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EQUILIBRIUM FOR FRAGMENTATION WITH IMMIGRATION
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Université Pierre et Marie Curie et C.N.R.S. UMR 7599

This paper introduces stochastic processes that describe the evolution
of systems of particles in which particles immigrate according to a Poisson
measure and split according to a self-similar fragmentation. Criteria for exis-
tence and absence of stationary distributions are established and uniqueness
is proved. Also, convergence rates to the stationary distribution are given.
Linear equations which are the deterministic counterparts of fragmentation
with immigration processes are next considered. As in the stochastic case,
existence and uniqueness of solutions, as well as existence and uniqueness of
stationary solutions, are investigated.

1. Introduction. The aim of this paper is to study random and deterministic
models that describe the evolution of systems of particles in which two indepen-
dent phenomena take place: immigration and fragmentation of particles. Particles
immigrate and split into smaller particles, which, in turn, continue splitting, at rates
that depend on their mass. Such a situation occurs, for example, in grinding lines
[1, 23] where macroscopic blocks are continuously placed in tumbling ball mills
that reduce them to microscopic fragments. These microscopic fragments then un-
dergo a chemical process to extract the minerals. In such systems, one may expect
to attain an equilibrium, as the immigration may compensate for the fragmentation
of particles. The investigation of existence and uniqueness of such stationary state,
as well as convergence to the stationary state, is one of the main points of interest
of this paper. It will be undertaken both in random and deterministic settings.

We first introduce continuous-timefragmentation with immigration Markov
processes. Roughly, their dynamics are described as follows. The immigration is
coded by a Poisson measure with intensityI (ds) dt, t ≥ 0, whereI is a measure
supported onD, the set of decreasing sequencess = (sj , j ≥ 1) that converge
to 0. That is, if(s(ti), ti) denotes the atoms of this Poisson measure, a group of
particles with masses(s1(ti), s2(ti), . . . ) immigrates at timeti for each ti ≥ 0.
We further impose thatI integrates

∑
j≥1(sj ∧ 1), which means that the total

mass of immigrants on a finite time interval is finite a.s. The particles fragment
independently of the immigration, according to a “self-similar fragmentation with
indexα ∈ R” as introduced by Bertoin in [6, 7]. This means that each particle splits
independently of others with a rate proportional to its mass to the powerα and that
the resulting particles continue splitting with the same rules. Rigorous definitions
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are given in Sections 1.1 and 1.2 below. Some examples of such processes arise
from classical stochastic processes, as a Brownian motion with positive drift. This
is detailed in Section 4.

Let FI denote a fragmentation with immigration process. Our first purpose is to
know whether it is possible to find astationary distributionfor FI . Let us mention
here that, until now, an equilibrium could only be obtained for fragmentation with
coagulationprocesses. See, for example, [4, 14, 16].

Under some conditions that depend both on the dynamics of the fragmentation
and on the immigration, we construct a random variableUstat in D whose
distribution is stationary forFI . Let αI be theI -dependent parameter defined by

αI := −sup
{
a > 0 :

∫
D

sa
11{s1≥1}I (ds) < ∞

}
.(1)

WhenαI < 0, we obtain that the stationary stateUstat exists as soon as the index
of self-similarity α is larger thanαI and that there is no stationary distribution
whenα is smaller thanαI . In this latter case, the particles with mass larger than 1,
which split slower whenα is smaller, do not split fast enough to compensate the
immigration of large particles, which therefore accumulate. In others words, too
many large particles are brought in the ball mill which is not able to grind them fast
enough. These results are made precise in Theorems 7, 8 and 9, Section 2, where
we also study whetherUstat is in lp, p ≥ 0. In addition, the stationary solution is
proved unique.

It is easily checked from the construction ofUstat that

FI(t)
law→ Ustat

as soon as the stationary distribution exists and that this convergence holds
independently of the initial distribution. One standard problem is to investigate the
rate of convergence to this stationary state. Our approach is based on a coupling
method. This provides rates of convergence that differ significantly according as
α < 0, α = 0 orα > 0: one obtains that the convergence takes place at a geometric
rate whenα = 0, at rate t−1/α when α > 0, whereas the rate of convergence
depends both onI andα whenα < 0.

We next turn to deterministic models, namely,fragmentation with immigration
equations. Roughly, these equations are obtained by adding an immigration term
to a family of well-known fragmentation equations with mass loss [17, 18, 24]: we
consider that particles with mass in the interval(x, x + dx) arrive at rateµI (dx)

which is defined fromI by∫ ∞
0

f (x)µI (dx) :=
∫
D

∑
j≥1

f (sj )I (ds),

for all positive measurable functionsf . Solutions to the fragmentation with
immigration equation do not always exist. We give conditions for existence and



1960 B. HAAS

then show uniqueness. The obtained solution is closely related to the stochastic
model(FI(t), t ≥ 0): it is—in a sense to be specified—related to the expectations
of the random measures

∑
k≥1 δFIk(t), t ≥ 0. In this deterministic setting, one

may also expect the existence of stationary solutions. Provided the average mass
immigrated by unit time is finite, we construct explicitly a stationary solution
which is proved unique. Note that here the hypothesis for existence only involvesI ,
notα, contrary to the stochastic case.

This paper is organized as follows. In the remainder of this section we
first review the definition and some properties of self-similar fragmentations
(Section 1.1), then we set down the definition of fragmentation with immigration
processes (Section 1.2). The study of existence and uniqueness of a stationary
distribution is undertaken in Section 2, where we also give criteria for existence
of a stationary distribution for more general Markov processes with immigration.
In Section 3 we investigate the rate of convergence to the stationary distribution.
Section 4 is devoted to examples of fragmentation with immigration processes
constructed from Brownian motions with positive drift. Section 5 concerns the
fragmentation with immigration equation.

1.1. Self-similar fragmentations.

State space. We endow the state space

D =
{

s = (sj )j≥1 : s1 ≥ s2 ≥ · · · ≥ 0, lim
j→∞ sj = 0

}
with the uniform distance

d(s, s′) := sup
j≥1

|sj − s′
j |.

Clearly, asn → ∞, d(s, sn) → 0 is equivalent tosn
j → sj for all j ≥ 1, which, in

turn, is equivalent to
∑

j≥1 f (sn
j ) → ∑

j≥1 f (sj ) for all continuous functionsf
with compact support in(0,∞). Hence,D identifies with the set of Radon
counting measures on(0,∞) with bounded support endowed with the topology
of vague convergence through the homeomorphism

s ∈ D �→ ∑
j≥1

δsj 1{sj>0}.

With a slight abuse of notation, we also calls the measure
∑

j≥1 δsj 1{sj>0}.
It is then natural to denote by “s + s′” the decreasing rearrangement of the
concatenation of sequencess, s′ and by〈s, f 〉 the sum

∑
j≥1 f (sj )1{sj>0}. More

generally, we denote by “
∑

i≥1 si” the measure
∑

i≥1
∑

j≥1 δsi
j
1{si

j>0}. This point

measure does not necessarily correspond to a sequence inD , but when it does,
it represents the decreasing rearrangement of the concatenation of sequences
s1, s2, . . . .
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For all p ≥ 0, let lp be the subset ofD of sequencess1 ≥ s2 ≥ · · · ≥ 0 such
that

∑
j≥1 s

p
j < ∞, endowed with the topology ofD . Whenp = 0, we use the

convention 00 = 0, which means thatl0 is the space of sequences with at most
a finite number of nonzero terms. Let alsoD1 be the subset ofD of sequences
such that

∑
j≥1 sj ≤ 1. Clearly,lp ⊂ lp

′
whenp ≤ p′ andD1 ⊂ l1. At last, set

0 := (0,0, . . . ).

Self-similar fragmentations.

DEFINITION 1. A standard self-similar fragmentation(F (t), t ≥ 0) with
indexα ∈ R is aD1-valued Markov process continuous in probability such that:

• F(0) = (1,0, . . . ),
• for each t0 ≥ 0, conditionally on F(t0) = (s1, s2, . . . ), the process

(F (t + t0), t ≥ 0) has the same law as the process obtained for eacht ≥ 0
by ranking in the decreasing order the components of sequencess1F

(1)(sα
1 t),

s2F
(2)(sα

2 t), . . . , where theF (j)’s are independent copies ofF.

This means that the particles present at a timet0 evolve independently and that
the evolution process of a particle with massm has the same distribution asm
times the process starting from a particle with mass 1, up to the time change
t �→ tmα . According to [3] and [7], a self-similar fragmentation is Feller—hence,
possesses a càdlàg version which we shall always consider—and its distribution
is characterized by a 3-tuple(α, c, ν): α is the index of self-similarity,c ≥ 0
an erosion coefficient andν a dislocation measure, which is a sigma-finite
nonnegative measure onD1 that does not charge(1,0, . . . ) and satisfies∫

D1

(1− s1)ν(ds) < ∞.

Roughly speaking, the erosion is a deterministic continuous phenomenon and the
dislocation measure describes the rates of sudden dislocations: a fragment with
massm splits into fragments with massesms, s ∈ D1, at ratemαν(ds). In case
ν(D1) < ∞ andc = 0, this means that a particle with massm splits after a timeT
with an exponential law with parametermαν(D1) into particles with massesms,
wheres is distributed according toν(·)/ν(D1) and is independent ofT . For more
details on these fundamental properties of self-similar fragmentations, we refer
to [3, 6, 7].

DEFINITION 2. For any randomu ∈ D , a fragmentation process(α, c, ν),
starting fromu, is defined by

F (u)(t) := ∑
j≥1

(
ujF

(j)(uα
j t)

)
, t ≥ 0,(2)
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where the F (j)’s are i.i.d. copies of a standard(α, c, ν)-fragmentationF,

independent ofu.
Clearly, F (u)(t) ∈ D for all t ≥ 0 and, according to the branching property

of F, F (u) is Markov. It is plain that such a fragmentation process converges
a.s. to 0 as t → ∞, provided ν(D1) �= 0. We shall denote in the sequel by
F

(u)
1 (t) ≥ · · · ≥ F

(u)
k (t) ≥ · · · the components of the sequenceF (u)(t).

We now review some facts about standard(α, c, ν)-fragmentations that we
will need. In the remainder of this section,F denotes a standard(α, c, ν)-
fragmentation.

Tagged particle. We are interested in the evolution processλ of the mass of
a particle tagged at random in the fragmentation. To construct this process, we
recall that one may always suppose thatF is built from some family(G(t), t ≥ 0)

of nested open sets of(0,1) so thatF(t) is the ordered sequence of lengths of the
interval components ofG(t), t ≥ 0 (see [3, 7]). Let thenU be uniformly distributed
on (0,1), independent ofG, and callλ(t) the length of the interval component of
G(t) containingU . When such interval does not exist, setλ(t) := 0. The main
point of interest of such approach is that the distribution ofλ is well known.

First, whenα = 0, Bertoin [6] shows thatλ law= exp(−ξ(·)), where ξ is a
subordinator (i.e., a right-continuous increasing process with values in[0,∞] and
with stationary and independent increments on the interval{t : ξ(t) < ∞}), with
Laplace exponentφ given by

φ(q) := c(q + 1) +
∫
D1

(
1− ∑

j≥1

s
1+q
j

)
ν(ds), q ≥ 0.(3)

We recall thatφ characterizesξ , sinceE[exp(−qξ(t))] = exp(−tφ(q)) for all
t, q ≥ 0 (for background on subordinators, we refer to [5], Chapter III). When
c > 0 or ν(

∑
j≥1 sj < 1) > 0, one sees that the subordinatorξ is killed at

rate k = φ(0) > 0: that is, there exists a subordinatorξ with Laplace exponent
φ = φ − k and an exponential r.v.e(k) with parameterk, independent ofξ, such
that

ξ(t) = ξ(t)1{t<e(k)} + ∞1{t≥e(k)}

for all t ≥ 0.
Whenα ∈ R, Bertoin [7] shows thatλ law= exp(−ξ(ρ(·))), whereξ is the same

subordinator as above andρ is the time-change

ρ(t) := inf
{
u ≥ 0 :

∫ u

0
exp

(
αξ(r)

)
dr > t

}
, t ≥ 0.(4)
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On the other hand, the construction ofλ implies that, conditionally onF ,
λ(t) = Fk(t) with probability Fk(t), k ≥ 1, and thatλ(t) = 0 with probability
1− ∑

k≥1 Fk(t). Hence,∑
k≥1

f
(
Fk(t)

) = E
[
f
(
exp

(−ξ(ρ(t))
))

exp
(
ξ(ρ(t))

)|F ]
(5)

for every positive measurable functionf supported on a compact subset of(0,∞)

(with the convention 0× ∞ = 0), and, in particular,

E

[∑
k≥1

f
(
Fk(t)

)] = E
[
f
(
exp

(−ξ(ρ(t))
))

exp
(
ξ(ρ(t))

)]
.(6)

Formation of dust whenα < 0. When the index of self-similarityα is negative,
for all dislocation measuresν, the total mass

∑
k≥1 Fk(t) of the fragmentationF

decreases as time passes to reach 0 in finite time even if there is no erosion (c = 0)
and no mass is lost within sudden dislocations (ν(

∑
j≥1 sj < 1) = 0). This is due to

an intensive fragmentation of small particles which reduces macroscopic particles
to an infinite number of zero-mass particles ordust. To say this precisely, introduce

τ := inf

{
t ≥ 0 :

∑
k≥1

Fk(t) = 0

}
(7)

the first time at which the total mass reaches 0. According to Proposition 14 in [18],
there existC,C′ some positive finite constants such that, for anyt ≥ 0,

P (τ > t) ≤ C exp(−C′t	),(8)

where	 is a(c, ν)-dependent parameter defined by

	 :=


(1− λ)−1, whenφ(q) − cq

varies regularly with index 0< λ < 1 asq → ∞,

1, otherwise.

(9)

Note thatE[τ ] < ∞. This phenomenon of formation of dust does not occur
when α ≥ 0: if no mass is lost by erosion or within sudden dislocations, then∑

k≥1 Fk(t) = 1 a.s. for allt ≥ 0.

1.2. Fragmentation with immigration processes.As said previously, the
immigration and fragmentation phenomena occur independently. The immigration
is coded by a Poisson measure onl1 × [0,∞) with an intensityI (ds) dt such that

∫
l1

∑
j≥1

(sj ∧ 1)I (ds) < ∞(H1)
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and we call such measureI animmigration measure. The hypothesis (H1) implies
that the total mass of particles that have immigrated during a timet is almost surely
finite (for an introduction to Poisson measures, we refer to [21]). On the other hand,
the particles fragment according to a self-similar fragmentation(α, c, ν).

DEFINITION 3. Let u be a random sequence ofD and let((s(ti), ti), i ≥ 1)

be the atoms of a Poisson measure with intensityI (ds) dt independent ofu. Then,
conditionally onu and((s(ti), ti), i ≥ 1), let F (u),F (s(ti )), i ≥ 1, be independent
fragmentation processes(α, c, ν) starting, respectively, fromu, s(t1), s(t2), . . . .
With probability one, the sum

FI (u)(t) := F (u)(t) + ∑
ti≤t

F (s(ti ))(t − ti)

belongs toD for all t ≥ 0, and the processFI (u) is called a fragmentation with
immigration process with parameters(α, c, ν, I ) starting fromu.

One may be troubled by conditioning on the value of((s(ti), ti), i ≥ 1), as
it may have 0 probability. If so, note that the familyF (s(ti )), i ≥ 1, is actually
constructed from the Poisson measure((s(ti), ti), i ≥ 1) and an independent family
F (i,j), i, j ≥ 1, of i.i.d. standard(α, c, ν)-fragmentations, through the formula
F (s(ti ))(t) = ∑

i,j≥1 sj (ti)F
(i,j)((sj (ti))

αt).
The reason why

∑
ti≤t F

(s(ti ))(t − ti) ∈ D a.s. is that
∑

ti≤t

∑
j≥1 sj (ti) < ∞ [by

hypothesis (H1)] and then that
∑

ti≤t F
(s(ti ))(t − ti) ∈ l1, since

∑
k≥1 F

(s(ti ))
k (t −

ti) ≤ ∑
j≥1 sj (ti). Note also that whenp ≥ 1, FI (u) ∈ lp as soon asu ∈ lp.

In this definition, the sequenceu represents the masses of particles present at
time 0 and at each timeti ≥ 0, some particles of massess(ti) immigrate. At timet ,
two families of particles are then present: those resulting from the fragmentation
of u during a timet and those resulting from the fragmentation ofs(ti) during a
time t − ti , ti ≤ t.

It is easy to see that the processFI (u) is Markov with the Feller property (cf. the
proof of Proposition 1.1 in [3]). Hence, we may and will always consider càdlàg
versions ofFI (u).

In the rest of this paper, we denote byFI a fragmentation with immigration
(α, c, ν, I ) (without any specified starting point) and we always exclude the trivial
casesν = 0 or I = 0.

REMARK. One may wonder why we do not more generally consider some
fragmentation with immigration processes with values inR, the set of Radon point
measures on(0,∞). Indeed, for all (random)u ∈ R and all t ≥ 0, it is always
possible to define the point measure

FI (u)(t) := F (u)(t) + ∑
ti≤t

F (s(ti ))(t − ti), t ≥ 0,(10)
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whereF (u)(t) is defined similarly to(2) and is independent ofF (s(ti )), i ≥ 1, some
independent fragmentations(α, c, ν) starting, respectively, froms(t1), s(t2), . . . .
The sum involving the termsF (s(ti ))(t − ti), ti ≤ t , is in D , as noticed in the
Definition 3 above. The issue is that, in general, starting from someu ∈ R\D ,
the measuresF (u)(t) do not necessarily belong toR, as the masses of the initial
particles may accumulate in some bounded interval(a, b) after fragmentation.

As an example, starts fromu = ∑
i≥1 δi and fix α > 0. For eachi, tag a

particle at random in the fragmentation issued from the particle with massi, as
explained in the previous section. At timet , this tagged particle is distributed
as i exp(−ξ (i)(ρ(i)(iαt))), where theξ (i)’s are i.i.d. subordinators with Laplace
exponent (3) andρ(i) the corresponding time changes (4). According to the Borel–
Cantelli lemma, the number of tagged particles belonging to some interval(a, b)

at timet is then a.s. infinite [and, therefore,F (u)(t) /∈ R] as soon as
∑

i≥1 P(a <

i exp(−ξ(ρ(iαt))) < b) = ∞. In [9], Bertoin and Caballero show that for most of
subordinators (and, therefore, for most of dislocation measures)i exp(−ξ(ρ(iαt)))

has a nontrivial limiting distribution asi → ∞ whenα > 0. In such cases, the
above sum of probabilities is infinite for some well-chosen intervals(a, b) and
thenF (u)(t) /∈ R.

That is why we study fragmentation with immigration processes onD .
However, in Section 5, we shall use some of these measuresFI (u)(t), u ∈R,
and we give (Proposition 15) some sufficient conditions onu andα for F (u)(t)

[equivalently,FI (u)(t)] to be a.s. Radon at fixed timet . These conditions do not
ensure that the processFI (u) is R-valued, as we do not know if a.s., forall t ,
FI (u)(t) ∈ R.

2. Existence and uniqueness of the stationary distribution. This section is
devoted to the existence and uniqueness of a stationary distribution forFI and
to properties of the stationary state, when it exists. We begin by establishing
some criteria for existence and uniqueness of a stationary distribution, which
are available for a class of Markov processes with immigration including
fragmentation with immigration processes. This is undertaken in Section 2.1 where
we more specifically obtain an explicit construction of a stationary state. We then
apply these results to fragmentation with immigration processes (Section 2.2).

From now on, for any r.v.X, L(X) denotes the distribution ofX.

2.1. The candidate for a stationary distribution for Markov processes with
immigration. Recall thatR denotes the set of Radon point measures on(0,∞)

and equip it with the topology of vague convergence. We first considerR-valued
Markov processes with some superposition property and then extend the results to
a larger class of Markov processes.

Let X be anR-valued Markov process that satisfies the followingsuperposition
property: for all u,v ∈ R, the sum of two independent processesX(u) andX(v)
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starting, respectively, fromu andv is distributed asX(u+v). A moment of thought

shows that this is equivalent to
∑

i≥1 X(ui ) law= X(
∑

i≥1 ui ) for all sequences(ui , i ≥
1) such that

∑
i≥1 ui ∈ R a.s., whereX(u1),X(u2), . . . are independent processes,

starting, respectively, fromu1,u2, . . . . Consider thenI , a nonnegativeσ -finite
measure onR, and let((s(ti), ti), i ≥ 1) be the atoms of a Poisson measure with
intensity I (ds) dt, t ≥ 0. Conditionally on this Poisson measure, letX(s(ti )) be
independent versions ofX, starting, respectively, froms(t1), s(t2), . . . . In order
to define anX-process with immigration, we need and will suppose in this section
that a.s. ∑

ti≤t

X(s(ti ))(t − ti) ∈ R for all t ≥ 0.

In particular, this holds whenX is a fragmentation process andI an immigration
measure, as explained just after Definition 3. More generally, still supposing thatX

is a fragmentation, one easily checked that it holds as soon asI integrates1{s1>ε}
for all ε > 0, that is, as soon as the number of particles of mass larger thanε

immigrating in finite time is finite.

DEFINITION 4. For every randomu ∈ R, let X(u) be a version ofX starting
from u and consider((X(r(vi )), vi), i ≥ 1) a version of ((X(s(ti )), ti), i ≥ 1)

independent ofX(u). Then, the process defined by

XI(u)(t) := X(u)(t) + ∑
vi≤t

X(r(vi ))(t − vi), t ≥ 0,(11)

is anR-valued Markov process and is calledX-process with immigration starting
from u.

We point out that the Markov property ofXI results both from the Markov
property and from the superposition property ofX. A moment of reflection shows
that the law of the point measure

Ustat :=
∑
ti≥0

X(s(ti ))(ti)(12)

is a natural candidate for a stationary distribution forXI [in some sense, it is the
limit as t → ∞ of XI(0)(t)], provided that it belongs toR. The problem is that it
does not necessarily belong toR, as the components ofUstat may accumulate in
some bounded interval(a, b).

LEMMA 5. (i) If Ustat∈ R a.s., then the distributionL(Ustat) is a stationary

distribution forXI and for any randomu ∈ R such thatX(u)(t)
P→ 0 as t → ∞,

XI (u)(t)
law→ Ustat as t → ∞.

(ii) If P(Ustat /∈ R) > 0, then there exists no stationary distribution forXI and
if P(Ustat /∈ D) > 0, then there exists no stationary distribution onD for XI .



EQUILIBRIUM FOR FRAGMENTATION WITH IMMIGRATION 1967

PROOF. (i) Assume Ustat ∈ R a.s. and consider a versionXI(Ustat) of
the X-process with immigration starting fromUstat. We want to prove that

XI(Ustat)(t)
law= Ustat for every t ≥ 0. So fix t > 0. By definition of XI and

using the Markov and superposition properties ofX, we see that there exists
((X(r(vi )), vi), i ≥ 1) an independent copy of((X(s(ti )), ti), i ≥ 1) such that

XI(Ustat)(t)
law= ∑

ti≥0

X(s(ti ))(ti + t) + ∑
vi≤t

X(r(vi ))(t − vi).

By independence of((r(vi), vi), i ≥ 1) and((s(ti), ti), i ≥ 1), the concatenation of((
r(vi), t − vi

)
, vi ≤ t

)
and

((
s(ti), ti + t

)
, i ≥ 1

)
has the same law as((s(ti), ti), i ≥ 1). Hence,

XI(Ustat)(t)
law= ∑

ti≥0

X(s(ti ))(ti) = Ustat.

Similarly, one obtains that, for allt ≥ 0,

XI (u)(t)
law= X(u)(t) + ∑

vi≤t

X(r(vi ))(vi),(13)

where((X(r(vi )), vi), i ≥ 1) is distributed as((X(s(ti )), ti), i ≥ 1) and is indepen-

dent ofX(u). Suppose now thatX(u)(t)
P→ 0 ast → ∞. Clearly,∑

vi≤t

X(r(vi ))(vi)
a.s.→

t→∞
∑
vi≥0

X(r(vi ))(vi)

and, therefore,

X(u)(t) + ∑
vi≤t

X(r(vi ))(vi)
P→ ∑

vi≥0

X(r(vi ))(vi) ast → ∞.

Since the limit here is distributed asUstatand since (13) holds, one hasXI(u)(t)
law→

Ustat.
(ii) Suppose that there exists a stationary distributionLstat. Our aim is to show

that P(Ustat /∈ R) = 0. To do so, letXI(Lstat) be anX-process with immigration
starting from an initial sequence distributed according toLstat. Replacingu by
XI(Lstat)(0) in (13), we get

XI(Lstat)(0)
law= X(XI(Lstat)(0))(t) + ∑

ti≤t

X(s(ti ))(ti).

Introduce then, for any 0< a < b < ∞, the event

Ea,b :=
{∑

ti≥0

〈
X(s(ti ))(ti),1(a,b)

〉 = ∞
}
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and fix someN > 0. The identity in law obtained above yields

P
(〈
XI(Lstat)(0),1(a,b)

〉
< N

)
≤ P

(∑
ti≤t

〈
X(s(ti ))(ti),1(a,b)

〉
< N

)

≤ P

(∑
ti≤t

〈
X(s(ti ))(ti),1(a,b)

〉
< N,Ea,b

)
+P(�\Ea,b).

The first probability in this latter sum converges to 0 ast → ∞ by definition
of Ea,b and, therefore,

P
(〈
XI(Lstat)(0),1(a,b)

〉
< N

) ≤ P(�\Ea,b) ∀N > 0.

Letting N → ∞, we getP(�\Ea,b) = 1 (becauseLstat is supported onR) and
thenP(Ea,b) = 0. This implies thatP(Ustat /∈ R) = 0.

Now, replacing R by D and Ea,b by Ea,∞, we obtain similarly that
P(Ustat /∈ D) = 0 as soon as there exists a stationary distributionLstat such that
Lstat(D) = 1. �

Let us now extend these results to Markov processes that take values in some
σ -compact spaceE and that do not necessarily satisfy the superposition property.
In order to introduce some immigration and some superposition property, we will
work onME, the set of point measures onE: if m ∈ ME , eitherm = ∑

i≥1 δx(i)

for some sequence(x(i), i ≥ 1) of points ofE, or m = 0, where0 is the trivial
measure:0(E) = 0. The subset of measures ofME that are Radon is denoted
by MRadon

E and is equipped with the topology of vague convergence. Consider
thenI , a nonnegativeσ -finite measure onE, and(X(t), t ≥ 0), a Markov process
with values inE. For anym = ∑

i≥1 δx(i)∈ ME , set

X(m)(t) := ∑
i≥1

δ
X(x(i))(t)

, t ≥ 0,

where X(x(1)),X(x(2)), . . . are independent versions ofX, starting, respectively,
from x(1), x(2), . . . . If m = 0, X(m)(t) := 0, ∀ t ≥ 0.

We now construct someX-process with immigration. Let m be a random
element ofMRadon

E and((x(ti), ti), i ≥ 1) be the atoms of a Poisson measure with
intensityI (ds) dt , t ≥ 0, independent ofm. Conditionally on this Poisson measure
and onm, let X(m) and X(δx(ti )

), i ≥ 1, be independent versions ofX starting,
respectively, fromm, δx(t1), δx(t2), . . . . Define then

XI(m)(t) := X(m)(t) + ∑
ti≤t

X(δx(ti )
)(t − ti), t ≥ 0,
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and suppose that a.s., for allt ≥ 0, XI(m) ∈ MRadon
E . ThenXI(m) is Markovian

and calledX-process with immigration starting fromm. Introduce next the point
measure

Ustat :=
∑
ti≥0

X(δx(ti )
)(ti) = ∑

i≥1

δX(x(ti ))(ti )
.

With the same kind of arguments as above, one obtains the following result.

LEMMA 6. (i) AssumeUstat∈ MRadon
E a.s. Then the distributionL(Ustat) is a

stationary distribution forXI andXI(m)(t)
law→ Ustat as soon asX(m)(t)

P→ 0 as
t → ∞.

(ii) If P(Ustat /∈ MRadon
E ) > 0, there exists no stationary distribution forXI.

2.2. Conditions for existence and properties of FIs stationary distribution.
Up to now, I is an immigration measure as defined in Section 1.2, that is,
I satisfies hypothesis (H1). LetFI denote a fragmentation with immigration
(α, c, ν, I ). By definition, the fragmentation process satisfies the superposition
property and, for everyu ∈ D , F (u)(t)

a.s.→ 0 as t → ∞. Then the results of
Lemma 5 can be rephrased as follows: if((s(ti), ti), i ≥ 1) are the atoms of
a Poisson measure with intensityI (ds) dt and if conditionally on this Poisson
measure,F (s(t1)),F (s(t2)), . . . are independent(α, c, ν)-fragmentations starting,
respectively, froms(t1), s(t2), . . . , then there is a stationary distribution for the
fragmentation with immigration(α, c, ν, I ) if and only if

Ustat=
∑
ti≥0

F (s(ti ))(ti) ∈ D a.s.

In this case,

FI (u)(t)
law→ Ustat ast → ∞

for all u ∈ D and, therefore,L(Ustat) is theuniquestationary distribution forFI .
The point is then to see whenUstat belongs toD and when it does not. The results
are given in Section 2.2.1 where we further investigate whetherUstat is in lp or
not,p ≥ 0. This is particularly interesting whenUstat∈ l1 a.s.: then the total mass
of the system converges to an equilibrium, which means that the immigration
compensates the mass lost by formation of dust (whenα < 0), by erosion or within
sudden dislocations. WhenUstat∈ D a.s., we also investigate the behavior of its
small components. The proofs are detailed in Section 2.2.2.

2.2.1. Statement of results.Let F denote a standard(α, c, ν)-fragmentation.
In the statements below, we shall sometimes suppose that

c = 0, ν

(∑
j≥1

sj < 1

)
= 0 and

∫
D1

∑
j≥1

| ln(sj )|sj ν(ds) < ∞(H2)
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or

�0< r < 1 :Fi(t) ∈ {rn, n ∈ N} ∀ t ≥ 0, i ≥ 1, and (H2) holds.(H3)

In terms ofξ, the subordinator driving a tagged fragment ofF , the hypothesis (H2)
means thatE[ξ(1)] < ∞. We shall also use the conventionlp = l0 whenp ≤ 0.

We now state our results on the existence of a stationary distribution; they
depend heavily on the value of the indexα.

THEOREM 7. Supposeα < 0.

(i) If either
∫
l1
∑

j≥1 s−α
j 1{sj≥1}I (ds) < ∞ or

∫
l1 s−α

1 ln s11{s1≥1}I (ds) < ∞,

then the stationary stateUstat∈ lp a.s. for all p > 1+ α.
(ii) There exists no stationary distribution when

∫
l1 s−α

1 1{s1≥1}I (ds) = ∞.

THEOREM 8. Supposeα = 0.

(i) If
∫
l1 ln s11{s1≥1}I (ds) < ∞, then, with probability one, Ustat ∈ lp for all

p > 1 and does not belong tol1 whenc = 0 andν(
∑

j≥1 sj < 1) = 0.

(ii) There exists no stationary distribution when
∫
l1 ln s11{s1≥1}I (ds) = ∞ and

(H2) holds.

THEOREM 9. Supposeα > 0. If
∫
l1 sε

11{s1≥1}I (ds) < ∞ for someε > 0, then
Ustat∈ lp a.s. for p large enough and if(H3) holds, thenUstat /∈ l1+α a.s. More
precisely, for everyγ > 0:

(i) if
∫
l1
∑

j≥1 s
γ
j 1{sj≥1}I (ds) < ∞, then Ustat ∈ lp a.s. for all p > 1 +

α/(γ ∧ 1),
(ii) if

∫
l1 s

γ
1 1{s1≥1}I (ds) = ∞ and (H3) holds, thenUstat /∈ l1+α/(γ∧1) a.s.

When−1 < α < 0, the result of Theorem 7(i) can be completed (see the remark
following Proposition 10 below): in most cases, eitherUstat /∈ l1+α a.s. or both
events{Ustat= 0} and{Ustat /∈ l1+α} have positive probabilities.

It is interesting to notice that the above conditions for existence or absence
of a stationary distribution depend only onα and I, provided hypothesis (H3)
holds. Indeed, recall the definition (1) ofαI and let thenα vary. According to
the above theorems, the valuesα = αI andα = −1 are critical. ProvidedαI < 0,
the stationary distribution exists whenα > αI and does not exist whenα < αI .
Moreover, the stationary stateUstat is a.s. composed by a finite number of particles
as soon asαI < α < −1, whereas whenα > −1, Ustat /∈ l1+α with a positive
probability (which equals 1 whenα ≥ 0 and depends on further hypothesis on
I andα when−1< α < 0, see the forthcoming Proposition 10).

Let us try to explain these results. By the scaling property of fragmentation
processes, particles with mass≥ 1 split faster whenα is larger. This explains
that, whenα is too small, some particles may accumulate in intervals of type
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(a,∞), a > 0, which implies thatUstat /∈ D . For α large enough, particles with
mass≥ 1 become rapidly smaller, but particles with mass≤ 1 split more slowly
whenα is larger. Therefore, small particles accumulate andUstat /∈ lp whenp is
too small. Moreover, the smallestp such thatUstat∈ lp increases asα increases.
Whenα < −1, it is known that small particles are very quickly reduced to dust
(see, e.g., Proposition 2 in [8]). This implies thatUstat∈ l0, provided it belongs
to D .

Small particles behavior. Suppose that−1< α < 0 and
∫
l1
∑

j≥1 s−α
j 1{sj≥1} ×

I (ds) < ∞, so thatUstat∈ D a.s., according to Theorem 7(i). Consider then the
random function

ε �→ Ustat(ε) := Ustat([ε,∞)),

which counts the number of components ofUstat larger thanε. We want to
investigate the limiting behavior ofUstat(ε) asε → 0. In that aim, we make the
following technical hypothesis:∫

D1

∑
j>i≥1

s1+α
i sj ν(ds) < ∞ and

(H4) ∫
D1

(1− s1)
θν(ds) < ∞ for someθ < 1,

as well as hypothesis (H3). Note that the first integral involved in (H4) is finite
as soon asα > −1 andν(sN > 0) = 0 for some integerN ≥ 2, because then∫
D1

∑
j>i≥1 s1+α

i sj ν(ds) ≤ (N − 1)
∫
D1

(1− s1)ν(ds).

PROPOSITION10. Under the previous hypotheses:

(i) if
∫
l1
∑

j≥1 s−α
j 1{sj≤1}I (ds) < ∞, there exists a finite r.v. X, 0 < P(X =

0) < 1, such that

Ustat(ε)ε
1+α →

ε→0
X a.s.,

(ii) if
∫
l1 s−α

1 1{sj≤1}I (ds) = ∞, one haslim inf ε→0 ε1+αUstat(ε) > 0 a.s.

In particular, this implies thatP(Ustat /∈ l1+α) = 1 when the assumption of the
second statement is satisfied. This is not true when the assumption of the first
statement holds: in such case, 0< P(Ustat = 0) ≤ P(Ustat ∈ l1+α) < 1 [see the
proof of (i) for the first inequality].

When α ≥ 0 or α < −1, some information on the behavior ofUstat(ε) as
ε → 0 can be deduced from Theorems 7, 8 and 9. Thus,Ustat(0) < ∞ a.s. as
soon asαI < α < −1. To obtain some information whenα ≥ 0, first notice
that, whenUstat ∈ D ,

∫
(0,∞) x

pUstat(dx) < ∞ ⇔ ∫
(0,1) Ustat(x

1/p) dx < ∞, by
integration by parts. Combined with Theorem 9, this implies, whenα > 0, that
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if
∫
l1
∑

j≥1 s
γ
j 1{sj≥1}I (ds) < ∞, then lim infε→0 εpUstat(ε) = 0 for all p > 1 +

α/(γ ∧ 1), whereas if
∫
l1 s

γ
1 1{s1≥1}I (ds) = ∞, limsupε→0 εpUstat(ε) = ∞ for all

p < 1+α/(γ ∧1). The behavior near 0 ofUstat(ε) is then strongly connected to the
immigrationI . Similarly, whenα = 0 and when there is a stationary distribution,
one deduces from Theorem 8 that lim infε→0 εpUstat(ε) = 0 for all p > 1, and that
limsupε→0 εpUstat(ε) = ∞ for all p < 1, providedc = ν(

∑
i≥1 si < 1) = 0.

REMARK. It is possible to show thatUstat∈ R a.s. as soon as
∫
l1
∑

j≥1 sj ×
1{sj≥1}I (ds) < ∞ and thatP(Ustat /∈ R) > 0 as soon asα > −1,

∫
l1 s−α

1 1{s1≥1} ×
I (ds) = ∞ and hypotheses (H3) and (H4) hold. The first claim can be proved
by using some arguments of the proof of the forthcoming Proposition 16 and the
second claim is a consequence of Theorems 4(i) and 7 of [19], which are also used
below to prove Proposition 10.

2.2.2. Proofs. LetF be a standard(α, c, ν)-fragmentation and for everyp ∈ R
andt ≥ 0, define

M(p, t) := ∑
k≥1

(
Fk(t)

)p1{Fk(t)>0},

which is a.s. finite at least whenp ≥ 1 (since it is bounded from above by 1). That
Ustat belongs to somelp-space is closely related to the behavior of the function
t �→ M(p, t). Indeed,

Ustat=
∑
i≥1

∑
j≥1

sj (ti)F
(i,j)(sα

j (ti)ti
)
,

where theF (i,j)’s, i, j ≥ 1, are i.i.d. copies ofF , independent of((s(ti), ti), i ≥ 1).

ThenUstat∈ lp ⇔ M(p) < ∞ with

M(p) =
∫
(0,∞)

xpUstat(dx)

= ∑
i≥1

∑
j≥1

s
p
j (ti)M

(i,j)(p, sα
j (ti)ti

)
1{sj (ti )>0},

where theM(i,j)(p, ·)’s, i, j ≥ 1, are i.i.d. copies ofM(p, ·), independent of
((s(ti), ti), i ≥ 1). Using the tagged particle approach as explained in Section 1.1,
one obtains the following results onM(p, ·).

LEMMA 11. (i) Supposeα ≤ 0. Then
∫ ∞
0 exp(λt)E[M(p, t)]dt < ∞ as soon

asp ≥ 1+ α andλ < φ(p − 1− α). In particular, E[M(p, t)] < ∞ for a.e. t ≥ 0
as soon asp ≥ 1+ α.

(ii) Supposeα > 0. Then for everyη > 0 and everyp ≥ 1, there exists a random
variableD(η,p) with positive moments of all orders such that

M(p, t) ≤ D(η,p)t
−(p−1)/(α+η) a.s. for everyt > 0.

Consequently,
∫ ∞
0 E[M(p, t)]dt < ∞ whenp > 1+ α.
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Bertoin (Corollary 3 in [8]) shows that whenα > 0 andp ≥ 1, the process
t (p−1)/αM(p, t) converges in probability to some deterministic limit ast → ∞,

provided the fragmentation satisfies hypothesis (H3). See also Brennan and Durrett
[11, 12], who prove the almost sure convergence for binary fragmentations
(ν(s1 + s2 < 1) = 0) with a finite dislocation measure.

PROOF. We use the notation introduced in Section 1.1.
(i) According to (6),

E[M(p, t)] = E
[
exp

(
(1− p)ξ(ρ(t))

)
1{t<D}

]
,

whereD = inf{t :ρ(t) ≥ e(k)}. Therefore,∫ ∞
0

exp(λt)E[M(p, t)]dt

= E

[∫ D

0
exp(λt)exp

(
(1− p)ξ(ρ(t))

)
dt

]
(14)

= E

[∫ e(k)

0
exp

(
λρ−1(t)

)
exp

(
(1− p + α)ξ(t)

)
dt

]
,

using for the last equality the change of variablest �→ ρ(t) and that, by definition
of ρ, exp(αξ(ρ(t))) dρ(t) = dt on [0,D). The functionρ−1 denotes the right
inverse ofρ and, clearly,ρ−1(t) ≤ t sinceα ≤ 0. Whenp ≥ 1+ α, this leads to∫ ∞

0
exp(λt)E[M(p, t)]dt

≤


E

[∫ e(k)

0
exp

(−φ(p − 1− α)t
)
dt

]
, if λ < 0,

E

[∫ e(k)

0
exp

((
λ − φ(p − 1− α)

)
t
)
dt

]
, if λ ≥ 0,

and in both cases, the integral is finite as soon asλ < φ(p − 1− α) = φ(p − 1−
α) + k.

(ii) Fix α > 0, p ≥ 1 andη > 0 and recall that, according to (5),

M(p, t) = E
[
exp

(−(p − 1)ξ(ρ(t))
)
1{t<D}|F ]

.

Sinceξ is increasing, one has

ρ(t)exp
(−ηξ(ρ(t))

) ≤
∫ ρ(t)

0
exp

(−ηξ(r)
)
dr ≤

∫ ∞
0

exp
(−ηξ(r)

)
dr := D(η).

And, on the other hand, fort < D,

t =
∫ ρ(t)

0
exp

(
αξ(r)

)
dr ≤ ρ(t)exp

(
αξ(ρ(t))

)
.
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Combining these inequalities, we obtain exp(−(α + η)ξ(ρ(t))) ≤ t−1D(η) for all
t < D. Hence, M(p, t) ≤ t−(p−1)/(α+η)D(η,p), where D(η,p) :=
E[D(p−1)/(α+η)

(η) |F ]. Carmona, Petit and Yor [13] have shown thatD(η) has mo-
ments of all positive orders, which, by Hölder’s inequality, is also true forD(η,p).

�

We now turn to the proofs of Theorems 7, 8 and 9.

PROOF OFTHEOREM 7. (i) Fix p > 1+α and splitM(p) into two sub-sums:

Minf(p) = ∑
i≥1

∑
j≥1

s
p
j (ti)1{0<sj (ti )<1}M(i,j)(p, sα

j (ti)ti
)

andMsup(p) = M(p) − Minf(p). One has

E[Minf(p)] =
∫
l1

(∑
j≥1

s
p−α
j 1{sj<1}

)
I (ds) ×

∫ ∞
0

E[M(p, t)]dt

and both of these integrals are finite according to hypothesis (H1) and Lemma 11
since p > 1 + α. It remains to show thatMsup(p) < ∞ when I integrates∑

j≥1 s−α
j 1{sj≥1} or s−α

1 ln s11{s1≥1}.
Suppose first that

∫
l1
∑

j≥1 s−α
j 1{sj≥1}I (ds) < ∞ and letτ (i,j) be the first time

at which the fragmentationF (i,j) is entirely reduced to dust. Equivalently,τ (i,j)

is the first time at whichM(i,j) reaches 0. If the number of pairs(i, j) such that
sα
j (ti)ti ≤ τ (i,j) andsj (ti) ≥ 1 is finite, then the sumMsup(p) is finite because it

involves at most a finite number of nonzeroM(i,j)(p, sα
j (ti)ti) [which are a.s. all

finite according to Lemma 11(i)]. To prove that this is the case, we use the theory
of Poisson measures. Since the r.v.τ (i,j), i, j ≥ 1, are i.i.d., the measure∑

i≥1

δ
t−1
i supj : sj (ti )≥1(τ

(i,j)s−α
j (ti ))

is a Poisson measure with intensitym defined for any positive measurable
functionf by∫ ∞

0
f (x)m(dx) =

∫ ∞
0

∫
l1

E

[
f

(
t−1 sup

j : sj≥1

(
τ (1,j)s−α

j

))]
I (ds) dt.

The integral
∫ ∞
1 m(dx) is bounded from above byE[τ (1,1)] ∫l1 ∑j≥1 s−α

j 1{sj≥1} ×
I (ds), which is finite by assumption onI and sinceE[τ (1,1)] < ∞ [by (8)].
This implies that a.s. there are only a finite number of integersi ≥ 1 such that
t−1
i supj : sj (ti )≥1(τ

(i,j)s−α
j (ti)) ≥ 1. For each of thesei, there is at most a finite

number of integersj ≥ 1 such thatsj (ti) ≥ 1. Hence, the number of pairs(i, j)

such thatsα
j (ti)ti ≤ τ (i,j) andsj (ti) ≥ 1 is indeed a.s. finite.
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Assume now that
∫
l1 s−α

1 ln s11{s1≥1}I (ds) < ∞. For anya > 0, the number of
integersi ≥ 1 such thatati ≤ s−α

1 (ti) ln(s1(ti)) and s1(ti) ≥ 1 is then a.s. finite.
The sumMsup(p) is therefore finite if∑

i≥1

∑
j≥1

s
p
j (ti)1{ati>s−α

1 (ti ) ln(s1(ti ))}1{sj (ti )≥1}M(i,j)(p, sα
j (ti)ti

)
is finite for some (and then all)a > 0. The expectation of this latter sum is bounded
from above by∫ ∞

0

∫
l1

(∑
j≥1

s
p
j 1{at>s−α

j ln sj }1{sj≥1}
)
E[M(p, sα

j t)]I (ds) dt (assj ≤ s1)

≤
∫
l1

∑
j≥1

1{sj≥1}I (ds)
∫ ∞

0
exp

(
at (p − α)

)
E[M(p, t)]dt,

which is finite for a sufficiently small, according to Lemma 11(i). Hence,
Msup(p) < ∞ a.s.

(ii) Suppose
∫
l1 s−α

1 1{s1≥1}I (ds) = ∞ and let τ (i,1)
1/2 := inf{t ≥ 0 :F (i,1)

1 (t) <

1/2} be the first time at which all components ofF (i,1) are smaller than 1/2, i ≥ 1.

Note thatE[τ (i,1)
1/2 ] > 0 sinceF (i,1)

1 is càdlàg. The measure∑
i≥1 : s1(ti )≥1

δ
s−α
1 (ti )t

−1
i τ

(i,1)
1/2

is a Poisson measure with intensitym′ given by∫ ∞
0

f (x)m′(dx) =
∫ ∞

0

∫
l1

E
[
f
(
s−α
1 t−1τ

(1,1)
1/2

)]
1{s1≥1}I (ds) dt.

By assumption onI and sinceE[τ (1,1)
1/2 ] > 0, the integral

∫ ∞
1 m′(dx) is infinite and,

consequently, the number of integersi such thatτ (i,1)
1/2 > sα

1 (ti)ti ands1(ti) ≥ 1 is

a.s. infinite. For thosei, s1(ti)F
(i,1)
1 (sα

1 (ti)ti) ≥ 1/2 and, therefore,Ustat contains
a sequence of terms all larger than 1/2, which implies that it is not inD a.s. �

PROOF OFTHEOREM 8. (i) The second part of the proof of Theorem 7(i) (re-
placing thereα by 0) shows thatUstat∈ ⋂

p>1 lp when
∫
l1 ln(s1)1{s1≥1}I (ds) < ∞.

Now, if c = 0 andν(
∑

k≥1 sk < 1) = 0, the sumM(1) equals
∑

i≥1
∑

j≥1 sj (ti),

which is clearly a.s. infinite sinceI �= 0.
(ii) Assume that

∫
l1 ln(s1)1{s1≥1}I (ds) = ∞ and E[ξ(1)] < ∞. For each

i ≥ 1, let exp(−ξ (i,1)(·)) denote the process of masses of the tagged particle
in the fragmentationF (i,1). To prove thatUstat /∈ D , it suffices to show that
its subsequence{s1(ti)exp(−ξ (i,1)(ti)), i ≥ 1}↓ /∈ D . The components of this
sequence are the atoms of a Poisson measure with intensitym′′ given by∫ ∞

0
f (x)m′′(dx) =

∫ ∞
0

∫
l1

E
[
f
(
s1 exp

(−ξ(t)
)]

I (ds) dt.
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Take thena > E[ξ(1)]. Sinceξ(t)/t
a.s.→ E[ξ(1)] as t → ∞, there exists somet0

such thatP(ξ(t) ≤ at) ≥ 1/2 for t ≥ t0. Then∫ ∞
1

m′′(dx) =
∫ ∞

0

∫
l1

P
(
ξ(t) ≤ ln s1

)
I (ds) dt

≥
∫
l1

∫ a−1 ln s1

t0

P
(
ξ(t) ≤ at

)
dt I (ds)

≥ 1
2

∫
l1
(a−1 ln s1 − t0)1{a−1 ln s1≥t0}I (ds)

and this last integral is infinite by assumption. Hence,
∑

i≥1 δs1(ti )exp(−ξ (i,1)(ti ))
/∈ D

a.s. and a fortioriUstat /∈ D a.s. �

PROOF OFTHEOREM 9. Fix p ≥ 1+ α. According to the Campbell formula
for Poisson measures (see [21]), the sumM(p) is finite if and only if∫ ∞

0

∫
l1

E

[
1− exp

(
−∑

j≥1

s
p
j M(1,j)(p, sα

j t)

)]
I (ds) dt < ∞.(15)

(i) We first prove assertion (i) and thatUstat∈ lp a.s. forp large enough whenI
integratessε

11{s1≥1}. Supposep > 1+ α and note that the integral (15) is bounded
from above by∫

l1

∑
j≥1

s
p−α
j 1{sj<1}I (ds)

∫ ∞
0

E[M(p, t)]dt

+
∫ ∞

0

∫
l1

E

[
1− exp

(
−∑

j≥1

s
p
j 1{sj≥1}M(1,j)(p, sα

j t)

)]
I (ds) dt.

According to Lemma 11(ii), the first component of this sum is finite and, for all
η > 0, there exists some i.i.d. r.v.D(j)

(η,p) having finite moments of all positive
orders and independent of(s(ti), i ≥ 1) such that the second component is bounded
from above by∫ ∞

0

∫
l1

E

[
1− exp

(
−∑

j≥1

s
p−α(p−1)/(α+η)
j 1{sj≥1}D(j)

(η,p)t
−(p−1)/(α+η)

)]
I (ds) dt.

Using the fact that
∫ ∞
0 E[1 − exp(−t−aX)]dt = ∫ ∞

0 (1− exp(−t−a)) dt E[X1/a]
for nonnegative r.v.X, one sees that this double integral is equal to∫ ∞

0

(
1− exp

(−t−(p−1)/(α+η)))dt

×
∫
l1

(∑
j≥1

s
(pη+α)/(α+η)
j 1{sj≥1}

)(α+η)/(p−1)

I (ds)E
[
D

(1)
(η,p)

(α+η)/(p−1)].
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If p > 1 + α + η, the first integral in this latter product is finite. So, takeη small
enough so thatp > 1+ α + η and notice then that∫

l1

(∑
j≥1

s
(pη+α)/(α+η)
j 1{sj≥1}

)(α+η)/(p−1)

I (ds)

(16)
≤

∫
l1

∑
j≥1

s
(pη+α)/(p−1)
j 1{sj≥1}I (ds).

The integral (15) is therefore finite as soon as the integral in the right-hand side
of (16) is finite for someη > 0 small enough. Hence, we get (i).

The same argument shows thatUstat ∈ lp for p sufficiently large when there
exists someε > 0 such that

∫
l1 sε

11{s1≥1}I (ds) < ∞. Indeed, letp > 1+ α + η. It
suffices then to show that the integral on the left-hand of (16) is finite and to do so,
we replace the upper bound there by∫

l1

(∑
j≥1

s
(pη+α)/(α+η)
j 1{sj≥1}

)(α+η)/(p−1)

I (ds)

≤
∫
l1

s
(pη+α)(p−1)
1

(∑
j≥1

1{sj≥1}
)(α+η)/(p−1)

I (ds),

which, by Hölder’s inequality, is finite as soon asp is large enough andη small
enough.

(ii) We now turn to the proof of assertion (ii) and thatUstat /∈ l1+α when (H3)
holds. The integral (15) is bounded from below by∫ ∞

0

∫
l1

s−α
1 E

[(
1− exp

(−s
p
1 M(p, t)

))
1{M(p,t)≥rt−(p−1)/α}

]
I (ds) dt

≥
∫
l1

s−α
1

∫ ∞
0

(
1− exp

(−s
p
1 rt−(p−1)/α))P (

M(p, t) ≥ rt−(p−1)/α)dt I (ds).

According to Corollary 3 in [8], the hypothesis (H3) ensures thatt (p−1)/αM(p, t)

converges in probability to some finite deterministic constant ast → ∞. Hence,
taking r > 0 small enough and thent0 large enough, one hasP(M(p, t) ≥
rt−(p−1)/α) ≥ 1/2 for t ≥ t0 and, therefore, the integral (15) is bounded from
below by

1
2

∫
l1

s−α
1 s

pα/(p−1)
1

∫ ∞
0

1{spα/(p−1)
1 ≥(t0/t)}

(
1− exp

(−rt−(p−1)/α))dt I (ds),

which is infinite as soon asp ≤ 1+ α or
∫
l1 s

α/(p−1)
1 1{s1≥t0}I (ds) = ∞. �

PROOF OF PROPOSITION 10. For the standard fragmentationF , let
N(ε,∞)(t) := ∑

k≥1 1{Fk(t)>ε} denote the number of terms larger thanε present at
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time t . Under the hypotheses (H3), (H4) andα > −1, Theorems 4(i) and 7 of [19]
describe the behavior ofN(ε,∞)(t) as ε → 0. Theorem 4(i) states the existence
of a random functionL such that

∑
k≥1 Fk(t) = ∫ ∞

t L(u) du a.s. for allt . Then
Theorem 7 says that

ε1+αN(ε,∞)(t) → KL(t) asε → 0(17)

a.s. for almost everyt, whereK = (1+ α)/α2E[ξ(1)]. Note that the sumUstat(ε)

can be written as

Ustat(ε) = ∑
i,j≥1

N
(i,j)
(ε/sj (ti ),∞)

(
sα
j (ti)ti

)
,(18)

where theN(i,j)
(·,∞)

(·)’s are i.i.d. copies ofN(·,∞)(·), independent of((s(ti), ti),
i ≥ 1).

(i) Let τ (i,j) be the first time at whichF (i,j) reaches0, i, j ≥ 1. With the
same arguments as in the proof of Theorem 7(i), one sees that, with probability
one, there is at most a finite number ofti < supj≥1(τ

(i,j)s−α
j (ti)) if and

only if
∫
l1 E[supj≥1 τ (1,j)s−α

j ]I (ds) < ∞. This integral is finite by assumption.
A moment of thought then shows that there is at most a finite number of integers
i, j ≥ 1—independent ofε—such thatN(i,j)

(ε/sj (ti ),∞)(s
α
j (ti)ti) > 0. Consequently,

the sum (18) involves a finite number of nonzero terms and

ε1+αUstat(ε) →
ε→0

K
∑

i,j≥1

L(i,j)(sα
j (ti)ti

)
s1+α
j (ti) a.s.,

where the functionsL(i,j)’s are i.i.d. and distributed asL. This limit, which we
denote byX, is null as soon asUstat = 0, that is, as soon as there is no integer
i ≥ 1 such thatti < supj≥1(τ

(i,j)s−α
j (ti)). This occurs, according to the Poissonian

construction, with a positive probability. On the other hand, the Lebesgue measure
of BL := {x ≥ 0 :L(x) > 0} [denoted by Leb(BL)] is a.s. nonzero and then
P(X > 0) > 0.

(ii) Suppose
∫
l1 s−α

1 1{s1≤1}I (ds) = ∞ and letBL(i,j) := {x ≥ 0 :L(i,j)(x) > 0},
which are i.i.d. copies ofBL. One checks that there a.s. exists a timeti ∈⋃

j≥1 s−α
j (ti)BL(i,j) if and only if the integral

∫
l1 E[Leb(

⋃
j≥1 s−α

j BL(1,j) )]I (ds)
is infinite and that this integral is indeed infinite here, according to the assumption
on I and since Leb(BL) > 0 a.s. From this, we deduce that∑

1≤i,j≤N

L(i,j)(sα
j (ti)ti

)
s1+α
j (ti) > 0 a.s. forN large enough

and then, by (17) and (18), that lim infε→0 ε1+αUstat(ε) > 0. �
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3. Rate of convergence to the stationary distribution. We are interested
in the convergence in law to the stationary regimeUstat. It is already known,
according to Lemma 5, that, for every randomu ∈ D , the processFI (u)(t)

converges in law ast → ∞ to the stationary stateUstat, provided it belongs toD
a.s. The aim of this section is to strengthen this result by providing upper bounds
for the rate at which this convergence takes place. The norm considered on the set
of signed finite measures onD is

‖µ‖ := sup
f 1-Lipschitz,sups∈D |f (s)|≤1

∣∣∣∣∫
D

f (s)µ(ds)
∣∣∣∣.

By f is 1-Lipschitz, we mean that|f (s) − f (s′)| ≤ d(s, s′) for all s, s′ ∈ D . It is
well known that this norm induces the topology of weak convergence.

The main results are stated in the following Theorem 12. In caseα < 0, the
rate of convergence depends onI and it is worthwhile making the result a little
more explicit. This is done, under some regular variation type hypotheses onI , in
Corollary 13.

THEOREM 12. The initial statesu considered here are all deterministic.

(i) Suppose thatα < 0 and
∫
l1
∑

j≥1 s−α
j 1{sj≥1}I (ds) < ∞. Then, for every

γ ∈ [1,	] [	 is defined by(9)], there exists a positive finite constantA such that,
for everyu satisfying

∑
j≥1 exp(−uα

j ) < ∞,∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥

= O

(
t−(γ−1)

∫
l1

∑
j≥1

s
−αγ
j exp(−Atγ s

αγ
j )I (ds) + exp(−Atγ u

αγ
1 )

)

as t → ∞.

(ii) Suppose thatα = 0 and
∫
l1
∑

j≥1 s1+ε
j I (ds) < ∞ for someε > 0. Then for

everyu ∈ l1+ε anda < φ(ε)/(2+ ε),∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥ = o

(
exp(−at)

)
ast → ∞.

(iii) Suppose thatα > 0 and
∫
l1
∑

j≥1 s
p
j I (ds) < ∞ for somep > 0. Then, for

everyu ∈ lp and everya < 1/α,∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥ = o(t−a) ast → ∞.

Note first that, by Theorems 7, 8 and 9, the assumptions we make onI imply in
each case thatUstat∈ D a.s. In caseα < 0, the given upper bound may be infinite
for someγ ’s. The point is then to find theγ ’s in [1,	] that give the best rate of
convergence. This is possible, for example, when

∫
l1
∑

j≥1 1{sj≥x}I (ds) behaves
regularly asx → ∞. In such case the statement (i) turns to:
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COROLLARY 13. Supposeα < 0 and fixu such that
∑

j≥1 exp(−uα
j ) < ∞.

(i) If
∫
l1
∑

j≥1 1{sj≥x}I (ds) ∼ l(x)x−� as x → ∞ for some slowly varying
functionl and some� > 0, then, provided−α < �,∥∥L(

FI (u)(t)
) − L(Ustat)

∥∥ = O
(
l
(
t1/|α|)t−(�/|α|−1)) ast → ∞.

(ii) If − ln(
∫
l1
∑

j≥1 1{sj≥x}I (ds)) ∼ l(x)x� asx → ∞ for some slowly varying
functionl and some� > 0, then there exists a slowly varying functionl′ (which is
constant whenl is constant) such that∥∥L(

FI (u)(t)
) − L(Ustat)

∥∥ = O
(
t−(	−1) exp

(−l′(t)t�	/(|α|	+�))) ast → ∞.

In the special case whenI (s1 > a) = 0 for somea > 0,∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥ = O

(
exp(−Bt	)

)
for some constantB > 0.

PROOF. (i) First, by integrating by parts and then using, for example,
Proposition 1.5.10 of [10], one obtains that, forγ ∈ [1, �/(−α)),∫

l1

∑
j≥1

s
−αγ
j 1{x≥s

αγ
j }I (ds) ≈ l(x1/αγ )x−1−�/αγ asx → 0

(the notation≈ means that the functions are equivalent up to a multiplicative
constant). Then, using Karamata’s Abelian–Tauberian theorem (Theorem 1.7.1′
of [10]), one deduces that∫

l1

∑
j≥1

s
−αγ
j exp(−ts

αγ
j )I (ds) ≈ l(t−1/αγ )t1+�/αγ ast → ∞.

Now if −α < �, statement(i) of Theorem 12 applies and one can plug the above
equivalence into the upper bound obtained there, hence, the conclusion.

(ii) Let 1 ≤ γ ≤ 	. By integrating by parts and then by using Theorem 4.12.10
in [10], one sees that− ln(

∫
l1
∑

j≥1 s
−αγ
j 1{sj≥x}I (ds)) ∼ l(x)x� as x → ∞.

According to de Bruijn’s Abelian–Tauberian theorem 4.12.9 in [10], this implies
that

− ln

(∫
l1

∑
j≥1

s
−αγ
j exp(−ts

αγ
j )I (ds)

)
≈ f (t) ast → ∞,(19)

wheref (t) = 1/�←(t) with �(t) = �(t)/t and�←(t) = t�/(αγ )/ l(t1/(−αγ )).

Here �←(t) = sup{u ≥ 0 :φ(u) > t} and similarly for �. Therefore,f (t) ∼
l̃(t)t�/(�+|α|γ ) for some slowly varying functioñl (to invert regularly varying
functions, we refer to Chapter 1.5.7 of [10]) which is constant whenl is constant.
The assumption we have onI allows us to apply Theorem 12(i) and the conclusion
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then follows by taking thereγ = 	 and using the equivalence (19). The special
case whenI (s1 > a) = 0 is obvious. �

Hence, our bounds for the rate of convergence depend significantly onI when
α < 0, whereas they are essentially independent ofI whenα ≥ 0. Also, in any
case they are essentially independent of the initial stateu.

We now turn to the proof of Theorem 12, which relies on a coupling method that
holds forD-valuedX-processes with immigration, as defined in Section 2.1. We
first explain the method in this general context and then make precise calculations
for fragmentation with immigration processes. In this latter case, ifc, ν andI are
fixed so thatI (s1 > 1) = 0 and if α varies, one sees (without any calculations,
just using that particles with mass≤ 1 split faster whenα is smaller) that the
employed method provides a better rate of convergence whenα is smaller. When
I (s1 > 1) > 0, the comparison of rates of convergence asα varies is no longer
possible because particles with mass larger than 1 split more slowly whenα is
smaller.

PROOF OFTHEOREM 12. LetX be aD-valued Markov process with the su-
perposition property andI an immigration measure such that the processesXI(u),
u ∈ D , defined by formula (11), areD-valuedX-processes with immigration. Let
then((s(ti), ti), i ≥ 1) be the atoms of a Poisson measure with intensityI (ds) dt ,
t ≥ 0, and suppose that the stationary sumUstatconstructed from((s(ti), ti), i ≥ 1),
as explained in (12), belongs a.s. toD . Suppose, moreover, thatX(u)(t)

a.s.→ 0 for
all u ∈ D .

Then, fix u ∈ D and considerX(u) andX(Ustat) some versions ofX starting,
respectively, fromu andUstat. Consider nextXI(0) anX-process with immigration
starting from 0, independent ofX(u) and X(Ustat). Then, the processesXI(u)

and XI(Ustat), defined, respectively, byXI(u)(t) := X(u)(t) + XI(0)(t) and
XI(Ustat)(t) := X(Ustat)(t) + XI(0)(t), t ≥ 0, areX-processes with immigration
starting, respectively, fromu andUstat.

Let now r be a deterministic function and callτ
(u)
r the first timet at which

X
(u)
1 (s) ≤ r(s) for all s ≥ t and, similarly, τ (stat)

r the first time t at which

X
(Ustat)
1 (s) ≤ r(s) for all s ≥ t . Of course, the interesting cases areτ

(u)
r < ∞ and

τ
(stat)
r < ∞ a.s. Such cases exist, take, for example,r ≡ 1.

Our goal is to evaluate the behavior of the norm‖L(XI (u)(t)) − L(Ustat)‖ as
t → ∞. To do so, letf :D → R denote a 1-Lipschitz function onD such that
sups∈D |f (s)| ≤ 1. For allt ≥ 0, we construct a functionfr(t) from f andr(t) by
setting

fr(t)(s) :=
{

f (0), whens1 ≤ r(t),

f
(
s1, . . . , si(r(t)),0,0, . . .

)
, whens1 > r(t),
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wherei(r(t)) is the unique integer such thatsi(r(t)) > r(t) and si(r(t))+1 ≤ r(t).
Clearly, asf is 1-Lipschitz andd(s, s′) = supj≥1 |sj − s′

j | for s, s′ ∈ D , |f (s) −
fr(t)(s)| ≤ r(t) for everys ∈D and, therefore,∣∣E[

f
(
XI(u)(t)

) − f (Ustat)
]∣∣

= ∣∣E[
f
(
XI(u)(t)

) − f
(
XI(Ustat)(t)

)]∣∣(20)

≤ 2r(t) + ∣∣E[
fr(t)

(
XI(u)(t)

) − fr(t)

(
XI(Ustat)(t)

)]∣∣.
The time τ

(u)
r and the functionfr(t) are defined so that, for timest ≥ τ

(u)
r ,

fr(t)(XI (u)(t)) takes only into account the masses of particles that are descended
from immigrated particles, not fromu. Therefore, one has

E
[
fr(t)

(
XI(u)(t)

)] = E
[
fr(t)

(
XI(u)(t)

)
1{τ (u)

r ∨τ
(stat)
r >t}

]
+ E

[
fr(t)

(
XI(0)(t)

)
1{t≥τ

(u)
r ∨τ

(stat)
r }

]
and, similarly,

E
[
fr(t)

(
XI(Ustat)(t)

)] = E
[
fr(t)

(
XI(Ustat)(t)

)
1{τ (u)

r ∨τ
(stat)
r >t}

]
+ E

[
fr(t)

(
XI(0)(t)

)
1{t≥τ

(u)
r ∨τ

(stat)
r }

]
.

Combined with (20), this gives∣∣E[
f
(
XI(u)(t)

) − f (Ustat)
]∣∣

≤ 2r(t) + ∣∣E[(
fr(t)

(
XI(u)(t)

) − fr(t)

(
XI(Ustat)(t)

))
1{τ (u)

r ∨τ
(stat)
r >t}

]∣∣
≤ 2r(t) + 2P

(
τ (u)
r ∨ τ (stat)

r > t
)

since sups∈D |f (s)| ≤ 1. This holds for all 1-Lipschitz functionsf such that
sups∈D |f (s)| ≤ 1 and, therefore,∥∥L(

XI(u)(t)
) − L(Ustat)

∥∥ ≤ 2
(
r(t) + P

(
τ (u)
r > t

) + P
(
τ (stat)
r > t

))
.(21)

The point is thus to find a functionr such that the above upper bound gives the
best possible rate of convergence.

In the rest of this proof, we replaceX by an(α, c, ν)-fragmentation processF ,
in order to make precise calculations. We recall thatF (u)(t)

a.s.→ 0 and that the
assumptions of Theorem 12 involvingI ensure thatUstat∈ D a.s. for allα ∈ R,
so that (21) holds forFI (u). The choice of the functionr then differs according as
α < 0, α = 0 andα > 0.

Proof of (i). Here we taker ≡ 0. According to the definitions above,τ
(u)
r is

the first time at whichF (u) reaches0 (it may be a priori infinite) andτ (stat)
r the

first time at whichF (Ustat) reaches0. As recalled in Section 1.1, the first timeτ at
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which a 1-mass particle reaches0 is a.s. finite sinceα < 0. By self-similarity, the
first time at which a particle with massm is reduced to0 is distributed asm−ατ.

Hence, by definitions ofF (u) andF (Ustat),

τ (u)
r = sup

j≥1
u−α

j τ (j) and τ (stat)
r = sup

i≥1,j≥1

(
s−α
j (ti)τ

(i,j) − ti
)+

,

where(τ (j), j ≥ 1) and(τ (i,j), i, j ≥ 1) denote families of i.i.d. copies ofτ such
that(τ (i,j), i, j ≥ 1) is independent of((s(ti), ti), i ≥ 1).

Now fix γ ∈ [1,	]. On the one hand, one has

P
(
τ (u)
r > t

) ≤ ∑
j≥1

P
(
τ (j) > tuα

j

)
,

which by (8) is bounded from above byCγ

∑
j≥1 exp(−C′

γ tγ u
αγ
j ) for some

constantsCγ ,C′
γ > 0. Let 0< ε < C′

γ . It is easy that this sum is, in turn, bounded
for all t ≥ 1 byB exp(−(C′

γ −ε)tγ u
αγ
1 ), whereB is a constant (depending onγ, ε

andu, not ont ≥ 1) which is finite as soon as
∑

j≥1 exp(−uα
j ) < ∞. On the other

hand,

P
(
τ (stat)
r > t

) ≤
∫ ∞

0

∫
l1

∑
j≥1

P
(
τ > (t + v)sα

j

)
I (ds) dv,

which, again by (8), is bounded from above by

Cγ

C′
γ γ tγ−1

∫
l1

∑
j≥1

s
−αγ
j exp(−C′

γ tγ s
αγ
j )I (ds)

for t > 0. Hence, the result.

Proof of (ii) . Whenα = 0, the fragmentation does not reach0 in general. We
thus have to choose some functionr �= 0. By assumption,

∫
l1
∑

j≥1 s1+ε
j I (ds) < ∞

for someε > 0. So, fix suchε, fix η > 1 and seta := φ(ε)/(1 + η(1 + ε)). Then
taker(t) := exp(−at), t ≥ 0.

In order to bound from aboveP(τ
(u)
r > t) andP(τ

(stat)
r > t), introduce, for all

x > 0,

τa,x = sup{t ≥ 0 :F1(t) > x exp(−at)}
the last timet at which the largest fragment of a standard fragmentation processF

starting from (1,0, . . . ) has a mass larger thanx exp(−at). Here we use the
convention sup(∅) = 0. This timeτa,x is a.s. finite because exp(at)F1(t)

a.s.→ 0
when 0≤ a < supp≥0

φ(p)
p+1 , as explained in [8]. More precisely, one can show the

existence of a positive constantC(a) such that

P(τa,x > t) ≤ C(a)x−(1+ε) exp(−at) for all x > 0, t ≥ 1.(22)
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Indeed, lett ≥ 1 and note that

P(ηt ≥ τa,x > t) ≤ P
(∃u ∈ [t, ηt[ :F1(u)exp(au) > x

)
≤ P

(
F1(t)exp(aηt) > x

)
(asF1 ↘ )

≤ x−(1+ε) exp
(
aη(1+ ε)t

)
E
[(

F1(t)
)1+ε]

.

This last expectation is bounded from above byE[∑k≥1(Fk(t))
1+ε] =

exp(−φ(ε)t), which yields P(ηt ≥ τa,x > t) ≤ x−(1+ε) exp(−at), since a =
φ(ε) − aη(1 + ε). Then, settingC(a) := ∑

n≥1 exp(−a(ηn−1 − 1)), one ob-
tains (22).

By definition, τ (u)
r is the supremum of timest such thatF (u)

1 (t) > exp(−at).

Hence, there exist some independent random variablesτ
(j)
a,1/uj

, j ≥ 1, where

τ
(j)
a,1/uj

has the same distribution asτa,1/uj
, such that

τ (u)
r = sup

j≥1
τ

(j)
a,1/uj

.

Then, by (22),

P
(
τ (u)
r > t

) ≤ C(a)exp(−at)
∑
j≥1

u1+ε
j .(23)

Next, by definition ofτ (stat)
r , there exists a family of r.v.τ (i,j)

a,exp(ati )/sj (ti )
, i, j ≥ 1,

such that

τ (stat)
r = sup

i≥1,j≥1

(
τ

(i,j)
a,exp(ati )/sj (ti )

− ti
)+

and, conditionally on((s(ti), ti), i ≥ 1), τ (i,j)
a,exp(ati )/sj (ti )

law= τa,exp(ati )/sj (ti ), i, j ≥ 1,

and theτ (i,j)
a,exp(ati )/sj (ti )

’s are independent. This implies that

P
(
τ (stat)
r > t

) ≤ ∑
i≥1

∑
j≥1

P
(
τ

(i,j)
a,exp(ati )/sj (ti )

> ti + t
)

and then, by (22), that

P
(
τ (stat)
r > t

) ≤ C(a)

2a + ε
exp(−at)

∫
l1

∑
j≥1

s1+ε
j I (ds).

Combining this last inequality with (21) and (23), one obtains∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥

≤ 2exp(−at)

(
1+ C(a)

∑
j≥1

u1+ε
j + (2a)−1C(a)

∫
l1

∑
j≥1

s1+ε
j I (ds)

)
.
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This holds for everyη > 1 and, therefore,∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥ = O

(
exp(−at)

)
for everya < φ(ε)/(2+ ε), providedu ∈ l1+ε. Then, as this holds for all values of
a in an open interval, one can replaceO(exp(−at)) by o(exp(−at)).

Proof of (iii) . Fix 0 < a < 1/α and setr(t) := t−a , t > 0. By assumption,
there exists somep > 0 such that

∫
l1
∑

j≥1 s
p
j I (ds) < ∞ and we callz the real

number such thatzα2(a + 1) = p(1 − αa − αz). Note that 0< z < α−1 − a.
Define then, forx > 0,

τa,x := sup{t ≥ 0 :F1(t) > xt−a}.
The fact thatz ∈ (0, α−1) allows us to choose someη > 0 and q > 1 such
that q−1

α+η
− aq = q(α−1 − a − z), which, by definition ofz, is also equal to

qzα(a +1)/p. According to Lemma 11(ii), there exists an r.v.D(η,q) with positive
moments of all orders such that

tqaF
q
1 (t) ≤ D(η,q)t

qa−(q−1)/(α+η) = D(η,q)t
−qzα(a+1)/p

a.s. for everyt > 0. This implies that

P(τa,x > t) ≤ P
(∃u ≥ t :uqaF

q
1 (u) > xq)

≤ P
(∃u ≥ t :D(η,q)u

−qzα(a+1)/p > xq)
≤ Bx−p/(zα)t−(a+1),

whereB := E[Dp/(qzα)
(η,q) ] < ∞.

A moment of thought shows that the timesτ
(u)
r = sup{t ≥ 0 :F (u)

1 (t) > t−a} and

τ
(stat)
r = sup{t ≥ 0 :F (Ustat)

1 (t) > t−a} satisfy

τ (u)
r = sup

j≥1

(
u−α

j τ
(j)

a,uαa−1
j

)
and τ (stat)

r ≤ sup
i≥1,j≥1

(
s−α
j τ

(i,j)

a,sαa−1
j

− ti
)+

,

where the r.v.τ (j)

a,uαa−1
j

, j ≥ 1, are independent such thatτ
(j)

a,uαa−1
j

law= τ
a,uαa−1

j
and,

conditionally on ((s(ti), ti), i ≥ 1), the r.v. τ
(i,j)

a,sαa−1
j

, i, j ≥ 1, are independent

such that τ (i,j)

a,sαa−1
j

law= τ
a,sαa−1

j
. Using then the upper boundP(τa,x > t) ≤

Bx−p/(zα)t−(a+1), one obtains

P
(
τ (u)
r > t

) ≤ Bt−(a+1)
∑
j≥1

u
−α(a+1)+p(1−αa)/zα
j ,

which is equal toBt−(a+1) ∑
j≥1 u

p
j by definition ofz. Similarly, one obtains

P
(
τ (stat)
r > t

) ≤ a−1Bt−a
∫
l1

∑
j≥1

s
p
j I (ds).
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Hence, by (21),

∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥ ≤ Rt−a

(
1+ ∑

j≥1

u
p
j +

∫
l1

∑
j≥1

s
p
j I (ds)

)
,

whereR is a finite real number depending on the parameters of the fragmentation
and ona, but not ont and f . This holds for alla ∈ (0,1/α), which gives the
boundso(t−a), a < 1/α, claimed in the statement.�

4. An example constructed from a Brownian motion with positive drift.
Let B be a standard linear Brownian motion and for everyd > 0, consider the
Brownian motion with driftd,

B(d)(x) := B(x) + dx, x ≥ 0.

For anyt > 0, define

L(d)(t) := inf
{
x ≥ 0 :B(d)(x) = t

}
R(d)(t) := sup

{
x ≥ 0 :B(d)(x) = t

}
,

the first and the last hitting times oft by B(d). Clearly, 0< L(d)(t) < R(d)(t) < ∞
a.s., sinced > 0. It is thus possible to consider the decreasing rearrangement of
lengths of the connected components of

E(d)(t) := {
x ∈ [

L(d)(t),R(d)(t)
]
:B(d)(x) > t

}
,

which we denote byFI (d)(t).

PROPOSITION 14. (i) The process(FI (d)(t), t ≥ 0) is a fragmentation
immigration process with the following parameters:

• αB = −1/2,
• cB = 0,
• νB(s1 + s2 < 1) = 0 and νB(s1 ∈ dx) = √

2π−1x−3/2(1 − x)−3/2 dx,

x ∈ [1/2,1),
• I(d)(s2 > 0) = 0 andI(d)(s1 ∈ dx) = √

(2π)−1x−3/2 exp(−xd2/2) dx, x > 0.

(ii) The process is stationary. The stationary law is that of a Cox measure(that
is, a Poisson measure with random intensity) with intensityT (d)

√
(8π)−1x−3/2 ×

exp(−xd2/2) dx, x > 0, whereT (d) is an exponential r.v. with parameterd.

(iii) There exists a constantL ∈ (0,∞) such that, for everyu ∈ D satisfying∑
j≥1 exp(−u

−1/2
j ) < ∞, an (αB, cB, νB, I(d))-fragmentation immigration FI(u)

starting fromu converges in law to the stationary distributionL(Ustat) at rate∥∥L(
FI (u)(t)

) − L(Ustat)
∥∥ = O

(
t−1 exp(−Lt)

)
.
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Note that the immigrating particles arrive one-by-one.
The fragmentation part of this process, that does not depend ond, is a well-

known fragmentation process that was first constructed by Bertoin in [7]. LetF
(l)
B

denote this fragmentation starting froml = (l,0, . . . ). It is a binary fragmentation,
that is, each particle splits exactly into two pieces, which is constructed from a
Brownian excursione(l)

B conditioned to have lengthl as follows:

F
(l)
B (t) := {

lengths of connected components of
{
x ∈ [0, l] : e(l)

B (x) > t
}}↓(24)

for all t ≥ 0. In [7] it is proved that this process is indeed a fragmentation process
with indexαB = −1/2, no erosion and a dislocation measureνB as given above.

PROOF OFPROPOSITION14. (i) According to Corollaries 1 and 2 in [25], the
process defined by

Y(d)(x) := B(d)

(
x + R(d)(0)

)
, x ≥ 0,

is a BES0(3, d) (which means that it is identical in law to the norm of a three-
dimensional Brownian motion with driftd) and is independent of(B(d)(x),0 ≤
x ≤ R(d)(0)). This last process codes the fragmentation of particles present at
time 0, whereas the processY(d) codes the immigration and fragmentation of
immigrated particles. More precisely:

• Let e
(l1)
B , . . . , e

(li )
B , . . . denote the finite excursions ofB(d) above 0, with re-

spective lengthsl1, l2, . . . . The Cameron–Martin–Girsanov theorem implies
that the (li, i ≥ 1) are the finite jumps of a subordinator with Lévy mea-
sure

√
(8π)−1x−3/2e−xd2/2 dx, killed at an exponential time with parame-

ter d, and that conditionally on(li, i ≥ 1) the excursionse(l1)
B , e

(l2)
B , . . . are

independent Brownian excursions with respective lengthsl1, . . . , li , . . . . This
gives the distribution ofFI (d)(0) = (l1, l2, . . . )

↓ and implies that the process

(FI
[0,R(d)(0)]
(d) (t), t ≥ 0) defined by

FI
[0,R(d)(0)]
(d) (t) := {

lengths of connected

comp. of
{
x ∈ [

L(d)(t),R(d)(0)
]
:B(d)(x) > t

}}↓

is an(−1/2,0, νB)-fragmentation starting fromFI (d)(0).

• Let J(Y(d))(x) := infy≥x Y(d)(y), x ≥ 0, be the future infimum ofY(d). One
has to seeJ(Y(d)) as the process coding the arrival of immigrating particles
and Y(d) − J(Y(d)) as the process coding their fragmentation. According to
a generalization of Pitman’s theorem (Corollary 1 in [25]),(J(Y(d)), Y(d) −
J(Y(d))) is distributed as(M(d),M(d) −B(d)), whereM(d)(x) := sup[0,x] B(d)(y),

x ≥ 0. Moreover, according to the Cameron–Martin–Girsanov theorem,M(d) is
distributed as the inverse of a subordinator with Lévy measure

I(d)(s1 ∈ dx) =
√

(2π)−1x−3/2 exp(−xd2/2) dx, x > 0,
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and, conditionally on their lengths, the excursions above 0 ofM(d) − B(d) are
Brownian excursions. Let((�(d)(ti), ti), i ≥ 1) denote the family of jump sizes
and times of the subordinator inverse ofM(d). The sequence

FI
[R(d)(0),∞)

(d) (t) := {
lengths of connected

comp. of
{
x ∈ [

R(d)(0),R(d)(t)
]
:B(d)(x) > t

}}↓

is the decreasing rearrangement of masses of particles that have immigrated at
time ti ≤ t with mass�(d)(ti) and that have split independently (conditionally
on their masses) until timet − ti according to the fragmentation(−1/2,0, νB).

• FI (d)(t) is the concatenation ofFI
[0,R(d)(0)]
(d) (t) andFI

[R(d)(0),∞)

(d) (t), which leads
to the result. Note thatI(d) satisfies the hypothesis (H1).

(ii) That FI (d)(t)
law= FI (d)(0) is a simple consequence of the strong Markov

property ofB applied at timeL(d)(t). The stationary distributionL(FI (d)(0)) is
calculated in the first part of this proof.

(iii) It is easy to check that theνB -dependent parameter	B [defined in (9)]
is here equal to 2 and that

− ln
(∫ ∞

x
I(d)(s1 ∈ dy)

)
∼ d2x

2
asx → ∞.

Then we conclude with Corollary 13(ii).�

REMARK. Let Y(d) be a BES0(3, d), d ≥ 0, and set

FIY(d)
(t) := {

lengths of connected

comp. of
{
x ∈ [LY(d)

(t),RY(d)
(t)

]
:Y(d)(x) > t

}}↓
,

whereLY(d)
(t) := inf{x ≥ 0 :Y(d)(x) = t} andRY(d)

(t) := sup{x ≥ 0 :Y(d)(x) = t}.
According to the proof above,FIY(d)

is an(−1/2,0, νB, I(d))-fragmentation with
immigration starting from0 (clearly, this is also valid ford = 0). Recall then the
construction of the stationary stateUstat, as explained in (12). It is easy to see
that Ustat has the same law as the point measure whose atoms are the lengths of
the excursions below 0 of the process obtained by reflectingY(d) at the level of its
future infimum. By Corollary 1 in [25], this reflected process is a Brownian motion
with drift d. Therefore, ifd > 0,Ustat∈ D a.s. and the stationary distribution is that
of the reordering of the lengths of the excursions below 0 of a Brownian motion
with drift d, which is indeed the distribution ofFI (d)(0) (by Girsanov’s theorem).
On the other hand, ifd = 0, Ustat is clearly not inD a.s. and then there is no
stationary distribution [which was already known, according to Theorem 7(ii)].

At last, we mention that one can construct in a similar way some fragmentation
with immigration processes from height functions coding continuous state branch-
ing processes with immigration (as introduced by Lambert [22]). This is detailed
in [20].
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5. The fragmentation with immigration equation. The deterministic coun-
terpart of the fragmentation with immigration process(α, c, ν, I ) is the following
equation, namely, thefragmentation with immigration equation(α, c, ν, I )

∂t 〈µt, f 〉 =
∫ ∞

0
xα

(
−cxf ′(x) +

∫
D1

[∑
j≥1

f (xsj ) − f (x)

]
ν(ds)

)
µt(dx)

(E)
+

∫
l1

∑
j≥1

f (sj )I (ds),

where (µt , t ≥ 0) is a family of nonnegative Radon measures on(0,∞). The
measureµt(dx) corresponds to the average number per unit volume of particles
with mass in the interval(x, x + dx) at time t. The test-functionsf belong to
C1

c (0,∞), the set of continuously differentiable functions with compact support
in (0,∞). Note that the hypothesis (H1) implies the finiteness of the integral∫
l1
∑

j≥1 f (sj )I (ds) for every f ∈ C1
c (0,∞). In [2], the stationary solution to

this equation is studied in the special case whenα = 1, c = 0, ν(s1 ∈ dx) =
21{x∈[1/2,1]} dx andν(s1 + s2 < 1) = 0, I (s2 > 0) = 0 andI (s1 ∈ dx) = i(x) dx

for some measurable functioni. Here we investigate solutions and stationary
solutions to (E) in the general case.

5.1. Solutions to(E). When I = 0, existence and uniqueness of a solution
to (E) starting fromδ1(dx) are established in Theorem 3 in [18]. More precisely,
the unique solution to the equation starting fromδ1(dx) is given, for allt ≥ 0, by

〈ηt , f 〉 := E

[∑
k≥1

f
(
Fk(t)

)]
, f ∈ C1

c (0,∞),(25)

whereF is a standard fragmentation process(α, c, ν). Now, we generalize this
to the case whenI �= 0. In that aim, we recall that some fragmentation with
immigration processes starting fromu ∈ R were introduced in (10). Recall also
thatφ is the Laplace exponent given by (3) and thatφ = φ − φ(0).

PROPOSITION 15. Let µ0 be a nonnegative Radon measure on(0,∞) and
let u be a Poisson measure with intensityµ0. Consider then an(α, c, ν, I )-
fragmentation with immigration(FI (u)(t), t ≥ 0), as introduced in(10),and define
a family of nonnegative measures(µt , t ≥ 0) by

〈µt, f 〉 := E

[∑
k≥1

f
(
FI (u)

k (t)
)]

, f ∈ C1
c (0,∞), f ≥ 0.(26)

If one of the three following assertions is satisfied:

(A1) α > 0,
∫
l1
∑

j≥1 sj I (ds) < ∞ and
∫ ∞
1 xµ0(dx) < ∞,
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(A2) α = 0,
∫
l1
∑

j≥1 sjφ( 1
ln sj

)1{sj≥1}I (ds) < ∞ and
∫ ∞
1 xφ( 1

lnx
)µ0(dx) < ∞,

(A3) α < 0,
∫
l1
∑

j≥1 s1+α
j 1{sj≥1}I (ds) < ∞ and

∫ ∞
1 x1+αµ0(dx) < ∞,

then the measuresµt, t ≥ 0, are Radon and the family(µt , t ≥ 0) is the unique
solution to the fragmentation with immigration equation(E) starting fromµ0.

Of course,FI (u) is a “usual”D-valued fragmentation with immigration process
as soon asµ0[1,∞) < ∞.

REMARKS. 1. Notice that, for allf ∈ C1
c (0,∞), f ≥ 0,

〈µt, f 〉 = E

[∑
i≥1

∑
k≥1

f
(
uiFk(u

α
i t)

)]

+ E

[∑
ti≤t

∑
j≥1

∑
k≥1

f
(
sj (ti)Fk

(
sα
j (ti)(t − ti)

))]
,

where((s(ti), ti), i ≥ 1) [resp.(ui, i ≥ 1)] are the atoms of a Poisson measure with
intensityI (ds) dt (resp.µ0) andF is an(α, c, ν)-fragmentation, independent of
these Poisson measures. By (6), this can be written as

〈µt, f 〉 =
∫ ∞

0
E
[
f
(
x exp

(−ξ
(
ρ(xαt)

)))
exp

(
ξ
(
ρ(xαt)

))]
µ0(dx)

(27)
+

∫ t

0

∫
l1

∑
j≥1

E
[
f
(
sj exp

(−ξ
(
ρ(sα

j u)
)))

exp
(
ξ
(
ρ(sα

j u)
))]

I (ds) du,

whereξ is a subordinator with Laplace exponentφ. It is not hard to see that there
exist some dislocation measuresν1 �= ν2 that lead to the sameφ. In this case, the
previous formula shows that the(α, c, ν1, I )- and(α, c, ν2, I )-fragmentation with
immigration equations have identical solutions.

2. Assume that one of the assertions (A1), (A2) and (A3) is satisfied, so that the
measuresµt, t ≥ 0, are Radon. Then, these measures are hydrodynamic limits of
fragmentation with immigration processes. Indeed, letu(n) be a Poisson measure
with intensitynµ0 and callFI (n) a fragmentation with immigration process with
parameters(α, c, ν, nI) starting fromu(n). Then, for everyt ≥ 0,

1

n
FI (n)(t)

vaguely→ µt(dx) a.s.

This holds becauseFI (n)(t) is the sum ofn i.i.d. point measures distributed
as FI (u

(1))(t) for some(α, c, ν, I )-fragmentation with immigrationFI (u
(1)). The

strong law of large numbers then implies that, for everyf ∈ C1
c (0,∞),

1

n

∑
k≥1

f
(
FI (n)

k (t)
) a.s.→ E

[∑
k≥1

f
(
FI (u

(1))
k (t)

)] = 〈µt, f 〉
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and the conclusion follows by inverting the order of “for everyf ∈ C1
c (0,∞)” and

“a.s.,” which can be done, for example, as in the proof of Corollary 5 of [18].

PROOF OFPROPOSITION15. Letµt, t ≥ 0, be defined by (27) [equivalently,
(26)].

• It is easily seen that these measures are Radon if (A1) holds. To prove this is
also valid for assertions (A2) or (A3), we need to evaluate the rate of convergence
to 0 of P(a ≤ x exp(−ξ(ρ(xαt))) ≤ b) asx → ∞, 0< a < b < ∞, whenα ≤ 0.
First, note that this probability is bounded from above byP(x exp(−ξ(ρ(xαt))) ≤
b), whereξ = ξ1{ξ<∞} is a subordinator with Laplace exponentφ = φ − φ(0).
Then foru ≥ 0 andv > 0,

P
(
ξ(u) > v

) ≤ (1− e−1)−1E
[
1− exp

(−v−1ξ(u)
)]

(28) = (1− e−1)−1(1− exp
(−uφ(v−1)

))
.

Whenα = 0, this implies that

P
(
a ≤ x exp

(−ξ(t)
) ≤ b

) = O
(
φ
(
(lnx)−1)) asx → ∞.(29)

Whenα < 0, by the definition ofρ and conditionally on 2xαt ≤ ρ(xαt) < ∞,

2xαt exp
(
αξ(2xαt)

) ≤
∫ 2xαt

0
exp

(
αξ(r)

)
dr ≤

∫ ρ(xαt)

0
exp

(
αξ(r)

)
dr = xαt

and, consequently,P(2xαt ≤ ρ(xαt) < ∞) ≤ P(exp(αξ(2xαt)) ≤ 1/2) which,
by (28), is anO(xα) asx → ∞. Moreover, again by (28),P(x exp(−ξ(2xαt)) ≤
b) = O(xα) and, therefore,

P
(
a ≤ x exp

(−ξ
(
ρ(xαt)

) ≤ b
) = O(xα) asx → ∞(30)

since

P
(
a ≤ x exp

(−ξ
(
ρ(xαt)

) ≤ b
)

≤ P
(
2xαt ≤ ρ(xαt) < ∞) + P

(
x exp

(−ξ(2xαt)
) ≤ b

)
.

Now, suppose that (A2) or (A3) holds and takef (x) = x1{x∈(a,b)}, 0 < a < b <

∞. Using the results (29) and (30), one sees that〈µt, f 〉 is finite. Hence,µt is
Radon.

• Suppose that (A1), (A2) or (A3) holds, so that the measuresµt, t ≥ 0, are
Radon. Consider then the measuresηt , t ≥ 0, introduced in (25). One checks that

〈µt, f 〉 =
∫ ∞

0
〈ηxαt , fx〉µ0(dx) +

∫ t

0

∫
l1

∑
j≥1

〈
ηsα

j u, fsj

〉
I (ds) du,

wherefx :y �→ f (xy), x ∈ (0,∞), f ∈ C1
c (0,∞). Theorem 3 in [18] states that

(ηt , t ≥ 0) is a solution to (E) whenI = 0, that is,

〈ηt , f 〉 = f (1) +
∫ t

0
〈ηv,Af 〉dv,
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where

Af (x) = xα

(
−cxf ′(x) +

∫
D1

[∑
j≥1

f (xsj ) − f (x)

]
ν(ds)

)
.(31)

This equation relies on the fact that, forf ∈ C1
c (0,∞), A(id × f )(x) =

x1+αG(f )(x), whereG is the infinitesimal generator of the process exp(−ξ) (see
the proof of Theorem 3 in [18] for details).

Using then thatxαAfx = (Af )x, one obtains

〈ηxαt , fx〉 = f (x) +
∫ t

0
〈ηxαv, (Af )x〉dv(32)

and, therefore, by Fubini’s theorem,

〈µt, f 〉 = 〈µ0, f 〉 +
∫ t

0

∫ ∞
0

〈ηxαu, (Af )x〉µ0(dx) du

+
∫ t

0

(∫ u

0

∫
l1

∑
j≥1

〈
ηsα

j v, (Af )sj
〉
I (ds) dv +

∫
l1

∑
j≥1

f (sj )I (ds)

)

= 〈µ0, f 〉 +
∫ t

0
〈µu,Af 〉du + t

∫
l1

∑
j≥1

f (sj )I (ds).

(to see why Fubini’s theorem holds, call[a, b] the support off and suppose
f ≥ 0. The same argument holds for the integral involvingI ). Hence,(µt , t ≥ 0)

is indeed a solution to (E). It remains to prove the uniqueness. This can be done
with some minor changes by adapting the proof of uniqueness of a solution
to (E) when I = 0 (see the third part of the proof of Theorem 3 in [18]).

�

5.2. Stationary solutions to(E). As in the stochastic case, we are interested
in the existence of a stationary regime. We say that a Radon measureµstat is a
stationary solution to (E) if the family(µt = µstat, t ≥ 0) is a solution to (E).

PROPOSITION 16. (i) There is a stationary solution to(E) as soon as∫
l1
∑

j≥1 sj I (ds) < ∞ and, conversely, provided that hypothesis(H2) holds,
there is no stationary solution to(E) when

∫
l1
∑

j≥1 sj I (ds) = ∞. In case∫
l1
∑

j≥1 sj I (ds) < ∞, the stationary solutionµstat is unique and given by

µstat(dx) := x−αµ
(hom)
stat (dx), x ≥ 0,

where the measureµ(hom)
stat is independent ofα and is constructed fromc, ν andI

by 〈
µ

(hom)
stat , f

〉 := ∫ ∞
0

∫
l1

∑
j≥1

E
[
f
(
sj exp

(−ξ(t)
))

exp(ξ(t))
]
I (ds) dt,(33)

f ∈ C1
c (0,∞).
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(ii) Suppose
∫
l1
∑

j≥1 sj I (ds) < ∞ and
∫ ∞
1 xµ0(dx) < ∞ and let(µt , t ≥ 0)

be the solution to(E) starting fromµ0. Then,

µt
vaguely→ µstat as t → ∞.

REMARKS. 1. It µstatexists, thenUstat∈ R a.s. and〈µstat, f 〉 = E[〈Ustat, f 〉],
f ∈ C1

c (0,∞). Note that it is possible thatUstat∈ R\D , which then implies that
there exists no stationary solution in the stochastic case, although there is one in the
deterministic case. Conversely,Ustatmay belong toD a.s., even if its “expectation”
measureµ defined by〈µ,f 〉 := E[〈Ustat, f 〉] is not Radon. Then there exists a
stationary solution in the stochastic case, but not in the deterministic one.

2. Call � := sup{λ :
∫
l1
∑

j≥1 sλ
j I (ds) < ∞} and suppose� > 1. Then the

statement (i) and the relationsE[e−qξ(t)] = e−tφ(q), t, q ≥ 0, imply that, for all
1+ α < λ < � + α,∫ ∞

0
xλµstat(dx) = φ(λ − α − 1)−1

∫
l1

∑
j≥1

sλ−α
j I (ds),(34)

and that this integral is infinite as soon asλ > � + α or λ ≤ 1 + α, provided
φ(0) = 0 [which is equivalent toc = ν(

∑
j≥1 sj < 1) = 0]. This characterizesµstat

and is more explicit than (33).
As an example, it allows us to obtain the more convenient expression

µstat(dx) =
(
x−αi(x) + 2x−α−2

∫ ∞
x

yi(y) dy

)
dx

in caseν is binary,ν(s1 ∈ dx) = 21{x∈[1/2,1]} dx, c = 0, andI (s1 ∈ dx) = i(x) dx,

I (s2 > 0) = 0 (α ∈ R). This latter result is proved in a different way in [2].
Others examples are given by the equations corresponding to the fragmentation

with immigration processes constructed from Brownian motions with driftd > 0
(Section 4). The immigration measureI(d) satisfies

∫
l1
∑

j≥1 sλ
j I(d)(ds) < ∞ for

all λ > 1/2 and, therefore, there exists a stationary solution to the equation. One
can use (34) to obtain

µstat(dx) = 1

d
√

8πx3
exp(−xd2/2) dx, x ≥ 0.

This can also be shown by using remark 1 above and the stationary lawL(Ustat)

given in Proposition 14(ii).

PROOF OFPROPOSITION16. (i) We first suppose that there exists a stationary
solutionµt = µstat, t ≥ 0, to (E). Of course, then∂t 〈µt, f 〉 = 0 for everyt ≥ 0 and
f ∈ C1

c (0,∞), and, consequently,

〈µstat,Af 〉 = −
∫
l1

∑
j≥1

f (sj )I (ds),
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where Af is given by (31). Lettingt → ∞ in (32), we get by dominated
convergence that〈ηxαt , fx〉 → 0 and then thatf (x) = − ∫ ∞

0 〈ηxαv, (Af )x〉dv,

x ∈ (0,∞). Hence,

〈µstat,Af 〉 =
∫
l1

∑
j≥1

∫ ∞
0

〈
ηsα

j v, (Af )sj
〉
dv I (ds).

We point out that this formula characterizesµstat, since A(id × f )(x) =
x1+αG(f )(x), where G is the infinitesimal generator of exp(−ξ) and since
G(C1

c (0,∞)) is dense in the set of continuous functions on(0,∞) that vanish
at 0 and∞. Using then the definition ofηt and formula (6), one sees that, for
every measurable functiong with compact support in(0,∞),

〈µstat, g〉 =
∫
l1

∑
j≥1

∫ ∞
0

E
[
g
(
sj exp

(−ξ
(
ρ(sα

j v)
)))

exp
(
ξ
(
ρ(sα

j v)
))]

dv I (ds)

(35)
=

∫
l1

∑
j≥1

s−α
j

∫ ∞
0

E
[
g
(
sj exp

(−ξ(v)
))

exp
(
(1+ α)ξ(v)

)]
dv I (ds),

using for the last equality the change of variablesv �→ ρ(sα
j v) and that

exp(αξρ(v)) dρ(v) = dv on [0,D), D = inf{v : ξρ(v) = ∞}. This gives the required
expression forµstat.

Note now that the previous argument implies that a stationary solution exists if
and only if ∫

l1

∑
j≥1

∫ ∞
0

E
[
g
(
sj exp

(−ξ(v)
))

exp(ξ(v))
]
dv I (ds) < ∞

for all functionsg of typeg(x) = x1{a≤x≤b}, 0 < a < b. For such functiong, the
previous integral is equal to∫

l1

∑
j≥1

sj 1{sj≥a}E
[
T

ξ
ln(sj /a) − T

ξ

ln+(sj /b)

]
I (ds),(36)

whereT
ξ
t := inf{u : ξ(u) > t}, t ≥ 0. If hypothesis (H2) holds andξ is arithmetic

[i.e., if (H3) holds], the renewal theorem applies (see, e.g., Theorem I.21 in [5])
andE[T ξ

ln(t/a) − T
ξ

ln+(t/b)
] converges ast → ∞ to some finite nonzero limit. In

such case, the integral (36) is finite if and only if
∫
l1
∑

j≥1 sj 1{sj≥1}I (ds) < ∞,
∀b > a > 0, and, therefore, there exists a stationary solution if and only if∫
l1
∑

j≥1 sj 1{sj≥1}I (ds) < ∞. This conclusion remains valid if (H2) holds andξ is

not arithmetic, since the renewal theory then implies that lim supt→∞ E[T ξ
ln(t/a) −

T
ξ

ln+(t/b)
] < ∞, and that lim inft→∞ E[T ξ

ln(t/a)−T
ξ

ln+(t/b)
] > 0 as soon as lnb− lna

is large enough. Last, to conclude when (H2) does not hold, remark first that
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T
ξ
t = T

ξ
t ∧ e(k) [the subordinatorξ and the exponential r.v.e(k) are those defined

in Section 1.1] and then that

E
[
T

ξ
ln(sj /a) − T

ξ

ln+(sj /b)

] ≤ E
[
T

ξ
ln(sj /a) − T

ξ

ln+(sj /b)

] ≤ E
[
T

ξ
ln(b/a)

]
< ∞.

In this case, the integral (36) is finite as soon as
∫
l1
∑

j≥1 sj 1{sj≥1}I (ds) < ∞,
∀b > a > 0.

(ii) Under the assumptions of the statement, the measuresµt, t ≥ 0, are Radon
and therefore satisfy (27) for all continuous functionf with compact support
in (0,∞). The integral involvingµ0 converges to 0 ast → ∞, since, with
the assumption

∫ ∞
1 xµ0(dx) < ∞, the dominated convergence theorem applies.

Hence,〈µt, f 〉 →
t→∞〈µstat, f 〉, using the definition (35) ofµstat. �
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