤T

2V b(t) ≥ α

]
= P

[
sup

0≤t≤T

exp
(
2λV b(t)

) ≥ exp(λα)

]

≤ exp(−λα)E
[
exp

(
2λV b(T )

)]
(3.6)

≤ exp(−λα)E
[
exp

(
2λV Id (T )

)]
= exp(−λα) exp(−λdT )(1 − 2λT )−d/2.

Now, take θ , η ∈ (0,1), and set for all k ∈ N,

αk := (1 + η)2h(θk) and λk := [2θk(1 + η)]−1.

It follows from (3.6) that for all k ∈ N,

P

[
sup

0≤t≤θk

2V b(t) ≥ (1 + η)2h(θk)

]

≤ exp
(
− d

2(1 + η)

)(
1 + 1

η

)d/2(
k log

1

θ

)−(1+η)

.

Since
∞∑

k=1

k−(1+η) < ∞,
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it follows from the Borel–Cantelli lemma that, for almost all ω ∈ �, there exists a
natural number Kθ,η(ω) such that for all k ≥ Kθ,η(ω),

sup
0≤t≤θk

2V b(t,ω) < (1 + η)2h(θk).

In particular, for all t ∈ (θk+1, θk],

2V b(t,ω) < (1 + η)2h(θk) ≤ (1 + η)2 h(t)

θ
.

Hence,

lim sup
t↘0

2V b(t)

h(t)
≤ (1 + η)2

θ
.

By letting θ tend to 1 and η to zero along the rationals, we conclude that

lim sup
t↘0

2V b(t)

h(t)
≤ 1.

On the other hand,

lim inf
t↘0

2V b(t)

h(t)
= − lim sup

t↘0

2V −b(t)

h(t)
≥ −1,

and the proof of part (a) is complete.
(b) There exists a constant c > 0 such that for all t ≥ 0,

cId ≥ b(t) ≥ β ≥ −cId,(3.7)

and an orthogonal d × d-matrix U such that

β̃ := UβUT = diag[λ∗(β), λ2, . . . , λd ],
where λ∗(β) ≥ λ2 ≥ · · · ≥ λd are the ordered eigenvalues of the matrix β . Let

γ̃ := diag[3c, c, . . . , c] and γ := UT γ̃U.

It follows from (3.7) that for all t ≥ 0,

γ − β ≥ γ − b(t) ≥ 0,

which implies that

|γ − b(t)| ≤ |γ − β| = λ∗(γ − β) = λ∗(γ̃ − β̃) = 3c − λ∗(β).

Hence, by part (a),

lim sup
t↘0

2V γ−b(t)

h(t)
≤ 3c − λ∗(β).(3.8)
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Note that the transformed Brownian motion,

W̃ (t) := UW(t), t ≥ 0,

is again a d-dimensional Brownian motion and

lim sup
t↘0

2V γ (t)

h(t)
= lim sup

t↘0

W(t)T γW(t) − Tr(γ )t

h(t)

= lim sup
t↘0

W̃ (t)T γ̃ W̃ (t) − Tr(γ )t

h(t)
(3.9)

= lim sup
t↘0

W̃ (t)T γ̃ W̃ (t)

h(t)

≥ lim sup
t↘0

3c
(W̃1(t))

2

h(t)
= 3c.

It follows from (3.9) and (3.8) that

lim sup
t↘0

2V b(t)

h(t)
≥ lim sup

t↘0

2V γ (t)

h(t)
− lim sup

t↘0

2V γ−b(t)

h(t)

≥ 3c − (
3c − λ∗(β)

) = λ∗(β),

which proves part (b) of the theorem. �

In the next theorem we refine the statements of Theorem 3.1 under stronger
assumptions.

THEOREM 3.3. Let {b(t), t ≥ 0} be an Md -valued, F-progressively measur-
able process such that ∫ t

0
|b(r)|2 dr < ∞ for all t ≥ 0.

Assume that b(0) is a deterministic element of Sd , and there exists a random vari-
able ε > 0 such that almost surely,∫ t

0
|b(r) − b(0)|2 dr = O(t1+ε) for t ↘ 0.(3.10)

(a) If λ∗(b(0)) ≤ 0, then

lim sup
t↘0

2V b(t)

t
= −Tr[b(0)].

(b) If λ∗(b(0)) ≥ 0, then

lim sup
t↘0

2V b(t)

h(t)
= λ∗(b(0)).
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REMARK 3.4. Note that for deterministic ε > 0, condition (3.10) follows if
there exists a constant C > 0 such that

E[|b(t) − b(0)|2] ≤ Ct2ε for t ≥ 0.(3.11)

Indeed, if (3.11) is satisfied, then

E
[∫ 1

0

|b(r) − b(0)|2
r1+ε

dr

]
< ∞,

therefore, ∫ 1

0

|b(r) − b(0)|2
r1+ε

dr < ∞,

and we have for all t ∈ [0,1],∫ t

0
|b(r) − b(0)|2 dr ≤

∫ t

0

|b(r) − b(0)|2
r1+ε

dr t1+ε ≤
∫ 1

0

|b(r) − b(0)|2
r1+ε

dr t1+ε.

To prove Theorem 3.3 we need the following.

LEMMA 3.5. Let {W(t), t ≥ 0} be a d-dimensional Brownian motion and
β ∈ Md . Then

lim inf
t↘0

1

t
|W(t)T βW(t)| = 0.(3.12)

PROOF. It follows from the self-similarity property of {W(t), t ≥ 0} that the
Gaussian sequence,

X(n) := en/2W(e−n), n ∈ Z,

is stationary, and the fact that

lim
n→∞ E[X(n)T X(0)] = 0

implies that it is ergodic (see, e.g., Section V.3 in [5]). Hence, the sequence

Y(n) := |X(n)T βX(n)| = en|W(e−n)T βW(e−n)|, n ∈ Z,

is stationary and ergodic as well. Therefore, we can apply the ergodic theorem
(see, e.g., Theorem V.3.3 in [5]) to conclude that for all δ > 0,

lim
n→∞

1

n

n−1∑
j=0

1[0,δ](Y (j)) = E
[
1[0,δ](Y (0))

] = P [Y(0) ≤ δ] > 0.

This shows that

lim inf
n→∞ Y(n) = 0,
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which implies (3.12). �

PROOF OF THEOREM 3.3. Since b(0) is symmetric, we have for all t ≥ 0,

2V b(t) = 2V b(0)(t) + 2V b̃(t) = W(t)T b(0)W(t) − Tr[b(0)]t + 2V b̃(t),(3.13)

where

b̃(t) := b(t) − b(0), t ≥ 0.

Denote by Mj the j th component of the d-dimensional local martingale∫ r
0 b̃(u) dW(u), r ≥ 0. It follows from assumption (3.10) that the quadratic varia-

tion process 〈Mj 〉 satisfies almost surely,

〈Mj 〉(r) =
∫ r

0

d∑
k=1

b̃2
jk(u) du = O(r1+ε) for t ↘ 0.

By the Dambis–Dubins–Schwarz theorem (see, e.g., Section V.1 in [4]), there ex-
ists a Brownian motion Bj such that Mj(r) = Bj ◦ 〈Mj 〉(r), r ≥ 0. Hence, it fol-
lows from the law of the iterated logarithm for Brownian motion that almost surely,

M2
j (r) = O(r1+ε/2) for r ↘ 0.

This implies that almost surely,

〈
V b̃〉

(t) =
∫ t

0

d∑
j=1

M2
j (r) dr = O(t2+ε/2) for t ↘ 0,

and another application of the Dambis–Dubins–Schwarz theorem yields

lim
t↘0

V b̃(t)

t
= 0.(3.14)

(a) If λ∗(b(0)) ≤ 0, then for all t ≥ 0,

W(t)T b(0)W(t) ≤ 0,

and part (a) of the theorem can be deduced from (3.13), (3.14) and Lemma 3.5.
(b) If λ∗(b(0)) ≥ 0, it follows from Theorem 3.1(b) that

lim sup
t↘0

2V b(0)(t)

h(t)
≥ λ∗(b(0)).(3.15)

To show that actually,

lim sup
t↘0

2V b(0)(t)

h(t)
= λ∗(b(0)),(3.16)
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we denote by λ∗(b(0)) = λ1 ≥ λ2 ≥ · · · ≥ λd the ordered eigenvalues of b(0).
There exists a positive integer k ≤ d such that λ1 ≥ · · · ≥ λk ≥ 0 and, in case that
k < d , 0 > λk+1 ≥ · · · ≥ λd . Let U be an orthogonal d × d-matrix such that

Ub(0)UT = diag[λ1, λ2, . . . , λd ].
The process

W̃ (t) := UW(t), t ≥ 0,

is again a d-dimensional Brownian motion, and for all t ≥ 0,

lim sup
t↘0

2V b(0)(t)

h(t)
= lim sup

t↘0

W(t)T b(0)W(t) − Tr[b(0)]t
h(t)

= lim sup
t↘0

∑d
j=1 λj (W̃j (t))

2

h(t)
≤ lim sup

t↘0

∑k
j=1 λj (W̃j (t))

2

h(t)

≤ λ1 = λ∗(b(0)),

where the last inequality follows from Theorem 3.1(a). This and (3.15) im-
ply (3.16), which, along with (3.13) and (3.14), proves part (b) of the
theorem. �

Our proof of Theorem 3.3 is based on the decomposition (3.13) and the esti-
mate (3.14). The next example shows that (3.14) need no longer be true if assump-
tion (3.10) is replaced by the condition that almost surely,

|b(t) − b(0)| → 0 as t → 0.

Whether Theorem 3.3, or some variant of it, can be proved under weaker assump-
tions is an open question.

EXAMPLE 3.6. Let d = 1 and b(t) = 1/ log log log(1/t). Then,∫ t

0

∫ r

0
b(u)dW(u)dW(r) = W(t)

∫ t

0
b(r) dW(r)

−
∫ t

0
b(r)W(r) dW(r) −

∫ t

0
b(r) dr

= W(t)

[
W(t)b(t) −

∫ t

0
W(r)db(r)

]
−

∫ t

0
b(r) dr

(3.17)

− 1
2

[
W 2(t)b(t) −

∫ t

0
W 2(r) db(r) −

∫ t

0
b(r) dr

]

= 1
2W 2(t)b(t) − W(t)

∫ t

0
W(r)db(r)

+ 1
2

∫ t

0
W 2(r) db(r) − 1

2

∫ t

0
b(r) dr.
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Clearly,
∫ t

0 b(r) dr = o(t), as t ↘ 0. Since

b′(r) = 1

r

1

log(1/r)

1

log log(1/r)

(
1

log log log(1/r)

)2

,

it follows from the law of the iterated logarithm for Brownian motion that
for t ↘ 0, ∫ t

0
W 2(r) db(r) =

∫ t

0
W 2(r)b′(r) dr

= O

(∫ t

0
r log log

1

r
b′(r) dr

)

= o

(∫ t

0
1dr

)
= o(t).

Similarly, for t ↘ 0,

W(t)

∫ t

0
W(r)db(r) = W(t)

∫ t

0
W(r)b′(r) dr

= O

(√
t log log

1

t

∫ t

0

√
r log log

1

r
b′(r) dr

)

= o

(√
t log log

1

t

∫ t

0
r−1/2 dr

)

= o

(
t

√
log log

1

t

)
.

Since

t

√
log log

1

t
= o

(
t

log log(1/t)

log log log(1/t)

)
as t ↘ 0,

it follows from (3.17) that

lim sup
t↘0

∫ t
0

∫ r
0 b(u)dW(u)dW(r)

t log log(1/t)/(log log log(1/t))

= lim sup
t↘0

(1/2)W 2(t)b(t)

t log log(1/t)/(log log log(1/t))
= 1.

The next two corollaries are straightforward consequences of Theorems
3.1 and 3.3, respectively.



2484 P. CHERIDITO, H. M. SONER AND N. TOUZI

COROLLARY 3.7. Let {M(t), t ≥ 0} be an R
d -valued martingale defined by

M(t) :=
∫ t

0
m(r) dW(r), t ≥ 0,

where {m(t), t ≥ 0} is an Md -valued, F-progressively measurable process such
that ∫ t

0
|m(r)|2 dr < ∞ for all t ≥ 0,

and there exists a random variable ε > 0 so that almost surely,∫ t

0
|m(r) − m(0)|2 dr = O(t1+ε) for t ↘ 0.(3.18)

(a) Let {b(t), t ≥ 0} be a bounded Md -valued, F-progressively measurable
process such that for all t ≥ 0, |m(0)T b(t)m(0)| ≤ 1. Then

lim sup
t↘0

2

h(t)

∣∣∣∣
∫ t

0

(∫ u

0
b(u)dM(u)

)T

dM(r)

∣∣∣∣ ≤ 1.

(b) Let β be a bounded, F (0)-measurable, Sd -valued random variable with
λ∗(β) ≥ 0. If {b(t), t ≥ 0} is a bounded, Sd -valued, F-progressively measurable
process such that for all t ≥ 0,

m(0)T b(t)m(0) ≥ β,

then

lim sup
t↘0

2

h(t)

∫ t

0

(∫ r

0
b(u)dM(u)

)T

M(r) ≥ λ∗(β).

PROOF. It can easily be checked that∫ t

0

(∫ r

0
b(u)m(u)dW(u)

)T

m(r) dW(r)

=
∫ t

0

(∫ r

0
c(u) dW(u)

)T

W(r) + R1(t) + R2(t),

where

c(t) := m(0)T b(t)m(0),

R1(t) :=
∫ t

0

(∫ r

0
b(u)[m(u) − m(0)]dW(u)

)T

m(0) dW(r),

R2(t) :=
∫ t

0

(∫ r

0
b(u)m(u)dW(u)

)T

[m(r) − m(0)]dW(r).



DOUBLE STOCHASTIC INTEGRALS 2485

As in the proof of Theorem 3.3 it can be deduced from assumption (3.18) and the
Dambis–Dubins–Schwarz theorem that

lim
t↘0

R1(t)

t
= lim

t↘0

R2(t)

t
= 0.

In particular,

lim
t↘0

R1(t)

h(t)
= lim

t↘0

R2(t)

h(t)
= 0.

Now, part (a) of the corollary follows from Theorem 3.1(a). Furthermore, by con-
ditioning on σ(β), we can assume that β is deterministic and deduce part (b) of
the corollary from Theorem 3.1(b). �

COROLLARY 3.8. Let {M(t), t ≥ 0} be an R
d -valued martingale defined by

M(t) =
∫ t

0
m(r) dW(r), t ≥ 0,

where {m(t), t ≥ 0} is an Md -valued, F-progressively measurable process such
that ∫ t

0
|m(r)|2 dr < ∞ for all t ≥ 0.

Let {b(t), t ≥ 0} be a bounded, Md -valued, F-progressively measurable process
such that b(0) is Sd -valued, and assume there exists a random variable ε > 0 such
that almost surely, ∫ t

0
|m(r) − m(0)|2 dr = O(t1+ε)

and ∫ t

0
|b(r) − b(0)|2 dr = O(t1+ε) for t ↘ 0.

(a) If λ∗(m(0)T b(0)m(0)) ≤ 0, then

lim sup
t↘0

2

t

∫ t

0

(∫ r

0
b(u)dM(u)

)T

dM(r) = −Tr[m(0)T b(0)m(0)].

(b) If λ∗(m(0)T b(0)m(0)) ≥ 0, then

lim sup
t↘0

2

h(t)

∫ t

0

(∫ r

0
b(u)dM(u)

)T

dM(r) = λ∗(
m(0)T b(0)m(0)

)
.
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PROOF. As in the proof of Corollary 3.7 we decompose∫ t

0

(∫ r

0
b(u)m(u)dW(u)

)T

m(r) dW(r)

into ∫ t

0

(∫ r

0
c(u) dW(u)

)T

dW(r) + R1(t) + R2(t),

where

c(t) := m(0)T b(t)m(0),

1

t
R1(t) := 1

t

∫ t

0

(∫ r

0
b(u)[m(u) − m(0)]dW(u)

)T

m(0) dW(r) → 0

for t ↘ 0,

1

t
R2(t) := 1

t

∫ t

0

(∫ r

0
b(u)m(u)dW(u)

)T

[m(r) − m(0)]dW(r) → 0

for t ↘ 0.

It follows from the assumptions that c satisfies almost surely,∫ t

0
|c(r) − c(0)|2 dr = O(t1+ε) for t ↘ 0,

and by conditioning on σ(c(0)), we can assume that c(0) is deterministic. Then,
the corollary follows from Theorem 3.3. �

PROPOSITION 3.9. Let {a(t), t ≥ 0} and {m(t), t ≥ 0} be two F-progressively
measurable processes taking values in R

d and Md , respectively. Assume that
{a(t), t ≥ 0} is bounded,∫ t

0
|m(r)|2 dr < ∞ for all t ≥ 0,

and there exists a (0,1]-valued random variable ε such that almost surely,∫ t

0
r2|m(r)|2 dr = O(t3−ε) for t ↘ 0.(3.19)

Then,

lim
t↘0

t−3/2+ε
∫ t

0

(∫ r

0
a(u)du

)T

m(r) dW(r) = 0.

REMARK 3.10. It can easily be shown that

sup
t≥0

E[|m(t)|2] < ∞(3.20)
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implies condition (3.19) for every constant ε ∈ (0,1]. Indeed, it follows from (3.20)
that for every constant ε ∈ (0,1],

E
[∫ 1

0

|m(r)|2
r1−ε

dr

]
< ∞

and therefore, ∫ 1

0

|m(r)|2
r1−ε

dr < ∞.

Moreover, for all t ∈ [0,1],∫ t

0
r2|m(r)|2 dr ≤

∫ 1

0

|m(r)|2
r1−ε

dr t3−ε.

PROOF OF PROPOSITION 3.9. Denote X(t) = ∫ t
0 (

∫ r
0 a(u)du)T m(r) dW(r),

t ≥ 0. By assumption (3.19), the quadratic variation process 〈X〉 satisfies almost
surely,

〈X〉(t) = O(t3−ε) for t ↘ 0.

Now, the proposition can be deduced from the Dambis–Dubins–Schwarz
theorem. �

4. Applications to stochastic control. In this section we show how results
on the small time behavior of stochastic integrals can be applied to derive partial
differential equations from gamma constraints on hedging strategies. Since these
partial differential equations will be derived from a dynamic programming princi-
ple (DPP), we refer to them as dynamic programming equations (DPEs).

4.1. Super-replication under gamma constraints. For the sake of simplicity of
presentation, we here consider a financial market that consists of only two tradable
assets. Markets with more assets are considered in the accompanying paper [2].
Let T > 0 be a finite time horizon, let {W(t), t ∈ [0, T ]} be a one-dimensional
Brownian motion and let F

W = {F W(t), t ∈ [0, T ]} be the smallest filtration that
contains the filtration generated by {W(t), t ≥ 0} and satisfies the usual conditions.
We take the first asset as numéraire and assume that the price of the second one is
given by

S(r) := S0 exp
{(

µ − σ 2

2

)
r + σW(r)

}
, r ∈ [0, T ],

for some constants S0 > 0, µ ∈ R and σ > 0. By possibly passing to an equivalent
probability measure, we can assume that µ = 0. Then, given S(t) = s for some
(t, s) ∈ [0, T ) × (0,∞), the further evolution of S is

S(r) := s exp
{
σ [W(r) − W(t)] − σ 2

2
(r − t)

}
, r ∈ [t, T ].(4.1)
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A self-financing trading strategy that is only based on information coming from ob-
servations of the price {S(r), r ∈ [0, T ]}, can be described by an F

W -progressively
measurable process {Y (r), r ∈ [t, T ]} that is integrable with respect to {S(r), r ∈
[t, T ]} and denotes the number of shares of the second asset held at any given time.
Then, the wealth process is given by

X(r) = X(t) +
∫ r

t
Y (u) dS(u), r ∈ [t, T ],(4.2)

and the number of shares of the first asset held at time r is X(r) − Y (r)S(r).
We consider a contingent claim with a time-T payoff given by g(S(T )), where

g : (0,∞) → [0,∞) is a measurable function such that g(S(T )) ∈ L1(P ). For the
corresponding Black–Scholes hedging strategy {Y BS(r), r ∈ [t, T ]} we have

E[g(S(T ))|F (t)] +
∫ T

t
Y BS(r) dS(r) = g(S(T )),

that is, starting with initial capital E[g(S(T ))|F (t)] at time t , the Black–Scholes
strategy replicates the contingent claim. If one requires the hedging strategy to
satisfy constraints other than conditions that exclude arbitrage opportunities, one
cannot hope that the contingent claim is still replicable, but in many cases, it is
possible to super-replicate it with finite initial wealth. A gamma constraint is a
restriction on the variation of the hedging strategy due to changes in the underlying
asset. To be able to express gamma constraints more explicitly, we require the
process Y to be of the form

Y(r) = y +
∫ r

t
α(u) du +

∫ r

t
γ (u) dS(u), r ∈ [t, T ],(4.3)

for y ∈ R and α, γ bounded, F
W -progressively measurable processes. Then, a self-

financing trading strategy is determined by the starting value y and a pair of
bounded, F

W -progressively measurable processes ν = (α, γ ). By a gamma con-
straint we mean a restriction on the process γ . In the following we consider gamma
constraints of the form:

�∗ ≤ S2(r)γ (r) ≤ �∗, r ∈ [t, T ],(4.4)

where �∗ < �∗ are two given constants. We call a control process ν = (α, γ ) ad-
missible if α and γ are bounded, F

W -progressively measurable processes and γ

satisfies the constraint (4.4).
To emphasize the dependence on the initial data, we denote by (St,s,X

ν
t,s,x,y,

Y ν
t,s,y) the processes given by (4.1), (4.2) and (4.3) corresponding to the admissible

control ν and the initial data (St,s,X
ν
t,s,x,y, Y

ν
t,s,y)(t) = (s, x, y). The collection of

admissible controls ν is denoted by At,s . From the boundedness of α and γ it can
be deduced that for all ν ∈ At,s , supt≤r≤T E[{Y ν

t,s,y(r)St,s(r)}2] < ∞, and there-
fore, Xν

t,s,x,y is a square-integrable martingale. In particular, admissible controls
do not lead to arbitrage.
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The problems

w(t, s, y) := inf
{
x :Xν

t,s,x,y(T ) ≥ g
(
St,s(T )

)
for some ν ∈ A

}
(4.5)

and

v(t, s) := inf
y∈R

w(t, s, y)

= inf
{
x :Xν

t,s,x,y(T ) ≥ g
(
St,s(T )

)
(4.6)

for some y ∈ R and some ν ∈ A
}

can both be viewed as stochastic target problems. Problem (4.5) is very similar to
the one treated in [7] and leads to the study of the small time behavior of single
stochastic integrals. In problem (4.6), Y is no longer a state variable, and one is
naturally led to an analysis of the small time behavior of double stochastic inte-
grals.

In the next two subsections we derive DPEs for w and v. Our main objective is
to show how one can find these DPEs and where results on the small time behavior
of stochastic integrals are needed. To avoid the use of the theory of viscosity so-
lutions and lengthy approximation arguments, we will make some strong assump-
tions along the way. In particular, we will assume that the infima in (4.5) and (4.6)
are attained and the functions w and v are smooth. Also, we will only show that
w and v are supersolutions of the corresponding DPEs. A more detailed discus-
sion of the super-replication problem under gamma constraints and rigorous proofs
without simplifying assumptions can be found in [2].

4.2. DPE for the value function w. We derive the DPE for w in three steps.

Step 1: Dynamic programming principle. We assume that for each (t, s, y) ∈
[0, T ) × (0,∞) × R, there exists an admissible control ν = (α, γ ) such that

Xν
t,s,x,y(T ) ≥ g

(
St,s(T )

)
where x = w(t, s, y).

Let τ be an F
W -stopping time with values in (t, T ]. For each δ > 0, we define τδ :=

τ ∧(t +δ), and we set (ŝ, x̂, ŷ) := (St,s,X
ν
t,s,x,y, Y

ν
t,s,y)(τδ). It can be deduced from

Xν
τδ,ŝ,x̂,ŷ (T ) ≥ g

(
Sτδ,ŝ (T )

)
that x̂ ≥ w(τδ, ŝ, ŷ), that is,

w(t, s, y) +
∫ τδ

t
Y ν

t,s,y(r) dSt,s(r) ≥ w
(
τδ, St,s(τδ), Y

ν
t,s,y(τδ)

)
.(4.7)
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Step 2: Application of Itô’s lemma. We further assume that the value function
w is smooth. Then, we can apply Itô’s lemma in (4.7) to get for all δ > 0:

−
∫ τδ

t
ξ(r) dr −

∫ τδ

t
ψ(r) dSt,s(r) ≥ 0,(4.8)

where

ξ(r) := Gνw
(
r ∧ τ, St,s(r ∧ τ), Y ν

t,s,y(r ∧ τ)
)
,

ψ(r) := (ws + γwy)
(
r ∧ τ, St,s(r ∧ τ), Y ν

t,s,y(r ∧ τ)
) − Y ν

t,s,y(r ∧ τ),

and Gν is the Dynkin operator associated to the two-dimensional process (S,Y ν):

Gνw(t, s, y) := wt(t, s, y) + α(t)wy(t, s, y)

+ 1
2σ 2s2wss(t, s, y) + 1

2γ (t)2σ 2s2wyy(t, s, y)(4.9)

+ γ (t)σ 2s2wsy(t, s, y).

If we set

τ := inf{r ≥ t : |Y ν
t,s,y(r) − y| + | logSt,s(r) − log s| > K} ∧ T ,

for some constant K > 0, then the processes ξ and ψ are bounded.

Step 3: Small time path behavior of single stochastic integrals. Since ξ is
bounded, it follows from (4.8) that there exists a constant L > 0 such that∫ r

t
−ψ(u)dSt,s(u) =

∫ r

t
−ψ(u)St,s(u)σ dW(u) ≥ −L(r − t)

(4.10)
for all r ∈ [t, τ ].

By the Dambis–Dubins–Schwarz theorem, there exists a Brownian motion
{B(r), r ≥ 0} such that∫ r

t
−ψ(u)dSt,s(u) = B

(∫ r

t
ψ2(u)S2

t,s(u)σ 2 du

)
, r ∈ [t, T ].

Hence, it follows from (4.10) and the law of the iterated logarithm for Brownian
motion that for all ε, δ > 0,

P
[|ψ(u)| ≥ ε for all u ∈ [t, t + δ]] = 0.

By the definition of ψ and the gamma constraint (4.4) on the process γ , this pro-
vides

−S�

(−wy(t, s, y)
) ≤ s2(

y − ws(t, s, y)
) ≤ S�

(
wy(t, s, y)

)
,(4.11)

where S� is the support function of the interval [�∗,�∗] defined by

S�(u) := sup
�∗≤c≤�∗

uc, u ∈ R.
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Since ψ is bounded, we can take expected values in (4.8) and divide by δ to obtain

E
[
−1

δ

∫ τδ

t
ξ(r) dr

]
≥ 0,

which, in the limit δ → 0, implies that

−Gw(t, s, y) := sup
{−G(a,c)w(t, s, y) :a ∈ R and �∗ ≤ s2c ≤ �∗} ≥ 0,(4.12)

where G(a,c) is given by (4.9). Combining (4.11) and (4.12), we obtain

G
(
s, y,wt(t, s, y),Dw(t, s, y),D2w(t, s, y)

)
:= min{−Gw(t, s, y); s2y − [s2ws − S�(−wy)](t, s, y);

− s2y + [s2ws + S�(wy)](t, s, y)} ≥ 0.

With arguments similar to the ones used to show the subsolution property in [7], it
can be proved that w is also a subsolution of the equation

G
(
s, y,wt(t, s, y),Dw(t, s, y),D2w(t, s, y)

) = 0.(4.13)

We omit this proof because it has nothing to do with the small time behavior of
stochastic integrals.

4.3. DPE for the value function v. For the derivation of the DPE for v we have
to restrict the control processes further by requiring that γ is right-continuous and
for all t ∈ [0, T ], there exists an ε > 0 such that almost surely,

∫ r

0
|γ (u + t) − γ (t)|2 du = O(r1+ε) for r ↘ 0.(4.14)

Again, we proceed in three steps.

Step 1: Dynamic programming. We assume that for each (t, s) ∈ [0, T ) ×
(0,∞), there is an admissible control (y, ν) = (y,α, γ ) such that

Xν
t,s,x,y(T ) ≥ g

(
St,s(T )

)
where x = v(t, s).

For a (t, T ]-valued F
W -stopping time τ and δ > 0, we set τδ := τ ∧ (t + δ). As in

Section 4.2, it can be shown that

v(t, s) +
∫ τδ

t
Y ν

t,s,y(r) dSt,s(r) ≥ v
(
τδ, St,s(τδ)

)
.(4.15)
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Step 2: Application of Itô’s lemma. Again, we assume that the value function
v is smooth. Then, we can twice apply Itô’s lemma in (4.15) to get for all δ > 0:

−
∫ τδ

t
ξ(r) dr −

∫ τδ

t

{
ζ +

∫ r

t
φ(u) du+

∫ r

t
ψ(u)dSt,s(u)

}
dSt,s(r) ≥ 0,(4.16)

where

ξ(r) := Lv
(
r ∧ τ, St,s(r ∧ τ)

)
,

ζ := vs(t, s) − y,

φ(r) := Lvs

(
r ∧ τ, St,s(r ∧ τ)

) − α(r),

ψ(r) := vss

(
r ∧ τ, St,s(r ∧ τ)

) − γ (r),

and L is the Dynkin operator associated to the process S:

Lv(t, s) := vt (t, s) + 1
2σ 2

ms2vss(t, s).

If we set

τ := inf{r ≥ t : | logSt,s(r) − log s| > K},
for some constant K > 0, then the processes ξ , φ and ψ are bounded.

Step 3: Small time path behavior of double stochastic integrals. It follows from
the boundedness of ξ that there exists a constant C1 > 0 such that for all δ > 0,∣∣∣∣

∫ τδ

t
ξ(r) dr

∣∣∣∣ ≤ C1δ.(4.17)

From the boundedness of φ and Proposition 3.9 it can be deduced that

lim
δ↘0

1

δ

∣∣∣∣
∫ τδ

t

∫ r

t
φ(u) dudSt,s(r)

∣∣∣∣
(4.18)

= lim
δ↘0

1

δ

∣∣∣∣
∫ t+δ

t

∫ r

t
φ(u) duSt,s(r)σ dW(r)

∣∣∣∣ = 0.

Furthermore, since almost all paths of St,s are Hölder-continuous of order 1/3, it
follows from Corollary 3.7(a) that

lim sup
δ↘0

1

h(δ)

∣∣∣∣
∫ τδ

t

∫ r

t
ψ(u)dSt,s(u) dSt,s(r)

∣∣∣∣
= lim sup

δ↘0

1

h(δ)

∣∣∣∣
∫ t+δ

t

∫ r

t
ψ(u)St,s(u)σ dW(u)St,s(r)σ dW(r)

∣∣∣∣(4.19)

< ∞.

It can be seen from (4.16) together with (4.17)–(4.19) that

lim sup
δ↘0

1√
h(δ)

∫ τδ

t
ζ dSt,s(r) ≤ 0,
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from which it can be derived by the Dambis–Dubins–Schwarz theorem and the
law of the iterated logarithm for Brownian motion that ζ = 0. Therefore, (4.16),
(4.17) and (4.18) imply that

lim sup
δ↘0

1

h(δ)

∫ τδ

t

∫ r

t
ψ(u)dSt,s(u) dSt,s(r) ≤ 0.(4.20)

Since ψ is right-continuous, it follows from (4.20) and Corollary 3.7(b) that
ψ(t) ≤ 0. Note that by the definition of ψ and the gamma constraint (4.4),

�∗ ≤ s2(
vss(t, s) − ψ(t)

) ≤ �∗.(4.21)

By the boundedness and continuity of ξ , we obtain from (4.16) and (4.18) that

ξ(t) ≤ lim inf
δ↘0

1

δ

∫ τδ

t

∫ r

t
−ψ(u)dSt,s(u) dSt,s(r).(4.22)

Since v is smooth, the process vss(r, St,s(r)) is almost surely locally Hölder-
continuous of order 1/3. Hence, since γ satisfies (4.14), the process ψ satis-
fies (4.14) as well. Therefore, we can apply Corollary 3.8(a) to conclude that

lim inf
δ↘0

1

δ

∫ τδ

t

∫ r

t
−ψ(u)dSt,s(u) dSt,s(r)

= lim inf
δ↘0

1

δ

∫ t+δ

t

∫ r

t
−ψ(u)St,s(u)σ dW(u)St,s(r)σ dW(r)

= 1

2
σ 2s2ψ(t),

which together with (4.22) shows that

ξ(t) ≤ 1
2σ 2s2ψ(t),

that is,

−vt (t, s) − 1
2σ 2s2(

vss(t, s) − ψ(t)
) ≥ 0.(4.23)

Combined, (4.21) and (4.23) yield the following:

F̂
(
vt (t, s), s

2vss(t, s)
) := sup

β≥0
F

(
vt (t, s), s

2vss(t, s) + β
) ≥ 0,

where

F(p,A) := min
{−p − 1

2σ 2A;�∗ − A;A − �∗
}
.

In [2] it is proved under weaker assumptions and with more general control
processes that the value function v is a viscosity solution of the equation

F̂
(
vt (t, s), s

2vss(t, s)
) = 0.(4.24)
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4.4. Discussion of the assumptions and related literature. Using approxima-
tion arguments, it can be shown that w is a viscosity solution of the DPE (4.13)
without the assumption that it is always a minimum and smooth (see [7] for more
details). Under additional continuity conditions on γ it can also be shown that v

is a viscosity supersolution of the DPE (4.24) without assuming that it is always a
minimum and smooth. For instance, with the arguments of Section 5 of [2] it can
be shown without assumptions on v that it is a viscosity supersolution of (4.24)
if γ is required to be of the form

γ (r) = z +
∫ r

t
γ 1(u) du +

∫ r

t
γ 2(u) dW(u), r ∈ [t, T ],(4.25)

for z ∈ R and γ 1, γ 2 progressively measurable processes, and suitable bound-
edness conditions are satisfied. It is an open problem whether the supersolu-
tion property of v can be shown without continuity assumptions on γ such as
(4.25) or (4.14). Another open problem is whether the value function v corre-
sponding to trading strategies of the form (4.3) with γ of the form (4.25) is also a
subsolution of (4.24).

However, assume that g is continuous and let vBS(t, s) = E[g(St,s(T ))] be
the Black–Scholes price of g(St,s(T )). Then it follows from the comparison re-
sult, Proposition 3.9, in [2] that v ≥ vBS on [0, T ) × (0,∞), and v > vBS on
[0, T )× (0,∞) whenever the function g(s)+�∗ log s is not concave. On the other
hand, without boundedness assumptions on the process α in (4.3), it follows from
Theorem 4.4 in [1] that v ≤ vBS on [0, T ) × (0,∞) irrespective of the form of g.

To allow for a proof of a partial dynamic programming principle that is needed
in the proof of the subsolution property of the value function, the control processes
in [2] are also permitted to contain finitely many jumps. More precisely, the trading
strategies in [2] are of the form

Y(r) =
N−1∑
n=0

yn1{τn≤r<τn+1} +
∫ r

t
α(u) du +

∫ r

t
γ (u) dSt,s(u),

(4.26)
r ∈ [t, T ],

where t = τ0 ≤ τ1 ≤ · · · is an increasing sequence of [t, T ]-valued F
W -stopping

times such that the random variable N := inf{n ∈ N : τn = T } is bounded, all yn

are F W(τn)-measurable random variables and α, γ are F
W -progressively mea-

surable processes satisfying certain boundedness and continuity conditions (see
Section 2.2 in [2]).

Denote by vjumps the value function corresponding to this class of trading strate-
gies. It is shown in [2] that vjumps is the unique viscosity solution of (4.24) in a cer-
tain class of functions. Again, for continuous g, it follows from the comparison re-
sult, Proposition 3.9 in [2], that vjumps ≥ vBS on [0, T )× (0,∞), and vjumps > vBS

on [0, T )×(0,∞) whenever g+�∗ log(s) is not concave. On the other hand, if the
number of jumps N in (4.26) is only required to be finite but not bounded, then it
follows from Lemma A.3 in [3] that vjumps ≤ vBS on [0, T ) × (0,∞) for all g.



DOUBLE STOCHASTIC INTEGRALS 2495

Acknowledgments. We are grateful to Peter Bank for pointing out the ap-
proximation results of [1] and [3] and to the anonymous referees for many useful
suggestions. P. Cheridito gratefully acknowledges the kind hospitality of the Cen-
tre de Recherche en Economie et Statistique.

REFERENCES

[1] BANK, P. and BAUM, D. (2004). Hedging and portfolio optimization in financial markets with
a large trader. Math. Finance 14 1–18. MR2030833

[2] CHERIDITO, P., SONER, H. M. and TOUZI, N. (2005). The multi-dimensional super-replication
problem under gamma constraints. Ann. Inst. H. Poincaré (C) Non Linear Analysis 22
633–666.

[3] LEVENTAL, S. and SKOROHOD, A. V. (1997). On the possibility of hedging options in the
presence of transaction costs. Ann. Appl. Probab. 7 410–443. MR1442320

[4] REVUZ, D. and YOR, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed.
Springer, Berlin. MR1725357

[5] SHIRYAEV, A. N. (1990). Probability, 2nd ed. Springer, New York.
[6] SONER, H. M. and TOUZI, N. (2000). Superreplication under gamma constraints. SIAM J. Con-

trol Optim. 39 73–96. MR1780909
[7] SONER, H. M. and TOUZI, N. (2002). Stochastic target problems, dynamic programming, and

viscosity solutions. SIAM J. Control Optim. 41 404–424. MR1920265
[8] SONER, H. M. and TOUZI, N. (2002). Dynamic programming for stochastic target problems

and geometric flows. J. European Math. Soc. 4 201–236. MR1924400

P. CHERIDITO

ORFE
PRINCETON UNIVERSITY

PRINCETON, NEW JERSEY

USA
E-MAIL: dito@princeton.edu

H. M. SONER

KOÇ UNIVERSITY

ISTANBUL

TURKEY

E-MAIL: msoner@ku.edu.tr

N. TOUZI

CENTRE DE RECHERCHE

EN ECONOMIE ET STATISTIQUE

PARIS

FRANCE

E-MAIL: touzi@ensae.fr
URL: www.crest.fr/pageperso/lfa/touzi/touzi.htm

http://www.ams.org/mathscinet-getitem?mr=2030833
http://www.ams.org/mathscinet-getitem?mr=1442320
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1780909
http://www.ams.org/mathscinet-getitem?mr=1920265
http://www.ams.org/mathscinet-getitem?mr=1924400
mailto:dito@princeton.edu
mailto:msoner@ku.edu.tr
mailto:touzi@ensae.fr
http://www.crest.fr/pageperso/lfa/touzi/touzi.htm

	Introduction
	Problem formulation and notation
	Small time path behavior of double stochastic integrals
	Step 1
	Step 2
	Step 3

	Applications to stochastic control
	Super-replication under gamma constraints
	DPE for the value function w
	Step 1: Dynamic programming principle
	Step 2: Application of Itô's lemma
	Step 3: Small time path behavior of single stochastic integrals

	DPE for the value function v
	Step 1: Dynamic programming
	Step 2: Application of Itô's lemma
	Step 3: Small time path behavior of double stochastic integrals

	Discussion of the assumptions and related literature

	Acknowledgments
	References

