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EQUILIBRIUM FOR FRAGMENTATION WITH IMMIGRATION
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This paper introduces stochastic processes that describe the evolution
of systems of particles in which particles immigrate according to a Poisson
measure and split according to a self-similar fragmentation. Criteria for exis-
tence and absence of stationary distributions are established and uniqueness
is proved. Also, convergence rates to the stationary distribution are given.
Linear equations which are the deterministic counterparts of fragmentation
with immigration processes are next considered. As in the stochastic case,
existence and uniqueness of solutions, as well as existence and unigueness of
stationary solutions, are investigated.

1. Introduction. The aim of this paper is to study random and deterministic
models that describe the evolution of systems of particles in which two indepen-
dent phenomena take place: immigration and fragmentation of particles. Particles
immigrate and splitinto smaller particles, which, in turn, continue splitting, at rates
that depend on their mass. Such a situation occurs, for example, in grinding lines
[1, 23] where macroscopic blocks are continuously placed in tumbling ball mills
that reduce them to microscopic fragments. These microscopic fragments then un-
dergo a chemical process to extract the minerals. In such systems, one may expect
to attain an equilibrium, as the immigration may compensate for the fragmentation
of particles. The investigation of existence and uniqueness of such stationary state,
as well as convergence to the stationary state, is one of the main points of interest
of this paper. It will be undertaken both in random and deterministic settings.

We first introduce continuous-timagmentation with immigration Markov
processesRoughly, their dynamics are described as follows. The immigration is
coded by a Poisson measure with intengitys) dz, + > 0, wherel is a measure
supported onD, the set of decreasing sequenees (s;, j > 1) that converge
to 0. That is, if(s(;), ;) denotes the atoms of this Poisson measure, a group of
particles with massess1(¢;), s2(;), ...) immigrates at time; for eachy; > 0.

We further impose thal integratesy_;.(s; A 1), which means that the total
mass of immigrants on a finite time interval is finite a.s. The particles fragment
independently of the immigration, according to a “self-similar fragmentation with
indexa € R” as introduced by Bertoin in [6, 7]. This means that each particle splits
independently of others with a rate proportional to its mass to the pgwead that

the resulting particles continue splitting with the same rules. Rigorous definitions
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are given in Sections 1.1 and 1.2 below. Some examples of such processes arise
from classical stochastic processes, as a Brownian motion with positive drift. This
is detailed in Section 4.

Let FI denote a fragmentation with immigration process. Our first purpose is to
know whether it is possible to findstationary distributiorfor Fl. Let us mention
here that, until now, an equilibrium could only be obtained for fragmentation with
coagulationprocesses. See, for example, [4, 14, 16].

Under some conditions that depend both on the dynamics of the fragmentation
and on the immigration, we construct a random variablgy; in & whose
distribution is stationary foFl. Let «; be thel-dependent parameter defined by

@ oy = —Sup{a > O:/ 51 1s>131 (dS) < oo}.
D

Whena; < 0, we obtain that the stationary stdiigis exists as soon as the index
of self-similarity « is larger thanx; and that there is no stationary distribution
whenea is smaller than;. In this latter case, the particles with mass larger than 1,
which split slower whenr is smaller, do not split fast enough to compensate the
immigration of large particles, which therefore accumulate. In others words, too
many large particles are brought in the ball mill which is not able to grind them fast
enough. These results are made precise in Theorems 7, 8 and 9, Section 2, where
we also study whethddgatis in 17, p > 0. In addition, the stationary solution is
proved unique.

It is easily checked from the constructionldfi,that

FI () % Ugtar

as soon as the stationary distribution exists and that this convergence holds
independently of the initial distribution. One standard problem is to investigate the
rate of convergence to this stationary state. Our approach is based on a coupling
method. This provides rates of convergence that differ significantly according as
a < 0,a =0 ora > 0: one obtains that the convergence takes place at a geometric
rate whena = 0, at rater~Y/* whena > 0, whereas the rate of convergence
depends both oh anda whena < 0.

We next turn to deterministic models, naméhagmentation with immigration
eqguations Roughly, these equations are obtained by adding an immigration term
to a family of well-known fragmentation equations with mass loss [17, 18, 24]: we
consider that particles with mass in the intergalx + dx) arrive at rateu;(dx)
which is defined fronT by

fo FOORIdx) = /ﬁjzzlf(sj)l(ds)’

for all positive measurable functiong. Solutions to the fragmentation with
immigration equation do not always exist. We give conditions for existence and
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then show uniqueness. The obtained solution is closely related to the stochastic
model (FI(¢), ¢t > 0): it is—in a sense to be specified—related to the expectations
of the random measures -, éri, 1), ¢ = 0. In this deterministic setting, one

may also expect the existence of stationary solutions. Provided the average mass
immigrated by unit time is finite, we construct explicitly a stationary solution
which is proved unique. Note that here the hypothesis for existence only invglves
notw, contrary to the stochastic case.

This paper is organized as follows. In the remainder of this section we
first review the definition and some properties of self-similar fragmentations
(Section 1.1), then we set down the definition of fragmentation with immigration
processes (Section 1.2). The study of existence and uniqueness of a stationary
distribution is undertaken in Section 2, where we also give criteria for existence
of a stationary distribution for more general Markov processes with immigration.

In Section 3 we investigate the rate of convergence to the stationary distribution.
Section 4 is devoted to examples of fragmentation with immigration processes
constructed from Brownian motions with positive drift. Section 5 concerns the
fragmentation with immigration equation.

1.1. Self-similar fragmentations.
State space. We endow the state space

D = {SZ(Sj)jzlislzszz-~-20, lim Sj:O}
J—>00

with the uniform distance
d(s,§) :=supls; — s}|.
j=1
Clearly, asn — o0, d(s, s") — 0 is equivalent o’ —s; forall j > 1, which, in
turn, is equivalent t@_ ;- 4 f(s;’) — > ;=1 f(s;) for all continuous functionsf
with compact support in0, co). Hence, D identifies with the set of Radon

counting measures of®, co) with bounded support endowed with the topology
of vague convergence through the homeomorphism

SED > Y 81,50
j=1

With a slight abuse of notation, we also callthe measure)_ ;-1 &; Lis; >0}
It is then natural to denote bys“+ s” the decreasing rearrangement of the
concatenation of sequencgs’ and bhy(s, f) the sumy_;i~1 f(s;)1s;~0;. More
generally, we denote by)";. ;5" the measure ;- , 2 =18, 1. This point

- - - J J
measure does not necessarily correspond to a sequer@ebnt when it does,
it represents the decreasing rearrangement of the concatenation of sequences

SRS
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For all p > 0, let I” be the subset o0 of sequences; > s> > --- > 0 such
that ijlsf < 0o, endowed with the topology aD. When p = 0, we use the

convention 8 = 0, which means that? is the space of sequences with at most
a finite number of nonzero terms. Let algpy be the subset o of sequences
such thaty~;.qs; < 1. Clearly,/” C I” whenp < p" andD; C I1. At last, set
0:=(0,0,...).

Self-similar fragmentations.

DEFINITION 1. A standard self-similar fragmentatiofF (z),r > 0) with
indexa € R is aD1-valued Markov process continuous in probability such that:

e F(0O)=(1,0,...),

e for each rp > 0, conditionally on F(tx) = (s1,s2,...), the process
(F(t + tp),t = 0) has the same law as the process obtained for eacl®d
by ranking in the decreasing order the components of sequemEé’é(si‘t),
s2F @ (s%1), ..., where theF/)’s are independent copies 6t

This means that the particles present at a tigrevolve independently and that
the evolution process of a particle with masshas the same distribution as
times the process starting from a particle with massifd to the time change
t — tm®. According to [3] and [7], a self-similar fragmentation is Feller—hence,
possesses a cadlag version which we shall always consider—and its distribution
is characterized by a 3-tuplér, c,v): « is the index of self-similarityc > 0
an erosion coefficient andv a dislocation measutewhich is a sigma-finite
nonnegative measure @by that does not chargd, 0, .. .) and satisfies

/ (1—sp)v(ds) < o0.
D1

Roughly speaking, the erosion is a deterministic continuous phenomenon and the
dislocation measure describes the rates of sudden dislocations: a fragment with
massm splits into fragments with massess, s € D;, at ratem*v(ds). In case
v(D1) < oo andc = 0, this means that a particle with masassplits after a timel’

with an exponential law with parameter*v(D1) into particles with massess,
wheres s distributed according to(-)/v(£D1) and is independent @ . For more
details on these fundamental properties of self-similar fragmentations, we refer
to [3, 6, 7].

DEFINITION 2. For any randonu € D, a fragmentation procesg, c, v),
starting fromu, is defined by

2) FO@ =Y (u;FPwqn), =0,
j=1



1962 B. HAAS

where the FU)’s are i.i.d. copies of a standar@y, c, v)-fragmentation F,
independent ofi.

Clearly, FY(r) € O for all + > 0 and, according to the branching property
of F, FW is Markov. It is plain that such a fragmentation process converges
a.s. to0 ast — oo, providedv(D1) # 0. We shall denote in the sequel by
FY) == F"(t) > --- the components of the sequene® (r).

We now review some facts about standaud c, v)-fragmentations that we
will need. In the remainder of this sectiof; denotes a standargy, c, v)-
fragmentation.

Tagged particle. We are interested in the evolution processf the mass of
a particle tagged at random in the fragmentation. To construct this process, we
recall that one may always suppose that built from some family G (¢), ¢t > 0)
of nested open sets @, 1) so thatF (¢) is the ordered sequence of lengths of the
interval components @i (¢), ¢t > 0 (see [3, 7]). Let the® be uniformly distributed
on (0, 1), independent o7, and callir(¢) the length of the interval component of
G (¢) containingU. When such interval does not exist, $€t) := 0. The main
point of interest of such approach is that the distribution &f well known.

First, whena = 0, Bertoin [6] shows thak law exp(—&(+)), whereé is a
subordinator (i.e., a right-continuous increasing process with valuy@san] and
with stationary and independent increments on the intdeval(r) < oo}), with
Laplace exponens given by

3) $(@)i=clg+ 1)+ f@ (1 = Zs}“f)v(ds), q=0.
1

j=1

We recall thatp characterizeg, since E[exp(—g&(t))] = exp(—t¢(q)) for all

t,q > 0 (for background on subordinators, we refer to [5], Chapter Ill). When
c>0orv(X>1s5; <1 >0, one sees that the subordinatpris killed at
rate k = ¢(0) > O: that is, there exists a subordinatowith Laplace exponent

¢ = ¢ — k and an exponential r.e(k) with parametek, independent of, such
that

E(t) =&)L <ehy) + 0 L(rzeh))

forall r > 0.
law

Whena € R, Bertoin [7] shows that = exp(—£&(p(-))), where¢ is the same
subordinator as above apds the time-change

4 p(t) = inf{uzO:/ou eXp(aS(r))dr>t}, t>0.
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On the other hand, the construction ofimplies that, conditionally onfF,
A() = Fi(¢) with probability Fi(¢), k > 1, and thati(r) = 0 with probability
1—3 4>1Fi(?). Hence,

(5) > F(Fe@®) = E[f (exp(—&(p(1)))) expl& (p (1)) F]

k>1

for every positive measurable functighsupported on a compact subset{@foo)
(with the convention & oo = 0), and, in particular,

(6) E[Z f(Fk(t)):| = E[f(exp(—&(p(1))))exp& (p(1)))].

k>1

Formation of dust whea < 0. When the index of self-similarity is negative,
for all dislocation measures, the total mas$ ;- 1 Fr(¢) of the fragmentationF
decreases as time passes to reach 0 in finite time even if there is no etosioh (
and no mass is lost within sudden dislocation$( .1 s; < 1) = 0). Thisis due to
an intensive fragmentation of small particles which reduces macroscopic particles
to an infinite number of zero-mass particleslast To say this precisely, introduce

(7) T :=inf tzO:ZFk(t)=O}

k>1
the first time at which the total mass reache8&cording to Proposition 14 in [18],
there existC, C’ some positive finite constants such that, for apy0,
(8) P(t >1) < Cexp(—C'th),
whereTl is a(c, v)-dependent parameter defined by

1-n"Y  wheng(q) —cq
9 I':= varies regularly with index & 1 < 1 asq — oo,
1, otherwise.
Note that E[t] < oo. This phenomenon of formation of dust does not occur

whena > 0: if no mass is lost by erosion or within sudden dislocations, then
> i>1Fr(t) =1as. forall > 0.

1.2. Fragmentation with immigration processesAs said previously, the
immigration and fragmentation phenomena occur independently. The immigration
is coded by a Poisson measureldrx [0, co) with an intensityZ (ds) dt such that

(H1) /Ilz(sj/\l)l(ds) <0

j=1
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and we call such measufeanimmigration measurer he hypothesis (H1) implies
that the total mass of particles that have immigrated during artisyalmost surely
finite (for an introduction to Poisson measures, we refer to [21]). On the other hand,
the particles fragment according to a self-similar fragmentatiom, v).

DEFINITION 3. Letu be a random sequence &f and let((s(t;), t;),i > 1)
be the atoms of a Poisson measure with intenkitis) dt independent ofi. Then,
conditionally onu and ((s(t;), t;),i > 1), let FW, FSW) > 1 pe independent
fragmentation processe€g, ¢, v) starting, respectively, frono, s(t1), s(t2), . ...
With probability one, the sum

FIW@) = FWr) + > FSD (¢t — 1)

1<t

belongs toD for all + > 0, and the proceskl " is called a fragmentation with
immigration process with parametdts c, v, I) starting fromu.

One may be troubled by conditioning on the value(¢d(z;), ¢;),i > 1), as
it may have O probability. If so, note that the famif/(St)) ;i > 1, is actually
constructed from the Poisson meas((sg;), ¢;), i > 1) and an independent family
F@D i, j>1, of iid. standard(a, c, v)-fragmentations, through the formula
FSD(0) =35 o186 FOD (5 (10)).

Thereasonwhy", ., FW) (1 —1;) e D a.s.isthad’, -, ¥ -15,(5) < oo [by
hypothesis (H1)] and then that, ., F&))(t — 1;) e 1%, sinceY ;- FED ¢ —

1) < ;>15;(%;). Note also that whep > 1, FI) € I” as soon as € [7.

In this definition, the sequenaerepresents the masses of particles present at
time 0 and at each timg > 0, some particles of massss;) immigrate. At timer,
two families of particles are then present: those resulting from the fragmentation
of u during a timer and those resulting from the fragmentations@f) during a
timer—¢, 1 <t.

It is easy to see that the procdd$Y is Markov with the Feller property (cf. the
proof of Proposition 1.1 in [3]). Hence, we may and will always consider cadlag
versions ofFl (W,

In the rest of this paper, we denote By a fragmentation with immigration
(o, ¢, v, I (without any specified starting point) and we always exclude the trivial
casey =0o0r/ =0.

REMARK. One may wonder why we do not more generally consider some
fragmentation with immigration processes with valuegirthe set of Radon point
measures om0, oo). Indeed, for all (randomy € R and all: > 0, it is always
possible to define the point measure

(10) FIV® = FY@) + Y FSD ¢ —p), 120,

ti<t
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whereF ) (r) is defined similarly tq2) and is independent @f ) ; > 1, some
independent fragmentatioria, ¢, v) starting, respectively, frors(z1), s(z2), ....
The sum involving the term&©i) (¢t — ), 1, <t, is in D, as noticed in the
Definition 3 above. The issue is that, in general, starting from someRr\D,
the measure§ (Y (r) do not necessarily belong t&, as the masses of the initial
particles may accumulate in some bounded intevab) after fragmentation.

As an example, starts from = > ;.1 4; and fix « > 0. For eachi, tag a
particle at random in the fragmentation issued from the particle with ass
explained in the previous section. At time this tagged particle is distributed
asiexp(—&D (p®(i%))), where thet’s are i.i.d. subordinators with Laplace
exponent (3) ang?) the corresponding time changes (4). According to the Borel—
Cantelli lemma, the number of tagged particles belonging to some interyvial
at timet is then a.s. infinite [and, thereforg" (1) ¢ K] as soon a$";.1 P(a <
i exp(—£(p(i%1))) < b) = 0. In [9], Bertoin and Caballero show that for most of
subordinators (and, therefore, for most of dislocation measiiesg]—£ (0 (i%t)))
has a nontrivial limiting distribution as - co whena > 0. In such cases, the
above sum of probabilities is infinite for some well-chosen intervald) and
thenFW(r) ¢ R.

That is why we study fragmentation with immigration processesd@n
However, in Section 5, we shall use some of these meaduféyr), ueR,
and we give (Proposition 15) some sufficient conditionsucand« for FM ()
[equivalently,FI W (¢)] to be a.s. Radon at fixed time These conditions do not
ensure that the procesd8 Y is R-valued, as we do not know if a.s., fail ¢,

FIW () e R.

2. Existence and uniqueness of the stationary distribution. This section is
devoted to the existence and unigueness of a stationary distributidel fand
to properties of the stationary state, when it exists. We begin by establishing
some criteria for existence and uniqueness of a stationary distribution, which
are available for a class of Markov processes with immigration including
fragmentation with immigration processes. This is undertaken in Section 2.1 where
we more specifically obtain an explicit construction of a stationary state. We then
apply these results to fragmentation with immigration processes (Section 2.2).

From now on, for any r.vX, .£(X) denotes the distribution of.

2.1. The candidate for a stationary distribution for Markov processes with
immigration. Recall that®R denotes the set of Radon point measuresno)
and equip it with the topology of vague convergence. We first considealued
Markov processes with some superposition property and then extend the results to
a larger class of Markov processes.

Let X be anR-valued Markov process that satisfies the followsuperposition
property. for all u,v e R, the sum of two independent process&¥’ and x)
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starting, respectively, frora andyv is distributed asx “t). A moment of thought
shows that this is equivalent {0, X W ¥ Xi=1u) for all sequencesu’, i >
1) such thaty_;. U’ € R a.s., wherex @), X are independent processes,
starting, respectively, fronul, u?, .... Consider thern/, a nonnegativer-finite
measure onR, and let((s(z;), t;),i > 1) be the atoms of a Poisson measure with
intensity 7 (ds)dt,+ > 0. Conditionally on this Poisson measure, kt¢) be
independent versions of, starting, respectively, froms(z1), s(t2),.... In order
to define anX -process with immigratiorwe need and will suppose in this section
that a.s.

Y xS —gyeRr  forallt>0.

1<t
In particular, this holds whel is a fragmentation process amdin immigration
measure, as explained just after Definition 3. More generally, still supposing that
is a fragmentation, one easily checked that it holds as sodrirdsgratesl, - .}
for all ¢ > 0, that is, as soon as the number of particles of mass largersthan
immigrating in finite time is finite.

DEFINITION 4. For every random € R, let X be a version ofX starting
from u and consider(X"®)) v;),i > 1) a version of (X)) ¢),i > 1)
independent ok W. Then, the process defined by
(11) X1V :=XWe)+ > X0 —v), =0,

v; <t
is anR-valued Markov process and is call&dprocess with immigration starting
from u.

We point out that the Markov property df I results both from the Markov
property and from the superposition propertyXafA moment of reflection shows
that the law of the point measure

(12) Ustat:= y_, X (1)
;>0

is a natural candidate for a stationary distribution Xaf [in some sense, it is the
limit asr — oo of X1 (r)], provided that it belongs t&®. The problem is that it
does not necessarily belong 8, as the components &fsi5: may accumulate in
some bounded intervad, b).

LEMMA 5. (i) If Ugare R as., then the distributionf (Usiay is a stationary
distribution for X I and for any randonu € K such thatX ¥ (r) £ 0asr — o,

X1V M Uge  ast — oo.

(i) If P(Ustar¢ R) > 0, then there exists no stationary distribution &7 and
if P(Ustar¢ D) > 0, then there exists no stationary distribution @nfor X 1.
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PROOF (i) Assume Ugiat € R a.s. and consider a versiok ] (Ysa) of
the X-process with immigration starting fromlgiae We want to prove that

X 1Ustad (1) ' o for every r > 0. So fix r > 0. By definition of X1 and
using the Markov and superposition propertiesXof we see that there exists
(X)) vy, i > 1) an independent copy 6tX ) 1), i > 1) such that

X 1Used (1) 'S XG0 (1 gy 4 37 X TN gy,
;>0 v <t
By independence dfir (v;), v;), i > 1) and((s(t;), t;), i > 1), the concatenation of
((r(vi),t —vi),vi <t) and ((s(z),t +1),i>1)

has the same law d$s(7;), 1;), i > 1). Hence,

x J (Ustad (1) law Z X(S(fi))(ti) = Ustat

;>0
Similarly, one obtains that, for all> 0,
(13) XIW0' & XxW )+ 3 X0 (),
v; <t

where (XT®)) y;),i > 1) is distributed ag(X®%)) 1), i > 1) and is indepen-
dent of X, Suppose now that ¥ (1) 5 0 asz — co. Clearly,

Z X(r(vi))(vi)ti_s)c;o Z X(f(vi))(vi)

v =<t v;>0
and, therefore,

XO@) + x5 3 xCD () ast— oo,

v =t v; >0

Since the limit here is distributed &ktand since (13) holds, one hag Y (r) iy

Ustat

(if) Suppose that there exists a stationary distributityg: Our aim is to show
that P(Ustat¢ R) = 0. To do so, letX (s e anX-process with immigration
starting from an initial sequence distributed accordingltg,. Replacingu by
X £ (0) in (13), we get

X [ (Lstad () 1Ay (XTES1200) () 4 3 XS (gy),

1<t

Introduce then, forany @ a < b < o0, the event

Eqp:= Z(X(S(ti))(tz), L(a.p)) = 00
t;>0
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and fix someV > 0. The identity in law obtained above yields

P(<XI(°‘CSta‘)(0), 1(0’1,)) < N)

< P<Z(X(s(ti))(l‘,'), 1(a,b)) < N)

i<t

<P ( Z(X(s(t"))(ti), Lap) <N, Ea,b) + P(Q\E4p).

1<t

The first probability in this latter sum converges to Otras> oo by definition
of E, » and, therefore,

P((X1%s0(0), 1,5)) < N) < P(2\Esp) VN >0,

Letting N — oo, we getP(Q2\E, ) = 1 (becauselstat is supported onr) and
thenP(E, ) = 0. This implies thatP (Ustat¢ R) = 0.

Now, replacing R by D and E,;, by E,~, we obtain similarly that
P(Ustat ¢ D) = 0 as soon as there exists a stationary distributfap: such that
Lstal( D) =1. U

Let us now extend these results to Markov processes that take values in some
o-compact spac& and that do not necessarily satisfy the superposition property.
In order to introduce some immigration and some superposition property, we will
work on9ig, the set of point measures dit if m € Mg, eitherm=3";-16,0)
for some sequencec(i),i > 1) of points of E, or m = o, whereo is the trivial
measureo(E) = 0. The subset of measures ¥tz that are Radon is denoted
by zmgadon and is equipped with the topology of vague convergence. Consider
then’, a nonnegative -finite measure oik, and(X (¢), t > 0), a Markov process
with values inE. Foranym =3",. 1 §,» € Mg, set

XMW@= Syuing, 120,

i>1

where X x&®)  are independent versions &f, starting, respectively,
fromx®D x@ . fm=o0, X™():=0,Vr>0.

We now construct soméG-process with immigrationLet m be a random
element omgadonand((x(n), t;),i > 1) be the atoms of a Poisson measure with
intensity I (ds) dt, t > 0, independent afi. Conditionally on this Poisson measure
and onm, let X™ and x“wn),i > 1, be independent versions of starting,
respectively, fromm, 8,(1,), 8x(p), - - . - Define then

XI™ (@)= 6™ () + > XD —1), >0,

ti <t
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and suppose that a.s., for al> 0, XI™ e 9MRaoN Then xI™ is Markovian
and calledX-process with immigration starting from. Introduce next the point
measure

Ustat:=p_ X (1) =" 8yaun -

;>0 i>1

With the same kind of arguments as above, one obtains the following result.

LEMMA 6. (i) ASSum&Ugiat€ zmgadona.s Then the distributiont (Ustap is a

stationary distribution forxJ and XI™ (r) law Ustat @S s00N asX ™ (7) £ oas
t — 00.
(i) If P(Ustar¢t s.mgadom > 0, there exists no stationary distribution fo¢J.

2.2. Conditions for existence and properties of Fls stationary distribution.
Up to now, I is an immigration measure as defined in Section 1.2, that is,
I satisfies hypothesis (H1). Ldtl denote a fragmentation with immigration
(o, c, v, I). By definition, the fragmentation process satisfies the superposition

property and, for everyi € D, FW(t) 23 0 as+ — co. Then the results of

Lemma 5 can be rephrased as follows:({§(z;),¢),i > 1) are the atoms of

a Poisson measure with intensityds)d: and if conditionally on this Poisson

measure,F W) F2) - gre independente, ¢, v)-fragmentations starting,

respectively, froms(z1), S(t2), ..., then there is a stationary distribution for the
fragmentation with immigrationie, c, v, I) if and only if

U= Y F&"V () e D as.

;>0

In this case,

FION W Uge  ast — oo

for all u € D and, therefore,£(Usta is theuniquestationary distribution foFl.

The point is then to see whésabelongs taD and when it does not. The results
are given in Section 2.2.1 where we further investigate whethey is in I# or

not, p > 0. This is particularly interesting wheet € I* a.s.: then the total mass

of the system converges to an equilibrium, which means that the immigration
compensates the mass lost by formation of dust (weherD), by erosion or within
sudden dislocations. Whditat € D a.s., we also investigate the behavior of its
small components. The proofs are detailed in Section 2.2.2.

2.2.1. Statement of results.Let F denote a standar@, c, v)-fragmentation.
In the statements below, we shall sometimes suppose that

(H2) ¢=0, U(ZS_,‘<1)=O and f£2||n(s.,-)|sjv(ds)<oo
1

j=1 Jj=1
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or
(H3) #0<r<1:F(t)e{r*,neN} Vt>0,i>1, and (H2) holds.

In terms of¢, the subordinator driving a tagged fragmenigfthe hypothesis (H2)
means thaE[£(1)] < co. We shall also use the conventith=[° whenp < 0.

We now state our results on the existence of a stationary distribution; they
depend heavily on the value of the index

THEOREM7. Suppose: < 0.

(i) If either [ Z,-lefal{s_,»zl}l(ds) < oo or [ SI“ Ins11i5,>131(dS) < oo,
then the stationary statdgig e [P a.s. forall p > 1+ «.
(i) There exists no stationary distribution whéns; “1,>1)7(ds) = oc.

THEOREMS8. Supposer = 0.

(i) If fnInsili,>1y1(ds) < oo, then with probability ong Usiat € [ for all
p > 1 and does not belong ¢ whenc = 0 and V(X j>15i <D =0.

(if) There exists no stationary distribution whénlns;1,>1,7(dS) = oo and
(H2) holds

THEOREM9. Supposer > 0. If f;15]1,>1,71(ds) < oo for somee > 0, then
Ustat€ I7 a.s. for p large enough and i{H3) holds thenUga ¢ 127 a.s. More
preciselyfor everyy > 0:

() if [ ijls}’l{sjzl}l(ds) < 00, then Ugat € 17 as. for all p > 1+

a/(y N,
(i) if f15) 1(5,>1y1 (dS) = 0o and (H3) holds thenUsar¢ 1274/ D as,

When—1 < «a < 0, the result of Theorem 7(i) can be completed (see the remark
following Proposition 10 below): in most cases, eithégia ¢ (17 a.s. or both
events{Ustat= 0} and{Ustar¢ /1) have positive probabilities.

It is interesting to notice that the above conditions for existence or absence
of a stationary distribution depend only enand I, provided hypothesis (H3)
holds. Indeed, recall the definition (1) ef and let thenx vary. According to
the above theorems, the values= «; anda = —1 are critical. Provided;; < O,
the stationary distribution exists when> «; and does not exist wham < «;.
Moreover, the stationary staltk,¢is a.s. composed by a finite number of particles
as soon asy; < o < —1, whereas whewr > —1, Ugtat ¢ (11 with a positive
probability (which equals 1 whea > 0 and depends on further hypothesis on
I ande when—1 < o < 0, see the forthcoming Proposition 10).

Let us try to explain these results. By the scaling property of fragmentation
processes, particles with massl split faster whenx is larger. This explains
that, whena is too small, some particles may accumulate in intervals of type
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(a, 00), a > 0, which implies thalgiat ¢ D. For o large enough, particles with
mass> 1 become rapidly smaller, but particles with mas4 split more slowly
whenq is larger. Therefore, small particles accumulate biggd; ¢ /7 when p is

too small. Moreover, the smallegtsuch thatUstat € [P increases ag increases.
Whena < —1, it is known that small particles are very quickly reduced to dust
(see, e.g., Proposition 2 in [8]). This implies thad; € 19, provided it belongs

to D.

Small particles behavior. Suppose that1 <« < 0andf; 3= ;-15; 15,21} X
1(ds) < 00, so thatUgia € D a.s., according to Theorem 7(i). Consider then the
random function

& Ustal(f?) = Ustaf([€, 00)),

which counts the number of components Wi larger thane. We want to
investigate the limiting behavior dfisiafe) ase — 0. In that aim, we make the
following technical hypothesis:

/ Z sil+°‘sjv(ds) <oo and
D1

j>i>1

(H4)

/ (1—s1)?v(ds) <oo  forsomed <1,
D1

as well as hypothesis (H3). Note that the first integral involved in (H4) is finite
as soon asxr > —1 andv(sy > 0) = 0 for some integetN > 2, because then
Sy X jmiz185 s jv(dS) < (N — 1) [p, (1= 5s1)v(ds).

PrROPOSITION10. Under the previous hypotheses

@) if fa ijlsj‘“l{sjfl}l(ds) < 00, there exists a finitev. X, 0< P(X =
0) < 1, such that

Usta[(8)81+a - X a.s.,
e—0
(ii) if f157%Lys,<1y1(dS) = oo, one hadiminf,_ 0™ Ustafe) > 0as,

In particular, this implies thaP (Ustat ¢ I11%) = 1 when the assumption of the
second statement is satisfied. This is not true when the assumption of the first
statement holds: in such case<OP (Usat= 0) < P (Ustat€ I11%) < 1 [see the
proof of (i) for the first inequality].

Whena > 0 or @ < —1, some information on the behavior btkafe) as
¢ — 0 can be deduced from Theorems 7, 8 and 9. Thlyg(0) < co a.s. as
soon asx; < a < —1. To obtain some information whesm > 0, first notice
that, whenUstat € D, [g o) *7 Ustal(dx) < 00 < [ig 1) Ustal(xV/?) dx < oo, by
integration by parts. Combined with Theorem 9, this implies, wtier 0, that
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if 1 ijls}”l{sjzl}l(ds) < o0, then liminf,_,ge”Ustae) =0 for all p > 1+
a/(y A1), whereas iff;1 si’ Ly >131(ds) = o0, limsup._, ¢ ePUstal(e) = oo for all

p < 1+a/(y Ad). The behavior near 0 dlsiaf(¢) is then strongly connected to the
immigration /. Similarly, whena = 0 and when there is a stationary distribution,
one deduces from Theorem 8 that liminf e”Usia(e) = O for all p > 1, and that

limsup,_, o Ustae) = oo for all p < 1, providedc = v(3 ;215 <1) =0.

REMARK. It is possible to show thdiisiat€ R a.s. as soon ag: > j=158j X
15,2131 (ds) < oo and thatP (Ustar¢ R) > 0 as soon ag > —1, [ 51 Lisy>1y ¥
I1(ds) = oo and hypotheses (H3) and (H4) hold. The first claim can be proved
by using some arguments of the proof of the forthcoming Proposition 16 and the
second claim is a consequence of Theorems 4(i) and 7 of [19], which are also used
below to prove Proposition 10.

2.2.2. Proofs. Let F be a standard, c, v)-fragmentation and for every € R
andr > 0, define

M(p.t):=> (Fr))" Lp w0
k>1

which is a.s. finite at least whgn> 1 (since it is bounded from above by 1). That
Ustat belongs to somé?-space is closely related to the behavior of the function
t+— M(p,t). Indeed,

Ustat=Y_ > s; (ti)F(i’j)(S? (t)t:),

i>1j>1

where theF-/)’s i, j > 1, are i.i.d. copies of’, independent of(s(t;), #;), i > 1).
ThenUstate I’ & M(p) < oo with

M(p) = / P Ustafdx)
(0,00)

= Z Z Sf(li)M(i’j) (P, s§Wt) Ys; 1) >0p.
i>1j>1
where theM ") (p,.)'s, i,j > 1, are i.i.d. copies ofV/(p,-), independent of
((s(t), t;),i > 1). Using the tagged particle approach as explained in Section 1.1,
one obtains the following results dd(p, -).

LEMMA 11. (i) Supposer < 0. Then/y° exp(At) E[M (p, 1)]dt < oo as soon
asp>1l+4+aoandr <¢(p—1—a).Inparticular, EfM (p,t)] < oo forae >0
assoonap > 1+«.

(i) Suppose > 0. Then for every) > 0 and everyp > 1, there exists a random
variable D, ,) with positive moments of all orders such that

M(p,t) < D(n’p);—(l’—b/(aﬂ) a.s. for everyr > 0.
Consequently/y” E[M (p, 1)]dt < oo whenp > 1+ a.
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Bertoin (Corollary 3 in [8]) shows that whem > 0 and p > 1, the process
1P~/ pp(p, 1) converges in probability to some deterministic limitzas> oo,
provided the fragmentation satisfies hypothesis (H3). See also Brennan and Durrett
[11, 12], who prove the almost sure convergence for binary fragmentations
(v(s1+ s2 < 1) = 0) with a finite dislocation measure.

PROOFE We use the notation introduced in Section 1.1.
(i) According to (6),

E[M(p,1)] = E[exp((1— p)&(p(1))) 1 <py].
whereD =inf{z: p(t) > e(k)}. Therefore,

/ooo exp(v) E[M (p, )] dt
D —
(14) =& [ exptun expl(2 — pE(oie) |

e(k) B
= E[/() eXD()»,o—l(t)) exp((l —p+ Ol)r‘;:(l)) dt]’

using for the last equality the change of variables o (¢) and that, by definition
of p, exple&(p(t)))dp(t) = dt on [0, D). The functionp—! denotes the right
inverse ofp and, clearlyp—1(r) <t sincea < 0. Whenp > 1+ «, this leads to

/Ooo exp(A) E[M (p, 1)]dt
E[/Oe(k) exp(—¢(p —1— a)t)dt:|, if A <0,

e(k) —
E[/O exp((k—¢(p—1—a))t)dt], if >0,

and in both cases, the integral is finite as sooh asp(p —1—a) =¢(p — 1 —
o) +k.
(i) Fix « > 0, p > 1 andn > 0 and recall that, according to (5),

M(p,t) = E[exp(—(p — D&(p(1))) Ly <py| F].
Sinceé¢ is increasing, one has

p(t

) o0
p(t) exp(—nE(p(1))) < fo exp(—nE(r) dr < /o exp(—nE(r) dr = Dy

And, on the other hand, far< D,

p(t)
1= [ explat() dr < p(0) explag(p(1).
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Combining these inequalities, we obtain éxpa + n)&(p(2))) < t_lD(n) for all
t < D. Hence, M(p,t) < t~w=D/@tnp, . where D, =
E[Dgi)_l)/(“+”)|F]. Carmona, Petit and Yor [13] have shown tiiat, has mo-

ments of all positive orders, which, by Holder’s inequality, is also truelfgy, ).
O

We now turn to the proofs of Theorems 7, 8 and 9.

PROOF OFTHEOREM7. (i) FiXx p > 1+« and splitM (p) into two sub-sums:
Mint(p) =D~ > 57 (t) Lio<s; i<ty M7 (p, s (ti)ti)
i>1j>1

andMsug(p) = M (p) — Mint(p). One has

E[M; = P=1 . |1d OoEM, d
[Mint(p)] /Il(;sj {s; 1}) <s)xf0 [M(p,1)]dt

and both of these integrals are finite according to hypothesis (H1) and Lemma 11
since p > 1 + «. It remains to show thatMgyp(p) < oo when I integrates
ijl Sj_al{sjzl} or Sl—a INs11gg>13.

Suppose first thag: 3 -1 57 15,21/ (d9) < oo and letz @/) be the first time
at which the fragmentatio® @-/) is entirely reduced to dust. Equivalenty-/)
is the first time at whichv/@-/) reaches 0. If the number of paifs j) such that
9 (W) < t@) ands;(4) > 1 is finite, then the sunMsyp(p) is finite because it
involves at most a finite number of nonzevt-/) (p, s%(1;)t;) [which are a.s. all

finite according to Lemma 11(i)]. To prove that this Is the case, we use the theory
of Poisson measures. Since the 14/, i,j>1, arei.i.d., the measure

] i) e
1 sup;. DT
; PSPz (7 T 0)

is a Poisson measure with intensity defined for any positive measurable
function f by

/OOO fx)m(dx) = fooo /llE[f (t‘l sup (T(l’j)sj_“))}l(dS)dt.

j:SjZ]_

The integral/;* m(dx) is bounded from above b [t ™D] f1 3157 15,21y X
1(ds), which is finite by assumption ol and sinceE[t}P] < oo [by (8)].
This implies that a.s. there are only a finite number of integersl such that
it supj:S/,(ti)zl(r(“)sj_“(ti)) > 1. For each of these there is at most a finite
number of integerg > 1 such thats;(#;) > 1. Hence, the number of pai(s, j)
such that? (1/)1; < t&/) ands;(4) > 1 is indeed a.s. finite.
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Assume now thafj s; * Ins11,>1;7 (dS) < oco. For anya > 0, the number of
integersi > 1 such thatur; < s;%(#;) In(s1(#;)) andsi(r;) > 1 is then a.s. finite.
The sumMgyg(p) is therefore finite if

) g
2 28T D L= oy insa oy sy =0 M7 (. 5§ (@)1y)
i>1j>1

is finite for some (and then all) > 0. The expectation of this latter sum is bounded
from above by

o
fo /ll(lefl{a»sj“lns,}l{s_;zl})E[M(P’ s;’-‘t)]l(ds) dt (ass; <s1)
iz

E/llzl{sjzl}l(ds)/o explat(p —a))E[M (p, 1)]dt,

j=1
which is finite for a sufficiently small, according to Lemma 11(i). Hence,
Msyp(p) < o0 a.s.
(ii) Suppose/;1s;*Ls,=131(ds) = oo and let rl(’/zl) = inf{r > O:Fl(”l)(t) <
1/2} be the first time at which all components®f - are smaller than/2,i > 1.

Note thatE[rl(j’zl)] >0 sinceFli’l) is cadlag. The measure
> asl_“(ti)t_l o

T
i>1:51(1)>1 P2

is a Poisson measure with intensity given by
© / *© —a,—1_(L1)
/0 Feom (dx):/o /ZlE[f(sl“t_ ) Lo n 1 (@9 dt.

By assumption o and sinca’f[r{/l’zl)] > 0, the integralT° m’ (dx) is infinite and,

consequently, the number of integersuch thatrl(j’zl) > 55 ()t andsy(f;) > 1is

a.s. infinite. For those s1 (1) Fy"" (s¢ (1)) > 1/2 and, thereforelUs contains
a sequence of terms all larger thgf21which implies that it is not inD a.s. O

PROOF OFTHEOREM8. (i) The second part of the proof of Theorem 7(i) (re-
placing therex by 0) shows thallgiai € MNp=11? when ;1 In(s1) 15,131 (dS) < 0.
Now, if ¢ =0 andv(} ;>15¢ < 1) =0, the sumM (1) equalsy;~1 3 j>15; (%),
which is clearly a.s. infinite sinceé# 0.

(i) Assume that f;1In(s1)1(,>137(dS) = oo and E[£(1)] < oco. For each
i >1, let exg—£%1(.)) denote the process of masses of the tagged particle
in the fragmentationF @Y. To prove thatUsat ¢ D, it suffices to show that
its subsequencésy(r;) exp(—£ @D (1)), i > 1}V ¢ D. The components of this
sequence are the atoms of a Poisson measure with interiSgwen by

fo Fym" (dx) = /O /IlE[f(slexp(—s(r))]l(ds)dt.
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Take thera > E[£(1)]. Since&(z)/t as E[E(1)] ast — oo, there exists somg
such thatP (¢(¢) < at) > 1/2 fort > 1. Then

/1 m (dx)z/o /llP(é(t)flnsl)I(ds)dt

atinsy
Zlefto P(&(t) <at)dt1(d9)

= % /ll(a_l INs1 —10)1 {41105y >10) 1 (dS)

and this last integral is infinite by assumption. Herce, 1 5, ) exp—£@.0.¢,)) ¢ D
a.s. and a fortiorUsiar¢ D a.s. O

PROOF OFTHEOREM9. Fix p > 1+ «. According to the Campbell formula
for Poisson measures (see [21]), the suUitp) is finite if and only if

(15) / / [1 exp( ZspM(lf)(pst))}l(ds)dt<oo

j>1

(i) We first prove assertion (i) and thitac € [P a.s. forp large enough wheh
integrates] 1(5,>1;. Suppose > 1+ o and note that the integral (15) is bounded
from above by

o
./11 Zsf_“l{sjd}l(ds)fo E[M(p,t)]dt
j=1

+/ / [1 exp( Y8t L=y M (p, s° t)>j|1(ds)dt

jz1
According to Lemma 11(ii), the first component of this sum is finite and, for all

n > 0, there exists some i.i.d. r.\D(j? having finite moments of all positive
orders and independent @), i > 1) such that the second component is bounded
from above by

/ / |:1 exp( Z p— a(p— 1)/(Ol+77)15] D(l) t —(p— 1>/(“+”)>]I(ds)dt.
j=1

Using the fact thafy” E[1 — exp(—t~*X)]dt = [5° (1 — exp(— 1~ dr E[XY)
for nonnegative r.vX, one sees that this double integral is equal to

o0
/0 (1— exp(—t~ P~/ @+my) g

(pn+a)/(a+n)
X '/11<ZSJ~ 1{5.].21}

j=>1

(a+n)/(p—=1)
) I(ds)E[Dgr}?p)(aﬂ)/(p_l)]-
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If p>1+«a+ n, the firstintegral in this latter product is finite. So, takemall
enough so thap > 1+ o + n and notice then that

/Il (Z sprrafemy

j=1

(a+n)/(p—1)
) 1(ds)
(16)

-1
< [1 Z S;I”?"’“)/(P )1{Sj21}1 (dS)
j=1

The integral (15) is therefore finite as soon as the integral in the right-hand side
of (16) is finite for some; > 0 small enough. Hence, we get (i).

The same argument shows thadia: € /7 for p sufficiently large when there
exists some > 0 such thatf;1 s{1(,>1y1 (dS) < oo. Indeed, letp > 14+ o + 1. It
suffices then to show that the integral on the left-hand of (16) is finite and to do so,
we replace the upper bound there by

/l 1 (Z gprrefrng

j=1

(+n)/(p—1)
) 1(ds)

(a+n)/(p—1)
) 1(ds),

(pn+a)(p—1)
= ./11 51 (Z Lisj=1)

Jj=1

which, by Hdélder’s inequality, is finite as soon ads large enough ang small
enough.

(i) We now turn to the proof of assertion (i) and tHag ¢ /1% when (H3)
holds. The integral (15) is bounded from below by

o0
/0 /[1 S]TaE[(l - eXFK—sfM(p, t)))1{M(p,t)zrz—(l"1)/°‘}]1(ds) dt
o
> /Il sl—“/o (1— exp(—stre=P=D/@) P(M(p, 1) = ri= P~ V/%) dr 1 (@9).

According to Corollary 3 in [8], the hypothesis (H3) ensures thatD/@p(p, 1)
converges in probability to some finite deterministic constant-asco. Hence,
taking r > 0 small enough and thery large enough, one haB(M(p,t) >
rt~P=D/*y > 1/2 for t > 1 and, therefore, the integral (15) is bounded from
below by

1 [ —apa/p-1) [ —(p-1
3 /ll sy%sy /o Lot - oy (1 = EXP(=71 (P=D/*)) dr 1 (ds),
which is infinite as soon ag < 1+« or [ sf/(”_l)l{slz,o}l(ds) =oc0. [

PrROOF OF PrRoOPOSITION 10. For the standard fragmentatioR, let
N(e,00)(t) := D _x>1 L{F.(1)>¢) denote the number of terms larger thapresent at
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timez. Under the hypotheses (H3), (H4) amd> —1, Theorems 4(i) and 7 of [19]
describe the behavior d¥ (. ~)(t) ase — 0. Theorem 4(i) states the existence
of a random functionL such thaty ;-1 Fx(t) = [>° L(u)du a.s. for allz. Then
Theorem 7 says that -

(17) e Nieooy(t) = KL(r)  ase — 0

a.s. for aimost every, wherekK = (1+ «)/a?E[£(1)]. Note that the sumtsiag(e)
can be written as

(18) Ustal®) = D N (1) 00 (55 01),

i,j=1

where theN(ff’og))(-)’s are i.i.d. copies ofN(. )(-), independent of((s(#:), #;),
i>1).

(i) Let t¢J)) be the first time at whichF /) reaches0, i, j > 1. With the
same arguments as in the proof of Theorem 7(i), one sees that, with probability
one, there is at most a finite number gf < supjzl(r("’f)sj_“(t,-)) if and
only if f1 E[sup;.q t™/)s7%11(ds) < oo. This integral is finite by assumption.

A moment of thought then shows that there is at most a finite number of integers
i, j > 1—independent of—such thatv "’ (s%(1)1;) > 0. Consequently,

i o (e/s(t;),00)
the sum (18) involves a finite number of nonzero terms and

e Ustate) — K 30 LOD(sfyn)si™ ) as,
i,j>1

where the functiond.-/)’s are i.i.d. and distributed ak. This limit, which we
denote byX, is null as soon adlsizt= 0, that is, as soon as there is no integer

i > 1suchthat; < su;)jzl(r(i’f)s]._“ (t))). This occurs, according to the Poissonian
construction, with a positive probability. On the other hand, the Lebesgue measure
of By :={x > 0:L(x) > 0} [denoted by LelB;)] is a.s. nonzero and then
P(X >0)>0.

(i) Supposef;1 s * 15, <11 (dS) = oo and letB, ¢.j) := {x > 0: L") (x) > 0},
which are i.i.d. copies ofB;. One checks that there a.s. exists a time
szls;"‘(t,-):ts’m,j) if and only if the integralf;1 E[Leb(szls;“:BLu,_,-))]I(ds)
is infinite and that this integral is indeed infinite here, according to the assumption
onI and since LefB;) > 0 a.s. From this, we deduce that

Yo LUD(s%@)h)siT () >0 as. forN large enough
1<i,j<N '

and then, by (17) and (18), that limjnfge1T®Ugafe) > 0. O
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3. Rate of convergence to the stationary distribution. We are interested
in the convergence in law to the stationary regilbgs:. It is already known,
according to Lemma 5, that, for every randame D, the processFI(”)(t)
converges in law as— oo to the stationary statdsi; provided it belongs taD
a.s. The aim of this section is to strengthen this result by providing upper bounds
for the rate at which this convergence takes place. The norm considered on the set
of signed finite measures ab is

[l := sup
f1-Lipschitz sup. o | f(9)]<1

By f is 1-Lipschitz, we mean thaif (s) — f(S)| <d(s,S) forall s,s € D. Itis
well known that this norm induces the topology of weak convergence.

The main results are stated in the following Theorem 12. In ease0, the
rate of convergence depends prand it is worthwhile making the result a little
more explicit. This is done, under some regular variation type hypothesksion
Corollary 13.

(@f@uwﬂ.

THEOREM12. The initial statesu considered here are all deterministic

0) Suppc_)se thady <O0and [ ij;sj‘“l{sjzl-}.l(dsf) < 0o. Then for every
y € [1,T] [T is defined by9)], there exists a positive finite constafitsuch that
for everyu satisfying}_ ;-1 exp(—u‘j’.‘) < 00,

|L(FI™ (1)) — £(Ustad|

=0 (ﬂy—l) fll lej‘“y exp(—Ar"s5) 1 (ds) + exp(—AtM‘i”’))
j=
ast — 0o.
(i) Supposethat =0and [1 )" ->1s1+81(ds) < oo for somes > 0. Then for
l JzL17j
everyu € [1¢ anda < ¢ () /(2 + ¢),

|£(FIW (1)) — £(Ustad | = o(exp(—ar))  ast — oo.

(iif) Suppose that > 0and ;1351 sf’l(ds) < oo for somep > 0. Then for
everyu € I? and everyu < 1/«,

|LFI™W(1)) = LUstad| =0t  ast — oco.

Note first that, by Theorems 7, 8 and 9, the assumptions we makéngply in
each case thalsiaie D a.s. In case < 0, the given upper bound may be infinite
for somey’s. The point is then to find the’s in [1, I'] that give the best rate of
convergence. This is possible, for example, whigr}_ ;-1 1(;;>x)1 (dS) behaves
regularly ast — oo. In such case the statement (i) turns to:
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COROLLARY 13. Supposer < 0 and fixu such thaty ;- ; exp(—u‘}‘) < 00.

() I [12" 51 Ls;201(dS) ~ I(x)x™¢ as x — oo for some slowly varying
function/ and some > 0, then provided—« < o,

|£(FI™ (1)) — £(Ustad | = O (1(tY 1N~ @/leI=D) &gt — 0.

(i) If —In(f;n > j>1Ls;2x1(d9)) ~ 1(x)x? asx — oo for some slowly varying
function/ and some > 0, then there exists a slowly varying functiriwhich is
constant whe is constank such that

| LFIY (1)) = £ Ustad|| = 0 (r= TV exp(—1'(1)reT/ @I 0)))  ast — oco.
In the special case whef(s; > a) = 0 for someua > 0,
|L(FI™ (1)) — £(Ustad || = O (exp(—B1"))

for some constanB > 0.

ProOOFE (i) First, by integrating by parts and then using, for example,
Proposition 1.5.10 of [10], one obtains that, foe [1, o/(—)),

/l DI A CEE [(xYeryy=lmeley asxy — 0
j=1 '
(the notation~ means that the functions are equivalent up to a multiplicative

constant). Then, using Karamata’s Abelian—Tauberian theorem (Theorem 1.7.1
of [10]), one deduces that

/ > s exp(—ts) 1 (ds) ~ [t~ Veryteley  ast — 0.
lljzl
Now if —a < o, statementi) of Theorem 12 applies and one can plug the above
equivalence into the upper bound obtained there, hence, the conclusion.

(i) Let 1 < y <T. By integrating by parts and then by using Theorem 4.12.10
in [10], one sees that-In(/;: ijls;“}’l{sjzx}l(ds)) ~ 1(x)x® as x — oo.
According to de Bruijn’s Abelian—Tauberian theorem 4.12.9 in [10], this implies
that

(19) — In(fl1 ;s;“V exp(—ts;?”’)l(ds)) ~ f(t) ast — 00,
J=

where (1) = 1/ W< (¢) with W(r) = &)/t and &< (1) = /@) /[ (11/ (o)),

Here @< (t) = sugu > 0:¢(u) > ¢} and similarly for ¥. Therefore, f(¢) ~

I(r)re/etlely) for some slowly varying functiord (to invert regularly varying

functions, we refer to Chapter 1.5.7 of [10]) which is constant whisrconstant.

The assumption we have drallows us to apply Theorem 12(i) and the conclusion
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then follows by taking therez = I' and using the equivalence (19). The special
case wherl (s; > a) =0 is obvious. O

Hence, our bounds for the rate of convergence depend significanilyadren
a < 0, whereas they are essentially independent afhena > 0. Also, in any
case they are essentially independent of the initial state

We now turn to the proof of Theorem 12, which relies on a coupling method that
holds for D-valued X-processes with immigration, as defined in Section 2.1. We
first explain the method in this general context and then make precise calculations
for fragmentation with immigration processes. In this latter case,ifand/ are
fixed so that/(s; > 1) = 0 and if ¢ varies, one sees (without any calculations,
just using that particles with mass 1 split faster whenx is smaller) that the
employed method provides a better rate of convergence whemsmaller. When
I(s1 > 1) > 0, the comparison of rates of convergencexagaries is no longer
possible because particles with mass larger than 1 split more slowly when
smaller.

PROOF OFTHEOREM12. LetX be a®D-valued Markov process with the su-
perposition property anflan immigration measure such that the processeY’,

u e D, defined by formula (11), ar®-valuedX -processes with immigration. Let
then((s(#), t;),i > 1) be the atoms of a Poisson measure with intensitis) dr,

t > 0, and suppose that the stationary dugpsconstructed froni(s(z;), #;), i > 1),
as explained in (12), belongs a.s.f Suppose, moreover, that" (r) 23 0 for
allue D.

Then, fixu € O and considerx @ and X (Ys2® some versions ok starting,
respectively, fromu andUga:. Consider nexk (@ an X -process with immigration
starting fromO0, independent ofXW and X(Us2), Then, the processeX
and X7Usa  defined, respectively, byx 7V () := XW() + X19() and
X1WUsad (1) .= xUsad (1) + x1O (), t+ > 0, are X-processes with immigration
starting, respectively, from andUg¢at

Let now r be a deterministic function and caj,f“) the first timer at which
x(s) < r(s) for all s > ¢ and, similarly, 7 the first time: at which
x{Y (5) < r(s) for all s > ¢. Of course, the interesting cases af¥ < oo and

5 — o a.s. Such cases exist, take, for example, 1.

Our goal is to evaluate the behavior of the ndfm@(X 1YW (1)) — £L(Ustad || as
t — oo. To do so, letf: D — R denote a 1-Lipschitz function o® such that
SURcp | £(9)] < 1. For allz > 0, we construct a functiorf, ;) from f andr(z) by
setting

£(0), whensy < r (1),

FOO =\ flor o osic@,0.00..), whensy > r(o).
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wherei(r(t)) is the unique integer such that, ) > r(t) ands;@))+1 < r ().
Clearly, asf is 1-Lipschitz andi(s, s) = sup;>1 Is; — s;-l fors,s e D, |f(s) —
fray(®| < r(t) for everyseD and, therefore,

|E[f(XI () - f(Ustad ]|
(20) = |E[f(XIW (1)) — f(XTYs=)(1))]]
<2r(t) + |E[frin (XTI @) — frioy(XTYs2 (1))]].
(w (u)

The time z, ' and the functionf,, are defined so that, for times> 7.,
fran(XT W (r)) takes only into account the masses of particles that are descended
from immigrated particles, not from. Therefore, one has

E[froy(XIV )] = E[frin(XIV D)1 @ 6w, ]
+ E[fr(z) (X](O) (t))l{tzrr(u)VTr<Stao}]
and, similarly,

E[frio(XTIV =2 @0)] = E[fo(n (X IV )1 0, s _,]

+ E[ fre) (XI(O)(t))l{zzr,fu)\/r,@au}]'
Combined with (20), this gives
[E[f(XI"(®)) = f(Ustad]]

<2r @)+ |E[(fro(XIV®) = fro XTIV @)1 0, cm_, ]|

<2r(t) +2P(tW v 15 > ¢)
since sup. o | f(s)| < 1. This holds for all 1-Lipschitz functions’ such that
SURcp | f(9)] <1 and, therefore,
(1) |L(XIW(1) — LUstad|| <2(r(t) + P(tW > 1) + P(5 > 1)).

The point is thus to find a function such that the above upper bound gives the
best possible rate of convergence.

In the rest of this proof, we replacé by an(a, ¢, v)-fragmentation procesg,
in order to make precise calculations. We recall tR&t (r) 2% 0 and that the
assumptions of Theorem 12 involvidgensure that)siar€ D a.s. for alla € R,
so that (21) holds foFI ). The choice of the function then differs according as
o <0, =0anda > 0.

Proof of (i). Here we take- = 0. According to the definitions above" is

the first time at which# ¥ reached (it may be a priori infinite) and,*® the
first time at whichF (Ysa) reache®. As recalled in Section 1.1, the first timeat
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which a 1-mass particle reach@ss a.s. finite sincer < 0. By self-similarity, the
first time at which a particle with mass is reduced td is distributed asn 7
Hence, by definitions of W and F(Ustad |

7V =supu;*cY and = sup (s;*@)Th) —n)",
j>1 i>1,j>1
where(‘r'(-/'), j>1 and(<%7 i, j > 1) denote families of i.i.d. copies af such
that(c/), i, j > 1) is independent of(s(#;), t;), i > 1).
Now fix y € [1, I']. On the one hand, one has

(>0 <Y PV > e
izl

which by (8) is bounded from above bg, " ;.;exp(—C,t”u}") for some
constants”,,, C, > 0. Let0< e < C),. Itis easy that this sum is, in turn, bounded

forall# > 1 by Bexp(—(C,, — e)ﬂ’uly) whereB is a constant (depending gne
andu, not onz > 1) Which is finite as soon g5 ;.1 exp(— u‘J") < 00. On the other
hand,

P(rr(StaD / / Z P > (1 —I—U)s )I(dS)dU

j=1

which, again by (8), is bounded from above by

Gy [ o owcy s

for + > 0. Hence, the result.

Proof of (i)). Whena = 0, the fragmentation does not rea@ln general. We
thus have to choose some functiog 0. By assumption/;1 3 ;-1 s}“l(a’s) < 00
for somee > 0. So, fix sucte, fix n > 1 and setr := ¢(¢)/(1+ n(1+¢)). Then
taker(t) := exp(—at), t > 0.

In order to bound from above (z." > ¢) and P (z°*® > 1), introduce, for all
x>0,

Tyx = SUP > 0: F1(t) > x exp(—at)}

the last time at which the largest fragment of a standard fragmentation prdcess
starting from(1,0,...) has a mass larger thanexp(—at). Here we use the
convention supz) = 0. This timez, , is a.s. finite because e(r) F1(r) gy
when 0<a < sup,- ‘f?(fl), as explained in [8]. More precisely, one can show the
existence of a positive constafitfa) such that

(22) P(tar>1) <Cla)x M exp(—ar)  forallx >0,r>1.



1984 B. HAAS

Indeed, let > 1 and note that
P(nt > 14, >1) < P(Ju € [t,nt[: F1(u) explau) > x)

< P(F1(r) explant) > x) (asF1\\)

< x~ W explan (1 + )t) E[(F1(1)) ).
This last expectation is bounded from above lﬂ,{zkzl(Fk(t))”g] =
exp(—¢ (e)t), which yields P(nt > t,, > t) < x~ 3 exp(—at), sincea =
¢(e) — an(l + ¢). Then, settingC(a) := Y_,-1exp(—a(n"~1 — 1)), one ob-
tains (22).

By definition, t “ is the supremum of timessuch thatF. u)(t) > exp(—at).

Hence, there eX|st some independent random varlaiqfi@% , j =1, where

Ta(]1)/u» has the same distribution ag 1/, ;, such that

rr(”) = Supr(]{/u .

izl
Then, by (22),
(23) P(z!" > 1) < C@ exp(—ar) Y u}*s.
jz1
Next, by definition ofr,*™®, there exists a family of r.«c" efx)p(ml) s B = L,

such that

() n
sup (7, ey — L
izl,jgl( a,expati)/s;(t;) z)

T r(stab —

. la ..
and, Condltlona"y on(s(;), t;),i = 1), T eXp(at,)/Sj(l, Wfa,exp(ati)/s_j(t,-)’ 1]z 1

@)
and thera explati)/s;

stal (W)
P ( D ZZP aexp(at,)/sj(t, >ti+t)
i>1j>1

) 'S are independent. This implies that

and then, by (22), that
Cla)
(stap 1+e¢
P(rS® > 1) < ais exp(— at)/ ;s 1(d9).
Combining this last inequality with (21) and (23), one obtains
[LFIY (@) = £(Ustad |
< 2exp(— at)<1+C(a)Zu1+£+(2a) 1C(a)/ Zs1+81(ds)>

izl jz1
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This holds for every; > 1 and, therefore,
| L£(F1 () — L (Ustad | = O (exp(—ar))

for everya < ¢(g)/(2+¢), providedu € /112, Then, as this holds for all values of
a in an open interval, one can repla@gexp(—at)) by o(exp(—at)).

Proof of (iii). Fix 0 <a < 1/a and setr(z) :=¢~%, t > 0. By assumption,
there exists some > 0 such thatf;: ijlsfl(ds) < oo and we callz the real

number such thata?(a + 1) = p(1 — aa — az). Note that O< z < a1 — a.
Define then, forxx > 0,

Tyx i=SUpt > 0: F1(r) > xt™“}.

The fact thatz € (0,«~ 1) allows us to choose somge > 0 andg > 1 such
that g—;l’ —aq = g(@~ — a — z), which, by definition ofz, is also equal to
gza(a+1)/p. According to Lemma 11(ii), there exists an ¥, ,) with positive

moments of all orders such that
199FY (1) < Dy o194~ @ V@t = p o mazelatD/p
a.s. for every > 0. This implies that
P(tax>1t) < P(Fu>t:u?F] () > x?)
< P(Bu>1t:Dg gu @D/ 5 xq)

< Bx_p/(z"‘)t_(‘H'l),

e p/(qze)
whereB := E[D(M) ] < o0.

A moment of thought shows that the timg¥’ = sup(z > 0: F{"’ (+) > 1~} and
tr(StaD — Suﬂt > 0: F{Ustat) (t) > t—u} Satisfy

u —a_ () sta —a_@,)) +
7\ = sup(u; v ) and 7% < sup (s; T —10) "
Jj=1 ) i>1,j>1 )

. . ) law
w1, J =1, are independent such th%(tjuw—l = Ta’u7u—l and,
J 7

conditionally on ((s(t;), t;),i > 1), the r.v. ) i,j > 1, are independent

1
a,s%?

where the r.v.r(j)
a,u

(5,2171 law T, «a-1. Using then the upper bound®(z,, > 1) <
i )

J
Bx~P/G0¢=(@+D) "one obtains

P(Tr(u) > t) S Bt_(a—'_l) Z M;ot(u—i—l)-i—p(l—ow)/za’
j=1

such thatt

a,s

which is equal taB:~“*D 3., u”? by definition ofz. Similarly, one obtains

(stay —1p.—a p
P(t;>® >1) <a "Bt /Ilgisjl(dS).
jz
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Hence, by (21),

|£(FIW (1)) — £ (Ustad| < Rt‘“<1+ Sul + /11 Zsfl(ds)),

j=1 Jj=1

whereR is a finite real number depending on the parameters of the fragmentation
and ona, but not onr and f. This holds for alla € (0, 1/«), which gives the
boundso(r7%), a < 1/a, claimed in the statement.]

4. An example constructed from a Brownian motion with positive drift.
Let B be a standard linear Brownian motion and for evéry 0, consider the
Brownian motion with driftd,

B (x) :== B(x) +dx, x> 0.
For anyr > 0, define
Lay(t) :==inf{x > 0: By (x) =1t} R(a)(t) :==sup{x > 0:B(y)(x) =t},

the first and the last hitting times oby B(4). Clearly, O< L4)(¢) < Rg)(t) < 00
a.s, sinced > 0. It is thus possible to consider the decreasing rearrangement of
lengths of the connected components of

Ew(t) = {x € [L(d)(t), R(d)(l‘)] :Bay(x) > l‘},

which we denote b¥l 4 (7).

ProPOSITION 14. (i) The process(Fl 4 (t),t > 0) is a fragmentation
immigration process with the following parameters

ap=-1/2,

cg =0,

vg(s1 + s2 < 1) = 0 and vp(sy € dx) = vV/2r~Ix=321 — x)~3/24x,
x€[1/2,1),

Igy(s2>0)=0and ) (s1 edx) =+ (2m)~Ix =32 exp(—xd?/2) dx, x > 0.

(i) The process is stationaryhe stationary law is that of a Cox measi(tieat
is, a Poisson measure with random intensitgth intensity7 (d)+/(8m)~1x —3/2 x
exp(—xd?/2)dx, x > 0, whereT (d) is an exponential.v. with parameted.

(iif) There exists a constaiit € (0, co) such that for everyu € O satisfying
Y1 exp(—ujfl/z) < o0, an (as, cp, ve, Ig))-fragmentation immigration ¥
starting fromu converges in law to the stationary distributiaf(Ustap at rate

|L(FIW#)) — LUstad | = Ot~ exp(—L1)).
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Note that the immigrating particles arrive one-by-one.
The fragmentation part of this process, that does not depent] aa well-

known fragmentation process that was first constructed by Bertoin in [7]Fg)et
denote this fragmentation starting frdre: (/, 0, ...). Itis a binary fragmentation,
that is, each particle splits exactly into two pieces, which is constructed from a

Brownian excursmrav(” conditioned to have lengthas follows:

(24) Fg)(t) := {lengths of connected components|{efe [0, /] :eg) (x) > t}}i

forall ¢+ > 0. In [7] itis proved that this process is indeed a fragmentation process
with indexa g = —1/2, no erosion and a dislocation measugeas given above.

PrROOF oFPROPOSITION14. (i) According to Corollaries 1 and 2 in [25], the
process defined by

Ya)(x) := B (x + R(d)(O)), x>0,

is a BE®(3,d) (which means that it is identical in law to the norm of a three-
dimensional Brownian motion with dritf) and is independent afB(;)(x),0 <

x < R« (0)). This last process codes the fragmentation of particles present at
time O, whereas the proces§, codes the immigration and fragmentation of
immigrated particles. More precisely:

o Let e(ll) . eg), ... denote the finite excursions &, above 0, with re-

spectlve Iengthsil,lz,.... The Cameron—Martin—Girsanov theorem implies
that the (/;,i > 1) are the finite jumps of a subordinator with Lévy mea-

sure v/(87) Lx—3/2¢=*d*/2 4 killed at an exponential time with parame-
() ,2)

ter d, and that conditionally orn/;,i > 1) the excursions ,eB ,... are
independent Brownian excursions with respective lengths.,/;,.... This
gives the distribution ofl 4)(0) = (I3, [2, ...)¥ and implies that the process
(FI EO R(‘”(O)](z) t > 0) defined by

F [0, R(d)(o)]( 1) =

) {lengths of connected

comp. Of{x € [L(d)(t), R(d)(O)] ‘Bay(x) > t}}¢

isan(—1/2, 0, vg)-fragmentation starting frorkl ;) (0).

o Let Jiy,)(x) :=infy>, Y4y (y), x > 0, be the future infimum o¥). One
has to see/(y,,) as the process coding the arrival of immigrating particles
and Yy — Jiv,,) as the process coding their fragmentation. According to
a generalization of Pitman's theorem (Corollary 1 in [28))y)), Y@) —
J(y(d))) is distributed asM 4y, M(q) — Ba)), WwhereM ) (x) := SURQ.x] Bay(y),

x > 0. Moreover, according to the Cameron—Martin—Girsanov theorpy, is
distributed as the inverse of a subordinator with Lévy measure

Igy(s1€dx) =4/ (Zn)—lx_3/2 exp(—xd2/2) dx, x >0,
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and, conditionally on their lengths, the excursions above 0/gf — B are
Brownian excursions. Let(A ) (#;), t;), i > 1) denote the family of jump sizes
and times of the subordinator inverseMf;,. The sequence

Fl Eg)(d’(o)’oo) (t) := {lengths of connected

comp. of{x € [Ra)(0). Riay()]: Biay(x) > 1}}*

is the decreasing rearrangement of masses of particles that have immigrated at
time #; <t with massA 4 (t;) and that have split independently (conditionally

on their masses) until time— ¢; according to the fragmentatian-1/2, 0, vg).

e Fl () is the concatenation G {2')’*@’)(0”@) andFl %5)“”(0)‘00) (1), which leads

to the result. Note thal,, satisfies the hypothesis (H1).

(i) ThatFl)(r) law ey @) (0) is a simple consequence of the strong Markov
property of B applied at timel ;) (¢). The stationary distributiost (FI 4)(0)) is
calculated in the first part of this proof.

(i) It is easy to check that theg-dependent parameté&rg [defined in (9)]
is here equal to 2 and that
2

00 dx
—In(/ I(d)(sledy)) ’\'7 asx — oo.
x

Then we conclude with Corollary 13(ii).C0

REMARK. LetY) bea BE§(3, d), d >0, and set
Fly,, (1) := {lengths of connected

comp. of{x € [Ly,, (1), Ry, (D]: Yy () > 1}},

whereLy,, (t) :=inf{x > 0:Y(4)(x) =t} and Ry, () := suplx > 0:¥(4)(x) =1t}.
According to the proof abovésl Y is an(—1/2,0, vg, I4))-fragmentation with
immigration starting fron0 (clearly, this is also valid forl = 0). Recall then the
construction of the stationary stat®,, as explained in (12). It is easy to see
that Ustat has the same law as the point measure whose atoms are the lengths of
the excursions below 0 of the process obtained by refledtjpgat the level of its
future infimum. By Corollary 1 in [25], this reflected process is a Brownian motion
with drift d. Therefore, it > 0, Ugtar€ D a.s. and the stationary distribution is that
of the reordering of the lengths of the excursions below 0 of a Brownian motion
with drift 4, which is indeed the distribution &l ;)(0) (by Girsanov’'s theorem).

On the other hand, il = 0, Ut is clearly not ind a.s. and then there is no
stationary distribution [which was already known, according to Theorem 7(ii)].

At last, we mention that one can construct in a similar way some fragmentation
with immigration processes from height functions coding continuous state branch-
ing processes with immigration (as introduced by Lambert [22]). This is detailed
in [20].
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5. Thefragmentation with immigration equation. The deterministic coun-
terpart of the fragmentation with immigration procéasc, v, I) is the following
equation, namely, thieagmentation with immigration equatidia, c, v, I)

ol )= [ T xe (—cxf%x) [ [Z flxs)) — f(X)}v(dS))m(dx)
1

j>1
(E)
+ [, X sespis.

j=1

where (u;,t > 0) is a family of nonnegative Radon measures (6noo). The
measureu,(dx) corresponds to the average number per unit volume of particles
with mass in the intervalx, x + dx) at time¢. The test-functionsf belong to
CL(0, 00), the set of continuously differentiable functions with compact support
in (0,00). Note that the hypothesis (H1) implies the finiteness of the integral
JnX =1 f(s)I(ds) for every f € C(0, 00). In [2], the stationary solution to
this equation is studied in the special case whesg 1, ¢ =0, v(s1 € dx) =
2112, dx andv(sy +s2 <1) =0, I(s2 > 0) =0 and/(s1 e dx) = i(x)dx

for some measurable function Here we investigate solutions and stationary
solutions to (E) in the general case.

5.1. Solutions to(E). When I = 0, existence and uniqueness of a solution
to (E) starting froms1(dx) are established in Theorem 3 in [18]. More precisely,
the unique solution to the equation starting frénx) is given, for allz > 0, by

(25) (me, f) :=E[Zf(Fk(t))} feeH0,00),
k>1

where F' is a standard fragmentation proceassc, v). Now, we generalize this

to the case wherd # 0. In that aim, we recall that some fragmentation with

immigration processes starting frome R were introduced in (10). Recall also

that¢ is the Laplace exponent given by (3) and that ¢ — ¢ (0).

ProOPOSITION15. Let o be a nonnegative Radon measure (@noo) and
let u be a Poisson measure with intensityy. Consider then an(e, c, v, I)-
fragmentation with immigratioGFI W), t > 0), as introduced i(10),and define
a family of nonnegative measurgs;, t > 0) by

(26)  (wi. f) = E[Z f(FII({”)(t))}, feek0.0), f=0.
k=1
If one of the three following assertions is satisfied

(Al) @ >0, [n X ;>15;1(ds) < oo and [1° xuo(dx) < oo,
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(A2) @ =0, 132156 (5) Lis,=1] (d9) < 00 and [ x(jz5) o(dx) < oo,
(A3) & <0, f1 32157 “1s;2)1 (dS) < 00 and [7° x1+ uo(dx) < oo,

then the measureg;, + > 0, are Radon and the familgu,, r > 0) is the unique
solution to the fragmentation with immigration equati@) starting fromgo.

Of courseFI is a “usual’D-valued fragmentation with immigration process
as soon agp[l, 00) < oo.

REMARKS. 1. Notice that, for allf € €1(0, 00), f >0,

(e, £ [ZquFk(u z>]

i>1k>1

+ E[Z o> s Fr(sS )@ — n)))},
i<t j>1k>1
where((s(t;), t;), i > 1) [resp.(u;, i > 1)] are the atoms of a Poisson measure with
intensity 7 (ds) dt (resp.uo) and F is an(«, ¢, v)-fragmentation, independent of
these Poisson measures. By (6), this can be written as
(urs 1) = [ ELF (v expl=5((c0))) exple (o 57 1) Jo(d)
(27)

+/o’ /lljZZlE[f(s,- exp(—£ (p(s%u)))) exp(£ (o (s%u)))]1 (d9) du,

whereé is a subordinator with Laplace exponentlt is not hard to see that there
exist some dislocation measunes# v» that lead to the samg. In this case, the
previous formula shows that the, ¢, v1, I)- and(«, ¢, v2, I)-fragmentation with
immigration equations have identical solutions.

2. Assume that one of the assertions (Al), (A2) and (A3) is satisfied, so that the
measuresi,, t > 0, are Radon. Then, these measures are hydrodynamic limits of
fragmentation with immigration processes. Indeedulét be a Poisson measure
with intensitynuo and callFI™ a fragmentation with immigration process with
parametersa, c, v, nl) starting fromu™ . Then, for every > 0,

1

|
-Fl ™y B dx) as.
This holds becaus@l(’”(t) is the sum ofr i.i.d. point measures distributed

as FIU)(r) for some(a, ¢, v, I)-fragmentation with immigratiol ). The
strong law of large numbers then implies that, for evéry ecl(o, 00),

—Zf FIM (1) 2 [Zf A )(t))}=<ut,f>

k>1 k>1
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and the conclusion follows by inverting the order of “for eveiyg ecl(o, 00)” and
“a.s.,” which can be done, for example, as in the proof of Corollary 5 of [18].

PROOF OFPROPOSITION15. Letu,,t > 0, be defined by (27) [equivalently,
(26)].

e It is easily seen that these measures are Radon if (A1) holds. To prove this is
also valid for assertions (A2) or (A3), we need to evaluate the rate of convergence
to 0 of P(a < xexp(—&(p(x“t))) <b) asx — 00, 0<a < b < 00, Wwhena < 0.

First, note that this probability is bounded from abovery exp(—& (p (x%t))) <
b), where§ = £l is a subordinator with Laplace exponept= ¢ — ¢(0).
Then foru > 0 andv > 0O,

P(Ew) >v) <(@—e HE[1—exp(—v E®W))]
=1-eH 71— exp—up™))).

Wheno = 0, this implies that

(29) Pla<xexp(—£(1) <b)=0(g((nx)™Y))  asx — .

Whena < 0, by the definition ofo and conditionally on 2%t < p(x%t) < oo,

_ 22 _
2x*rexp(a (2x%1)) 5/0 expleé (r))dr 5/0

and, consequentlyP (2x%t < p(x%t) < oo) < P(exp(aé (2x%t)) < 1/2) which,
by (28), is anO (x*) asx — oo. Moreover, again by (28)P (x exp(—& (2x%1)) <
b) = 0(x*) and, therefore,

(30) Pla <xexp(—&(p(x“t)) <b)=0(x%)  asx - o0
since

(28)

p(x%t

)
exp(aé (r)) dr = x*t

P(a <xexp(—&(p(x*1)) <b)
< P(2x“t < p(x*t) < 00) + P(x exp(—&(2x*1)) < b).

Now, suppose that (A2) or (A3) holds and taker) = x1xc@,p), O0<a <b <
0o. Using the results (29) and (30), one sees that f) is finite. Henceu, is
Radon.

e Suppose that (Al), (A2) or (A3) holds, so that the measures > 0, are
Radon. Consider then the measuigs > 0, introduced in (25). One checks that

o0 t
s £ = [ (s fomotan) + [ [ oo i @9 .

where f, 1y = f(xy), x € (0,00), f € C1(0, 00). Theorem 3 in [18] states that
(ns,t > 0) is a solution to (E) whed =0, that is,

t
(e f) =f<1>+fO (Mor Af) dv,
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where

(31) Af(x) =x% <_cxf/(x) + /i) |:Z flxsj)— f(x):|v(ds)).
lj=1
This equation relies on the fact that, fof € G}(O, o0), A@d x fHx) =
x*2G(f)(x), whereG is the infinitesimal generator of the process @xp) (see
the proof of Theorem 3 in [18] for details).
Using then thakt*Af, = (Af),, one obtains

t
(32) (yer. fo) = F(x) + /0 (Myerw. (Af)y) dv

and, therefore, by Fubini’s theorem,

t o0
uer ) = (0. £) + fo /O (v (AS) ) pto(dox) du

t u
+/O («/O /lle>;-<77s?va(Af)sj>1(d5)dv+/llzf(sj)](ds))

j=1

t
= (o 1)+ [ e AN du+1 [ 37 pspIs.
Jj=1

(to see why Fubini’s theorem holds, cdlt, b] the support off and suppose
f > 0. The same argument holds for the integral involvijgHence,(u,, t > 0)
is indeed a solution to (E). It remains to prove the uniqueness. This can be done
with some minor changes by adapting the proof of uniqueness of a solution
to (E) whenl = 0 (see the third part of the proof of Theorem 3 in [18]).

O

5.2. Stationary solutions t¢E). As in the stochastic case, we are interested
in the existence of a stationary regime. We say that a Radon meagyiés a
stationary solution to (E) if the familyu, = ustas t > 0) is a solution to (E).

PrROPOSITION 16. (i) There is a stationary solution tgE) as soon as
JnX2j=15;1(ds) < oo and conversely provided that hypothesigH2) holds
there is no stationary solution t¢E) when [j13";.15;1(ds) = co. In case
Jn 2 j=15;1(ds) < oo, the stationary solutiomstatis unique and given by

— h
fstaldx) == xS (dx), x>0,

where the measurﬂg?gtm) is independent ok and is constructed from, v and /

by
(33) (ula. f)= fooo /,12E[f(sj exp(—5())) exp& ())]1 (d9) dt,

j>1

f € G0, ).
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(i) Supposef;1 Y- ;-15;1(ds) < oo and [T xpo(dx) < oo and let(u,, 1 > 0)
be the solution t¢E) starting fromug. Then

vaguely
Uy —  Ustat ast — oQ.

REMARKS. 1. It ustarexists, thetUgiaie R a.s. andustas f) = E[{Ustas )1,
fe G}(O, 00). Note that it is possible thdlisiar € R\ D, which then implies that
there exists no stationary solution in the stochastic case, although there is one in the
deterministic case. Converselysiatmay belong taD a.s., even if its “expectation”
measureu defined by(u, f) := E[(Ustas f)] IS not Radon. Then there exists a
stationary solution in the stochastic case, but not in the deterministic one.

2. Call A :=sugx: [n ijlsjk.l(ds) < oo} and supposer > 1. Then the

statement (i) and the relatios{e 46 = ¢=/¢@ ¢ ¢ > 0, imply that, for all
l+a<i<A+a,

(34) | usatde) =96 —a =17 [ Ty,

and that this integral is infinite as soon &s> A + « or A < 1+ «, provided
#(0) = 0 [which is equivalentte = v(}_;~1s5; < 1) = 0]. This characterizegstat
and is more explicit than (33).

As an example, it allows us to obtain the more convenient expression

istaldx) = (x—“im +202 [Thigy dy) dx

in casev is binary,v(s1 € dx) = 21,¢[1/2,1)ydx, c =0, and/ (sy e dx) = i(x) dx,
I(s2 > 0) =0 (o € R). This latter result is proved in a different way in [2].

Others examples are given by the equations corresponding to the fragmentation
with immigration processes constructed from Brownian motions with driftO
(Section 4). The immigration measufg, satisfies|;: Z_,-lejk.l(d)(ds) < oo for
all A > 1/2 and, therefore, there exists a stationary solution to the equation. One
can use (34) to obtain

1
Usta(dx) = ——— exp(—xd?/2) dx, x>0.
s@ d~/8mx3

This can also be shown by using remark 1 above and the stationary (Mt
given in Proposition 14(ii).

PROOF OFPROPOSITION16. (i) We first suppose that there exists a stationary
solutionu; = ustas t > 0, to (E). Of course, theb, (u,, f) =0 for everyr > 0 and
f € G0, o), and, consequently,

(s A) == [ 3 f(s1(d9).

j=1
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where Af is given by (31). Lettingr — oo in (32), we get by dominated
convergence thatn.«;, fx) — 0 and then thatf (x) = — [5° (nxev, (Af)x) dv,
x € (0, 00). Hence,

(usi AF) = [ .z || tgos (A0 )dv1(ds).

We point out that this formula characterizesss, since A(id x f)(x) =
x*G(f)(x), where G is the infinitesimal generator of egpg) and since
G(@}.(O, o0)) is dense in the set of continuous functions @oo) that vanish
at 0 andoo. Using then the definition ofy, and formula (6), one sees that, for
every measurable functignwith compact support i1t0, co),

(Ustat §) = /11 > /000 E[g(s; exp(=&(p(s§v)))) expl(& (p(s§v)))]dv I (ds)

~

(35) T

= flliis;“ fo E[g(s; exp(—£(v))) exp((1 + )& (v)) ] dv 1 (d9),
JZ

using for the last equality the change of variables— ,o(sj.‘v) and that
expaé,w)) dp(v) =dvon[0, D), D =inf{v:&,q) = oo}. This gives the required
expression fofistat

Note now that the previous argument implies that a stationary solution exists if
and only if

o
/11 Z/O E[g(s; exp(—&(v))) expl& (v))]dv I (dS) < 0o
j=1
for all functionsg of type g(x) = x1j,<x<p}, 0 < a < b. For such functiorg, the
previous integral is equal to

H &
(36) /. 3250 s o = T} 09
Jj=

whereTf = inf{u:&w) > t}, t > 0. If hypothesis (H2) holds anéd is arithmetic
[i.e., if (H3) holds], the renewal theorem applies (see, e.g., Theorem 1.21 in [5])
and E[Tlf,(,/a) - Y"If]+(t/b)] converges as — oo to some finite nonzero limit. In
such case, the integral (36) is finite if and onlyfif 3" ;-1 515,211 (dS) < oo,

Vb > a > 0, and, therefore, there exists a stationary solution if and only if
Jin 2 j=1515;2131(dS) < oo. This conclusion remains valid if (H2) holds afids

not arithmetic, since the renewal theory then implies that limsupE[7,, ,) —
Tlf]+(t/b)] < 00, and that liminf_, E[Tlf,(t/a) — Tlfﬁ(t/b)] > 0assoonaslh—Ina

is large enough. Last, to conclude when (H2) does not hold, remark first that
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Tf = T,g A e(k) [the subordinatog and the exponential r.e(k) are those defined
in Section 1.1] and then that

Té

£
E[TI In*(s;/b)

N(sj/a) —

3 3
= E[Tln(sj/a) =T

3
|n+(sj/b)] < E[Tip 0] < 00

In this case, the integral (36) is finite as soon/as";.15;1;s;>11(dS) < oo,
Vb>a=>D0.

(i) Under the assumptions of the statement, the meaguyres> 0, are Radon
and therefore satisfy (27) for all continuous functignwith compact support
in (0,00). The integral involvinguo converges to 0 as — oo, since, with
the assumption/; xo(dx) < oo, the dominated convergence theorem applies.
Hence,(u;, f>t:>oo('u3tat’ f), using the definition (35) Oftstar [
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