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We are concerned with the numerical resolution of backward stochastic
differential equations. We propose a new numerical scheme based on
iterative regressions on function bases, which coefficients are evaluated using
Monte Carlo simulations. A full convergence analysis is derived. Numerical
experiments about finance are included, in particular, concerning option
pricing with differential interest rates.

1. Introduction. In this paper we are interested in numerically approximating
the solution of a decoupled forward–backward stochastic differential equation
(FBSDE)

St = S0 +
∫ t

0
b(s, Ss) ds +

∫ t

0
σ(s, Ss) dWs,(1)

Yt = �(S) +
∫ T

t
f (s, Ss, Ys,Zs) ds −

∫ T

t
Zs dWs.(2)

In this representation,S = (St : 0 ≤ t ≤ T ) is thed-dimensional forward compo-
nent andY = (Yt : 0 ≤ t ≤ T ) the one-dimensional backward one (the extension
of our results to multidimensional backward equations is straightforward). Here,
W is a q-dimensional Brownian motion defined on a filtered probability space
(�,F ,P, (Ft )0≤t≤T ), where(Ft )t is the augmented natural filtration ofW . The
driver f (·, ·, ·, ·) and the terminal condition�(·) are, respectively, a determin-
istic function and a deterministic functional of the processS. The assumptions
(H1)–(H3) below ensure the existence and the uniqueness of a solution(S,Y,Z)

to such equation (1)–(2).

Applications of BSDEs.Such equations, first studied by Pardoux and Peng [26]
in a general form, are important tools in mathematical finance. We mention some
applications and refer the reader to [10, 12] for numerous references. In a complete
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market, for the usual valuation of a contingent claim with payoff�(S), Y is the
value of the replicating portfolio andZ is related to the hedging strategy. In that
case, the driverf is linear w.r.t.Y andZ. Some market imperfections can also be
incorporated, such as higher interest rate for borrowing [4]: then, the driver is only
Lipschitz continuous w.r.t.Y andZ. Related numerical experiments are developed
in Section 6. In incomplete markets, the Föllmer–Schweizer strategy [14] is given
by the solution of a BSDE. When trading constraints on some assets are imposed,
the super-replication price [13] is obtained as the limit of nonlinear BSDEs. Con-
nections with recursive utilities of Duffie and Epstein [11] are also available. Peng
has introduced the notion ofg-expectation (hereg is the driver) as a nonlinear pric-
ing rule [28]. Recently he has shown [27] the deep connection between BSDEs and
dynamic risk measures, proving that any dynamic risk measure(Et )0≤t≤T (satis-
fying some axiomatic conditions) is necessarily associated to a BSDE(Yt )0≤t≤T

(the converse being known for years). The least we can say is that BSDEs are now
inevitable tools in mathematical finance. Another indirect application may concern
variance reduction techniques for the Monte Carlo computations of expectations,
say E(�) taking f ≡ 0. Indeed,

∫ T
0 Zs dWs is the so-called martingale control

variate (see [24], for instance). Finally, for applications to semi-linear PDEs, we
refer to [25], among others.

The mathematical analysis of BSDE is now well understood (see [23] for recent
references) and its numerical resolution has made recent progresses. However,
even if several numerical methods have been proposed, they suffer of a high
complexity in terms of computational time or are very costly in terms of computer
memory. Thus, their uses in practice on real problems are difficult. Hence, it is
still topical to devise more efficient algorithms. This article contributes in this
direction by developing a simple approach, based on Monte Carlo regression on
function bases. It is in the vein of the general regression approach of Bouchard
and Touzi [6], but here it is actually much simpler because only one set of
paths is used to evaluate all the regression operators. Consequently, the numerical
implementation is easier and more efficient. In addition, we provide a full
mathematical analysis of the influence of the parameters of the method.

Numerical methods for BSDEs.In the past decade, there have been several
attempts to provide approximation schemes for BSDEs. First, Ma, Protter and
Yong [22] propose thefour step schemeto solve general FBSDEs, which requires
the numerical resolution of a quasilinear parabolic PDE. In [2], Bally presents a
time discretization scheme based on a Poisson net: this trick avoids him using
the unknown regularity ofZ and enables him to derive a rate of convergence
w.r.t. the intensity of the Poisson process. However, extra computations of very
high-dimensional integrals are needed and this is not handled in [2]. In a recent
work [29], Zhang proves someL2-regularity onZ, which allows the use of a
regular deterministic time mesh. Under an assumption ofconstructible functionals
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for � (which essentially means that the system can be made Markovian, by adding
d ′ extra state variables), its approximation scheme is less consuming in terms of
high-dimensional integrals. If for each of thed + d ′ state variables, one usesM

points to compute the integrals, the complexity is aboutMd+d ′
per time step, for

a global error of orderM−1 say (actually, an analysis of the global accuracy is not
provided in [29]). This approach is somewhat related to the quantization method
of Bally and Pagès [3], which is an optimal space discretization of the underlying
dynamic programming equation (see also the former work by Chevance [8], where
the driver does not depend onZ). We should also mention the works by Ma,
Protter, San Martin and Soledad [21] and Briand, Delyon and Mémin [7], where
the Brownian motion is replaced by a scaled random walk. Weak convergence
results are given, without rates of approximation. The complexity becomes very
large in multidimensional problems, like for finite differences schemes for PDEs.
Recently, in the case of path-independent terminal conditions�(S) = φ(ST ),
Bouchard and Touzi [6] propose a Monte Carlo approach which may be more
suitable for high-dimensional problems. They follow the approach by Zhang [29]
by approximating (1)–(2) by a discrete time FBSDE withN time steps [see (5)–(6)
below], with anL2-error of orderN−1/2. Instead of computing the conditional
expectations which appear at each discretization time by discretizing the space
of each state variable, the authors use a general regression operator, which can
be derived, for instance, from kernel estimators or from the Malliavin calculus
integration by parts formulas. The regression operator at a discretization time is
assumed to be built independently of the underlying process, and independently of
the regression operators at the other times. For the Malliavin calculus approach,
for example, this means that one needs to simulate at each discrete time,M copies
of the approximation of (1), which is very costly. The algorithm that we propose
in this paper requires only one set of paths to approximate all the regression
operators at each discretization time at once. Since the regression operators are
now correlated, the mathematical analysis is much more involved.

The regression operator we use in the sequel results from theL2-projection on
a finite basis of functions, which leads in practice to solve a standard least squares
problem. This approach is not new in numerical methods for financial engineering,
since it has been developed by Longstaff and Schwartz [20] for the pricing of
Bermuda options. See also [5] for the option pricing using simulations under the
objective probability.

Organization of the paper. In Section 2 we set the framework of our study,
define some notation used throughout the paper and describe our algorithm based
on the approximation of conditional expectations by a projection on a finite basis
of functions. We also provide some remarks related to models in finance.

The next three sections are devoted to analyzing the influence of the parameters
of this scheme on the evaluation ofY andZ. Note that approximation results onZ
were not previously considered in [6]. In Section 3 we provide an estimation of the
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time discretization error: this essentially follows from the results by Zhang [29].
Then, the impact of the function bases and the number of simulated paths is
separately discussed in Section 4 and in Section 5, which is the major contribution
of our work. Since this least squares approach is also popular to price Bermuda
options [20], it is crucial to accurately estimate the propagation of errors in this
type of numerical method, that is, to ensure that it is not explosive when the
exercise frequency shrinks to 0.L2-estimates and a central limit theorem (see
also [9] for Bermuda options) are proved.

In Section 6 explicit choices of function bases are given, together with numerical
examples relative to the pricing of vanilla options and Asian options with
differential interest rates.

2. Assumptions, notation and the numerical scheme.

2.1. Standing assumptions.Throughout the paper we assume that the follow-
ing hypotheses are fulfilled:

(H1) The functions(t, x) �→ b(t, x) and(t, x) �→ σ(t, x) are uniformly Lipschitz
continuous w.r.t.(t, x) ∈ [0, T ] × R

d .
(H2) The driverf satisfies the following continuity estimate:

|f (t2, x2, y2, z2) − f (t1, x1, y1, z1)|
≤ Cf (|t2 − t1|1/2 + |x2 − x1| + |y2 − y1| + |z2 − z1|)

for any(t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ] × R
d × R × R

q .
(H3) The terminal condition� satisfies thefunctional Lipschitz condition, that is,

for any continuous functionss1 ands2, one has

|�(s1) − �(s2)| ≤ C sup
t∈[0,T ]

|s1
t − s2

t |.

These assumptions (H1)–(H3) are sufficient to ensure the existence and uniqueness
of a triplet (S,Y,Z) solution to (1)–(2) (see [23] and references therein). In
addition, the assumption (H3) allows a large class of terminal conditions (see
examples in Section 2.4).

To approximate the forward component (1), we use a standard Euler scheme
with time steph (say smaller than 1), associated to equidistant discretization times
(tk = kh = kT /N)0≤k≤N . This approximation is defined bySN

0 = S0 and

SN
tk+1

= SN
tk

+ b
(
tk, S

N
tk

)
h + σ

(
tk, S

N
tk

)(
Wtk+1 − Wtk

)
.(3)

The terminal condition�(S) is approximated by�N(P N
tN

), where �N is a
deterministic function and(P N

tk
)0≤k≤N is a Markov chain, whose first components

are given by those of(SN
tk

)0≤k≤N . In other words, we eventually add extra state
variables to make Markovian the implicit dynamics of the terminal condition. We
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also assume thatP N
tk

is Ftk -measurable and thatE[�N(P N
tN

)]2 < ∞. Of course,
this approximation strongly depends on the terminal condition type and its impact
is measured by the errorE|�(S)−�N(P N

tN
)|2 (see Theorem 1 later). Examples of

function�N are given in Section 2.4.
Another hypothesis is required to prove that a certain discrete time BSDE

(YN
tk

)k can be represented as a Lipschitz continuous functionyN(tk, ·) of P N
tk

(see Proposition 3 later). This property is mainly used in Section 6 on numerical
experiments to derive relevant regression approximations.

(H4) The function �N(·) is Lipschitz continuous (uniformly inN ) and

supN |�N(0)| < ∞. In addition, E|P N,k0,x
tN

− P
N,k0,x

′
tN

|2 + E|P N,k0,x
tk0+1

−
P

N,k0,x
′

tk0+1
|2 ≤ C|x − x′|2 uniformly in k0 andN .

Here, (P
N,k0,x
tk

)k stands for the Markov chain(P N
tk

)k starting at P N
tk0

= x.
Moreover, since we deal with the flow properties of(P N

tk
)k , we use the standard

representation of this Markov chain as a random iterative sequence of the form
P N

tk
= FN

k (Uk,P
N
tk−1

), where(FN
k )k are measurable functions and(Uk)k are i.i.d.

random variables.

2.2. Notation.

PROJECTION ON FUNCTION BASES.

• The L2(�,P) projection of the random variableU on a finite family φ =
[φ1, . . . , φn]∗ (considered as a random column vector) is denoted byPφ(U).
We setRφ(U) = U − Pφ(U) for the projection error.

• At each timetk , to approximate, respectively,Ytk and Zl,tk (Zl,tk is the lth
component ofZtk , 1 ≤ l ≤ q), we will use, respectively, finite-dimensional
function basesp0,k(P

N
tk

) andpl,k(P
N
tk

) (1 ≤ l ≤ q), which may be also written
p0,k and pl,k (1 ≤ l ≤ q) to simplify. In the following, for convenience,
both (pl,k(·)) and (pl,k(P

N
tk

)) are indifferently calledfunction basis. Explicit
examples are given in Section 6. The projection coefficients will be denoted
α0,k, α1,k, . . . , αq,k (viewed as column vectors). We assume thatE|pl,k|2 <

∞ (0 ≤ l ≤ q) and w.l.o.g. thatE(pl,kp
∗
l,k) is invertible, which ensures the

uniqueness of the coefficients of the projectionPpl,k
(0≤ l ≤ q).

• To simplify, we writefk(α0,k, . . . , αq,k) or fk(αk) for f (tk, S
N
tk

, α0,k · p0,k, . . . ,

αq,k · pq,k) [SN
tk

is the Euler approximation ofStk , see (3)].
• For convenience, we writeEk(·) = E(·|Ftk ). We put�Wk = Wtk+1 − Wtk (and

�Wl,k component-wise) and definevk the (column) vector given by[vk]∗ =
(p∗

0,k, p
∗
1,k

�W1,k√
h

, . . . , p∗
q,k

�Wq,k√
h

).
• For a vectorx, |x| stands, as usual, for its Euclidean norm. The relative

dimension is still implicit. For an integerM and x ∈ R
M , we put |x|2M =
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1
M

∑M
m=1 |xm|2. For a set of projection coefficientsα = (α0, . . . , αq), we set

|α| = max0≤l≤q |αl| (the dimensions of theαl may be different). For the set
of basis functions at a fixed timetk , |pk| is defined analogously.

• For a real symmetric matrixA, ‖A‖ and‖A‖F are, respectively, the maximum
of the absolute value of its eigenvalues and its Frobenius norm (defined by
‖A‖2

F = ∑
i,j a2

i,j ).

We refer to Section 6 for explicit choices of function bases, but to fix ideas,
a possible choice could be to define, for each timetk , grids (xi

l,k : 1 ≤ i ≤
n)0≤l≤q and definepl,k(·) as the basis of indicator functions of the open Voronoi
partition [17] associated to(xi

l,k : 1 ≤ i ≤ n), that is, pl,k(·) = (1Ci
l,k

(·))1≤i≤n,

whereCi
l,k = {x : |x − xi

l,k| < |x − x
j
l,k|, ∀ j �= i}.

SIMULATIONS . In the following,M independent simulations of(P N
tk

)0≤k≤N ,
(�Wk)0≤k≤N−1 will be used. We denote them((P

N,m
tk

)0≤k≤N)1≤m≤M ,
((�Wm

k )0≤k≤N−1)1≤m≤M :

• The values of basis functions along these simulations are denoted(pm
l,k =

pl(P
N,m
tk

))0≤l≤q,0≤k≤N−1,1≤m≤M .
• Analogously tofk(α0,k, . . . , αq,k) or fk(αk), we denotef m

k (α0,k, . . . , αq,k) or
f m

k (αk) for f (tk, S
N,m
tk

, α0,k · pm
0,k, . . . , αq,k · pm

q,k).

We define the following:

• the (column) vectorvm
k by [vm

k ]∗ = (pm∗
0,k, p

m∗
1,k

�Wm
1,k√
h

, . . . , pm∗
q,k

�Wm
q,k√
h

);

• the matrixV M
k = 1

M

∑M
m=1 vm

k [vm
k ]∗;

• the matrixP M
l,k = 1

M

∑M
m=1 pm

l,k[pm
l,k]∗ (0≤ l ≤ q).

TRUNCATIONS. To ensure the stability of the algorithm, we use threshold
techniques, which are based on the following notation:

• In Proposition 2 below, based on BSDEs’ a priori estimates, we explicitly build
someR-valued functions(ρN

l,k)0≤l≤q,0≤k≤N−1 bounded from below by 1. We
setρN

k (P N
tk

) = [ρN
0,k(P

N
tk

), . . . , ρN
q,k(P

N
tk

)]∗.

• Associated to these estimates, we define (random) truncation functionsρ̂N
l,k(x) =

ρN
l,k(P

N
tk

)ξ(x/ρN
l,k(P

N
tk

)) and ρ̂
N,m
l,k (x) = ρN

l,k(P
N,m
tk

)ξ(x/ρN
l,k(P

N,m
tk

)), where
ξ :R �→ R is a C2

b -function, such thatξ(x) = x for |x| ≤ 3/2, |ξ |∞ ≤ 2 and
|ξ ′|∞ ≤ 1.

In the next computations,C denotes a generic constant that may change from line
to line. It is still uniform in the parameters of our scheme.
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2.3. The numerical scheme.We are now in a position to define the simulation-
based approximations of the BSDE (1)–(2). The statements of approximation
results and their proofs are postponed to Sections 3, 4 and 5.

Our procedure combines a backward in time evaluation (from timetN = T to
time t0 = 0), a fixed point argument (usingi = 1, . . . , I Picard iterations), least
squares problems onM simulated paths (using some function bases).

Initialization. The algorithm is initialized withYN,i,I,M
tN

= �N(P N
tN

) (indepen-
dently of i andI ). Then, the solution(Ytk ,Z1,tk , . . . ,Zq,tk ) at a given timetk is
represented via some projection coefficients(α

i,I,M
l,k )0≤l≤q by

Y
N,i,I,M
tk

= ρ̂N
0,k(α

i,I,M
0,k · p0,k),

√
hZ

N,i,I,M
l,tk

= ρ̂N
l,k

(√
hα

i,I,M
l,k · pl,k

)
(ρ̂N

0,k and ρ̂N
l,k are the truncations introduced before). We now detail how the

coefficients are computed using independent realizations((P
N,m
tk

)0≤k≤N)1≤m≤M ,
((�Wm

k )0≤k≤N−1)1≤m≤M .

Backward in time iteration at timetk < T . Assume that an approxima-
tion Y

N,I,I,M
tk+1

:= ρ̂N
0,k+1(α

I,I,M
0,k+1 · p0,k+1) is built, and denoteYN,I,I,M,m

tk+1
=

ρ̂
N,m
0,k+1(α

I,I,M
0,k+1 · pm

0,k+1) its realization along themth simulation.

→ For the initialization i = 0 of Picard iterations, setYN,0,I,M
tk

= 0 and

Z
N,0,I,M
tk

= 0, that is,α0,I,M
l,k = 0 (0≤ l ≤ q).

→ For i = 1, . . . , I , the coefficientsα
i,I,M
k = (α

i,I,M
l,k )0≤l≤q are iteratively

obtained as the arg min in(α0, . . . , αq) of the quantity

1

M

M∑
m=1

(
Y

N,I,I,M,m
tk+1

− α0 · pm
0,k + hf m

k (α
i−1,I,M
k ) −

q∑
l=1

αl · pm
l,k�Wm

l,k

)2

.(4)

If the above least squares problem has multiple solutions (i.e., the empirical
regression matrix is not invertible, which occurs with small probability whenM

becomes large), we may choose, for instance, the (unique) solution of minimal
norm. Actually, this choice is arbitrary and has no incidence on the further analysis.

The convergence parameters of this scheme are the time steph (h → 0), the
function bases, the number of simulationsM (M → +∞). This is fully analyzed
in the following sections, with three main steps: time discretization of the BSDE,
projections on bases functions inL2(�,P), empirical projections using simulated
paths. An estimate of the global error directly follows from the combination of
Theorems 1, 2 and 3. We will also see that it is enough to haveI = 3 Picard
iterations (see Theorem 3).

The intuition behind the above sequence of least squares problems (4) is actually
simple. It aims at mimicking what can be ideally done with an infinite number of
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simulations, Picard iterations and bases functions, that is,(
YN

tk
,ZN

tk

) = arg inf
(Y,Z)∈L2(Ftk

)

E
(
YN

tk+1
− Y + hf

(
tk, S

N
tk

, Y,Z
) − Z�Wk

)2
,

where, as usual,L2(Ftk ) stands for the square integrable andFtk -measurable,
possibly multidimensional, random variables. This ideal case is an appoximation
of the BSDE (2) which writes

Ytk+1 +
∫ tk+1

tk

f (s, Ss, Ys,Zs) ds = Ytk +
∫ tk+1

tk

Zs dWs

over the time interval[tk, tk+1]. (YN
tk

)k will be interpreted as a discrete time BSDE
(see Theorem 1).

2.4. Remarks for models in finance.Here, we give examples of driversf
and terminal conditions�(S) in the case of option pricing with different interest
rates [4]:R for borrowing andr for lending withR ≥ r . Assume for simplicity
that there is only one underlying risky asset (d = 1) whose dynamics is given by
the Black–Scholes model with driftµ and volatility σ (q = 1): dSt = St (µdt +
σ dWt).

• Driver: If we setf (t, x, y, z) = −{yr +zθ −(y − z
σ
)−(R−r)}, whereθ = µ−r

σ
,

Yt is the value at timet of the self-financing portfolio replicating the payoff
�(S) [12]. In the case of equal interest ratesR = r , the driver is linear and we
obtain the usual risk-neutral valuation rule.

• Terminal conditions: A large class of exotic payoffs satisfies the functional
Lipschitz condition (H3).
− Vanilla payoff: �(S) = φ(ST ). Set P N

tk
= SN

tk
and �N(P N

tN
) = φ(P N

tN
).

Under (H3), it givesE|�N(P N
tN

) − �(S)|2 ≤ Ch.

− Asian payoff: �(S) = φ(ST ,
∫ T
0 St dt). Set P N

tk
= (SN

tk
, h

∑k−1
i=0 SN

ti
) and

�N(P N
tN

) = φ(P N
tN

). For usual functionsφ, the L2-error is of order 1/2
w.r.t. h. More accurate approximations of the average ofS could be
incorporated [18].

− Lookback payoff: �(S) = φ(ST ,mint∈[0,T ] St ,maxt∈[0,T ] St ). Set
�N(P N

tN
) = φ(P N

tN
) with P N

tk
= (SN

tk
,mini≤k SN

ti
,maxi≤k SN

ti
). In general,

this induces anL2-error of magnitude
√

h log(1/h) [29]. The rate
√

h

can be achieved by considering the exact extrema of the continuous Euler
scheme [1].

Note also that (H4) is satisfied on these payoffs.

We also mention that the price process(St )t is usually positive coordinatewise,
but its Euler scheme [defined in (3)] does not enjoy this feature. This may be an
undesirable property, which can be avoided by considering the Euler scheme on
the log-price. With this modification, the analysis below is unchanged and we refer
to [15] for details.
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3. Approximation results: step 1. We first consider a time approximation of
equations (1) and (2). The forward component is approximated using the Euler
scheme (3) and the backward component (2) is evaluated in a backward manner.
First, we setYN

tN
= �N(P N

tN
). Then,(YN

tk
,ZN

tk
)0≤k≤N−1 are defined by

ZN
l,tk

= 1

h
Ek

(
YN

tk+1
�Wl,k

)
,(5)

YN
tk

= Ek

(
YN

tk+1

) + hf
(
tk, S

N
tk

, YN
tk

,ZN
tk

)
.(6)

Using, in particular, the inequality|ZN
l,tk

| ≤ 1√
h

√
Ek(Y

N
tk+1

)2, it is easy to see by

a recursive argument thatYN
tk

andZN
tk

belong toL2(Ftk ). It is also equivalent to
assert that they minimize the quantity

E
(
YN

tk+1
− Y + hf

(
tk, S

N
tk

, Y,Z
) − Z�Wk

)2(7)

overL2(Ftk ) random variables(Y,Z). Note thatYN
tk

is well defined in (6), because
the mappingY �→ Ek(Y

N
tk+1

) + hf (tk, S
N
tk

, Y,ZN
tk

) is a contraction inL2(Ftk ), for
h small enough. The following result provides an estimate of the error induced by
this first step.

THEOREM 1. Assume(H1)–(H3).For h small enough, we have

max
0≤k≤N

E
∣∣Ytk − YN

tk

∣∣2 +
N−1∑
k=0

∫ tk+1

tk

E
∣∣Zt − ZN

tk

∣∣2 dt

≤ C
(
(1+ |S0|2)h + E

∣∣�(S) − �N (
P N

tN

)∣∣2).
PROOF. From [29], we know that the key point is theL2-regularity of Z.

Here, under (H1)–(H3),Z is càdlàg (see Remark 2.6.ii in [29]). Thus, Theorem 3.1
in [29] states that

N−1∑
k=0

E

∫ tk+1

tk

∣∣Zt − Ztk

∣∣2 dt ≤ C(1+ |S0|2)h.

With this estimate, the proof of Theorem 1 is standard (see, e.g., the proof of
Theorem 5.3 in [29]) and we omit details.�

Owing to the Markov chain(P N
tk

)0≤k≤N , the independent increments
(�Wk)0≤k≤N−1 and (5)–(6), we easily get the following result.

PROPOSITION1. Assume(H1)–(H3).For h small enough, we have

YN
tk

= yN
k

(
P N

tk

)
, ZN

l,tk
= zN

l,k

(
P N

tk

)
for 0≤ k ≤ N and 1≤ l ≤ q,(8)

where(yN
k (·))k and(zN

l,k(·))k,l are measurable functions.



MONTE CARLO METHOD FOR BSDE 2181

It will be established in Section 6 that they are Lipschitz continuous under the
extra assumption (H4).

4. Approximation results: step 2. Here, the conditional expectations which
appear in the definitions (5)–(6) ofYN

tk
andZN

l,tk
(1 ≤ l ≤ q) are replaced by a

L2(�,P) projection on the function basesp0,k andpl,k (1 ≤ l ≤ q). A numerical
difficulty still remains in the approximation ofYN

tk
in (6), which is usually obtained

as a fixed point. To circumvent this problem, we propose a solution combining
the projection on the function basis andI Picard iterations. The integerI is a
fixed parameter of our scheme (the analysis below shows that the valueI = 3 is
relevant).

DEFINITION 1. We denote byYN,i,I
tk

the approximation ofYN
tk

, wherei Picard
iterations with projections have been performed at timetk andI Picard iterations
with projections at any time aftertk . Analogous notation stands forZN,i,I

l,tk
. We

associate toYN,i,I
tk

andZ
N,i,I
l,tk

their respective projection coefficientsα
i,I
0,k andα

i,I
l,k ,

on the function basesp0,k andpl,k (1≤ l ≤ q).

We now turn to a precise definition of the above quantities. We setY
N,i,I
tN

=
�N(P N

tN
), independently ofi and I . Assume thatYN,I,I

tk+1
is obtained and let us

defineY
N,i,I
tk

,Z
N,i,I
l,tk

for i = 0, . . . , I . We begin withY
N,0,I
tk

= 0 andZ
N,0,I
tk

= 0,

corresponding toα0,I
l,k = 0 (0 ≤ l ≤ q). By analogy with (7), we setαi,I

k =
(α

i,I
l,k )0≤l≤q as the arg min in(α0, . . . , αq) of the quantity

E

(
Y

N,I,I
tk+1

− α0 · p0,k + hfk(α
i−1,I
k ) −

q∑
l=1

αl · pl,k�Wl,k

)2

.(9)

Iterating withi = 1, . . . , I , at the end we get(αI,I
l,k )0≤l≤q , thus,YN,I,I

tk
= α

I,I
0,k ·p0,k

and Z
N,I,I
l,tk

= α
I,I
l,k · pl,k (1 ≤ l ≤ q). The least squares problem (9) can be

formulated in different ways but this one is more convenient to get an intuition
on (4). The error induced by this second step is analyzed by the following result.

THEOREM 2. Assume(H1)–(H3).For h small enough, we have

max
0≤k≤N

E
∣∣YN,I,I

tk
− YN

tk

∣∣2 + h

N−1∑
k=0

E
∣∣ZN,I,I

tk
− ZN

tk

∣∣2

≤ Ch2I−2[1+ |S0|2 + E
∣∣�N (

P N
tN

)∣∣2]

+ C

N−1∑
k=0

E
∣∣Rp0,k

(
YN

tk

)∣∣2 + Ch

N−1∑
k=0

q∑
l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2.
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The above result shows how projection errors cumulate along the backward
iteration. The key point is to note that they only sum up, with a factorC which
does not explode asN → ∞. These estimates improve those of Theorem 4.1
in [6] for two reasons. First, error estimates onZN are provided here. Second,
in the cited theorem, the error is analyzed in terms ofE|Rp0,k

(Y
N,I,I
tk

)|2 and

E|Rpl,k
(Z

N,I,I
l,tk

)|2 say: hence, the influence of function bases is still questionable,
since it is hidden in the projection residualsRpk

and also in the random variables
Y

N,I,I
tk

andZ
N,I,I
l,tk

. Our estimates are relevant to directly analyze the influence of
function bases (see Section 6 for explicit computations). This feature is crucial in
our opinion. Regarding the influence ofI , it is enough here to haveI = 2 to get an
error of the same order as in Theorem 1. At the third step,I = 3 is needed.

PROOF OFTHEOREM 2. For convenience, we denoteAN(S0) = 1+ |S0|2 +
E|�N(P N

tN
)|2. In the following computations, we repeatedly use three standard

inequalities:

1. The contraction property of theL2-projection operator: for any random variable
X ∈ L2, we haveE|Ppl,k

(X)|2 ≤ E|X|2.
2. The Young inequality:∀γ > 0, ∀ (a, b) ∈ R

2, (a + b)2 ≤ (1 + γ h)a2 + (1 +
1

γ h
)b2.

3. The discrete Gronwall lemma: for any nonnegative sequences(ak)0≤k≤N ,
(bk)0≤k≤N and(ck)0≤k≤N satisfyingak−1 + ck−1 ≤ (1 + γ h)ak + bk−1 (with
γ > 0), we haveak + ∑N−1

i=k ci ≤ eγ (T −tk)[aN + ∑N−1
i=k bi]. Most of the time, it

will be used withci = 0.

Because�Wk is centered and independent of(pl,k)0≤l≤q , it is straightforward to
see that the solution of the least squares problem (9) is given, fori ≥ 1, by

Z
N,i,I
l,tk

= 1

h
Ppl,k

(
Y

N,I,I
tk+1

�Wl,k

)
,(10)

Y
N,i,I
tk

= Pp0,k

(
Y

N,I,I
tk+1

+ hf
(
tk, S

N
tk

, Y
N,i−1,I
tk

,Z
N,i−1,I
tk

))
.(11)

The proof of Theorem 2 may be divided in several steps.

Step 1: a (tight) preliminary upper bound forE|ZN,i,I
l,tk

|2. First note that

Z
N,i,I
l,tk

is constant fori ≥ 1. Moreover, the Cauchy–Schwarz inequality yields

|Ek(Y
N,I,I
tk+1

�Wl,k)|2 = |Ek([YN,I,I
tk+1

− Ek(Y
N,I,I
tk+1

)]�Wl,k)|2 ≤ h(Ek[YN,I,I
tk+1

]2 −
[Ek(Y

N,I,I
tk+1

)]2). Since(pl,k)l is Ftk -measurable and owing to the contraction of
the projection operator, it follows that

E
∣∣ZN,i,I

l,tk

∣∣2 = 1

h2E
[
Ppl,k

(
Ek

[
Y

N,I,I
tk+1

�Wl,k

])]2 ≤ 1

h2E
(
Ek

[
Y

N,I,I
tk+1

�Wl,k

])2

(12)
≤ 1

h

(
E

[
Y

N,I,I
tk+1

]2 − E
[
Ek

(
Y

N,I,I
tk+1

)]2)
.
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As it may be seen in the computations below, the termE[Ek(Y
N,I,I
tk+1

)]2 in (12)
plays a crucial role to make further estimates not explosive w.r.t.h.

Step2: L2 bounds forYN,i,I
tk

and
√

hZ
N,i,I
l,tk

. Actually, it is an easy exercise

to check that the random variablesY
N,i,I
tk

and
√

hZ
N,i,I
l,tk

are square integrable.
We aim at proving that uniformL2 bounds w.r.t.i, I, k are available. Denote
χ

N,I
k :Y ∈ L2(Ftk ) �→ Pp0,k

(Y
N,I,I
tk+1

+hf (tk, S
N
tk

, Y,Z
N,i−1,I
tk

)) ∈ L2(Ftk ). Clearly,

E|χN,I
k (Y2) − χ

N,I
k (Y1)|2 ≤ (Cf h)2

E|Y2 − Y1|2, where Cf is the Lipschitz
constant off . Consequently, forh small enough, the applicationχN,I

k is
contracting and has a unique fixed pointY

N,∞,I
tk

∈ L2(Ftk ) (remind thatZN,i,I
l,tk

does not depend oni ≥ 1). One has

Y
N,∞,I
tk

= Pp0,k

(
Y

N,I,I
tk+1

+ hf
(
tk, S

N
tk

, Y
N,∞,I
tk

,Z
N,I,I
tk

))
,(13)

E
∣∣YN,∞,I

tk
− Y

N,i,I
tk

∣∣2 ≤ (Cf h)2i
E

∣∣YN,∞,I
tk

∣∣2(14)

sinceY
N,0,I
tk

= 0. Thus, Young’s inequality yields, fori ≥ 1,

E
∣∣YN,i,I

tk

∣∣2 ≤
(

1+ 1

h

)
E

∣∣YN,∞,I
tk

− Y
N,i,I
tk

∣∣2 + (1+ h)E
∣∣YN,∞,I

tk

∣∣2
(15)

≤ (1+ Ch)E
∣∣YN,∞,I

tk

∣∣2.
The above inequality is also true fori = 0 becauseYN,0,I

tk
= 0. We now estimate

E|YN,∞,I
tk

|2 from the identity (13). Combining Young’s inequality (withγ to

be chosen later), the identityPp0,k
(Y

N,I,I
tk+1

) = Pp0,k
(Ek[YN,I,I

tk+1
]), the contraction

of Pp0,k
and the Lipschitz property off , we get

E
∣∣YN,∞,I

tk

∣∣2 ≤ (1+ γ h)E
∣∣Ek

[
Y

N,I,I
tk+1

]∣∣2
(16)

+ Ch

(
h + 1

γ

)[
Ef 2

k (0, . . . ,0) + E
∣∣YN,∞,I

tk

∣∣2 + E
∣∣ZN,I,I

tk

∣∣2].
Bringing together termsE|YN,∞,I

tk
|2, then using (12) and the easy upper bound

Ef 2
k (0, . . . ,0) ≤ C(1+ |S0|2), it readily follows that

E
∣∣YN,∞,I

tk

∣∣2 ≤ (1+ γ h)

1− Ch(h + 1/γ )
E

∣∣Ek

[
Y

N,I,I
tk+1

]∣∣2

+ Ch(h + 1/γ )

1− Ch(h + 1/γ )
[1+ |S0|2](17)

+ C(h + 1/γ )

1− Ch(h + 1/γ )

(
E

∣∣YN,I,I
tk+1

∣∣2 − E
∣∣Ek

[
Y

N,I,I
tk+1

]∣∣2),
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provided thath is small enough. Takeγ = C to get

E
∣∣YN,∞,I

tk

∣∣2 ≤ Ch[1+ |S0|2] + (1+ Ch)E
∣∣YN,I,I

tk+1

∣∣2 + ChE
∣∣Ek

[
Y

N,I,I
tk+1

]∣∣2
(18)

≤ Ch[1+ |S0|2] + (1+ 2Ch)E
∣∣YN,I,I

tk+1

∣∣2
with a new constantC. Plugging this estimate into (15) withi = I , we get
E|YN,I,I

tk
|2 ≤ Ch[1 + |S0|2] + (1 + Ch)E|YN,I,I

tk+1
|2 and, thus, by Gronwall’s

lemma, sup0≤k≤N E|YN,I,I
tk

|2 ≤ CAN(S0). This upper bound combined with (18),

(15) and (12) finally provides the required uniform estimates forE|YN,i,I
tk

|2 and

E|ZN,i,I
l,tk

|2:

sup
I≥1

sup
i≥0

sup
0≤k≤N

(
E

∣∣YN,i,I
tk

∣∣2 + hE
∣∣ZN,i,I

l,tk

∣∣2) ≤ CAN(S0).(19)

Step3: upper bounds forηN,I
k = E|YN,I,I

tk
− YN

tk
|2. Note thatηN,I

N = 0. Our
purpose is to prove the following relation for 0≤ k < N :

η
N,I
k ≤ (1+ Ch)η

N,I
k+1 + Ch2I−1AN(S0)

(20)

+ CE
∣∣Rp0,k

(
YN

tk

)∣∣2 + Ch

q∑
l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2.
Note that the estimate on max0≤k≤N E|YN,I,I

tk
−YN

tk
|2 given in Theorem 2 directly

follows from the relation above. With the arguments used to derive (15) and using
the estimate (19), we easily get

η
N,I
k ≤ Ch2I−1AN(S0) + (1+ h)E

∣∣YN,∞,I
tk

− YN
tk

∣∣2
= Ch2I−1AN(S0) + (1+ h)E

∣∣Rp0,k

(
YN

tk

)∣∣2(21)

+ (1+ h)E
∣∣YN,∞,I

tk
− Pp0,k

(
YN

tk

)∣∣2,
where we used at the last equality the orthogonality property relative toPp0,k

:

E
∣∣YN,∞,I

tk
− YN

tk

∣∣2 = E
∣∣Rp0,k

(
YN

tk

)∣∣2 + E
∣∣YN,∞,I

tk
− Pp0,k

(
YN

tk

)∣∣2.(22)

Furthermore, with the same techniques as for (12) and (16), we can prove

E
∣∣ZN,I,I

tk
− ZN

tk

∣∣2
=

q∑
l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2 +
q∑

l=1

E
∣∣ZN,I,I

l,tk
− Ppl,k

(
ZN

l,tk

)]∣∣2
(23)

≤
q∑

l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2

+ d

h

(
E

[
Y

N,I,I
tk+1

− YN
tk+1

]2 − E
[
Ek

(
Y

N,I,I
tk+1

− YN
tk+1

)]2)
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and

E
∣∣YN,∞,I

tk
− Pp0,k

(
YN

tk

)∣∣2
≤ (1+ γ h)E

∣∣Ek

[
Y

N,I,I
tk+1

− YN
tk+1

]∣∣2(24)

+ Ch

(
h + 1

γ

)[
E

∣∣YN,∞,I
tk

− YN
tk

∣∣2 + E
∣∣ZN,I,I

tk
− ZN

tk

∣∣2].
Replacing the estimate (23) in (24), choosingγ = Cd and using (22) directly leads
to

(1− Ch)E
∣∣YN,∞,I

tk
− Pp0,k

(
YN

tk

)∣∣2
≤ (1+ Ch)η

N,I
k+1(25)

+ Ch

q∑
l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2 + ChE
∣∣Rp0,k

(
YN

tk

)∣∣2.
Plugging this estimate into (21) completes the proof of (20).

Step4: upper bounds forζN = h
∑N−1

k=0 E|ZN,I,I
tk

−ZN
tk

|2. We aim at showing

ζN ≤ Ch2I−2AN(S0) + Ch

N−1∑
k=0

q∑
l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2
(26)

+ C

N−1∑
k=0

E
∣∣Rp0,k

(
YN

tk

)∣∣2 + C max
0≤k≤N−1

η
N,I
k .

In view of (23), we have

ζN ≤ h

N−1∑
k=0

q∑
l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2

+ d

N−1∑
k=0

(
E

[
Y

N,I,I
tk

− YN
tk

]2 − E
[
Ek

(
Y

N,I,I
tk+1

− YN
tk+1

)]2)
.

Owing to (21) and (24), we obtain

E
∣∣YN,I,I

tk
− YN

tk

∣∣2 − E
[
Ek

(
Y

N,I,I
tk+1

− YN
tk+1

)]2

≤ Ch2I−1AN(S0)

+ CE
∣∣Rp0,k

(
YN

tk

)∣∣2 + [(1+ h)(1+ γ h) − 1]E∣∣Ek

[
Y

N,I,I
tk+1

− YN
tk+1

]∣∣2
+ Ch

(
h + 1

γ

)[
E

∣∣YN,∞,I
tk

− YN
tk

∣∣2 + E
∣∣ZN,I,I

tk
− ZN

tk

∣∣2].
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Takingγ = 4Cd andh small enough such thatdC(h + 1
γ
) ≤ 1

2, we have proved

ζN ≤ Ch2I−2AN(S0) + Ch

N−1∑
k=0

q∑
l=1

E
∣∣Rpl,k

(
ZN

l,tk

)∣∣2 + C

N−1∑
k=0

E
∣∣Rp0,k

(
YN

tk

)∣∣2

+ C max
0≤k≤N−1

η
N,I
k + 1

2h

N−1∑
k=0

E
∣∣YN,∞,I

tk
− YN

tk

∣∣2 + 1
2ζN .

But taking into account (22) and (25) to estimateE|YN,∞,I
tk

− YN
tk

|2, we clearly
obtain (26). This easily completes the proof of Theorem 2.�

5. Approximation results: step 3. This step is very analogous to step 2,
except that in the sequence of iterative least squares problems (9), the expectation
E is replaced by an empirical mean built onM independent simulations of
(P N

tk
)0≤k≤N, (�Wk)0≤k≤N−1. This leads to the algorithm that is presented at

Section 2.3. In this procedure, some truncation functionsρ̂N
l,k and ρ̂

N,m
l,k are used

and we have to specify them now.
These truncations come from a priori estimates onY

N,i,I
tk

,Z
N,i,I
l,tk

and it is useful

to force their simulation-based evaluationsY
N,i,I,M,m
tk

,Z
N,i,I,M,m
l,tk

to satisfy the
same estimates. These a priori estimates are given by the following result (which
is proved later).

PROPOSITION2. Under (H1)–(H3), for some constantC0 large enough, the
sequence of functions(ρN

l,k(·) = max(1,C0|pl,k(·)|) : 0 ≤ l ≤ q,0 ≤ k ≤ N − 1) is
such that ∣∣YN,i,I

tk

∣∣ ≤ ρN
0,k

(
P N

tk

)
,

√
h
∣∣ZN,i,I

l,tk

∣∣ ≤ ρN
l,k

(
P N

tk

)
a.s.,

for any i ≥ 0, I ≥ 0 and0 ≤ k ≤ N − 1.

With the notation of Section 2, the definition of the (random) truncation
functionsρ̂N

l,k (resp.ρ̂N,m
l,k ) follows. Note that they are such that:

• they leave invariantαi,I
0,k · p0,k = Y

N,i,I
tk

if l = 0 or
√

hα
i,I
l,k · pl,k = √

hZ
N,i,I
l,tk

if

l ≥ 1 (resp.αi,I
0,k · pm

0,k if l = 0 or
√

hα
i,I
l,k · pm

l,k if l ≥ 1);

• they are bounded by 2ρN
l,k(P

N
tk

) [resp. 2ρN
l,k(P

N,m
tk

)];
• their first derivative is bounded by 1;
• their second derivative is uniformly bounded inN, l, k,m.

Now, we aim at quantifying the error between(YN,I,I,M
tk

,
√

hZ
N,I,I,M
l,tk

)l,k and

(Y
N,I,I
tk

,
√

hZ
N,I,I
l,tk

)l,k , in terms of the number of simulationsM , the function
bases and the time steph. The analysis here is more involved than in [6] since
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all the regression operators are correlated by the same set of simulated paths. To
obtain more tractable theoretical estimates, we shall assume that each function
basispl,k is orthonormal. Of course, this hypothesis does not affect the numerical
scheme, since the projection on a function basis is unchanged by any linear
transformation of the basis. Moreover, we define the event

AM
k = {∀ j ∈ {k, . . . ,N − 1} :‖V M

j − Id‖ ≤ h, ‖P M
0,j − Id‖ ≤ h

(27)
and‖P M

l,j − Id‖ ≤ 1 for 1≤ l ≤ q
}

(see the notation of Section 2 for the definition of the matricesV M
j andP M

l,j ). Under

the orthonormality assumption for each basispl,k , the matrices(V M
k )0≤k≤N−1,

(P M
l,k)0≤l≤q,0≤k≤N−1 converge to the identity with probability 1 asM → ∞. Thus,

we have limM→∞ P(AM
k ) = 1. We now state our main result about the influence

of the number of simulations.

THEOREM 3. Assume(H1)–(H3), I ≥ 3, that each function basispl,k is
orthonormal and thatE|pl,k|4 < ∞ for any k, l. For h small enough, we have,
for any0 ≤ k ≤ N − 1,

E
∣∣YN,I,I

tk
− Y

N,I,I,M
tk

∣∣2 + h

N−1∑
j=k

E
∣∣ZN,I,I

tj
− Z

N,I,I,M
tj

∣∣2

≤ 9
N−1∑
j=k

E
(∣∣ρN

j

(
P N

tj

)∣∣21[AM
k ]c

) + ChI−1
N−1∑
j=k

[
1+ |S0|2 + E

∣∣ρN
j

(
P N

tj

)∣∣2]

+ C

hM

N−1∑
j=k

(
E‖vjv

∗
j − Id‖2

F E
∣∣ρN

j

(
P N

tj

)∣∣2

+ E
(|vj |2|p0,j+1|2)E∣∣ρN

0,j

(
P N

tj

)∣∣2
+ h2

E

[
|vj |2(1+ ∣∣SN

tj

∣∣2 + |p0,j |2E
∣∣ρN

0,j

(
P N

tj

)∣∣2

+ 1

h

q∑
l=1

|pl,j |2E
∣∣ρN

l,j

(
P N

tj

)∣∣2)])
.

The term with[AM
k ]c readily converges to 0 asM → ∞, but we have not

made estimations more explicit because the derivation of an optimal upper bound
essentially depends on extra moment assumptions that may be available. For
instance, ifρN

j (P N
tj

) has moments of order higher than 2, we are reduced via
Hölder inequality to estimate the probabilityP([AM

k ]c) ≤ ∑N−1
j=k [P(‖V M

j − Id‖ >
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h) + P(‖P M
0,j − Id‖ > h) + ∑q

l=1 P(‖P M
l,j − Id‖ > 1)]. We haveP(‖V M

k − Id‖ >

h) ≤ h−2
E‖V M

k − Id‖2 ≤ h−2
E‖V M

k − Id‖2
F = (Mh2)−1

E‖vkv
∗
k − Id‖2

F . This
simple calculus illustrates the possible computations, other terms can be handled
analogously.

The previous theorem is really informative since it provides a nonasymptotic
error estimation. With Theorems 1 and 2, it enables to see how to optimally choose
the time steph, the function bases and the number of simulations to achieve a
given accuracy. We do not report this analysis which seems to be hard to derive for
general function bases. This will be addressed in further researches [19]. However,
our next numerical experiments give an idea of this optimal choice.

We conclude our theoretical analysis by stating a central limit theorem on the
coefficientsαi,I,M

k asM goes to∞. This is less informative than Theorem 3 since
this is an asymptotic result. Thus, we remain vague about the asymptotic variance.
Explicit expressions can be derived from the proof.

THEOREM4. Assume(H1)–(H3),that the driver is continuously differentiable
w.r.t. (y, z) with a bounded and uniformly Hölder continuous derivatives and
that E|pl,k|2+ε < ∞ for any k, l (ε > 0). Then, the vector [√M(α

i,I,M
k −

α
i,I
k )]i≤I,k≤N−1 weakly converges to a centered Gaussian vector asM goes to∞.

PROOF OF PROPOSITION 2. In view of Proposition 1, it is tempting
to apply a Markov property argument and to assert that Proposition 2 re-
sults from (19) written with conditional expectationsEk . But this argumenta-
tion fails because the law used for the projection is not the conditional law
Ek but E0. The right argument may be the following one. WriteYN,i,I

tk
=

α
i,I
0,k · p0,k(P

N
tk

). On the one hand, by (19), we haveCAN(S0) ≥ E|YN,i,I
tk

|2 =
α

i,I
0,k · E[p0,kp

∗
0,k]αi,I

0,k ≥ |αi,I
0,k|2λmin(E[p0,kp

∗
0,k]). On the other hand,|YN,i,I

tk
| ≤

|αi,I
0,k||p0,k(P

N
tk

)| ≤ |p0,k|
√

CAN(S0)/λmin(E[p0,kp
∗
0,k]). Thus, we can take

ρN
0,k(x) = max(1, |p0,k(x)|

√
CAN(S0)/λmin(E[p0,kp

∗
0,k])). Analogously, for√

h|ZN,i,I
l,tk

|, we haveρN
l,k(x) = max(1, |pl,k(x)|

√
CAN(S0)/λmin(E[pl,kp

∗
l,k])).

Note that ifpl,k is an orthonormal function basis, we haveλmin(E[pl,kp
∗
l,k]) = 1

and previous upper bounds have simpler expressions.�

PROOF OFTHEOREM 3. In the sequel, set

AN,M
k = 1

M

M∑
m=1

∣∣ρN
0,k

(
P

N,m
tk

)∣∣2, BN,M
k = 1

M

M∑
m=1

|f m
k (0, . . . ,0)|2.

Obviously, we haveE(AN,M
k ) = E|ρN

0,k(P
N
tk

)|2 and E(BN,M
k ) ≤ C(1 + |S0|2).

Now, we remind the standard contraction property in the case of least squares
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problems inR
M , analogously to the caseL2(�,P). Consider a sequence of real

numbers(xm)1≤m≤M and a sequence(vm)1≤m≤M of vectors inR
n, associated

to the matrix V M = 1
M

∑M
m=1 vm[vm]∗ which is supposed to be invertible

[λmin(V
M) > 0]. Then, the (unique)Rn-valued vectorθx = arg infθ |x − θ · v|2M

is given by

θx = [V M ]−1

M

M∑
m=1

vmxm.(28)

The applicationx �→ θx is linear and, moreover, we have the inequality

λmin(V
M)|θx |2 ≤ |θx · v|2M ≤ |x|2M.(29)

For the further computations, it is more convenient to deal with

(θ
i,I,M
k )∗ = (

α
i,I,M
0,k

∗
,
√

hα
i,I,M
1,k

∗
, . . . ,

√
hα

i,I,M
q,k

∗)
instead ofαi,I,M

k . Then, the Picard iterations given in (4) can be rewritten

θ
i+1,I,M
k = arg inf

θ

1

M

M∑
m=1

(
ρ̂

N,m
0,k+1(α

I,I,M
0,k+1 · pm

0,k+1) + hf m
k (α

i,I,M
k ) − θ · vm

k

)2
.(30)

Introducing the eventAM
k , taking into account the Lipschitz property of the

functionsρ̂N
l,k and using the orthonormality ofpl,k , we get

E
∣∣YN,I,I

tk
− Y

N,I,I,M
tk

∣∣2 + h

N−1∑
j=k

E
∣∣ZN,I,I

tj
− Z

N,I,I,M
tj

∣∣2

≤ 9
N−1∑
j=k

E
(∣∣ρN

j

(
P N

tj

)∣∣21[AM
k ]c

)
(31)

+ E
(
1AM

k
|αI,I,M

0,k − α
I,I
0,k |2) + h

N−1∑
j=k

q∑
l=1

E
(
1AM

k
|αI,I,M

l,j − α
I,I
l,j |2).

To obtain Theorem 3, we estimate|θI,I,M
k − θ

I,I
k |2 on the eventAM

k . This is
achieved in several steps.

Step1: contraction properties relative to the sequence(θ
i,I,M
k )i≥0. They are

summed up in the following lemma:

LEMMA 1. For h small enough, on AM
k the following properties hold:

(a) |θi+1,I,M
k − θ

i,I,M
k |2 ≤ Ch|θi,I,M

k − θ
i−1,I,M
k |2.
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(b) There is a unique vectorθ∞,I,M
k such that

θ
∞,I,M
k = arg inf

θ

1

M

M∑
m=1

(
ρ̂

N,m
0,k+1(α

I,I,M
0,k+1 · pm

0,k+1) + hf m
k (α

∞,I,M
k ) − θ · vm

k

)2
.

(c) We have|θ∞,I,M
k − θ

I,I,M
k |2 ≤ [Ch]I |θ∞,I,M

k |2.

PROOF. We prove (a). Since 1− h ≤ λmin(V
M
k ) andλmax(P

M
l,k) ≤ 2 (0≤ l ≤

q) on AM
k , in view of (29), we obtain that(1− h)|θi+1,I,M

k − θ
i,I,M
k |2 is bounded

by

h2

M

M∑
m=1

(
f m

k (α
i,I,M
k ) − f m

k (α
i−1,I,M
k )

)2

≤ Ch2
q∑

l=0

|αi,I,M
l,k − α

i−1,I,M
l,k |2λmax(P

M
l,k)

≤ Ch|θi,I,M
k − θ

i−1,I,M
k |2.

Now, statements (a) and (b) are clear. For (c), apply (a), reminding thatθ
0,I,M
k = 0.

�

Step2: bounds for|θi,I,M
k | on the eventAM

k . Namely, we aim at showing that

|θi,I,M
k |2 ≤ C

(
AN,M

k+1 + hBN,M
k

)
on AM

k .(32)

We first consideri = ∞. As in the proof of Lemma 1, we get

(1− h)|θ∞,I,M
k |2

≤ 1

M

M∑
m=1

[ρ̂N,m
0,k+1(α

I,I,M
0,k+1 · pm

0,k+1) + hf m
k (α

∞,I,M
k )]2

≤ (1+ γ h)AN,M
k+1 + Ch

(
h + 1

γ

)(
BN,M

k +
q∑

l=0

|α∞,I,M
l,k |2λmax(P

M
l,k)

)
.

Takeγ = 8C andh small enough to ensure 2C(h+ 1
γ
)(1+h) ≤ 1

2(1−h). It readily

follows |θ∞,I,M
k |2 ≤ C(AN,M

k+1 + hBN,M
k ), proving that (32) holds fori = ∞.

Lemma 1(c) leads to expected bounds for other values ofi.

Step 3: we remind bounds forθi,I . Using Proposition 2 and in view of
(10)–(14), we have, fori ≥ 1,

|θi,I
l,k |2 ≤ E

∣∣ρN
l,k

(
P N

tk

)∣∣2, 0≤ l ≤ q;
(33)

|θ∞,I
k − θ

i,I
k |2 ≤ (Cf h)2i

E
∣∣ρN

0,k

(
P N

tk

)∣∣2.
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Remember also the following expression ofθ
∞,I
k , derived from (10)–(13) and the

orthonormality of each basispl,k :

θ
∞,I
k = E

(
vk[αI,I

0,k+1 · p0,k+1 + hfk(α
∞,I
k )]).(34)

Step4:decomposition of the quantityE(1AM
k

|θI,I,M
k −θ

I,I
k |2). Due to Lemma 1,

onAM
k we get|θ∞,I,M

k −θ
I,I,M
k |2 ≤ ChI |θ∞,I,M

k |2 ≤ ChI |θ∞,I
k |2+ChI |θ∞,I,M

k −
θ

∞,I
k |2. Thus, using (33), it readily follows thatE(1AM

k
|θI,I,M

k −θ
I,I
k |2) is bounded

by

(1+ h)E
(
1AM

k
|θ∞,I,M

k − θ
∞,I
k |2)

+ 2
(

1+ 1

h

){
E

(
1AM

k
|θI,I,M

k − θ
∞,I,M
k |2) + |θI,I

k − θ
∞,I
k |2}(35)

≤ (1+ Ch)E
(
1AM

k
|θ∞,I,M

k − θ
∞,I
k |2) + ChI−1

E
∣∣ρN

k

(
P N

tk

)∣∣2,
taking account thatI ≥ 3. OnAM

k , V M
k is invertible and we can set

B1 = (
Id − (V M

k )−1)θ∞,I
k ,

B2 = (V M
k )−1

[
E

(
vkρ̂

N
0,k+1(α

I,I
0,k+1 · p0,k+1)

) − 1

M

M∑
m=1

vm
k ρ̂

N,m
0,k+1(α

I,I
0,k+1 · pm

0,k+1)

]
,

B3 = (V M
k )−1h

[
E

(
vkfk(α

∞,I
k )

) − 1

M

M∑
m=1

vm
k f m

k (α
∞,I
k )

]
,

B4 = (V M
k )−1

M

M∑
m=1

vm
k

[
ρ̂

N,m
0,k+1(α

I,I
0,k+1 · pm

0,k+1) − ρ̂
N,m
0,k+1(α

I,I,M
0,k+1 · pm

0,k+1)

+ h
(
f m

k (α
∞,I
k ) − f m

k (α
∞,I,M
k )

)]
.

Thus, by (28)–(34), we can writeθ∞,I
k − θ

∞,I,M
k = B1 + B2 + B3 + B4, which

gives onAM
k

|θ∞,I
k − θ

∞,I,M
k |2 ≤ 3

(
1+ 1

h

)
(|B1|2 + |B2|2 + |B3|2) + (1+ h)|B4|2.(36)

Step5: individual estimation ofB1, B2, B3, B4 on AM
k . Remember the classic

result [16]: if ‖Id − F‖ < 1, F−1 − Id = ∑∞
k=1[Id − F ]k and ‖Id − F−1‖ ≤

‖F−Id‖
1−‖F−Id‖ . Consequently, forF = V M

k , we getE(1AM
k

‖Id − (V M
k )−1‖2) ≤ (1 −

h)−2
E‖Id − V M

k ‖2 ≤ (1 − h)−2
E‖V M

k − Id‖2
F = (M(1 − h)2)−1

E‖vkv
∗
k − Id‖2

F .

Thus, we have

E
(|B1|21AM

k

) ≤ C

M
E‖vkv

∗
k − Id‖2

F E
∣∣ρN

k

(
P N

tk

)∣∣2.
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Since onAM
k one has‖(V M

k )−1‖ ≤ 2, it readily follows

E
(|B2|21AM

k

) ≤ C

M
E(|vk|2|p0,k+1|2)E

∣∣ρN
0,k

(
P N

tk

)∣∣2,
E

(|B3|21AM
k

) ≤ Ch2

M
E

[
|vk|2

(
1+ ∣∣SN

tk

∣∣2 + |p0,k|2E
∣∣ρN

0,k

(
P N

tk

)∣∣2

+ 1

h

q∑
l=1

|pl,k|2E
∣∣ρN

l,k

(
P N

tk

)∣∣2)]
.

As in the proof of Lemma 1 and using‖P M
0,k+1‖ ≤ 1+ h on AM

k , we easily obtain

(1− h)|B4|2 ≤ (1+ h)(1+ γ h)|αI,I
0,k+1 − α

I,I,M
0,k+1|2

+ Ch

(
h + 1

γ

) q∑
l=0

|α∞,I
l,k − α

∞,I,M
l,k |2.

Step 6: final estimations. Put εk = E‖vkv
∗
k − Id‖2

F E|ρN
k (P N

tk
)|2 +

E(|vk|2|p0,k+1|2)E|ρN
0,k(P

N
tk

)|2 + h2
E[|vk|2(1 + |SN

tk
|2 + |p0,k|2E|ρN

0,k(P
N
tk

)|2 +
1
h

∑q
l=1 |pl,k|2E|ρN

l,k(P
N
tk

)|2)]. Plug the above estimates onB1,B2,B3,B4 into (36),

chooseγ = 3C andh close to 0 to ensureCh + C
γ

≤ 1
2; after simplifications, we

get

E
(
1AM

k
|θ∞,I,M

k − θ
∞,I
k |2) ≤ C

εk

hM
+ (1+ Ch)E

(
1AM

k
|αI,I

0,k+1 − α
I,I,M
0,k+1|2

)
.

But in view of Lemma 1(c) and estimates (32)–(33), we have

E
(
1AM

k
|αI,I

0,k+1 − α
I,I,M
0,k+1|2

)
≤ (1+ h)E

(
1AM

k
|α∞,I

0,k+1 − α
∞,I,M
0,k+1 |2)

+ ChI−1(1+ |S0|2 + E
∣∣ρN

0,k+1
(
P N

tk+1

)∣∣2 + E
∣∣ρN

0,k+2
(
P N

tk+2

)∣∣2).
Finally, we have proved

E
(
1AM

k
|θ∞,I,M

k − θ
∞,I
k |2)

≤ C
εk

hM
+ ChI−1(1+ |S0|2 + E

∣∣ρN
0,k+1

(
P N

tk+1

)∣∣2 + E
∣∣ρN

0,k+2
(
P N

tk+2

)∣∣2)
+ (1+ Ch)E

(
1AM

k
|α∞,I,M

0,k+1 − α
∞,I
0,k+1|2

)
.

Using a contraction argument as in (35), the index∞ can be replaced byI , without
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changing the inequality (with a possibly different constantC). This can be written

E
(
1AM

k
|αI,I,M

0,k − α
I,I
0,k |2) + h

q∑
l=1

E
(
1AM

k
|αI,I,M

l,k − α
I,I
l,k |2)

≤ C
εk

hM
+ ChI−1(1+ |S0|2 + E

∣∣ρN
0,k+1

(
P N

tk+1

)∣∣2 + E
∣∣ρN

0,k+2
(
P N

tk+2

)∣∣2)
+ (1+ Ch)E

(
1AM

k
|αI,I,M

0,k+1 − α
I,I
0,k+1|2

)
.

Using Gronwall’s lemma, the proof is complete.�

REMARK 1. The attentive reader may have noted that powers ofh are smaller
here than in Theorem 2, which leads to takeI ≥ 3 instead ofI ≥ 2 before. Indeed,
we cannot take advantage of conditional expectations on the simulations as we did
in (12), for instance.

Note that in the proof above, we only use the Lipschitz property of the truncation
functionsρ̂N

l,k andρ̂
N,m
l,k .

PROOF OFTHEOREM 4. The arguments are standard and there are essentially
notational difficulties. The first partial derivatives off w.r.t. y and zl are,
respectively, denoted∂0f and∂lf . The parameterβ ∈]0,1] stands for their Hölder
continuity index. Suppose w.l.o.g. thatε < β and that each function basispl,k is
orthonormal. Fork < N − 1, define the quantities

AM
l,k(α) = 1

M

M∑
m=1

vm
k ∂lf

(
tk, S

N,m
tk

, α0 · pm
0,k, . . . , αq · pm

q,k

)[pm
l,k]∗,

BM
k = 1

M

M∑
m=1

vm
k [pm

0,k+1]∗, DM
k = √

M(Id − V M
k ),

CM
k (α)

=
M∑

m=1

{vm
k [αI,I

0,k+1 · pm
0,k+1 + hf m

k (α)] − E(vk[αI,I
0,k+1 · p0,k+1 + hfk(α)])}√

M
.

For k = N − 1, we setBM
k = 0 and inCM

k (α), the termsαI,I
0,k+1 · pm

0,k+1 and

α
I,I
0,k+1 ·p0,k+1 have to be replaced, respectively, by�N(P

N,m
tN

) and�N(P N
tN

). The

definitions ofAM
l,k(α) andDM

k are still valid. For convenience, we writeXM w→
if the (possibly vector or matrix valued) sequence(XM)M weakly converges
to a centered Gaussian variable, asM goes to infinity. For the convergence in

probability to a constant, we denoteXM P→. Since simulations are independent,
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observe that the following convergences hold:

(
AM

l,k(α
i,I
k ),BM

k ,V M
k

)
i≤I−1,l≤q,k≤N−1

P→ ,

(37)
GM = (

CM
k (α

i,I
k ),DM

k

)
i≤I−1,l≤q,k≤N−1

w→ .

Note that limM→∞ V M
k

a.s.= Id is invertible. Linearizing the functionsf andρ̂
N,m
0,k+1

in the expressions ofθi,I
k = E(vk[αI,I

0,k+1 · p0,k+1 + hfk(α
i−1,I
0,k , . . . , α

i−1,I
q,k )]) and

θ
i,I,M
k given by (28) leads to∣∣∣∣∣V M

k

√
M(θ

i,I,M
k − θ

i,I
k ) − DM

k θ
i,I
k − CM

k (α
i−1,I
k )

− BM
k

√
M(α

I,I,M
0,k+1 − α

I,I
0,k+1)

− h

q∑
l=0

AM
l,k(α

i−1,I
k )

√
M(α

i−1,I,M
l,k − α

i−1,I
l,k )

∣∣∣∣∣(38)

≤ 1k<N−1
C√
M

|αI,I,M
0,k+1 − α

I,I
0,k+1|2

M∑
m=1

|vm
k ||pm

0,k+1|2

+ C√
M

|αi−1,I,M
k − α

i−1,I
k |1+β

M∑
m=1

|vm
k ||pm

k |1+β.

To get Theorem 4, we prove by induction onk that([√M(θ
i,I,M
j − θ

i,I
j )]j≥k,i≤I ,

GM)
w→. Remember thatθ0,I,M

j = θ
0,I
j = 0 for anyj . Consider firstk = N − 1,

for which BM
k = 0, and i = 1. In view of (37)–(38), clearly([√M(θ

i,I,M
N−1 −

θ
i,I
N−1)]i≤1,G

M)
w→. For i = 2, we may invoke the same argument using (37)–(38)

and obtain([√M(θ
i,I,M
N−1 − θ

i,I
N−1)]i≤2,G

M)
w→ provided that the upper bound

in (38) converge to 0 in probability. To prove this, putMM = M−1−β/2 ×∑M
m=1 |vm

N−1||pm
N−1|1+β and write 1√

M
|α1,I,M

N−1 − α
1,I
N−1|1+β ∑M

m=1 |vm
N−1| ×

|pm
N−1|1+β = |√M(α

1,I,M
N−1 − α

1,I
N−1)|1+βMM . Since [√M(α

1,I,M
N−1 − α

1,I
N−1)]M

is tight, our assertion holds ifMM converges to 0 asM → ∞. Note that
|vN−1||pN−1|1+β ∈ L(2+ε)/(2+β)(P). Thus, the strong law of large numbers, in
the case of i.i.d. random variables with infinite mean, leads to

∑M
m=1 |vm

N−1| ×
|pm

N−1|1+β = O(M(2+β)/(2+ε)+r ) a.s. for anyr > 0. Consequently, from the
choice ofr small enough, it followsMM → 0 a.s.

Iterating this argumentation readily leads to([√M(θ
i,I,M
N−1 −θ

i,I
N−1)]i≤I,G

M)
w→.

For the induction fork < N − 1, we apply the techniques above. There is an
additional contribution due toBM

k , which can be handled as before.�
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6. Numerical experiments.

6.1. Lipschitz property of the solution under(H4). To use the algorithm, we
need to specify the basis functions that we choose at each timetk and for this, the
knowledge of the regularity of the functionsyN

k (·) andzN
l,k(·) from Proposition 1 is

useful (in view of Theorem 2). In all the cases described in Section 2.4 and below,
assumption (H4) is fulfilled. Under this extra assumption, we now establish that
yN
k (·) andzN

l,k(·) are Lipschitz continuous.

PROPOSITION3. Assume(H1)–(H4).For h small enough, we have∣∣yN
k0

(x) − yN
k0

(x′)
∣∣ + √

h
∣∣zN

k0
(x) − zN

k0
(x′)

∣∣ ≤ C|x − x′|(39)

uniformly ink0 ≤ N − 1.

PROOF. As for (17), we can obtain

E
∣∣YN,k0,x

tk
− Y

N,k0,x
′

tk

∣∣2
≤ (1+ γ h)

1− Ch(h + 1/γ )
E

∣∣Ek

(
Y

N,k0,x
tk+1

− Y
N,k0,x

′
tk+1

)∣∣2

+ Ch(h + 1/γ )

1− Ch(h + 1/γ )
E

∣∣SN,k0,x
tk

− S
N,k0,x

′
tk

∣∣2

+ C(h + 1/γ )

1− Ch(h + 1/γ )

(
E

∣∣YN,k0,x
tk+1

− Y
N,k0,x

′
tk+1

∣∣2
− E

∣∣Ek

(
Y

N,k0,x
tk+1

− Y
N,k0,x

′
tk+1

)∣∣2).
Choosingγ = C andh small enough, we get (for another constantC)

E
∣∣YN,k0,x

tk
− Y

N,k0,x
′

tk

∣∣2
≤ (1+ Ch)E

∣∣YN,k0,x
tk+1

− Y
N,k0,x

′
tk+1

∣∣2 + ChE
∣∣SN,k0,x

tk
− S

N,k0,x
′

tk

∣∣2.
The last term above is bounded byC|x − x′|2 under assumption (H1). Thus, using
Gronwall’s lemma and assumption (H4), we get the result foryN

k0
(·). The result for√

hzN
k0

(·) follows by considering (5). �

6.2. Choice of function bases.Now, we specify several choices of function
bases. We denoted ′ (≥ d) the dimension of the state space of(P N

tk
)k .

Hypercubes(HC in the following). Here, to simplify,pl,k does not de-
pend on l or k. Choose a domainD ⊂ R

d ′
centered onP N

0 , that is, D =∏d ′
i=1 ]P N

0,i − R,P N
0,i + R], and partition it into small hypercubes of edgeδ. Thus,

D = ⋃
i1,...,id′ Di1,...,id′ whereDi1,...,id′ = ]P N

0,1 − R + i1δ,P
N
0,1 − R + (i1 + 1)δ] ×
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· · ·×]P N
0,d ′ − R + id ′δ,P N

0,d ′ − R + (id ′ + 1)δ]. Then we definepl,k as the indi-
cator functions associated to this set of hypercubes:pl,k(·) = (1Di1,...,i

d′ (·))i1,...,id′ .
With this particular choice of function bases, we can explicit the projection error
of Theorem 2:

E
(
Rp0,k

(
YN

tk

)2)
≤ E

(∣∣YN
tk

∣∣21Dc

(
P N

tk

)) + ∑
i1,...,id′

E
(
1Di1,...,i

d′
(
P N

tk

)∣∣yN
k

(
P N

tk

)−yN
k

(
xi1,...,id′

)∣∣2)

≤ Cδ2 + E
(∣∣YN

tk

∣∣21Dc

(
P N

tk

))
,

where xi1,...,id′ is an arbitrary point ofDi1,...,id′ and where we have used the
Lipschitz property ofyN

k on D. To evaluateE(|YN
tk

|21Dc(P N
tk

)), note that, by
adapting the proof of Proposition 3, we have|YN

tk
|2 ≤ C(1 + |SN

tk
|2 + Ek|P N

tN
|2).

Thus, if supk,N E|P N
tk

|α < ∞ for α > 2, we haveE(|YN
k |21Dc(P N

tk
)) ≤ Cα

Rα−2 , with

an explicit constantCα . The choiceR ≈ h−2/(α−2) andδ = h leads to

E
∣∣Rp0,k

(
YN

tk

)∣∣2 ≤ Ch2.

The same estimates hold forE|Rpl,k
(
√

hZN
l,tk

)|2. Thus, we obtain the same
accuracy as in Theorem 1.

Voronoi partition(VP). Here, we consider again a basis of indicator functions
and the same basis for all 0≤ l ≤ q. This time, the sets of the indicator
functions are an open Voronoi partition ([17]) whose centers are independent
simulations ofP N . More precisely, if we want a basis of 20 indicator functions,
we simulate 20 extra paths ofP N , denoted(P N,M+i )1≤i≤20, independently of
(P N,m)1≤m≤M . Then we take at timetk (P

N,M+i
tk

)1≤i≤20 to define our Voronoi

partition (Ck,i)1≤i≤20, whereCk,i = {x : |x − P
N,M+i
tk

| < infj �=i |x − P
N,M+j
tk

|}.
Then pl,k(·) = (1Ck,i

(·))i . We can notice that, unlike the hypercubes basis, the
function basis changes withk. We can also estimate the projection error of
Theorem 2, using results on random quantization and refer to [17] for explicit
calculations.

In addition, we can consider on each Voronoi cells local polynomials of
low degree. For example, we can take a local polynomial basis consisting of
1, x1, . . . , xd ′ for p0,k and 1 for pl,k (l ≥ 1) on eachCk,i . Thus, p0,k(x) =
(1Ck,i

(x), x11Ck,i
(x), . . . , xd ′1Ck,i

(x))i and pl,k(x) = (1Ck,i
(x))i,1 ≤ l ≤ q. We

denote this particular choice VP(1,0), where 1 (resp. 0) stands for the maximal
degree of local polynomial basis forp0,k (resp.pl,k , 1≤ l ≤ q).

Global polynomials(GP). Here we definep0,k as the polynomial (ofd ′
variables) basis of degree less thandy andpl,k as the polynomial basis of degree
less thandz.
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6.3. Numerical results. After the description of possible basis functions, we
test the algorithm on several examples. For each example and each choice of
function basis, we launch the algorithm for different values ofM , the number
of Monte Carlo simulations. More precisely, for each value ofM , we launch 50
times the algorithm and collect each time the valueY

N,I,I,M
t0

. The set of collected

values is denoted(YN,I,I,M
t0,i

)1≤i≤50. Then, we compute the empirical mean

Y
N,I,I,M

t0
= 1

50
∑50

i=1 Y
N,I,I,M
t0,i

and the empirical standard deviationσN,I,I,M
t0

=√
1
49

∑50
i=1 |YN,I,I,M

t0,i
− Y

N,I,I,M

t0
|2. These two statistics provide an insight into the

accuracy of the method.

6.3.1. Call option with different interest rates[4]. We follow the notation of
Section 2.4 considering a one-dimensional Black–Scholes model, with parameters

µ σ r R T S0 K

0.06 0.2 0.04 0.06 0.5 100 100

Here K is the strike of the call option:�(S) = (ST − K)+. We know by the
comparison theorem for BSDEs [12] and properties of the price and replicating
strategies of a call option, that the seller of the option has always to borrow money
to replicate the option in continuous time. Thus,Y0 is given by the Black–Scholes
formula evaluated with interest rateR : Y0 = 7.15. This is a good test for our
algorithm because the driverf is nonlinear, but we nevertheless know the true
value ofY0. We test the function basis HC for different values ofN , D and δ.
Results (Y

N,I,I,M

t0
andσ

N,I,I,M
t0

in parenthesis) are reported in Table 1, for different

values ofM . Clearly,Y
N,I,I,M

t0
converges toward 7.15, which is exactly the Black–

Scholes priceY0 calculated with interest rateR. We observe a decrease of the
empirical standard deviation like 1/

√
M , which is coherent with Theorem 4.

6.3.2. Calls combination with different interest rates.We take the same
driver f but change the terminal condition:�(S) = (ST − K1)

+ − 2(ST − K2)
+.

TABLE 1
Results for the call option using the basis HC

M N = 5, D = [60,140], δ = 5 N = 10, D = [60,140], δ = 1

128 6.83(0.31) 7.02(0.51)
512 7.08(0.11) 7.12(0.21)
2048 7.13(0.05) 7.14(0.07)
8192 7.15(0.03) 7.15(0.03)
32768 7.15(0.01) 7.15(0.02)
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We take the following values for the parameters:

µ σ r R T S0 K1 K2
0.05 0.2 0.01 0.06 0.25 100 95 105

We denote byBSi(r) the Black–Scholes price evaluated with strikeKi and interest
rater . If we try to predictY0 by a linear combination of Black–Scholes prices, we
get

BS1(R) − 2BS2(R) 2.75
BS1(r) − 2BS2(r) 2.76
BS1(r) − 2BS2(R) 1.92
BS1(R) − 2BS2(r) 3.60

Using comparison results, one can check that the first three rows provide a lower
bound forY0, while the fourth row gives an upper bound. According to the results

of HC and VP,Y
N,I,I,M

t0
seems to converge toward 2.95. This value is not predicted

by a linear combination of Black–Scholes prices: in this example, the nonlinearity
of f has a real impact onY0. The financial interpretation is that the option seller
has alternatively to borrow and to lend money to replicate the option payoff.

Comparing the different choices of basis functions, we can notice that the
columnN = 5 of VP (Table 3) shows similar results with an equal number of basis
functions than the columnN = 5 of HC (Table 2). In Table 3, the last two columns
show that using a local polynomial basis may significantly increase the accuracy.
We also remark by considering the rowsM = 128,512 of Table 2 that the standard
deviation increases withN and the number of basis functions, which is coherent
with Theorem 3. Finally, from Table 4 the basis GP also succeeds in reaching the
expected value, as we increase the number of polynomials in the basis.

6.3.3. Asian option. The dynamics is unchanged (withd = q = 1) but now
the interest rates are equal (r = R). The terminal condition equals�(S) =
( 1
T

∫ T
0 St dt − K)+ and we take the following parameters:

µ σ r T S0 K

0.06 0.2 0.1 1 100 100

To approximate this path-dependent terminal condition, we taked ′ = 2 and
simulateP N

tk
= (SN

tk
, 1

k+1
∑k

i=0 SN
ti

)∗ (see [18]). The results presented in Table 5
are coherent because the price given by the algorithm is not far from the reference
price 7.04 given in [18].

As mentionned in [18], the use of1
N+1

∑N
i=0 SN

ti
to approximate1

T

∫ T
0 St dt

is far from being optimal. We can check what happens if we changeP N to
better approximate1

T

∫ T
0 St dt . As proposed in [18], we approximate1

T

∫ T
0 St dt

by 1
N

∑N−1
i=0 SN

ti
(1+ µh

2 + σ
2�Wti ), which leads toP N

tk
= (SN

tk
, 1

k

∑k−1
i=0 SN

ti
(1 +
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TABLE 2
Results for the calls combination using the basis HC

N = 5 N = 20 N = 50
M D = [60,140] D = [60,200] D = [40,200]

δ = 5 δ = 1 δ = 0.5

128 3.05(0.27) 3.71(0.95) 3.69(4.15)
512 2.93(0.11) 3.14(0.16) 3.48(0.54)
2048 2.92(0.05) 3.00(0.03) 3.08(0.12)
8192 2.91(0.03) 2.96(0.02) 2.99(0.02)
32768 2.90(0.01) 2.95(0.01) 2.96(0.01)

TABLE 3
Results for the calls combination using the bases VP andVP(1,0)

Basis VP Basis VP Basis VP Basis VP(1,0)
M 16 Voronoi regions 64 Vor. reg. 10 Vor. reg. 10 Vor. reg.

N = 5 N = 20 N = 20 N = 20

128 3.23(0.30) 4.50(1.71) 3.08(0.25) 3.23(0.23)
512 3.05(0.13) 3.36(0.10) 2.91(0.11) 3.03(0.08)
2048 2.94(0.06) 3.05(0.04) 2.90(0.06) 2.97(0.04)
8192 2.92(0.03) 2.96(0.02) 2.86(0.03) 2.95(0.02)
32768 2.90(0.02) 2.94(0.01) 2.86(0.02) 2.95(0.01)

TABLE 4
Results for the calls combination using the basis GP

N = 5 N = 20 N = 50 N = 50
M dy = 1, dz = 0 dy = 2, dz = 1 dy = 4, dz = 2 dy = 9, dz = 9

128 2.87(0.39) 3.01(0.24) 3.02(0.22) 3.49(1.57)
512 2.82(0.20) 2.94(0.12) 2.97(0.09) 3.02(0.1)
2048 2.78(0.07) 2.92(0.07) 2.92(0.04) 2.97(0.03)
8192 2.78(0.05) 2.92(0.04) 2.92(0.02) 2.96(0.01)
32768 2.79(0.03) 2.91(0.02) 2.91(0.01) 2.95(0.01)

TABLE 5
Results for the Asian option using the basis HC

N = 5 N = 20 N = 50
M δ = 5 δ = 1 δ = 0.5

D = [60,200]2 D = [60,200]2 D = [60,200]2

128 6.33(0.41) 4.47(3.87) 3.48(13.08)
512 6.65(0.21) 6.28(0.76) 5.63(2.37)
2048 6.80(0.09) 6.76(0.24) 6.48(0.49)
8192 6.83(0.04) 6.95(0.06) 6.86(0.12)
32768 6.83(0.02) 6.98(0.03) 6.99(0.04)
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TABLE 6
Results for the Asian option, using a better approximation of1

T

∫ T
0 St dt

and the basis HC(N = 20,δ = 1, D = [60,200]2)

M 2 8 32 128 512 2048 8192 32768

Y
N,I,I,M
t0

2.26 0.90 4.49 6.68 6.15 6.88 6.99 7.02

σ
N,I,I,M
t0

4.08 7.80 11.27 4.64 1.11 0.21 0.07 0.02

µh
2 + σ

2�Wti ))
∗ for k ≥ 1. The results (see Table 6) are much better with this

choice ofP N . Once more, we observe the coherence of the algorithm which takes
in input simulations ofSN under the historical probability (µ �= r) and corrects the
drift to give the risk-neutral price.

7. Conclusion. In this paper we design a new algorithm for the numerical
resolution of BSDEs. At each discretization time, it combines a finite number of
Picard iterations (3 seems to be relevant) and regressions on function bases. These
regressions are evaluated at once with one set of simulated paths, unlike [6], where
one needs as many sets of paths as discretization times. We mainly focus on the
theoretical justification of this scheme. We proveL2 estimates and a central limit
theorem as the number of simulations goes to infinity. To confirm the accuracy of
the method, we only present few convincing tests and we refer to [19] for a more
detailed numerical analysis. Even if no related results have been presented here,
an extension to reflected BSDEs is straightforward (as in [6]) and allows to deal
with American options. At last, we mention that our results prove the convergence
of theHedged Monte Carlomethod of Bouchaud, Potters and Sestovic [5], which
can be expressed in terms of BSDEs with a linear driver.
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